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ABSTRACT
Position auctions such as the Generalized Second Price (GSP)
are commonly used for sponsored search, e.g., by Yahoo! and
Google. We now have an understanding of the equilibria
of these auctions, via game-theoretic concepts like General-
ized English Auctions and the “locally envy-free” property,
as well as through a relationship to the well-known, truth-
ful Vickrey-Clarke-Groves (VCG) mechanism. In practice,
however, position auctions are implemented with additional
constraints, in particular, bidder-specific minimum prices.
Such minimum prices are used to control the quality of the
ads that appear on the page.

We study the effect of bidder-specific minimum prices in po-
sition auctions. Näıvely enforcing minimum prices in the
VCG mechanism breaks the truthfulness of the auction; we
describe two variants of VCG for which revealing the truth
is a dominant strategy. The implications of bidder-specific
minimum prices are more intricate for the GSP auction.
Some properties proved for standard GSP no longer hold
in this setting. For example, we show that the GSP alloca-
tion is now not always efficient (in terms of advertiser value).
Also, the property of“envy-locality”enjoyed by GSP—which
is essential in the prior analysis of strategies and equilibria—
no longer holds. Our main result is to show that despite los-
ing envy locality, GSP with bidder-specific minimum prices
still has an envy-free equilibrium.

1. INTRODUCTION
The Internet economy has been revolutionized by the in-
troduction of sponsored search links. Sponsored links are a
small number of advertisements (ads, henceforth) that the
search engine displays in addition to the standard search re-
sults. These ads are arranged in positions top to bottom,
typically on the side. Normally, the advertiser pays only
when the user clicks on the link (known as pay per click

(PPC)). It is a difficult task to set a fixed price for each po-
sition because the search queries vary widely and with them
the value of the positions. Hence, typically, auctions are
used to determine the prices, and these are called position
auctions. A major task for the search engine is to determine
the rules of the position auction, and to select, rank and
price the ads that will be displayed to the user, according to
that auction.

Today, both Google and Yahoo! use a position auction called
the generalized second price auction (GSP). The GSP auc-
tion ranks the ads by the product of the advertiser’s bid
with a quality score, which is often abstracted as the click-
through rate (ctr)—the probability that the user will click
on the advertisement. Then, the ad in position i is charged
based on the bid of the ad on position i+ 1.

There is a great need to understand the behavior of these
auctions since they are part of everyday life of many, with
several billions being run each day, worldwide. Decades of
research in economic, game and auction theories provide the
tools to design and understand auctions. However, position
auctions—and GSP in particular—have needed new specific
methods such as the recent results of [25] and [3]. Specifi-
cally, they developed the notion of Generalized English Auc-
tions to study GSP, introduced a new notion of “locally
envy-free” equilibrium to characterize GSP, and related such
equilibria of GSP to that of the well-known Vickrey-Clarke-
Groves (VCG) mechanism (as applied to a position auction).
In particular, the “locally envy-free” property captures the
dynamics of advertisers trying to move up or down the list
of positions and plays a crucial role in understanding the
equilibrium properties of GSP.

The departure in our work from prior research begins with
the observation that while Google and Yahoo! do imple-
ment GSP, they add other features. In particular, they are
driven by the need to present high quality ads, and as a
result, include features that encourage advertisers to make
high-quality ads. One important such feature is the use of
advertiser-specific factors for setting minimum prices1. Be-
yond the standard use of advertisers’ bids and their qual-
ity score as in GSP, the search engines force the bid and

1See https://adwords.google.com/support/bin/answer.
py?answer=49177 and http://help.yahoo.com/help/l/
us/yahoo/ysm/sps/start/overview_qualityindex.html



price per click of advertiser i to be at least a minimum price
Ri. The immediate impact is not only that advertisers may
pay more than what is determined by GSP, but more im-
portantly for sponsored search, because the “heavy tail” of
infrequent keywords often has only a few advertisers per
query, the minimum price determines whether or not the ad
will appear for that query. So, advertiser-specific minimum
prices have a profound effect on advertisers, users and search
engines in practice.

This motivates the question that is the focus of this paper:
What are the strategic changes in the outcome of GSP–
and more generally, other position auctions—in presence of
advertiser-specific minimum prices? For example, while the
introduction of minimum prices looks innocuous, does it af-
fect truthfulness or equilibrium properties of position auc-
tions? A quick sanity check is to study VCG, and doing so
immediately reveals that a näıve post-VCG enforcement of
bidder-specific minimum bid prices can break the truthful-
ness property. Being more careful, we show suitably modi-
fied allocation and pricing that is a truthful variant of VCG;
this modification shows the impact of minimum prices for
VCG.

We then turn our attention to GSP, which is the most widely
used currently. Since GSP is not truthful to begin with, we
study the effect of bidder-specific minimum prices on the
equilibria. A simple example with just two bidders shows
that minimum prices can cause a loss of efficiency. Further-
more, we see that an important property enjoyed by basic
GSP no longer holds: namely, “envy locality.” This prop-
erty says that if a bidder in position i is in a state where she
does not envy the bidders in adjacent positions (i − 1 and
i+1), then she does not envy any other bidders either. Envy
locality is a strong property on its own, as it makes equilib-
rium discovery simpler for the bidder [3, 25]. Furthermore,
it is essential in the existing proof that there is an envy-free
equilibrium of GSP.

