
Amsaa: A Multistep Anticipatory Algorithm
for Online Stochastic Combinatorial Optimization

Luc Mercier and Pascal Van Hentenryck

Brown University, Box 1910, Providence, RI 02912, USA

Abstract. The one-step anticipatory algorithm (1s-AA) is an online algorithm
making decisions under uncertainty by ignoring future non-anticipativity con-
straints. It makes near-optimal decisions on a variety of online stochastic combi-
natorial problems in dynamic fleet management, reservation systems, and more.
Here we consider applications in which the 1s-AA is not as close to the opti-
mum and propose Amsaa, an anytime multi-step anticipatory algorithm. Amsaa
combines techniques from three different fields to make decisions online. It uses
the sampling average approximation method from stochastic programming to ap-
proximate the problem; solves the resulting problem using a search algorithm for
Markov decision processes from artificial intelligence; and uses a discrete opti-
mization algorithm for guiding the search.
Amsaa was evaluated on a stochastic project scheduling application from the
pharmaceutical industry featuring endogenous observations of the uncertainty.
The experimental results show that Amsaa significantly outperforms state-of-the-
art algorithms on this application under various time constraints.

1 Introduction

In recent years, progress in telecommunication and in information technologies has gen-
erated a wealth of Online Stochastic Combinatorial Optimization (OSCO) problems.
These applications require to make decisions under time constraints, given stochastic
information about the future. Anticipatory algorithms have been proposed to address
these applications [18]. We call an algorithm anticipatory if, at some point, it anticipates
the future, meaning that it makes some use of the value of the clairvoyant. These antic-
ipatory algorithms typically rely on two black-boxes: a conditional sampler to generate
scenarios consistent with past observations and an offline solver for the deterministic
version of the combinatorial optimization problem.

1s-AA is a simple one-step anticipatory algorithm. It works by transforming the
multi-stage stochastic optimization problem into a 2-stage one by ignoring all non-
anticipativity constraints but those of the current decision. This 2-stage problem is ap-
proximated by sampling, and the approximated problem is solved optimally by com-
puting the offline optimal solutions for all pairs (scenario,decision). 1s-AA was shown
to be very effective on a variety of OSCO problems in dynamic fleet management [3, 2],
reservation systems [18], resource allocation [15], and jobshop scheduling [17]. More-
over, a quantity called the global anticipatory gap (GAG) was introduced by [14] to
measure the stochasticity of the application and that paper showed that 1s-AA returns
high-quality solutions when the GAG is small.

Here we consider OSCO applications with a significant GAG and propose to ad-
dress them with Amsaa, a multi-step anticipatory algorithm which provides an inno-
vative integration of techniques from stochastic programming, artificial intelligence,
and discrete optimization. Like 1s-AA, Amsaa samples the distribution to generate sce-
narios of the future. Contrary to 1s-AA however, Amsaa approximates and solves the
multi-stage problem. The SAA problem is solved by an exact search algorithm [4] us-
ing anticipatory relaxations as a heuristic to guide the search.

Amsaa was evaluated on a stochastic resource-constrained project scheduling prob-
lem (S-RCPSP) proposed in [6] to model the design and testing of molecules in a phar-
maceutical company. This problem is highly combinatorial because of precedence and
cumulative resource constraints. It is also stochastic: the durations, costs, and results of
the tasks are all uncertain. The S-RCPSP features what we call endogenous observa-
tions: the uncertainty about a task can only be observed by executing it. This contrasts
with online stochastic combinatorial optimization (OSCO) problems studied earlier, in
which the observations were exogenous, and leads to significant GAGs [8]. More gen-
erally, Amsaa applies to a class of problems that we call Stoxuno problems (STochastic
Optimization with eXogenous Uncertainty and eNdogenous Observations). The exper-
imental results indicate that Amsaa outperforms a wide variety of existing algorithms
on this application.

The rest of the paper is organized as follows. Sections 2 and 3 describe the mo-
tivating problem and introduce Stoxuno problems. Section 4 presents the background
in Markov Decision Processes and dynamic programming. Section 5 introduces the
concept of Exogenous MDPs (X-MDPs) to model Stoxuno and exogenous problems.
Section 6 describes Amsaa. Section 7 presents extensive experimental results. Section 8
compares Amsaa with a mathematical programming approach. Section 9 concludes the
paper and discusses research opportunities.

2 A Stochastic Project Scheduling Problem

This section describes the stochastic resource-constrained project scheduling problem
(S-RCPSP), a problem from the pharmaceutical industry [6]. A pharmaceutical com-
pany has a number of candidate molecules that can be commercialized if shown suc-
cessful, and a number of laboratories to test them. Each molecule is associated to a
project consisting of a sequence of tasks to be executed in order. A task is not preemp-
tive and cannot be aborted once started. Its duration, cost, and result (failure, which
ends the project, or success, which allows the project to continue) are uncertain. The
realization of a task is a triplet (duration, cost, result). A project is successful if all its
tasks are successful. A successful project generates a revenue which is a given decreas-
ing function of its completion date. The goal is to schedule the tasks in the laboratories,
satisfying the resource constraints (no more running tasks than the number of labs at
any given time), to maximize the expected profit. The profit is the difference between
the total revenues and the total cost. There is no obligation to schedule a task when a
lab is available and there are tasks ready to start. Indeed, it is allowed to drop a project
(never schedule a task ready to start), as well as to wait some time before starting a task.
Waiting is sometimes optimal, like in dynamic fleet management [2].

2

Project A

Project B

Project C

time

revenue

0 4
7.5

85

5

10

14

0

- there are 3 projects A, B and C
- all costs are null unless specified
- all projects always succeed
- there are two labs, with release dates 0 and 1

Proj. A

Proj. B

Proj. C

.5

.5
cost: 10

duration: 2

duration: 5

duration: 6

duration: 4

0 4 8

A.1 A.2 sB

C

(c1) when A.2 is short
Value: 14 + 10 + 3 - 10 = 17

0 4

B

C

(c2) when A.2 is long

Value: 10 + 5 = 15

(a) Project Markov chains (b) Revenue functions (c) Offline optimal schedules

Fig. 1. An Instance of the Stochastic Project Scheduling Problem.

Each project is modeled by its own finite heterogeneous first-order Markov chain.
That is, for each task, the set of possible realizations is known. The Markov chain, which
is given, provides the distribution of the realization of the first task, and the probability
transition matrices that, for any realization of the i-th task, gives the distribution of the
realization of the (i+1)-th task.

Figure 1 depicts a small instance to illustrate these concepts. In this instance, there
are 3 projects and 4 tasks, and all the projects always succeed. In this instance, the
offline optimal schedules for the two possible realizations, which are shown in Figure
1(c), differ at the first decision when the uncertainty is not yet resolved. Hence the
optimal online policy is necessarily inferior to a perfect clairvoyant decision maker.
The schedule in Figure 1(c2) is the optimal online solution.

