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Abstract

Despite significant algorithmic advances in recent
years, finding optimal policies for large-scale, mul-
tistage stochastic combinatorial optimization prob-
lems remains far beyond the reach of existing meth-
ods. This paper studies a complementary approach,
online anticipatory algorithms, that make decisions
at each step by solving the anticipatory relaxation
for a polynomial number of scenarios. Online an-
ticipatory algorithms have exhibited surprisingly
good results on a variety of applications and this
paper aims at understanding their success. In par-
ticular, the paper derives sufficient conditions under
which online anticipatory algorithms achieve good
expected utility and studies the various types of er-
rors arising in the algorithms including the antic-
ipativity and sampling errors. The sampling error
is shown to be negligible with a logarithmic num-
ber of scenarios. The anticipativity error is harder
to bound and is shown to be low, both theoretically
and experimentally, for the existing applications.

1 Introduction
Online stochastic algorithms for solving large multistage
stochastic integer programs have attracted increasing interest
in recent years. They are motivated by applications in which
different types of requests arrive dynamically, and it is the
role of the algorithm to decide which requests to serve and
how. Unlike traditional online algorithms, these applications
assume that the uncertainty is stochastic and that distributions
of the requests are given.

Consider the packet scheduling problem from[Changet
al., 2000]. A router receives a set of packets at each time step
and must choose which packet to serve. Packets can be served
only for a limited time and they are characterized by a value.
The goal is to maximize the values of the served packets. The
packet distributions are specified by Markov models whose
states specify arrival frequencies for the packet type.

Online reservation systems[Benoistet al., 2001] are an-
other such application. Customers place requests in real time
for some service at a fixed date. The resources are modeled by
a multiknapsack constraint. (Think of tour operators request-
ing rooms in hotels for a group: the choice of a specific hotel

is not pertinent for the group but all group members must be
allocated to the same hotel). Customers must be immediately
notified of acceptance or rejection of their requests, and ac-
cepted requests must be satisfied. Accepted requests must
also be assigned to a specific resource at reservation time and
this choice cannot be reconsidered. The goal is to maximize
the profit of the served requests which come from different
types with different characteristics and arrival frequencies.

Online multiple vehicle routing with time windows[Bent
and Van Hentenryck, 2003] captures an important class of ap-
plications arising in transportation and distribution systems.
In these problems, a fleet of vehicles serve clients which are
located in many different locations and place request for ser-
vice in real-time in specific time windows. Clients must be
immediately notified of acceptance or rejection of their re-
quests, and all accepted requests must be satisfied. Routing
decisions however can be delayed if necessary. The goal is to
maximize the number of satisfied requests.

All these problems share several characteristics. First, they
can be modeled as multistage integer stochastic programs.
Second, the number of stages is large. In packet schedul-
ing, time is discrete by nature, and experiments were made
with 200,000 stages. For the two other applications, time
is continuous but a reasonable discretization of time would
require 200 stages. Third, the set of feasible decisions at
each stage is finite. Finally, these applications require fast
decision-making. These characteristics prohibit the use of a
priori methods for (Partially Observable) Markov Decision
Processes and for Stochastic Programs. Indeed,[Changet al.,
2000] and[Benoistet al., 2001] have shown that (PO)MDPs
do not scale on these applications. Moreover, successful algo-
rithms for 2-stage stochastic optimization, such as the Sample
Average Approximation method, are shown to require a num-
ber of samples exponential in the number of stages[Shapiro,
2006], precluding their use on these applications.

Interestingly, high-quality solutions to these applications
have been obtained by online algorithms that relax the non-
anticipativity constraints in the stochastic programs. These
online anticipatory algorithmsmake decisions online at a
time t in three steps:

1. sample the distribution to obtain scenarios of the future;

2. optimize each scenario for each possible decision;

3. select the best decision over all scenarios.