Our main result, which was also the most technically chal-
lenging one, is to show that despite losing envy locality, GSP
with bidder-specific minimum prices still has an envy-free
equilibrium. To derive the prices of this equilibrium, we de-
fine a specialized Tâtonnement process that takes a global
view of the best-response relationship between bidders and
positions. This global view was unnecessary in the basic
GSP analysis such as in [3] because of envy locality. We
prove that the process converges to a set of prices from which
an envy-free equilibrium set of bids is derived.

In what follows, we will formally define position auctions in
the presence of advertiser-specific minimum prices. We first
present our observations for VCG to motivate the impact of
such minimum prices before presenting our main results for
GSP.

1.1 Related Work
Sponsored search has been an active area of research in the
last several years after the early papers explored the founda-
tional models [3, 12, 25, 16]. In general, the motivation for
this work is that sponsored search in practice is much more
complex than as described by the first models. Some papers
have taken on the effect of advertiser budgets [5, 21, 2], as

well as analyzing bidder strategy and dynamics [4, 23, 6, 10,
28, 27, 17]. There have also been several papers offering ex-
tensions to GSP, or entirely new models and mechanisms [13,
15, 19, 11, 24, 20, 1, 9].

The revenue maximization of a single good auction was char-
acterized by Myerson [22] where is shown that in many
cases the revenue maximizing auction is a second price auc-
tion, where the auctioneer adds a minimum price constraint.
Bidder-specific minimum prices have also been studied in the
more general context of maximizing revenue in combinato-
rial auctions [18]. In these models the bidders’ valuations
are drawn from a distribution, and the minimum prices are
set (for the purpose of revenue maximization) when the dis-
tribution is known, but not the realization. In our model,
the valuations are arbitrary, and the minimum prices are ex-
ogenous constraints—we are interested in the dynamics of
mechanisms that are forced to satisfy these constraints.

Demange et al [8] consider a multi-item auction in which
every buyer is interested in bundles of size at most one; us-
ing a Tâtonnement process similar to ours they show how
to compute equilibrium prices (but without bidder-specific
minima). However in the context of position auctions, their
technique is somewhat appropriate for position-specific re-
serve prices, on which we will elaborate in the concluding
remarks.

2. MODEL
A position auction is defined by a tuple (N,K, v, α, β). The
set N = {1, . . . n} is the set of bidders and the set K =
{1, . . . , n} is the set of positions. Each bidder i ∈ N is
associated with two values, vi which is its valuation for a
click and αi which is its click trough rate (ctr). Each position
` ∈ K is associated with a click through multiplier β`. As
a convention, β` > β`+1, β1 = 1 and βk+1 = · · · = βn = 0
(therefore, effectively we have k positions).

We use the standard assumption that the actual click through
rate of bidder i in position j is the product of the bidder’s
ctr αi and the position click through multiplier βj , i.e., if
bidder i is placed at position j then she receives a click with
probability αiβj . We assume that the value of vi is known
only to bidder i while all the other parameters are publicly
known.

In a position auction mechanism, each bidder i submits a
bid bi. Given all the bids b and the public information
(N,K,α, β), the mechanism assigns each bidder i to a po-
sition loc(i) and charges it a price Ploc(i)(b, α, β) per click.
The utility of bidder i at position j is:

ui(j) = αiβj(vi − pj),

where pj = Pj(b, α, β) is the price per click. The mechanism
assigns to each position exactly one bidder, and therefore
we have an inverse function loc−1(j) that returns the bidder
that was assigned to position j. We call such an assignment
loc a legal assignment.

The two most studied position auction mechanisms are GSP [25,
3] and VCG [26, 7, 14]. The VCG mechanism ranks the
bidders by biαi, which can be thought of as the expected
advertiser value if bi = vi. Therefore, the VCG allocation



maximizes the social welfare, which is the sum of the bidders’
expected value, i.e.,

P
i∈N viαiβloc(i). The VCG mechanism

charges each bidder the total value lost to other bidders
caused by her presence in the auction (we give the exact
price function below). The VCG mechanism has the prop-
erty that the bidders’ dominant strategy is to bid their true
value, i.e., bi = vi.

2 Without loss of generality, assume that
bidder i is assigned to position i; then the VCG price for
position j is [25, 3]

PVCG
j =

X
i>j

biαi(βi−1 − βi)

αjβj
.

Note that βj =
P

i>j(βi−1 − βi) and therefore PVCG
j ≤

bj+1αj+1/αj .

The GSP mechanism ranks the bidders by biαi.
3 Again,

without loss of generality, assume that bidder i is assigned
to position i. The price that the bidder at position i pays
per click is bi+1αi+1/αi. It was shown by [25, 3] that for any
position auction, there exists an envy-free equilibrium (de-
fined below) such that both the allocation and the payments
of the GSP and the VCG mechanism are identical.