3 Exogeneity and Endogeneity: Problem Classification

Traditionally, stochastic optimization problems were separated into two classes accord-
ing to the exogenous or endogenous nature of their uncertainty. To delineate precisely
the scope of Amsaa, we need to refine this classification.

Purely exogenous problems are those in which the uncertainty, and the way it is ob-
served, is independent of the decisions. Customers and suppliers behavior is considered
exogenous [18], as well as nature (e.g., water inflow in hydroelectric power scheduling),
and prices in perfect markets. In this class, there is a natural concept of scenario (e.g.,
the sequence of customer requests) and, given two scenarios, it is possible to compute
when they become distinguishable.

Purely endogenous problems are those for which there is no natural concept of sce-
narios. Most benchmark problems for Markov Decision Processes are of this nature.
Problems in robotics where the uncertainty comes from the actuators are endogenous.

Stoxuno Problems (STochastic Optimization problems with eXogenous Uncertainty
and eNdogenous Observations) are applications like the S-RCPSP, for which the un-
derlying uncertainty is exogenous, but observations depend on the decisions. In these
problems, the concept of scenario is natural. However, given two scenarios, it is not pos-
sible to decide when a decision maker will be able to distinguish them. Many schedul-

3

ing problems with uncertainty on tasks should belong to this category. The lot sizing
problem in [10] also falls into that category.

Amsaa applies to both purely exogenous and Stoxuno problems.

4 Background in Stochastic Dynamic Programming

Stochastic Dynamic Programming is a field of research that aims at solving stochastic
optimization problems modelled as Markov Decision Processes (MDPs). MDPs can
model purely endogenous problems, purely exogenous, and Stoxuno problems. We only
consider finite horizon MDPs with no reward discounting and no transition costs.

Markov Decision Processes. An MDP (S,s0,F,X ,⊥,X , f ,P) consists of:

– a state space S, an initial state s0 ∈ S, and a set of final states F ⊆ S.
– a decision space X containing a decision ⊥ (denoting no action) and a function

X : S→ X returning the set of feasible decisions in a given state such that ∀s ∈
S,0 < #X (s) < ∞ and that ∀s ∈ F,X (s) = {⊥}.

– a bounded reward function f : F → R.
– a transition function P : S×X → prob(S), where prob(S) is the set of probability

distributions over S, satisfying ∀s ∈ F,P(s,⊥)({s}) = 1.

For convenience, we write P(·|s,x) instead of P(s,x)(·). A run of an MDP
(S,s0,F,X ,⊥,X , f ,P) starts in the initial state s0. In a given state s, the decision
maker selects a decision x ∈X (s) which initiates a transition to state s′ ∈ A ⊆ S with
probability P(A|s,x). The resulting sequence of states and decisions, i.e. s0

x0−→ s1
x1−→

. . .
xt−1−−→ st

xt−→ . . . , is called a trajectory. This is a Markovian process: conditionally on
si and xi, the distribution of si+1 is independent of the past trajectory.

We assume horizon finiteness: there exists an integer T such that all trajectories
starting in s0 are such that sT is final. As a corollary, the state space graph has to be
acyclic. The objective of the decision maker is to maximize E [f (sT)].

Policies, Value functions, and Optimality. A (deterministic) Markovian policy π :
S→ X is a map from states to feasible decisions, i.e., that satisfies ∀s∈ S, π(s)∈X (s).
The value vπ(s) of policy π in state s is the expected value obtained by running policy
π from state s. A policy π is optimal if the value vπ(s0) is maximal among all policies.

A value function v is a map S→ R. The Q-value function canonically associated
to v is the mapping S×X → R defined by Q(s,x) = EP [v(s′)|s,x] , which, in the case
of finite state space, becomes Q(s,x) = ∑s′∈S v(s′)P(s′|s,x). Given a value function v
and a state s, a decision x ∈X (s) is greedy if Q(s,x) = maxx′∈X (s) Q(s,x′). We assume
that there is a rule to break ties, so we can talk about “the” greedy decision even though
it is not unique. The greedy policy πv associated with a value function v is the policy
defined by taking the greedy decision in every state. A value function is optimal if the
associated greedy policy is optimal. A necessary and sufficient condition for v to be
optimal is that, for all state s reachable under πv, we have v(s) = f (s) if s is final,
and Resv(s) = 0 otherwise, where Resv(s) = v(s)−maxQ(s,x) is called the Bellman
residual of v at s. Under our assumptions, there is always an optimal value function v?.

4

5 Exogenous Markov Decision Processes

Section 3 discussed the nature of the uncertainty. MDPs can model problems of any na-
ture, but represents the uncertainty endogenously. For exogenous problems, it is better
to use a model that represents the uncertainty exogenously. Stochastic programs are an
example of such models, but they cannot model Stoxuno problems. Therefore we in-
troduce exogenous MDPs (X-MDPs) that allow the modeling of purely exogenous and
of Stoxuno problems. They are neither more nor less expressive than traditional MDPs
[18], but have computational advantages discussed at length in Section 6.

Model and Definitions. An exogenous Markov decision process (X-MDP)
(S,s0,F,X ,⊥,X , f ,ξ,µξ ,τ) consists of:

– a state space S, an initial state s0 ∈ S, and a set of final states F ⊆ S.
– a decision space X containing a decision ⊥ (denoting no action) and a function

X : S→ X returning the set of feasible decisions in a given state such that ∀s ∈
S,0 < #X (s) < ∞ and that ∀s ∈ F,X (s) = {⊥}.

– a bounded reward function f : F → R.
– a random variable ξ, with values in a scenario space Ξ, and distribution µξ .
– a (deterministic) transition function τ : S× X ×Ξ → S satisfying ∀s ∈ S, ∀ξ ∈

Ξ, τ(s,⊥,ξ) = s.

Running an X-MDP consists of first sampling a realization ξ of the random variable
ξ. The decision maker doesn’t know ξ , but it makes inferences by observing transition
outcomes. Starting in s0, it makes a decision, observes of the outcome of the transition,
and repeats the process. For a state s and a decision x, the next state becomes τ(s,x,ξ).
The alternation of decisions and state updates defines a trajectory s0

x0−→
ξ

s1
x1−→
ξ

. . .
xt−1−−→

ξ

st

satisfying (i) for all i, xi ∈X (si) and (ii) for all i, si+1 = τ(st ,xt ,ξ).
Like for MDPs, we assume finite horizon: there is a T such that sT is final regardless

of the decisions made and of ξ. The objective also consists of maximizing E [f (sT)],
which is always defined if f is bounded. We will also restrict attention to Markovian
policies; in this order, we need to introduce a new concept before specifying the prop-
erty that ensures their dominance.