It is clear that this strategy is necessarily suboptimal, even
with many scenarios. However, experimental results have
been surprisingly good, especially with theRegretalgorithm
[Bent and Van Hentenryck, 2004; Hentenrycket al., 2006]
which is an efficient way of implementing step 2. Our goal
in this paper is to demystify these results by providing a the-
oretical analysis of these algorithms. Section 2 describesthe
model and the algorithm. Section 3 analyses the performance
of the online anticipatory algorithm and isolates two funda-
mental sources of error: a sampling error and a quantity called
theglobal anticipatory gapwhich is inherent to the problem.
Section 4 shows how to bound the anticipatory gap theoreti-
cally and experimentally. Section 5 analyzes the effect of ap-
proximating the optimization problem. Section 6 compares
the anticipatory gap to the expected value of perfect informa-
tion. Section 7 presents directions for future research.

2 Model and Algorithm
We consider finite stochastic integer programs of the form

Q = max
x1∈X (s1)

E

[
max

x2∈X (s2)
E

[
. . . max

xT ∈X (sT )
f(x, ξ)

]]
,

whereξ is a stochastic process, withξt being theobservation
at timet, (with ξ1 being deterministic),st = (x1..t−1, ξ1..t)
is thestateat timet, X maps states to non-empty subsets of
a finite setX of decisions(so themax’s are well-defined),
andf is the utility function bounded byFmax. We denote
respectivelyx andξ the vectorsx1..T andξ1..T .

A decision processis a stochastic processx such that∀t :
xt ∈ X (st). We can assume that the computation of eachxt

requires exactly one random variableγt. These variables are
independent and independent ofξ.

In practice, decisions cannot be made based on future ob-
servations. A decision processx is non-anticipativeif xt

is a deterministic function ofγ1..t andξ1..t (that is, if x is
adapted to the filtrationFt = σ(γ1..t, ξ1..t)). We can rewrite
the stochastic program as

Q = max {E [f(x, ξ)] | x non-anticip. dec. proc.} .

A scenariois a realization of the processξ. Theoffline prob-
lem is the problem a decision maker would face if, in a given
statest, the future observations are revealed; we define

O(st, xt, ξ) = max {f(y, ξ) | y dec. proc., y1..t = x1..t} ,

O(st, ξ) = max {f(y, ξ) | y dec. proc., y1..t−1 = x1..t−1}

= max
x∈X (st)

O(st, x, ξ).

Note that these two problems are deterministic.
Finally, theexpected value of the clairvoyant(EVC ) is de-

fined as the expected utility of a clairvoyant decision maker,
that is,EVC = E [O(s1 , ξ)]. The problems discussed in the
introduction all fit in this model: in particular, the utility is
bounded thanks to capacity constraints. The model can also
be generalized to the case in whichf(x, ξ) has finite first and
second moments for everyx.

The anticipatory algorithm studied here is Algorithm
MakeDecision, parametrized by the number of scenarios
m, whose successive decisions form a non-anticipative pro-
cess:

Function MakeDecision(st, γt)

Useγt to compute scenariosξ1 . . . ξm whereξi
1..t = ξ1..t

foreachx ∈ X (st) do
g(x)← 1

m

∑m

i=1O(st, x, ξi)
xt ← argmaxx∈X (st) g(x)

3 Analysis of the Anticipatory Algorithm
We compare the performance of the anticipatory algorithm
with the offline, a posteriori solution in the expected sense, as
is typically done in online algorithms[Borodin and El-Yaniv,
1998]. In other words, for the decision processx produced
by the anticipatory algorithm, we boundEVC − E [f (x , ξ)],
which we call theexpected global loss(EGL).

3.1 Local and Global Losses
We first show that theEGL is the sum of the expected losses
of the stages.

Definition 1 Let st be a state. Theexpected local lossof
decisionx ∈ X (st) is defined as

∆(st, x) = E [O(st, ξ)−O(st, x, ξ) |st ] .

Note that conditioning on a statest does not provide any
information on γt: when reading an expression of the
form E [. . . |st], keep in mind that there is uncertainty on
ξt+1, . . . , ξT and onγt, . . . , γT .

Lemma 1 (Global Loss = Sum of Local Losses)For any
decision processx,

EVC − E [f (x , ξ)] =

T∑

t=1

E [∆(st , xt)]

Proof. Let Ct be the random variableO(st, xt, ξ) andAt =
E [Ct − f(x, ξ)]. ThenAT = 0 and, fort < T ,

At = E [Ct − Ct+1 + Ct+1 − f(x, ξ)]

= E [Ct − Ct+1] + At+1

= E [∆(st+1, xt+1)] + At+1.