While so far we have described the traditional theoretical
model, the position auctions used in practice contain an ad-
ditional important feature, namely bidder-specific minimum
prices. The minimum prices imply that each bidder i has a
minimum price Ri. This forces both the bid bi of bidder i
to be at least Ri, and the price per click of bidder i to be
at least Ri, i.e., its price per click at position j = loc(i) is
max{Ri, Pj(b, α, β)} = max{Ri, bi+1αi+1/αi}. The focus of
our work is to study the effect of bidder-specific minimum
prices. We will show that this small modification to the auc-
tion mechanism can dramatically influence the behavior of
the bidders.

For completeness we define envy free prices specifically for
our position auction setting with bidder-specific minimum
prices.

Definition 2.1. Let P = {p1, . . . , pn} be a set of prices
where pk+1 = · · · = pn = 0 and loc : N → K be a legal
assignment. Then bidder i envies the bidder in position j if

ui(loc(i)) = (vi −max{ploc(i), Ri})βloc(i)

< (vi −max{pj , Ri})βj = ui(j).

A set of prices P are envy free if no bidder i ∈ N envies
any another bidder i′ 6= i. A set of prices P are locally envy
free if no bidder i ∈ N envies an adjacent bidder i′ where
|loc(i′)− loc(i)| = 1.

We define an envy-free equilibrium as a set of bids for which
a proposed mechanism outputs envy-free prices.

2A dominant strategy is a strategy that a bidder always
prefers regardless of the other players’ strategies. A mecha-
nism is said to be truthful if revealing the true valuation is
a dominant strategy for every bidder.
3One can derive the “rank by bid” mechanism by setting
αi = 1 for all i ∈ N .

3. VCG AUCTIONS
The VCG mechanism gives a general methodology to im-
plement truthful mechanisms. The mechanism is aimed at
maximizing a social welfare function which is the sum of the
bidders’ utilities. The basic idea of the mechanism is that
each bidder pays its marginal influence on the social welfare
function of other bidders.

In this section we investigate possible modifications to the
VCG payments so that the mechanism will maintain its basic
properties (being truthful and efficient) and will also incor-
porate the bidder-specific minimum prices.

• Our first variation Naive VCG simply charges bidder
j the maximum of PVCG

j and Rj . This will unfortu-
nately result in a mechanism in which bidders might
have incentives to overbid their true valuation, and
therefore it is not a truthful mechanism.

• The second approach is to introduce bidder-specific
“virtual” bids; namely, when setting the price for bid-
der j, change the other bidders’ bids to reflect the min-
imum price requirement of bidder j.

• Our third approach is to have a generic reduction,
where we subtract the minimum price of a bidder from
her bid, run VCG, and then add the minimum price
of a bidder to her resulting VCG price. While this
general reduction maintain truthfulness, it optimizes a
different social welfare function.

Naïve implementation of VCG. We start by defining the
most natural implementation of VCG when minimum prices
are enforced, Naı̈ve VCG. We first compute the VCG prices,
and then the price for bidder i is the maximum of its VCG
computed price and its minimum price, i.e, the bidder j in
position loc(j) pays max{Rj , P

V CG
loc(j)}. Unfortunately, the

resulting mechanism is not truthful.

Theorem 3.1. The Naı̈ve VCG mechanism is not truth-
ful.

Proof. Assume that all the ctrs are identical, i.e., αi =
αj for i, j ∈ N . We have four bidders with values v =
(3/2, 5/4, 1/2, 1/4) and minimum prices R = (0, 1, 0, 0). Let
the position multipliers be β = (1, 1/2, 1/4, 0), i.e., three
effective positions. For contradiction, assume that the auc-
tion is truthful and each bidder bids her value, i.e., bi = vi.
The VCG auction will order them in the sorted order of
valuations (since the ctrs are identical) and will price them
13/16, 3/8, 1/4, 0. Note that only the second bidder has a
non-zero minimum price (which is R2 = 1). For the sec-
ond bidder, the VCG price for the first position, assum-
ing the other bidders bid truthfully, is (3/2)/2 + (1/2)/4 +
(1/4)/4 = 15/16 and for the second position it is [(1/2)/4 +
(1/4)/4]/(1/2) = 3/8. Since the second bidder has a mini-
mum price of R2 = 1, she will pay in either position a price
of 1. This implies that the second bidder would prefer to
overbid and be assigned the first position.



Virtual Values. Since the näıve approach to incorporating
bidder-specific minimum prices fails, we would like to ex-
plore another approach. We first make the observation that
if for some bidder i, every other bidder i′ with loc(i′) > loc(i)
had bi′αi′ ≥ Riαi, then the (unmodified) VCG price for i
would be at least Ri. (This follows from simple manipula-
tions of the VCG price definition.) This observation moti-
vates introduction of bidder-specific “virtual” values: When
computing the price for bidder i, we use max{bi′αi′ , Riαi}
as a substitute for bi′αi′ for all applicable i′. This implies
that the bid of a bidder i′ is interpreted differently when
computing prices of different bidders. We define the mech-
anism formally as follows:

Virtual Values(b1, ..., bn, R1, ..., Rn)
Sort biαi in descending order and assign bidder i to its po-
sition in the sorted list;
For every bidder j at loc(j) charge

PV V
loc(j) =

X
i:loc(i)>loc(j)

max{biαi, Rjαj}(βloc(i)−1 − βloc(i))

αjβloc(j)

Theorem 3.2. The Virtual Values mechanism is effi-
cient and truthful.