In an X-MDP, scenario ξ is compatible with a trajectory s0
x0−→ s1

x1−→ . . .
xt−1−−→ st

if τ(si,xi,ξ) = si+1 for all i < t. C
(

s0
x0−→ . . .

xt−1−−→ st

)
is the set of such scenarios. A

scenario is compatible with a state s if it is compatible with a trajectory from s0 to s,
and C (s) is the set of such scenarios.

The Markov property for X-MDPs, which ensures the dominance of Markovian
policies, then reads:

for all trajectory s0
x0−→ . . .

xt−1−−→ st , C
(

s0
x0−→ . . .

xt−1−−→ st

)
= C (st) . (1)

It will be easy to enforce this property in practice: simply include all past observations
into the current state. An elementary but important corollary of this assumption is that

5

conditional probabilities on the past trajectory are identical to conditional probabilities
on the current state, i.e.,

∀A⊆ Ξ, P
(
ξ ∈ A

∣∣∣ ξ ∈ C
(

s0
x0−→ . . .

xt−1−−→ st

))
= P(ξ ∈ A | ξ ∈ C (st)) ,

Hence, sampling scenarios conditionally on the current state is equivalent to sampling
scenarios conditionally on the past trajectory.

X-MDPs naturally exhibit an underlying deterministic and offline problem that has
no counterpart in MDPs. The offline value of state s under scenario ξ , denoted by
O(s,ξ), is the largest reward of a final state reachable from state s when ξ = ξ . It
is defined recursively by:

O(s,ξ) =

{
f (s) if s is final,
maxx∈X (s) O(τ(s,x,ξ),ξ) otherwise.

Consider the instance shown in Figure 1. If ξs and ξl denote the scenarios in which A.2
is short and long respectively, then O(s0,ξs) = 17 and O(s0,ξl) = 15.

Policies and Optimality for X-MDPs. Like for MDPs, it is possible to define the value
of a policy for an X-MDP. Let A be an X-MDP and π : S→X be a policy for A. Consider
a past trajectory s0

x0−→ . . .
xt−1−−→ st , not necessarily generated by π . Remember that for

any sequence of decisions sT is final. Therefore the expected value obtained by follow-
ing π after this past trajectory is well defined and is denoted by vπ

(
s0

x0−→ . . .
xt−1−−→ st

)
.

By the Markov property, this quantity only depends on st , so we denote it π(st). A
policy π is optimal if the value vπ(s0) is maximal among all policies.

Modelling the Stochastic RCPSP as an X-MDP. It is easy to model the S-RCPSP as
an X-MDP. A state contains: (1) the current time, (2) the set of currently running tasks
with their start times (but without lab assignment), and (3) the set of all past observed
task realizations. Thanks to (3) the Markov property for X-MDPs is satisfied.

6 Amsaa: an Algorithm for Decision Making in X-MDPs

Overview of Amsaa. This section presents a high-level overview of Amsaa, the Any-
time Multi-Step Anticipatory Algorithm, which aims at producing high-quality deci-
sions for X-MDPs. Its pseudo-code follows.

Because we want an anytime algorithm, that is, one that can be stopped and return
something at any time, there is an outer loop for which the condition can be anything.
In an operational setting, it will most likely be a time constraint (e.g., “make a decision
within a minute”), and in a prospective setting, it could be a stopping criteria based on
some accuracy measure (for example, the contamination method [9]).

Amsaa’s first step is to approximate the X-MDP to make it more tractable. It then
converts it to an MDP in order to apply standard search algorithm for MDPs. This
search is guided by an upper bound that exploits the existence of offline problems due

6

Function Amsaa (X-MDP A)
while some condition do1

Approximate the X-MDP A by replacing ξ with a random variable ξ′ whose support is smaller,2
or refine the current approximation.
Convert the resulting X-MDP to a standard MDP.3
Solve the resulting MDP with a search algorithm for MDPs, using the offline upper bound4
hE,max(s) = E

[
O(s,ξ′)

∣∣ ξ′ ∈ C (s)
]
.

return the greedy decision at the root node of the MDP.5

to the exogenous nature of the uncertainty. For efficiency, lines 3–4 are incremental, so
that when the approximation is refined (line 1), the amount of work to be done is small
if the refinement does not change the approximated problem too much.

We will now present the details of the approximation, of the convertion to an MDP,
of the MDP solving, and, finally, of the incrementality.

Approximating the X-MDP by Sampling. The first step of Amsaa is to approximate
the original X-MDP by replacing the distribution of the scenarios by one with a finite
and reasonably small support. The simplest way of doing so is by sampling. For stochas-
tic programs, this idea is called the Sample Average Approximation (SAA) method [16],
and it can be extended to X-MDPs. Suppose we want a distribution whose support has
cardinality at most n: just sample ξ n times, independently or not, to obtain ξ1, . . . ,ξn

and define µ̂n as the empirical distribution induced by this sample, that is, the distribu-
tion that assigns probability 1/n to each of the sampled scenarios. Some results of the
SAA theory translate to X-MDPs. In particular, if Ξ is finite and the sampling iid, then
the SAA technique produces almost surely optimal decisions with enough scenarios.

Benefits of Exterior Sampling for X-MDPs. Sampling can be used either to compute
an optimal policy for an approximated problem (The SAA method, used in Amsaa);
or to compute an approximately optimal policy for the original problem, like in [12],
who proposed an algorithm to solve approximately an MDP by sampling a number of
outcomes at each visited state (interior sampling). Their algorithm was presented for
discounted rewards but generalizes to finite horizon MDPs. We argue that the SAA
method is superior because sampling internally does not exploit a fundamental advan-
tage of problems with exogenous uncertainty: positive correlations.

Indeed, in a state s, the optimal decision maximizes Q?(s,x), where Q? is the Q-
value function associated to the optimal value function v?. However, estimating this
value precisely is not important. What really matters is to estimate the sign of the dif-
ference Q?(s,x1)−Q?(s,x2) for each pair of decisions x1,x2 ∈X (s). Now, consider
two functions g and h mapping scenarios to reals, for example the optimal policy value
obtained from a state s after making a first decision. That is, g(ξ) = v?(τ(s0,x1,ξ)) and
h(ξ) = v?(τ(s0,x2,ξ)) for two decisions x1,x2 ∈X (s0). If ξ1 and ξ2 are iid scenarios:

var
(
g(ξ1)−h(ξ2)

)
= var

(
g(ξ1)

)
+var

(
h(ξ2)

)
,

var
(
g(ξ1)−h(ξ1)

)
= var

(
g(ξ1)

)
+var

(
h(ξ1)

)
−2cov

(
g(ξ1),h(ξ1)

)
,

7

and therefore var
(
g(ξ1)−h(ξ1)

)
=

(
1− acorr

(
g(ξ1),h(ξ1)

))
· var

(
g(ξ1)−h(ξ1)

)
,

where acorr(X ,Y) = cov(X ,Y)
1/2(var(X)+var(Y)) is a quantity we call arithmetic correlation. Note

that acorr(X ,Y)≈ corr(X ,Y) when var(X) and var(Y) are close. Now consider an infi-
nite iid sample ξ1,ξ1′,ξ2,ξ2′, . . . , and a large integer n. By the central limit theorem, the
distributions of 1

n ∑
n
i=1 g(ξi)− h(ξi) and of 1

nγ ∑
nγ

i=1 g(ξi)− h(ξi′) are almost the same
when 1/γ = 1− acorr

(
g(ξ1),h(ξ1)

)
. Therefore, for some specified accuracy, the num-

ber of required scenarios to estimate the expected difference between g(ξ) and h(ξ) is
reduced by this factor γ when the same scenarios (exterior sampling) are used instead
of independent scenarios (interior sampling).