The last equality comes from decomposing and re-assembling
amongst all possible values ofxt. Finally EVC −
E [f (x , ξ)] = E [C0 − f (x , ξ)] = A0 . 2

3.2 Decomposition of the Local Loss
We now show that the local loss at a statest consists of a
sampling error and the anticipatory gap.

Definition 2 Theanticipatory gapof a statest is defined as

∆g(st) = min
x∈X (st)

∆(st, x).

Thechoice errorof x wrt st is defined as

∆c(st, x) = ∆(st, x)−∆g(st).

The anticipatory gap is inherent to the problem and indepen-
dent of the decision processx. An equivalent definition is

max
x∈X (st)

E [O(st, x, ξ)|st]− E

[
max

x∈X (st)
O(st, x, ξ)

∣∣∣∣st
]

.

This expression shows that this gap can be interpreted as the
cost of commuting ofE andmax. We now bound∆c(st, x).



Lemma 2 (Sampling Error) Let xt be computed by the an-
ticipatory algorithm usingm samples per decision. Letst be
a state andx⋆ beargmaxE [O(st, x, ξ) |st ] (break ties arbi-
trarily). Then

E [∆c(st, xt) |st ] ≤
∑

x∈X (st)

∆c(st, x) exp

(
−m∆c(st, x)2

2σ(st, x)2

)
,

where σ(st, x) is the standard deviation ofO(st, x, ξ) −
O(st, x

⋆, ξ) givenst.

Proof. Here all probabilities and expectations are implicitly
conditional onst. The left-hand side can be decomposed as

E [∆c(st, xt)] =
∑

x∈X (st)

∆c(st, x)P(xt = x).

Due to theargmax in MakeDecision, the eventxt = x
implies∀x′ ∈ X (st), g(x′) ≤ g(x). ThereforeP (xt = x) ≤
P (g(x) ≥ g(x⋆)). Since f is bounded,O(st, x, ξ) −
O(st, x

⋆, ξ) has a finite expectation and variance. Now,

g(x)− g(x⋆) =
1

m

m∑

i=1

(
O(st, x, ξi)−O(st, x

⋆, ξi)
)

and, by the central limit theorem, this difference is normally
distributed form large enough, with mean−∆c(st, x) and
variance 1

m
σ(st, x)2. Finally, if X ∼ N (µ, σ2) with µ < 0,

thenP (X ≥ 0) ≤ exp
(
− µ2

2σ2

)
(Chernoff bound). 2

3.3 Performance of the Algorithm
We now assemble the previous results.

Definition 3 TheGlobal Anticipatory Gapof the problem is

GAG = E


 max

x1..T

xi∈X (si)

T∑

t=1

∆g(st )


 .

Once again, this quantity is inherent to the problem.

Theorem 1 The expected global loss of the anticipatory al-
gorithm satisfies

EGL ≤ GAG + O
(
e−Km

)

wherem is the number of samples per decision and

K = min
st,x∈X (st)
∆c(st,x)>0

∆c(st, x)2

2σ(st, x)2
.

Proof. We have

EGL=

T∑

t=1

E [∆(st , xt)] ≤
T∑

t=1

(
E [∆g(st )] + E [∆c(st , xt)]

)
.

The termGAG comes from
T∑

t=1

E [∆g(st)] = E

[
T∑

t=1

∆g(st)

]
≤ E

[
max
x1..T

T∑

t=1

∆g(st)

]
,

and the global sampling error satisfies
T∑

t=1

E [∆c(st, xt)] ≤ T |X |Fmaxe−Km.
2

An important consequence of this theorem is that the sam-
pling error can be made smaller than some constanta by
choosingm ≥ 1/K log (1/aT |X |Fmax). [Shapiro, 2006] ar-
gues that the SAA method does not scale to multistage prob-
lems, because the number of samples to achieve a given accu-
racy growsexponentiallywith T . The anticipatory algorithm
only requiresm to grow logarithmically with T |X |, which
makes it highly scalable. Of course, it only produces high-
quality decisions when the anticipatory gap is small.