Proof. Consider a bidder j placed in position loc(j) when
she bids her true valuation vj . We will show that position
loc(j) maximizes her utility and thus revealing the true val-
uation is a weakly dominant strategy. First, we show that
for any position m > loc(j) bidder j’s utility from position
m− 1 is at least her utility from position m.

Let PV V
m,j be the price of bidder j for position m, assuming

all the other bidders do not change their bid. Therefore, the
utility of bidder j from position m is uj(m) = αjβm(vj −
PV V

m,j ). We would like to show that uj(m) ≤ uj(m − 1) for
m > loc(j). This is equivalent to,

uj(m− 1) = vjαjβm−1 − (βm−1 − βm) max{bmαm, Rjαj}
−B ≥ vjαjβm −B = uj(m),

where B =
P

i>m max{biαi, Rjαj}(βi−1 − βi). Now rear-
ranging the terms we obtain,

vjαj(βm−1 − βm) ≥ (βm−1 − βm) max{bmαm, Rjαj} .

Since the list is sorted we have vjαj ≥ bmαm. In addition
vj ≥ Rj otherwise bidder j will never participate. Therefore
the inequality holds and bidder j prefers position loc(j) over
any position m > loc(j).

Now consider a position m < loc(j). We show that bid-
der j utility from position m + 1 is larger than her util-
ity from position m, i.e., uj(m + 1) ≥ uj(m). In this
case we observe that bmαm ≥ vjαj ≥ Rjαj and therefore
max{bmαm, Rjαj} = bmαm ≥ vjαj . Therefore, using essen-
tially the same inequalities, we have that uj(m) ≥ uj(m−1).
This implies that bidder j prefers position loc(j) over any
position m < loc(j), which completes the proof.

Note that although the Virtual Values mechanism is truth-
ful the equilibrium prices are not envy-free, and even worse,

they are not monotone in the position. Consider the follow-
ing example: we have two positions with multipliers β =
(1.0, 0.5) and two bidders with valuations (10, 5) and mini-
mum prices (.05, 4.95). Assume that the bidders have iden-
tical ctr, i.e., α1 = α2 = 1. The Virtual Value mechanism
assigns bidder 2 to position 2 and charges her 4.95 while
bidder 1 is assigned to position 1 and charged only 2.525.

Offsetting Bid by Minimum Price. We now present a generic
approach of incorporating minimum prices. The idea is to
reduce the problem to a setting in which there are no mini-
mum prices. Here is the simple reduction, where we assume
that A is a truthful auction:

Subtract Min Price(A, b1, ..., bn, R1, ..., Rn)
Let b′i = bi −Ri.
Run A(b′1, . . . , b

′
n) and get a legal assignment locA and set

of prices PA.
The price of bidder i is Pi = PA

i + Ri and its position is
locA(i).

Theorem 3.3. Assume that A is a truthful mechanism
when bidder i’s valuation is v′i = vi − Ri. Then Subtract

Min Price is a truthful mechanism.

Proof. The important observation is that for any bid-
der, her utility with valuation vi in Subtract Min Price is
identical to her utility in A when she has valuation v′i =
vi −Ri. Namely her utility from being assigned to position
` = locA(i) is αiβ`(vi−Ri−PA

i ). Therefore the truthfulness
of Subtract Min Price follows from that of A.

We remark that Subtract Min Price is efficient with re-
spect to the social welfare function αi(vi − Ri), which can
be very different from αivi. Note also that the revenue of
the auctioneer can also be very small in some scenarios. For
instance, assume two bidders with valuations (100, 3), min-
imum prices (99, 1) and identical ctrs, and there is only one
effective position. The Subtract Min Price assigns bidder
2 to position 1 and charges her 2.

The VCG mechanism above optimizes a function interpreted
as follows. Consider the auctioneer as an additional player
in the game, with utility −Ri for any click of bidder i.
The Subtract Min Price mechanism implements an effi-
cient solution for the N + 1 players thus obtained. This
is due to the fact that the value of player i at position j
plus the value the auctioneer draws from that placement is
viαiβj−Riαiβj = (vi−Ri)αiβj . This utility function is rea-
sonable when there is a cost to the auctioneer for any click
on the ith advertiser, which is the future effect of allowing
low quality ads.

4. GENERALIZED SECOND PRICE (GSP)
AUCTIONS

In this section we will discuss the effect of introducing mini-
mum bid prices to Generalized Second Price (GSP) auctions.
It is well known that GSP is not a truthful mechanism, so



our main focus is to show that there exists an equilibrium. In
fact we will show a stronger result, that there are envy-free
prices for the GSP.