This argument is not new, and can be found for example in [16]. However, no em-
pirical evidence of high correlations were given, which we now report. Consider an
SAA problem approximating the standard instance of the S-RCPSP application with
200 scenarios generated by iid sampling, and consider the optimal policy values in the
initial state for the 6 possible initial decisions (the first is to schedule nothing, the others
are to schedule the first task of each project). Associating a column with each decision,
the values for the first five scenarios are:

OptPolicyValue = 1e4×

0 2.110 2.038 1.910 1.893 2.170
0 −0.265 −0.275 −0.275 −0.275 −0.225
0 −0.205 −0.230 −0.230 −0.170 −0.170
0 1.375 1.405 1.279 1.345 1.365
0 1.045 1.070 1.015 1.105 1.160

The correlation is evident. Excluding the first decision (which is uncorrelated to the

others), the arithmetic correlations range from 94% to 99%, computed on the 200 sce-
narios. Moreover, the minimal correlation is 98.7% among the second, third, and fourth
decisions, which are the three good candidates for being selected as the initial decision.

It remains to see whether these correlations are a characteristic of the problem or
even of the instance. In most OSCO problems, some scenarios are more favorable than
others regardless of the decisions, causing these correlations: in the S-RCPSP, scenarios
with many successful projects bring more money than scenarios with many failures, and
this is very visible on the matrix above. As a result we conjecture that, for most OSCO
problems, exterior sampling converges with far fewer scenarios than interior sampling.

Converting the X-MDP into an MDP. This is the second step of Amsaa.

Definition 1 Given an X-MDP A with state-space S and final states set F, the trimmed
X-MDP B induced by A is the X-MDP that is in all equal to A, except:

1. its state space is S′ = {s ∈ S|C (s) 6= ∅};
2. its set of final states is F ′= F∪{s ∈ S′|#C (s) = 1}, and the function X is modified

accordingly;
3. its reward function f ′ is defined, for states s ∈ F ′ \F, by f (s) = O(s,ξ), where ξ

is the unique scenario compatible with s.

A trimmed X-MDP is equivalent to the original one, in the sense that an optimal policy
in A induces an optimal policy in B and vice versa.

8

Definition 2 Let B = (S,s0,F,X ,⊥,X , f ,ξ,µξ ,τ) be the trimmed X-MDP induced by
an X-MDP A. Define P from S×X to the set of probability distributions on S by:

∀s ∈ S,x ∈ X ,U ⊆ S, P(U |s,x) = P(τ(s,x,ξ) ∈U | ξ ∈ C (s)) .

Then C = (S,s0,F,X ,⊥,X , f ,P) is the MDP induced by X-MDP A.

The induced MDP is equivalent to the original problem in the following sense.

Theorem 1 Let A be an X-MDP, C the induced MDP, and π be a policy that is optimal
in A for states in F ′ \F. Then, for all states s ∈ S′, vA

π(s) = vC
π(s).

This theorem is a consequence of the Markov property for X-MDPs, which implies that,
following π in B or C, for all t the distribution of st is the same in B and in C.

Solving MDPs. Once the approximated X-MDP is converted into an MDP, it is possible
to apply existing algorithms for solving the MDP exactly. We use aheuristic search
algorithm, which, despite its name, is an exact algorithms.

Heuristic Search Algorithms for MDPs. Heuristic search algorithms for MDPs perform
a partial exploration of the state space, using a — possibly monotone — upper bound to
guide the search. A value function h : S→ R is an upper bound if ∀s ∈ S, h(s)≥ v?(s),
and is a monotone upper bound if, in addition, Resh(s)≥ 0 for all state s. A monotone
upper bound is an optimistic evaluation of a state that cannot become more optimistic
if a Bellman update is performed.

Function findRevise(MDP A)
precondition: h is a upper bound for A, h(s) = f (s) if s is final
foreach s ∈ S do v(s)← h(s)1
repeat2

Pick a state s reachable from s0 and πv with |Resv(s)|> 03
v(s)←maxx∈X (s) Q(s,x)4

until no such state is found5
return v6

Function findAndRevise, introduced by [4], captures the general schema of heuristic
search algorithm for MDPs and returns an optimal value function upon termination. At
each step, the algorithm selects a state reachable with the current policy πv whose Bell-
man residual is non-zero and performs a Bellman update. When h is monotone, only
strictly positive (instead of non-zero) Bellman residuals must be considered. Different
instantiations of this generic schema differ in the choice of the state to reconsider. They
include, among others, HDP [4], Learning Depth-First Search (LDFS) [5], Real-Time
Dynamic Programming (RTDP) [1], Bounded RTDP [13], and LAO* [11]. These al-
gorithms only manipulate partial value functions defined only on the states visited so
far, performing the initialization v(s)← h(s) on demand. We chose to use the acyclic
version of Learning Depth-First Search (a-LDFS). It applies to acyclic problems (ours
are), and requires a monotone upper bound, which we have.

9

The Upper Bound hE,max. The performance of heuristic search algorithms strongly de-
pends on the heuristic function h. For MDPs induced by X-MDPs, a good heuristic
function can be derived from the deterministic offline problems. More precisely, for a
state s, the heuristic consists of solving the deterministic offline problems for the scenar-
ios compatible with s in the original X-MDP and taking the resulting expected offline
value, i.e., hE,max(s) = Eµ [O(s,ξ) | ξ ∈ C (s)] , where µ is ξ’s distribution. Function
hE,max is a monotone upper bound. It is attractive for guiding the search because it
leverages the combinatorial structure of the application (black-box offline solver) and
can be computed efficiently because the sets C (s) are finite and small. hE,max provides
a significant computational advantage to X-MDPs over MDPs.

Incrementality and Anytime Decision Making. Incrementality is the ability to re-
solve the MDP quickly after a small change in the approximated problem. Incremen-
tality enables fine-grained refinement, providing for efficient anytime decision making
and openning the door to sequential sampling [7]. It is based on the following theorem.