4 Bounding the Global Anticipatory Gap
This section provides theoretical and experimental results on
the anticipatory gap, explaining why anticipatory algorithms
are effective in the applications mentioned in the introduction.

4.1 Theoretical Proof on Packet Scheduling.
We first show how to compute an upper bound onGAG for a
simplified version of the packet scheduling problem. Suppose
that there arek types of packets whose values arev1 < . . . <
vk respectively. At each step from1 to T − 1, a packet of
typei arrives with probabilitypi. All these random variables
are independent. Each packet has a lifetime of 2, meaning a
packet received at timet can be scheduled either at timet or
at timet+1. The utility is the sum of scheduled packets over
theT stages. All packets take a single time step to serve. For
convenience, we introduce a packet type 0 with valuev0 = 0
and probabilityp0 = 1. It should be clear that this problem
satisfies all assumptions above. In particular, the utilityis
bounded (0 ≤ f ≤ Tvk).

Why is theGAG small on this problem? We show that
∆g is rarely high, inducing a smallGAG. Forst a state and
x, y ∈ X (st), we say thatx dominatesy if O(st, x, ξ) ≥
O(st, y, ξ) almost surely givenst. Studying∆g(st) only re-
quires to focus on non-dominated decisions: there are at most
two non-dominated decisions for a given state, which consists
of scheduling

• the most valuable packet, of typei, received at timet−1
and not already scheduled; or

• the most valuable packet, of typej, received at timet.

Moreover, if i ≥ j, then choosingj is dominated, sincei is
more valuable and will be lost if not chosen now. Also, if
i < j but the second most valuable packet received att is of
typek ≥ i, then choosingi is dominated. If one of these two
conditions holds, a decision dominates all the other ones, and
thus∆g(st) = 0.

Suppose now thatst does not satisfy any of them. By the
dominance property, scenarios can be partitioned into those
where schedulingi (resp.j) is the unique offline, optimal de-
cision and those on which there is a tie. Introduce the random
variableyt, taking valuesi, j or ⊥ in these three respective
cases. We then have

∆(st, i) = E [O(st, ξ)−O(st, i, ξ) |st ]

= E [O(st, ξ)−O(st, i, ξ) |st, yt = j ] P (yt = j)

and symmetrically

∆(st, j) = E [O(st, ξ)−O(st, j, ξ) |st ]

= E [O(st, ξ)−O(st, j, ξ) |st, yt = i ] P (yt = i) .



Now, if i is scheduled and the optimal offline solution was
to schedulej, then the loss cannot exceedvj − vi, since the
rest of the optimal offline schedule is still feasible. Hence
E [O(st, ξ)−O(st, i, ξ) |st, yt = j ] ≤ vj − vi. Moreover,
for the optimal offline schedule to choosej at time t, it is
necessary to have a packet of value greater thanvi arriving at
t+1 and thusP (yt = j) ≤ 1−

∏
k>i qk whereqk = 1− pk.

Finally, we find

∆(st, i) ≤ (vj − vi)

(
1−

∏

k>i

qk

)
.

The other case is harder to study, but a trivial upper bound is
∆(st, j) ≤ vi. Now it remains to bound the expectation of
∆g(st) = min(∆(st, i), ∆(st, j)) by enumerating the possi-
ble values ofi andj and weighting each case with its proba-
bility of occurrence. This weight is, in fact, bounded by the
product of the probabilities of the 3 following events:

• a packet of typei arrived at timet− 1;

• the most valuable packet arrived att is of typej;

• no packet of typei ≤ k < j arrived at timet.

Here is a numerical example. Suppose there are 4 types of
packets, with the following values and emission probabilities:

type 0 1 2 3 4
value 0 1 2 4 8
prob 1. .60 .30 .20 .10

The upper bound on∆g depending oni andj, is

(j)
1
2 .496
3 1.00 .560
4 1.00 1.68 .400

1 2 3 4 (i)

We find thatE [∆g(st)] ≤ .125. On the other hand, a simple
lower bound on theEVC is the expectation of the value of the
most valuable packet arriving at each stage multiplied by the
number of stages. In this case, that leads toEVC ≥ 2 .25T .
As a result, the ratio ofGAG overEVC on this problem is
less than5.55%. Because this analysis is not tight – espe-
cially the lower bound of theEVC–, the anticipatory algo-
rithm is likely to have an even better expected global loss.
This analysis also hints at why online anticipatory algorithms
are so effective on packet scheduling and why they outper-
form competitive algorithms on these instances.