The existence of envy-free prices for GSP with no minimum
bids (or a uniform minimum bid which is identical to all the
bidders) was shown in [3, 25]. Along the way, these analyses
show a few interesting properties of GSP. The first is that
there are envy-free prices which result in an efficient allo-
cation (i.e., maximize the sum of bidders valuations). The
second is the fact that local envy-free prices imply (global)
envy-free prices, the property of “envy locality” we discussed
earlier. We show that both of those properties do not hold
once bidder-specific minimum prices are introduced.

For the proof of the existence of envy-free prices we use a
specific Tâtonnement process. Our process increases prices
while ensuring that certain properties of the allocation are
maintained.

4.1 GSP Efficiency
The following theorem shows that there is an example where
every equilibrium in GSP mechanism is not efficient.

Theorem 4.1. The GSP mechanism with bidder specific
minimum prices is not necessarily efficient.

Proof. Consider the following case of two bidders and
two positions. Let β = (1, 1/2), v = (1, 2/3 + ε), R =
(0, 2/3), and identical ctrs. We will show that there is no
set of equilibrium bids which will maintain efficiency. Since
each bid has to be at least the bidder specific minimum
price, we have b2 ≥ R2 = 2/3. Bidder 1’s utility at the first
position is (1− b2) ≤ 1/3 and in the second position is 1/2,
since the price would be zero. Therefore, player 1 would
underbid player 2 in any equilibrium.

4.2 GSP: Local envy-free prices
We provide the following important observation that high-
lights the differences between the behavior in GSP with and
without bidder-specific minimum prices. While in basic GSP
it was shown that locally envy free prices imply globally envy
free prices [3, 25], this is not true anymore when minimum
prices are used. This means that we will need to argue more
globally and cannot rely on local analysis to be sufficient.
As a consequence, the proof techniques that were used in
the previous analysis of the basic GSP cannot be applied to
GSP with bidder specific minimum prices.

Theorem 4.2. In GSP with bidder specific minimum prices,
locally envy free prices do not imply envy free prices.

Proof. Consider an instance where three bidders with
valuations v = (12, 11, 20), minimum prices R = (10, 10, 0),
position multipliers β = (1, 1/2, 1/4), and identical ctrs.
Consider bids (10.5, 10.5, 10). This generates prices P =
(10.5, 10, 0) and utilities u = (3/2, 1/2, 5). First we need to
verify that the prices are local envy-free prices. The utility
of bidder 1 at the second position is 2 · 1/2 = 1 and thus she
does not envy. The utility of bidder 2 at the first position

is still 1/2 and thus she does not envy bidder 1. We still
need to show that bidder 2 and bidder 3 do not envy each
other. The utility that bidder 2 would get at position 3 is
(11−10)/4 = 1/4 and thus she does not envy bidder 3. The
utility that bidder 3 would get at position 2 is (20−10)/2 = 5
and thus she does not envy bidder 2. Hence the prices are
locally envy-free prices.

However bidder 3 is better off getting the first position at
price 10.5 as her utility would be 9.5. Therefore the prices
are not envy-free prices.4

4.3 GSP: Envy-free prices
The remainder of the section will be devoted to proving our
main theorem, extending the existence of envy-free equilib-
ria to the case of bidder-specific minimum prices:

Theorem 4.3. The GSP mechanism with bidder-specific
minimum prices has an envy-free prices equilibrium.

The proof technique that we will use to show Theorem 4.3
is to define a specific Tâtonnement process, and show that
it converges to a set of envy-free prices.

4.3.1 Definitions and notation.
We start by giving the definitions and notation that will be
used in the proof. Let K′ = {1, . . . , k} be the set of positions
with non-zero multiplier, i.e., βi > 0. Given a price vector
P for any subset of bidders B ⊂ N and subset of positions
S ⊆ K′ we define the best response graph, G(P,B, S) =
(B,S,E). The graph G(P,B, S) is a bipartite graph where
(b, s) ∈ E if and only if position s ∈ S is a best response
for bidder b ∈ B. We say that positions i ∈ S and j ∈
S are connected if there exists a path between i and j in
G(P,B, S). We denote by νG(v) the neighbors of a node v
in G = G(P,B, S). We use the notation P ′ = (P, ε, j) to
denote a price update of position j by ε, i.e., p′i = pi for
every i 6= j and p′j = pj + ε. We also let SNE(P ) ⊆ K′

be the set of positions that are a best response for at least
one bidder at the prices P ; equivalently SNE(P ) is the set
of position nodes s ∈ K′ in G = G(P,N,K′) with at least
one incident edge, i.e., νG(s) ≥ 1. We say that a set S ⊆ K′
is matched in G = G(P,N, S) if there is a perfect matching
in G(P,B, S) for some B ⊆ N . To simplify our notation,
whenever P , B, S or G are clear from the context we might
omit them. We will also assume in this subsection that all
αi’s are equal and that all vis are different; in Section 4.5
we discuss the extension to arbitrary αi’s.