Theorem 2 Let A , B and C be three X-MDPs that differ only by their respective
distributions µ , ν , and ρ and let ρ = λ µ +(1−λ)ν for some 0 < λ < 1. Let hµ and hν

be monotone upper bounds for A and B respectively. Define h : S→ R by h(s) =−∞

if ρ(C (s)) = 0, and otherwise by

h(s) =
1

ρ(C (s))

(
λ µ(C (s)) hµ(s) + (1−λ)ν(C (s))hν(s)

)
.

Then h is a monotone upper bound for the induced MDP of C .

This theorem is used in the following setting. µ is the old sample distribution, and
we have solved A optimally with findAndRevise(). The optimal value function it
returned is the monotone upper bound hµ(s). ν is the distribution of the newly added
scenarios, and hν is the hν

E,max, the offline upper bound for B. ρ is the new sample
distribution, and includes the old sample and the newly added scenarios. λ is the weight
of the old sample in the new sample. Our experiments showed adding the scenarios one-
by-one instead of all at once produced only a 20% slowdown on 500-scenario problems.

7 Experimental Results on Anytime Decision Making

Experimental Setting. The benchmarks are based on the collection of 12 instances for
the S-RCPSP from [8]. The reference instance, Reg, is similar to the one in [6]. It has
2 laboratories, 5 projects, and a total of 17 tasks. The number of realizations for each
tasks range from 3 to 7, giving a total of 109 possible scenarios. The 11 other instances
are variant of Reg, scaling the costs, scaling the time axis of the revenue functions, or
chaning the structure of the Markov chains for each molecule.

For each instance, we generated 1,000 realizations of the uncertainty. A run of an
algorithm on one of these realizations consists of simulating one trajectory in the X-
MDP. At each encountered state, the online algorithm takes a decision with hard time
constraints. If the online algorithm has not enough time to decide, a default decision,

10

closing the labs, is applied. The algorithms were tested on all the realizations and vari-
ous time limits. With 4 tested algorithms and time limits of 31 ms, 125 ms, 500 ms, 2s,
8s, 32s, this gives a total of 288,000 runs taking more than 8,000 hours of cpu time.

The Four Compared Algorithms. Amsaa was used with iid sampling and sample sizes
growing by increments of 10%. Its performance relies on a fast offline solver. We used
the branch and bound algorithm from [8] whose upper bound relaxes the resource con-
straints for the remaining tasks. This branch and bound is very fast thanks to a good
preprocessing step: it takes on average less than 1ms for the reference instance. 1s-AA
is the one-step anticipatory algorithm with iid sampling. It uses the same offline solver
than Amsaa. BRTDP is the Bounded Real Time Dynamic Programming algorithm [13].
The lower bound h−(s) correspond to not scheduling anything after state s. The upper
bound is h+(s) is a very slight relaxation of hmax,max, using the offline solver on an hy-
pothetical best scenario. Like in RTDP, and as opposed to B-RTDP, decisions are taken
greedily with respect to the upper bound value function v+: Indeed experimental results
showed that making decisions with respect to v− provides very poor decisions. HC-DP
is the Heuristically Confined Dynamic Programming algorithm from [6] enhanced into
an anytime algorithm. The offline learning phase is removed and performed within the
given time limits. A full Bellman update is performed at increasing larger intervals, so
that the decision can be updated. Less than half the computation time is spent doing
updates, the rest being spent exploring the state-space. Its results outperform those of
the original HC-DP algorithm in [6].

The Performance of Amsaa. Figure 2 summarizes the results for anytime decision
making. It contains a table for each of the 12 instances. The first line of this table con-
tains the empirical mean value obtained by running Amsaa. The three lines below report
the relative gap between the expected value of the considered algorithm and Amsaa with
the same time constraint. In addition, the background color carries information about
the statistical significance of the results, at the 5% level, as indicated by the legend of
the figure. It indicates whether the considered algorithm is better than Amsaa-32s (no
occurrence here); not worse than Amsaa-32s (e.g., Amsaa-500ms on Cost2); signifi-
cantly worse than Amsaa-32s, but better than Amsaa-31ms (e.g., 1s-AA-31 ms on P3);
worse than Amsaa-32s, but not than Amsaa-31ms (e.g., B-RTDP-2s on Agr); or worse
than Amsaa-31ms (e.g., HC-DP-32s on Reg).

Overall Amsaa exhibits excellent performance. The solution quality of Amsaa-32s is
often higher by at least 10% than 1s-AA-32s, HC-DP-32s, and B-RTDP-32s and Amsaa
is robust across all instances. With 32s, Amsaa is significantly better than all other
algorithms on 11 instances and as good as any other algorithm on Cost5. Moreover, the
remaining three algorithms lacks robustness with respect to the instances: They all rank
second and last at least once. Note that, on Cost5, the optimal policy is not to schedule
anything. HC-DP is able to realize that quickly, with only 125 ms, because it uses very
fast heuristics. Amsaa-32s and HC-DP with at least 125ms are optimal on this problem.

Amsaa is also robust with respect to the available computation time. On most in-
stances, the rankings of the four algorithms do not vary much with respect to the com-
putation times. One might think that with very strong time constraints, 1s-AA is prefer-
able to Amsaa, because 1s-AA can use more scenarios in the same amount of time. Yet,

11

!
"
#
$
%
&'
(
)
*
&+

,
"
!
-
./

!
"
#$
%

"
&
'
#$
%

'
(
(
#$
%

&
#%

)
#%

!
&
#%

!
"
#$
%

"
&
'
#$
%

'
(
(
#$
%

&
#%

)
#%

!
&
#%

*+
%
,-
+
.
/
#0
/
1
#2
0
/
1
3
4-
56

*+
%
,-
+
.
/
#7
"
#2
+
8
#9
-
:4
3
5/
#-
,#
,-
%
;
#<
6

!
"#
$
%&
'
(

#
")
)
%&
'
(

#
"(
)
%&
'
(

#
"*
)
%&
'
(

#
"*
+
%&
'
(

#
"*
,
%&
'
(

)
"*
+
%&
'
*

)
"*
$
%&
'
*

)
"*
,
%&
'
*

)
"*
$
%&
'
*

)
"*
!
%&
'
*

)
"*
!
%&
'
*

-,
",
+
.

-,
")
,
.

-!
")
+
.

-#
"/
!
.

-!
"#
$
.

-#
"+
#
.

)
0
-1
1

-(
"$
)
.

-,
"2
$
.

-$
"+
$
.

-$
"#
(
.

-!
"+
!
.

-!
"!
+
.

-,
"/
2
.

-#
",
2
.

-)
/
"+
$
.

-)
)
"/
*
.

-)
/
"2
!
.

-)
)
"(
,
.

3
4
-5
6

-)
)
"#
*
.

-)
(
"2
(
.

-)
(
"!
+
.