4.2 Discussion on Practical Problems.
The previous section shows how to bound theGAG on a par-
ticular problem: study dominance properties between the de-
cisions, bound the loss of making a non-optimal (in the offline
sense) decision, and bound the probability of this event. We
are currently applying this method on more complex prob-
lems but proofs quickly become very cumbersome. As an
alternative, we discuss another, empirical way to argue that
theGAG of a problem is small.

We have emphasized in the theoretical discussion the
importance of bounding the probability that the cho-
sen decision is not a posteriori optimal. We call

P (O(st, xt, ξ) = O(st, ξ) |st ) the consensus rate. This
quantity can be estimated easily during the computation of
an anticipatory algorithm. It suffices to count how many sce-
narios make the same decision, i.e.,

1

m

∣∣{i ∈ {1, . . . , m}
∣∣O(st, x, ξi) = O(st, xt, ξ

i)
}∣∣ .

[Hentenrycket al., 2006] kindly gave us some of these statis-
tics on online reservation systems: they depict the consensus
rate (min/max/avg) as a function of the number of scenarios.
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On this class of instances, there are 6 possible decisions in
each state. Therefore, one could expect an average consen-
sus rate of 20%, but it is actually much higher, at about 80%.
Moreover the maximal offline loss of a bad decision can eas-
ily be bounded in this problem. By Markov inequality, the
GAG is low. Similar observations were made in the packet
scheduling problem, where the measured average consensus
was about 90%, and in the vehicle routing problem, where the
rate varies among the stages, exhibiting an increasing trend
from 65 to 100%. This argument, however, would be useless
whenFmax is high, e.g. problems with high penalty states.

More generally, the following theorem gives a way to mea-
sure the anticipatory gap of a state.

Theorem 2 Letst be a state. Definê∆g(st) as

1

m

(
m∑

i=1

max
x∈X (st)

O(st, x, ξi)− max
x∈X (st)

m∑

i=1

O(st, x, ξi)

)
,

then this is a strongly consistent estimator of∆g(st), i.e.,

P

(
lim

m→+∞
∆̂g(st) = ∆g(st)

∣∣∣∣ st

)
= 1.

Proof. Apply the strong law of large numbers toO(st, x, ξ)
for all x and conclude with the finiteness ofX (st). 2

∆̂g can be computed by the online anticipatory algorithm at
no additional cost.

5 Approximating the Offline Problem
Theorem 1 explains why the anticipatory algorithm provides
good results when the GAG is small. However, practical im-
plementations use a variant of Algorithm 1 in whichO is re-
placed by a fast approximatioñO. This is the case for the
three applications mentioned earlier which use an approxi-
mating technique calledRegret[Bent and Van Hentenryck,
2004; Hentenrycket al., 2006]. TheRegretalgorithm can be
seen as a discrete version of sensitivity analysis: insteadof
computingO(st, x, ξ) for each for eachx ∈ X (st), the idea
is to computex∗ = argmaxx(O(st, x, ξi)) first and then to

compute a vector of approximations
(
Õ(st, x, ξi)

)

x∈X (st)



using x∗. Each entry in this vector is derived by approx-
imating the loss of selecting a specificx in X (st) instead
of the optimal decisionx∗. As a result, theRegretalgo-
rithm ensures(i) Õ ≤ O and (ii) maxx(Õ(st, x, ξi)) =
maxx(O(st, x, ξi)). See[Bentet al., 2005] for a discussion
on the complexity of computing this approximated vector.