4.3.2 The Tâtonnement process
Before describing the Tâtonnement process formally, we pro-
vide some useful intuition. The Tâtonnement process begins
with a set of prices P1 such that all first k bidders pre-
fer the first position; i.e., SNE(P1) = {1}, B1 = {1, . . . , k}
and G(P1, B1,K

′) is a star graph where each bidder i ∈ B1

has exactly one edge to the node for position 1. The Tâ-
tonnement process gradually increases prices, increasing the
price of only one position during each update. While in-
creasing the prices the algorithm preserves two invariants:
4Note that there are equilibria in this case, for example bids
b = (15, 10.5, 10) or b = (11, 10.5, 20).



1. At each step, with prices Pt, the set of positions St =
SNE(Pt) that are the best response for some bidder can
only grow; i.e., St ⊆ St+1.

2. There is a matching of the positions St, such that every
position in St can be matched to a unique bidder in
G(Pt).

Both invariants are preserved by maintaining the conditions
of Hall’s theorem on every subset of St = SNE(Pt), i.e., for
every subset S′ ⊂ St we require that |S′| ≤ |ν(S′)| which is
a sufficient and necessary condition for a matching by Hall’s
theorem, which is given here for completeness.

Theorem 4.4 (Hall’s Theorem). A set S ⊂ K′ is
matched in G = G(P,N, S) iff for every S′ ⊂ S we have
|S′| ≤ |νG(S′)|.

We now present our Tâtonnement process TP:

Tâtonnement process TP
Initialize P1 such that pj = vk+1 for j ≤ k and pj = 0 for
j ≥ k + 1;
Let t = 1 and S1 = {1};
while ∃ε > 0, j ∈ St: MATCH(Pt, ε, j) = TRUE do

For each j ∈ St let εj = max{ε : MATCH(Pt, ε, j)};
st = arg maxj∈St εj ;
εt = εst ;
Pt+1 = (Pt, εt, st);
St+1 = SNE(Pt+1);
t = t+ 1;

end
Output the set of price Pt and the allocation is a matching
in G(Pt, N,K).

MATCH(P, ε, j) = TRUE iff there is a matching for
S′ = SNE(P ′) ∪ {j} in G(P ′, N, S′), where P ′ = (P, ε, j).

We first show that the Tâtonnement process TP cannot loop
indefinitely if all numbers are rational. This is done by show-
ing that there exists εmin, which is a function of v1, . . . , vn,
R1, . . . , Rn, β1, . . . , βk, and α1, . . . , αn, where every increase
will be at least εmin.

Lemma 4.5. The Tâtonnement process TP always termi-
nates

Proof. Since all numbers are rational then we can nor-
malize the number by multiplying them by their lowest com-
mon denominator and in the rest of the proof we will as-
sume they are integers. Next we show that this implies that
if we update the price by ε then we can update the price
by dεe. We prove the claim by induction and assume that
the current prices are all integers. Let P ′ = (P, ε, j) and
P ′′ = (P, dεe, j). We prove that the edges in G(P ′′) contain
the edges in G(P ′). Assume by contradiction that the edge
(i, j) is in G(P ′) and not in G(P ′′), thus we have that

β`(vi −max{p′`, Ri}) ≤ βj(vi −max{p′j , Ri})
β`(vi −max{p′′` , Ri}) > βj(vi −max{p′′j , Ri})

Since the last equation is an integer strict inequality we can
rewrite it as

β`(vi −max{p′′` , Ri}) ≥ βj(vi −max{p′′j , Ri}) + 1.

This implies now that

βj(vi −max{p′′j , Ri}) + 1 ≤ βj(vi −max{p′j , Ri}).

Rewriting again, using the fact that βj ≤ 1, we get that

max{p′j , Ri}+ 1 ≤ max{p′′j , Ri},

which is impossible since p′′j − pj = dεe − ε < 1.

The above lemma shows that the Tâtonnement process TP
always terminates. Now we would like to prove a few facts
on how TP makes progress, until it terminates. Specifically,
we would like to show that the set St increases monotoni-
cally and furthermore, each time it changes it adds the least
position which is not in St. Therefore, initially we have
S1 = {1}, and at any time t we will have St = {1, . . . , j}
for some j ∈ K′. The following two lemmas establish this
property.

The following observation shows the effect of a price increase
at position j, which is the basic step of the Tâtonnement
process TP:

Lemma 4.6. Let P ′ = (P, ε, j), (N,K′, E) = G(P,N,K′)
and (N,K′, E′) = G(P ′, N,K′). Then every edge in (b, i) ∈
E − E′ is incident to j; i.e., i = j. Also, for each edge
(b, s) ∈ E′ − E there is an edge (b, j) ∈ E.

Proof. Clearly increasing the price of position j can only
lower a bidder’s utility from position j, while keeping the
utility from other position unchanged. Therefore, any bid-
der whose best response set does not include j is unaffected.
A bidder whose best response includes j can now either re-
move the edge to j or add an edge to another position which
became as attractive as j to her.

The following lemma shows that we preserve the invariant
that St monotonically grows. Furthermore, since the posi-
tions have a strict preference order which is shared by all the
bidders, the sets St are prefixes of [1, . . . , k] and can grow
by at most one position each time step:

Lemma 4.7. Let St = SNE(Pt) at time t. Then, for every
time t′ > t we have St ⊆ St′ . In addition, if j ∈ St then any
i ≤ j has i ∈ St, and if St 6= St+1 then |St+1 − St| = 1.