-)
(
"2
2
.

-)
*
"*
)
.

-)
*
"#
/
.

-)
/
/
"/
/
.

-)
/
/
"/
/
.

-(
!
",
*
.

-(
(
"+
(
.

-+
,
")
,
.

-+
+
"2
2
.

7
-8
9
5
6

-)
/
/
"/
/
.

-)
/
/
"/
/
.

-+
,
"*
)
.

-+
/
"*
$
.

-)
,
"2
!
.

-)
(
",
!
.

*+
%
,-
+
.
/
#7
"
#2
+
8
#9
-
:4
3
5/
#-
,#
,-
%
;
#!
#=
#<
6

)
"+
+
%&
'
*

)
"+
*
%&
'
*

)
"+
$
%&
'
*

)
"+
!
%&
'
*

)
"+
!
%&
'
*

)
"+
#
%&
'
*

)
"!
2
%&
'
*

)
"#
,
%&
'
*

)
"#
!
%&
'
*

)
"#
#
%&
'
*

)
"2
/
%&
'
*

)
"2
/
%&
'
*

)
")
*
.

-/
"$
/
.

-)
"*
,
.

-+
")
!
.

-+
"*
2
.

-+
"*
2
.

)
0
-1
1

/
",
*
.

-)
"/
)
.

-/
"*
2
.

-/
"!
/
.

-)
"$
*
.

-)
"$
,
.

-*
")
+
.

-$
"+
2
.

-!
",
*
.

-#
"+
(
.

-#
",
)
.

-#
",
$
.

3
4
-5
6

-2
"#
!
.

-)
(
"/
!
.

-)
(
"!
2
.

-)
*
"*
(
.

-)
,
"+
$
.

-)
,
"+
+
.

-)
/
/
"/
/
.

-)
/
/
"/
/
.

-*
"+
#
.

-*
"*
!
.

-+
"*
*
.

-)
"!
*
.

7
-8
9
5
6

-)
/
/
"/
/
.

-)
/
/
"/
/
.

-)
2
"$
#
.

-)
(
"#
!
.

-)
+
"#
(
.

-)
/
"$
/
.

*+
%
,-
+
.
/
#>
8
%
,&
#2
>
8
%
,%
#?
#&
6

*+
%
,-
+
.
/
#7
!
#2
+
8
#9
-
:4
3
5/
#-
,#
,-
%
;
#&
@#
!
@#
=
#<
6

*
"(
*
%&
'
(

*
",
/
%&
'
(

*
"#
+
%&
'
(

*
"2
/
%&
'
(

*
"#
,
%&
'
(

*
"#
2
%&
'
(

+
"(
)
%&
'
*

+
"$
/
%&
'
*

+
"$
2
%&
'
*

+
"$
2
%&
'
*

+
"$
2
%&
'
*

+
"!
/
%&
'
*

-)
!
"$
$
.

-+
/
")
(
.

-+
*
"!
*
.

-+
$
"+
$
.

-+
,
"+
!
.

-+
$
"/
,
.

)
0
-1
1

*
"*
!
.

)
")
/
.

-/
"+
#
.

-/
"*
*
.

-/
"*
2
.

-/
",
/
.

/
"*
)
.

-)
"!
)
.

-)
/
"/
+
.

-2
"#
/
.

-2
"+
/
.

-)
/
"/
$
.

3
4
-5
6

-/
",
,
.

-)
)
"$
(
.

-)
*
")
)
.

-)
*
"+
+
.

-)
*
")
#
.

-)
*
"+
2
.

-)
/
/
"/
/
.

-)
/
/
"/
/
.

-$
$
"#
)
.

-,
*
"!
2
.

-*
,
"(
*
.

-*
(
"/
,
.

7
-8
9
5
6

-)
/
/
"/
/
.

-)
/
/
"/
/
.

-)
(
"(
2
.

-#
"$
*
.

-)
+
"+
+
.

-2
"*
+
.

*+
%
,-
+
.
/
#>
8
%
,'
#2
>
8
%
,%
#?
#'
6

*+
%
,-
+
.
/
#7
<
#2
+
8
#9
-
:4
3
5/
%
6

-(
"+
(
%&
'
(

-+
"$
*
%&
'
(

-)
"!
)
%&
'
(

-(
"(
#
%&
'
+

$
",
/
%&
'
/

/
"/
/
%&
'
/

)
"2
)
%&
'
*

+
"!
)
%&
'
*

+
"#
2
%&
'
*

+
"2
/
%&
'
*

+
"2
)
%&
'
*

+
"2
)
%&
'
*

-(
")
,
%&
'
(

-(
")
*
%&
'
(

-(
")
$
%&
'
(

-(
")
(
%&
'
(

-(
")
*
%&
'
(

-(
")
,
%&
'
(

)
0
-1
1

+
"(
(
.

)
",
!
.

/
"/
$
.

-/
"+
!
.

-/
"*
#
.

-/
"*
$
.

-+
",
,
%&
'
)

/
"/
/
%&
'
/

/
"/
/
%&
'
/

/
"/
/
%&
'
/

/
"/
/
%&
'
/

/
"/
/
%&
'
/

3
4
-5
6

)
)
"(
,
.

-+
)
"!
,
.

-+
$
"$
*
.

-+
$
"2
!
.

-+
!
"+
*
.

-+
!
"/
#
.

/
"/
/
%&
'
/

-2
"*
+
%&
'
(

-2
")
/
%&
'
(

-#
"*
2
%&
'
(

-!
"#
$
%&
'
(

-$
"2
*
%&
'
(

7
-8
9
5
6

-)
/
/
"/
/
.

-)
/
/
"/
/
.

-)
(
"#
!
.

-)
,
")
*
.

-)
)
"#
*
.

-)
/
")
+
.

*+
%
,-
+
.
/
#0
AB
#2
5/
C
/
+
3
/
%
#?
#A
B
B
6

$
")
*
%&
'
(

$
"!
)
%&
'
(

$
"#
2
%&
'
(

$
"#
2
%&
'
(

$
"#
2
%&
'
(

$
"#
2
%&
'
(

(
"$
!
%&
'
(

(
"#
#
%&
'
(

*
"/
(
%&
'
(

(
"2
!
%&
'
(

*
")
+
%&
'
(

*
")
(
%&
'
(

-)
)
",
(
.

-)
2
"$
+
.

-+
+
"!
)
.

-+
+
"(
*
.

-+
+
"(
)
.

-+
)
"*
(
.

)
0
-1
1

-(
",
,
.

-2
"#
2
.

-)
(
"*
*
.

-)
)
"2
)
.

-)
,
"$
(
.

-)
,
",
#
.

$
"!
2
.

-+
"+
)
.

-*
"#
!
.

-,
"*
)
.

-,
"/
!
.

-,
"/
#
.

3
4
-5
6

-/
"$
+
.