It is not easy to provide tight theoretical bounds on the
expected global loss for theRegret approximation. We
thus measured the empirical distribution ofO − Õ on on-
line stochastic reservation systems from[Hentenrycket al.,
2006]. The differenceO− Õ is zero in 80% of the cases and
its mean is very small (around .2 while the typical values of
O are in the range [400,500]), although it can occasionally be
large. This intuitively justifies the quality ofRegret, whose
expected global loss is not significatively different from the
anticipatory algorithm for the same sample size.

Finally, recall that, on online reservation systems, the
consensus rate is very high on average. Letx⋆ =
argmaxx

∑m
i=1O(st, x, ξi) and let the consensus rate be

α. By properties(i) and (ii) of Regret, the approximated
“score”

∑m

i=1 Õ(st, x
⋆, ξi) of decisionx⋆ may only exhibit

errors in(1 − α)m scenarios and hence will be very close to∑αm
i=1O(st, x

⋆, ξi). Moreover, other decisions have an ap-
proximated score where (almost all) the terms of the sum has
a negative error. Therefore the approximated decision is bi-
ased toward consensual decisions and a high consensus rate
tends to hide the approximation errorsO − Õ of Regret.

In summary, a high consensus rate not only makes the AG
small but also allowsRegretto produce decisions close in
quality to the exact anticipatory algorithm. This does not
mean that a brutalRegretapproximation, e.g., assigning zero
to each non-optimal decision, would be as effective[Bent and
Van Hentenryck, 2004].

6 GAG VersusEVPI
This section studies the relationships between the anticipatory
gap and the expected value of perfect information (EVPI ).
Since these concepts are seemingly close, it is useful to ex-
plain how they differ and why we chose to introduce the no-
tion of anticipatory gap.

Consider the following two maps assigning values to
states: theoffline valueand theonline valueof statest, re-
spectively denoted byφ(st) andπ(st) and defined by

φ(st) = max {E [f(x, ξ)|st] | x dec. proc.}

π(st) = max {E [f(x, ξ)|st] | x non-anticip. dec. proc.} .

Note thatφ(st) ≥ π(st) for all statest. The difference

η(st) = φ(st)− π(st).

is the (local)expected value of perfect information(EVPI ).
The expected value of perfect information of the problem is
η(s1), that is, the advantage, in the expected sense, of a clair-
voyant over a non-clairvoyant (both with infinite computa-
tional resources). The next lemma relates the offline problem
andφ and shows that the operatorsmax andE commute for
clairvoyant decision processes.

Lemma 3 For any statest, φ(st) = E [O(st, ξ)|st] .

Figure 1: lowEVPI but high Global Anticipatory Gap

Proof. Let x⋆ be a decision process maximizing
E [f(x, ξ)|st]. Then for allξ, O(st, ξ) ≥ f(x⋆, ξ), and, as
E is non-decreasing,E [O(st, ξ)|st] ≥ E [f(x⋆, ξ)|st)] =
φ(st). Inversely, letxξ be a decision process maximizing
f(x, ξ) with xξ

1..t−1 = x1..t−1. Define x⋆ by aggrega-
tion: x⋆ does the same thing asxξ on the scenarioξ. Then
φ(st) ≥ E [f(x⋆, ξ)|st] = E [O(st, ξ)|st]. 2

In two-stage stochastic programming, a lowEVPI makes
the problem much easier because an optimal decision is also
a good one for each specific scenario[Birge and Louveaux,
1997, ch. 4]. However, this is no longer true in the multistage
case. Consider the three-stage problem depicted in Figure 1.
Black dots represent decisions variablesx1 andx2. Stochas-
tic variablesξ1 andξ2 have no influence and are not repre-
sented. The white dot representsξ3 which take values 0 and
1 with equal probability. Leaves are tagged with their utilities
anda is large positive number. The value of theEVPI and
the anticipatory gap∆g for each state are the following:

state root state x1 = 0
∆g 0 1/2(ε + a)
η ε 1/2(ε + a)

On this problem, theEVPI is ε: an optimal solution has a
score ofε, whatever the scenario. The expected value of the
optimal policy is zero. However, the online anticipatory algo-
rithm always choosesx1 = 0 and thus has an expected utility
of 1/2(ε− a). Therefore anticipatory algorithms may behave
poorly even with a lowEVPI . Moreover, in this case, the
inequality of Theorem 1 is tight whenm converges to+∞,
since theGAG equals1/2(ε + a).