Proof. We prove it for times t and t + 1 where we in-
creased the price at position st. By Lemma 4.6 the only
edges that can be in G(Pt) and not G(Pt+1), are those
which are adjacent to st, we only need to guarantee that
st is still a best response for at least one bidder. By the
construction of the Tâtonnement process TP we have that
MATCH(Pt, εt, st) = TRUE. This implies that there is a
matching in G = G(Pt+1, N, S

′) where st ∈ S′, which clearly
implies that |νG(st)| ≥ 1. For the second part of the lemma,
we only need to prove now that if j′ is added to St then j′−1



is already in St. We prove it by induction, when the basis
trivially holds with S1 = {1}. When we add a new position
note that all positions that are not in SNE and have positive
multiplier have the same price, now since the multiplier are
strictly decreasing, then every bidder in {1, . . . , k} strictly
prefers the lowest position (highest ctr) that is currently not
in St.

For the same reason, when we add a position it has to be
the lowest position which has price vk+1, and therefore if
St+1 6= St then we have |St+1 − St| = 1.

4.3.3 Conditions when the Price Increases
We have shown that the Tâtonnement process terminates,
and maintains key invariants. Since we are maintaining a
matching for the set St, we essentially just need to show
that when the Tâtonnement process TP terminates, we have
St = K′. By Lemma 4.7 it is sufficient to show that at some
time St = K′, since St is monotone. Thus the lemmas in this
section are steps to show that if St 6= K′ then some price can
be increased, and therefore the Tâtonnement process does
not terminate.

The following simple fact regarding bipartite graphs, which
will be useful for the lemmas in this section, claims that the
matching property is monotone.

Lemma 4.8. Let G = (B,S,E) be a bipartite graph in
which there is a matching for S, then for any G′ = (B,S,E′),
such that E ⊆ E′, there is a matching for S.

First, consider the case that there is a bidder which has only
one position as a best response, we show that in this case
we increase the prices and thus the Tâtonnement process
TP cannot terminate.

Lemma 4.9. Let G = G(Pt, N, St) be a best response graph
such that St 6= K′. If for some bidder b ∈ N we have
νG(b) = {j}, then there exists an ε > 0 such that MATCH(Pt,
ε, j) = TRUE.

Proof. Since St 6= K′ it implies (by Lemma 4.7) that
position k is empty, i.e., νG(k) = ∅. Since βk > 0 it implies
that bidder b utility from position k is positive, and therefore
its utility from position j is positive as well. Let δ = βj(vb−
max{Rb, pj})−maxi6=j βi(vb−max{Rb, pi}). Since νG(b) =
{j} it implies that δ > 0. Let ε = (1/2)δ/βj and P ′ =
(Pt, ε, j). We need to show that MATCH(Pt, ε, j) = TRUE.
Note that νG(P ′)(b) = {j}, by the definition of δ. By Lemma
4.6 we only added edges to other positions, and hence by
Lemma 4.8 we still have a matching.

We say that prices P induce equal payments if for any po-
sition s ∈ SNE(P ) and any two bidders i, i′ for which s is
a best response, then max{Ri, ps} = max{Ri′ , ps}. For the
process it is important to distinguish between prices which
induce equal payments and ones which do not. The next
lemma claims that in certain subgraphs if Pt do not induce
equal payments then they can be increased.

Lemma 4.10. Let Pt be prices which do not induce equal
payments, and G = G(Pt, N, St) be a best response graph,
where St 6= K′. If in G every subset S′ of St satisfies |S′| ≤
|νG(S′)| − 1, |St| ≥ 2 and G is connected then there exists
a position j ∈ St and ε > 0 such that MATCH(Pt, ε, j) =
TRUE.

Proof. Since Pt do not induce equal prices, there is a
position j whose set of best response bidders I includes
two bidders, i and i′, who pay different prices for j, i.e.,
max{Ri, pj} 6= max{Ri′ , pj}. Let ε = maxi∈I{Ri} − pj and
P ′ = (Pt, ε, j). Let G′ = G(P ′, B, S) be the graph after
changing the prices to P ′ and let I ′νG′(j) be the new set of
bidders for which j is a best response. If I = I ′, i.e., best
response set did not change, then we still have a matching
by Lemma 4.8. Now consider the case where the edge (i, j)
was removed from the graph G when creating G′.

Since for every subset S′ of St satisfies: |S′|+ 1 ≤ |νG(S′)|,
and |ηG′({j})| ≥ 1 then (S′, j) will still satisfy the matching
constraint in G′ and thus we could have increased the price.

Next we claim that if the prices induce equal payments, then
two bidder can have at most one position in the intersection
of their best response sets.

Lemma 4.11. Let Pt be prices which induce equal pay-
ments, and let G = G(Pt, N, St) be a best response graph.
For any bidders i, i′ ∈ N we have |νG(i) ∩ νG(i′)| ≤ 1.