-*
"+
2
.

-!
"#
+
.

-$
"+
/
.

-2
"+
*
.

-2
"!
+
.

-!
!
"/
*
.

-#
$
"/
/
.

-!
#
",
$
.

-!
+
"*
$
.

-$
+
")
+
.

-,
+
",
(
.

7
-8
9
5
6

-)
/
/
"/
/
.

-)
/
/
"/
/
.

-,
/
")
!
.

-*
/
"*
2
.

-(
#
"+
+
.

-(
/
"2
!
.

*+
%
,-
+
.
/
#D
"
A'
#2
"
A'
#$
8
5/
#,
:$
/
#E
/
98
5/
#5
/
C
/
+
3
/
%
#%
,-
5,
#F
/
.
5/
-
%
:+
1
6

*+
%
,-
+
.
/
#0
"
A'
#2
5/
C
/
+
3
/
%
#?
#"
A'
6

)
"/
*
%&
'
*

)
"/
$
%&
'
*

)
"/
!
%&
'
*

)
"/
!
%&
'
*

)
"/
!
%&
'
*

)
"/
#
%&
'
*

)
"*
,
%&
'
*

)
",
+
%&
'
*

)
",
*
%&
'
*

)
",
(
%&
'
*

)
",
$
%&
'
*

)
",
,
%&
'
*

-)
+
"(
)
.

-)
*
"+
2
.

-)
*
"$
)
.

-)
,
")
)
.

-)
,
")
$
.

-)
*
"#
!
.

)
0
-1
1

-,
"2
#
.

-)
)
"#
)
.

-)
+
"2
(
.

-)
+
"#
!
.

-)
(
"2
*
.

-)
*
"/
)
.

-+
",
*
.

-(
"2
*
.

-*
"+
+
.

-*
"#
!
.

-*
"#
2
.

-*
"2
(
.

3
4
-5
6

-$
"+
/
.

-2
"2
2
.

-)
/
"#
2
.

-)
/
")
,
.

-)
)
"#
,
.

-)
)
"!
)
.

-+
*
"+
2
.

-+
/
"2
*
.

-)
!
"/
,
.

-)
(
")
!
.

-)
)
"/
*
.

-#
"2
#
.

7
-8
9
5
6

-)
/
/
"/
/
.

-)
/
/
"/
/
.

-(
)
")
$
.

-+
*
"#
*
.

-+
+
"*
+
.

-)
#
"!
,
.

1
:
0
;
;

*+
%
,-
+
.
/
#G
1
5#
2-
1
5/
1
-
,/
F
#8
3
,.
8
$
/
%
6

1
:
0
;
;

1
:
0
;
;

1
:
0
;
;

*+
%
,-
+
.
/
#D
AB
#2
AB
B
#4
/
%
%
#,
:$
/
#E
/
98
5/
#5
/
C
/
+
3
/
%
#%
,-
5,
#F
/
.
5/
-
%
:+
1
6

1
:
0
;
;

1
:
0
;
;

<
=
>%
?
=
@0
&
%>
A
;
B
%1
:
0
;
;
%(
+
%0

C
=
@0
&
%>
A
;
B
%1
:
0
;
;
%(
+
%0
D%
E
F
>%
E
&
>>
&
@%

>A
;
B
%1
:
0
;
;
%(
)
%:
0

C
=
@0
&
%>
A
;
B
%1
:
0
;
;
%(
+
%0
D%
E
F
>%
B
=
>%
>A
;
B
%

1
:
0
;
;
%(
)
%:
0

C
=
@0
&
%>
A
;
B
%1
:
0
;
;
%(
)
%:
0

Fig. 2. Experimental Results for Anytime Decision Making on the S-RCPSP.

12

there are only two instances on which 1s-AA-31ms beats Amsaa-31ms (Agr and P3)
and 3 on which they exhibit similar results. Note that B-RTDP-31ms has a zero score
on many instances due to the fact that even a single B-RTDP trial has to go deep in the
state space and compute the bounds h+ and h− for many states. Under such strict time
constraints, B-RTDP cannot even perform one trial before the deadline.

Empirical Complexity of Amsaa. Figure 3(a) shows how the sample size grows with
the available runtime on instance Reg, measured on the making of the initial decision.
Because Amsaa is exponential in the worst case, one might fear that the number of
scenarios grows logarithmically with the runtime. Yet, a power model for the expected
sample size E [n] as a function of the computation time t fits almost perfectly the empir-
ical data. The fitted model is E [n] = 105× t0.61, which indicates that Amsaa’s execution
time grows subquadratically in the number of scenarios (1/0.61 = 1.64 < 2)

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

31 ms 125 ms

250 ms

0.5 1 2 4 8 16 32

25

50

100

200

400

800

N
b
 o

f
sc

en
a
ri

o
s

(a) Average sample size
(b) Mean number of states
reachable by the optimal policy

62 ms
Computation time (s)

N
b
 o

f
st

a
te

s

model:

empirical data

model:

empirical
data

Nb of scenarios

Fig. 3. Empirical complexity of Amsaa

However, one may argue that this behavior may be a consequence of iid sampling
and is not a convincing evidence that Amsaa performs well. Indeed, in the case of a
continuous distribution of the uncertainty, all the scenarios would almost surely be dis-
patched to different states after the first observation and Amsaa with iid sampling would
have a linear complexity. The stochastic RCPSP has finite distributions but a similar be-
havior, i.e., a fast divergence of the scenarios, could explain its good performance.

To test whether this is the case, we measured the number of states in the trimmed ap-
proximated X-MDP that are reachable by an optimal policy, as depicted on figure 3(b).
With a continuous distribution, the number of reachable states would almost surely be
n + 1 for n scenarios: the root node and n leaves. If observations were Bernoulli ran-
dom variables with parameter 1/2, the solution state space would be a roughly balanced
binary tree with 2n−1 nodes. These two extreme cases suggest to fit a linear model of
the form (nb reachable states) = a + bn. Such a model fits perfectly the experimental
results with a slope of 1.96, making it much closer to a Bernoulli case than a continuous
distribution. This provides evidence that scenarios do not diverge too quickly with iid
sampling and that the SAA problems become harder with the number of scenarios.

13

Comparison with Gap Reduction Techniques. The following table reports the rel-
ative gap (in %) between [8]’s best algorithm, called ATEPR, based on gap reduction
techniques, and Amsaa-32s. The background color provides significance information:
on Cost2 and R.6, ATEPR beats Amsaa-32s at the 5% significance level. On Reg, Cost5,
and R1.5, none is better than the other. On D.6 gap reduction is worse than Amsaa-31ms,
and on the others gap reduction is worse than Amsaa-32s but better than Amsaa-31ms.