The phenomenon comes from the fact that theEVPI of
the problem is low although theEVPI of the node(x1 = 0)
is ε − 1/2(ε − a) = 1/2(ε + a) and thus much larger. This
does not contradict the super-martingale property of[Demp-
ster, 1998] because Dempster considers optimal decision pro-
cesses, which is not the case of anticipatory algorithms. As
a result, the expected global loss of the anticipatory algo-
rithm cannot be bounded by the rootEVPI . The example
may suggest that the maximum of theEVPIs at each node of
the tree gives an upper bound of theEGL, but this is not true
either. Figure 2 presents a stochastic program, where ‘Sub’
are clones of the problem in Figure 1, with variables indices
shifted. On this problem, the optimal solutions to the scenar-
ios have an expected expected utility ofε, and those of the
anticipatory algorithm (withm = ∞) have expected utility
1/4(−3a+ε); theEGL thus equals3/4(a+ε). By Theorem 1,
theGAG is not smaller than theEGL (m =∞: no sampling
error). As a result, theGAG is greater than the maximum of
theEVPI over all nodes, which is equal to1/2(ε + a).



Figure 2:GAG higher than max of theEVPIs

Finally, the following theorem gives one more reason why
the concept of anticipatory gap is of interest.

Theorem 3 For any statest, we haveη(st) ≥ ∆g(st) and
there exist cases in which the inequality is strict.

Proof. η(st) = φ(st) − π(st). Recall thatπ(st) is the op-
timal expected utility of a non-anticipative decision process
givenst. Because of non-anticipativity and becauseX (st) is
finite, there exists an optimal decisionx⋆ ∈ X (st) such that
π(st) = E [π(st+1) |st, xt = x⋆ ]. Now

max
x∈X (st)

E [O(st, x, ξ) |st ] ≥ E [O(st, x
⋆, ξ) |st ]

≥ E [π(st+1) |st, xt = x⋆ ] .

and thus, using lemma 3,

η(st) ≥ E [O(st, ξ) |st ]− max
x∈X (st)

E [O(st, x, ξ) |st ]

≥ ∆g(st).

This proves the inequality. The second part of the theorem is
proven by the example of Figure 1, on which the root nodes1

satisfiesη(s1) = ε > 0 = ∆g(s1). 2

7 Conclusion and Research Perspectives
Anticipatory algorithms have been shown experimentally to
be successful in tackling a variety of large multistage stochas-
tic integer programs which were outside the scope of a priori
methods such as (PO)MDPs and multistage stochastic pro-
gramming. This paper studied the performance of anticipa-
tory algorithms in terms of their sampling error and the antic-
ipatory gap of the problems. It showed that, whenever the
anticipatory gap is small, anticipatory algorithms are scal-
able and provide high-quality solutions in the expected sense
with a logarithmic number of samples in the problem size.
The paper also studied how to bound the anticipatory gap
both theoretically and experimentally, showing that a simple
packet scheduling problem admits a small anticipatory gap
and providing experimental evidence on several large multi-
stage stochastic programs. Finally, the paper indicated that
the anticipatory gap is an important concept and studied its
relationships with the expected value of perfect information.

There are many research directions opened by this re-
search. First, It is desirable to to deepen the understanding
of the problem features (both combinatorial and statistical)
which lead to small (or large) anticipatory gaps. Second, it
is also important to study novel anticipatory algorithms for
applications with non-negligible anticipatory gaps. Herean
interesting direction is to borrow ideas from Real-Time Dy-
namic Programming[Bartoet al., 1995; Paquetet al., 2005].

Indeed, because the estimation ofφ(st) obtained by relaxing
non-anticipativity constraints is an upper bound of its online
valueπ(st) with high probability, a RTDP approach can pro-
duce increasingly tighter approximations of the optimal pol-
icy until decision time. Despite negative complexity results
([Kearnset al., 1999]), we believe that, if theGAG is not too
large, high-quality decisions could be obtained in reasonable
time. Indeed, since the far future is unlikely to be as impor-
tant as the near future for the current decision, we may hope
that small trees will be sufficient for many applications.
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