Reg Agr Cost2 Cost5 D.6 D1.5 P1 P2 P3 P4 R.6 R1.5
-0.24 -1.11 +9.96 0.00 -16.8 -0.43 -1.98 -2.80 -0.57 -0.62 +5.40 +0.39

Gap reduction techniques are an attractive alternative to Amsaa. Nethertheless, Amsaa
outperforms them on most instances here, sometimes with a large gap (17% on D.6),
and converges to the optimal decisions (gap reduction techniques do not).

8 Comparison with Mathematical Programming

Stochastic programming traditionally focuses on purely exogenous problems. However,
[10] proposed an integer programming (IP) formulation for SAA problems of a Stox-
uno lot-sizing problem. We investigated a similar approach for the solving of SAA
problems for S-RCPSP using an IP closely following model (P2) in [10]. In this model,
the number of binary variables is quadratic in the number of scenarios and linear in
the time horizon. A 20-scenario problem generated by iid sampling had, after CPLEX’s
presolve, 47·103 binary variable and 20·106 non-zeros. On this problem, CPLEX 10.1
runs out of memory before finding the first integer solution, while Amsaa solves it in
0.2s, and solves 1,000-scenario problems within minutes. With 1,000 scenarios, the IP
model would have about 108 binary variables ((103)2× 100: there are about 100 time
steps), which is outside the scope of today’s IP solvers.

[10] proposed to solve this IP using a branch-and-bound algorithm based on a La-
grangian relaxations of the non-anticipativity constraints. Yet, with 1,000 scenarios,
their algorithm would relax 109 constraints (10 non-anticipatory constraints for each
binary variable), so there would be a billion Lagrange multipliers to optimize at each
node of the tree, which is not reasonable either.

Why is Amsaa so much more scalable on this problem? The main difference is the
way non-anticipativity constraints are handled in the two approaches. In Grossman’s
approach, these are relaxed by Lagragian duality whereas, in Amsaa, they are enforced
lazily. The lazy approach has two major advantages. First, the presence of Lagrangian
multipliers alter the structure of the problem, precluding the use of a highly optimized
ad-hoc solver like in Amsaa. Second, it makes Amsaa able to exploit the discrete nature
of the decisions, using states and transitions instead of discretizing time.

9 Conclusion and Research Opportunities

We proposed Amsaa, the Anytime Multi-Step Anticipatory Algorithm, designed to ad-
dress the limitations of the one-step anticipatory algorithm on very stochastic applica-
tions. Amsaa applies to online combinatorial stochastic optimization problems with ex-
ogenous uncertainty and exogenous or endogenous observations. Experimental results

14

on stochastic resource-constraint project scheduling indicate that Amsaa significantly
outperforms existing algorithms under a variety of time constraints and of instances.

The essence of Amsaa lies in the integration of three ideas from different fields: the
SAA method from stochastic optimization to exploit positive correlations between de-
cisions, search algorithms from AI to solve MDPs exactly without time discretization,
and the use of black-box offline solvers from online stochastic combinatorial optimiza-
tion to compute good upper bounds quickly.

There are many research avenues to improve Amsaa. They include the use of lower
bounds like in B-RTDP (recall that we are maximizing) and of weaker but faster upper
bounds. Other research questions concern the generation of the approximated prob-
lems. The stochastic programming literature include a few techniques to produce better
sample than by iid sampling [9]. It is not yet clear which of these techniques could be
applied to Stoxuno problems.
Acknowlegments Many thanks to Grégoire Dooms for his help. This research is par-
tially supported by NSF awards DMI-0600384 and ONR award N000140610607.

References
1. Andrew G. Barto, S. J. Bradtke, and Satinder P. Singh. Learning to act using real-time dynamic pro-

gramming. Artificial Intelligence, 72(1):81–138, 1995. rtdp.
2. R. Bent and P. Van Hentenryck. Waiting and Relocation Strategies in Online Stochastic Vehicle Rout-

ing. Proceedings of the 20th Int. Joint Conf. on A.I., (IJCAI’07), January 2007.
3. R. Bent and P. Van Hentenryck. Scenario-Based Planning for Partially Dynamic Vehicle Routing

Problems with Stochastic Customers. Operations Research, 52(6), 2004.
4. Blai Bonet and Hector Geffner. Faster heuristic search algorithms for planning with uncertainty and

full feedback. In IJCAI, 1233–1238, 2003.
5. Blai Bonet and Hector Geffner. Learning depth-first search: A unified approach to heuristic search in

deterministic and non-deterministic settings, and its application to mdps. In ICAPS, 2006.
6. J. Choi, M. J. Realff, and J. H. Lee. Dynamic prog. in a heuristically confined state space: A stochastic

resource-constrained project scheduling appplication. Computers and Chemical Engineering, 2004.
7. M.A.H. Dempster. Sequential Importance Sampling Algorithms for Dynamic Stochastic Programming.

Journal of Mathematical Sciences, 133:1422–1444, 2006.
8. G. Dooms, and P. Van Hentenryck. Gap Reduction Techniques for Online Stochastic Project Schedul-

ing. CPAIOR’08.
9. J. Dupacova, G. Consigli, and S.W. Wallace. Scenarios for multistage stochastic programs. Annals of

Operations Research (2000)
10. Vikas Goel and Ignacio E. Grossmann. A class of stochastic programs with decision dependent uncer-

tainty. Math. Program, 108(2-3):355–394, 2006.
11. Eric A. Hansen and Shlomo Zilberstein. LAO: A heuristic-search algorithm that finds solutions with

loops. Artificial Intelligence, 129(1–2):35–62, 2001.
12. M. Kearns, Y. Mansour, and A. Ng. A Sparse Sampling Algorithm for Near-Optimal Planning in Large

Markov Decision Processes. In IJCAI’99, 1324–1231, 1999.
13. H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon. Bounded real-time dynamic pro-

gramming: RTDP with monotone upper bounds and performance guarantees. In ICML, 569–576, 2005.
14. L. Mercier and P. Van Hentenryck. Performance Analysis of Online Anticipatory Algorithms for Large

Multistage Stochastic Programs. Proceedings of the 20th Int. Joint Conf. on AI, (IJCAI), 2007.
15. D. Parkes and A Duong. An Ironing-Based Approach to Adaptive Online Mechanism Design in Single-

Valued Domains. In AAAI’07, pages 94–101, Vancouver, Canada, 2007.
16. A. Ruszczynski and A. Shapiro, editors. Stochastic Programming, volume 10 of Hanbooks in Opera-

tions Research and Management Series. Elsevier, 2003.
17. M. Thomas and H. Szczerbicka. Evaluating Online Scheduling Techniques in Uncertain Environments.

In Proceedings of the 3rd Multidisciplinary International Scheduling Conference (MISTA’07), 2007.
18. P. Van Hentenryck and R. Bent. Online Stochastic Combinatorial Optimization. The MIT Press,

Cambridge, Mass., 2006.

15