Proof. Assume towards a contradiction that it is not the
case then there are two bidders ` and m such that v` > vm,
the intersection of their best response sets include positions
i and i′ and both pay the same for the two positions. There-
fore we have that,

(v` − Pi)βi = (v` − Pi′)βi′

(vm − Pi)βi = (vm − Pi′)βi′

Subtracting the equations we obtain that (v`−vm)βi = (v`−
vm)βi′ since we have that v` 6= vm we can divide by v`− vm

and obtain that βi = βi′ and arrive at a contradiction.

Next we present technical lemma which will be crucial in the
theorem proof. This lemma shows that if in a subgraph every
subset of positions has a slack with respect to Hall’s theorem
condition, i.e. each subset of positions has strictly more
bidders connected to in the graph, then there exists a price
we can increase without violating the matching constraint.

Lemma 4.12. Let G = G(Pt, B, St) be a best response
graph. If in G every non-empty subset S′ of St satisfies
|S′| ≤ |νG(P )(S

′)| −1, |S| ≥ 2 and G is connected then there
exists some j ∈ St and ε > 0 such that MATCH(Pt, ε, j) =
TRUE.

Proof. For contradiction, assume that there is no po-
sition j ∈ St for which we can increase the price without



violating the matching constraint. I.e., for every j ∈ St and
ε > 0 we have that St is not matched in G′ = G(P ′, N, St)
where P ′ = (P, ε, j). By Lemma 4.10 it has to be the case
that Pt are prices which do induce equal payments (other-
wise we can increase the prices).

By Lemma 4.9 every bidder has at least degree 2. Therefore
there is a cycle in the graph G. By Lemma 4.11 two bid-
ders can have only one position in common, therefore the
cycle contains at least three positions. Let j3 be the largest
position that appears in the cycle. Let ` and m be the two
bidders that are the neighbors of j3 in the cycle, and assume
that v` > vm. Let j1 and j2 be the positions connected to `
and m, respectively, in the cycle.

First, we will show that j1 < j2. Assume for contradiction
that j2 < j1. For bidder ` we have (v` − pj2)βj2 < (v` −
pj1)βj1 and for bidder m we have (vm − pj1)βj1 < (vm −
pj2)βj2 . Adding the inequalities we get, v`βj2 + vmβj1 <
v`βj1 + vmβj2 which implies that vm(βj1 − βj2) < v`(βj1 −
βj2). Since vm < v` we need to require that βj2 < βj1

which is equivalent to j2 > j1. Therefore we reached a
contradiction, and the order has to be j1 < j2 < j3.

Consider the j1, j2, j3. First note that pj1 > pj2 > pj3 oth-
erwise bidder m will strictly prefer j1 over j2. Since the
prices Pt induces equal payments, bidder m pays at position
j2 price pj2 and bidder ` pays price pj1 , i.e., they are not
using their minimum prices. Recall that both pay the same
price at position j3. The following must hold due to the fact
that they are both indifferent

(v` − pj1)βj1 = (v` − pj3)βj3

(vm − pi2)βj2 = (vm − pj3)βj3

Now rewriting the last equation and using the fact that v` >
vm we have that

v`(βj2 − βj3) > vm(βj2 − βj3) = pj2βj2 − pj3βj3

rewriting again (v` − pj2)βj2 > (v` − pj3)βj3 which contra-
dicts the fact that positions j1 and j3 are part of bidder `
best response set. We reached a contradiction to the as-
sumption that the prices can not be increased.

4.3.4 Proof of Theorem 4.3
Now all the pieces are in place to prove Theorem 4.3.

Proof of Theorem 4.3. Suppose toward a contradic-
tion that the algorithm halts at price Pt and there is no envy
free mapping. This implies that there are empty positions,
and by Lemma 4.7 k 6∈ St. Since there are empty positions,
i.e., St 6= K′, there exists a position which is in more than
one bidder’s best response set, and its connected compo-
nent, C = (B,S,E) in G(Pt), satisfies |S|+1 ≤ |νG(S)|. We
know that we cannot increase the price of any position in
S without violating the matching constraint, otherwise the
Tâtonnement process TP would not have terminated. We
consider two possible scenarios: one is when S contains a
single position and multiple bidders and the second is when
S contains several positions.

We start with S being a singleton, i.e. S = {j} and show
that the price of j can be increased a contradiction to the fact

that the process terminated. Since S = {j}, every bidder
i ∈ νG(j) must satisfy |νG(i)| = 1. Therefore, by Lemma
4.9 we can increase the prices.

Now we know that S is not singleton. Instead of considering
C = (B,S,E) we would consider its subset C̄ = (B̄, S̄, Ē).
We obtain C̄ by removing bidders B′ ⊂ B and positions
S′ ⊂ S from C. Specifically, we iteratively remove every sub-
set S′ of positions in the remaining subgraph if |S′| = |ν(S′)|
in the subgraph.5 At the end we define C̄ as the largest con-
nected component of the resulting subgraph. From now on
on we abuse notation by considering only best response in-
side C̄. Note that for every subset of positions S′ in C̄ we
have |S′|+ 1 ≤ |νG(S′)|. In addition we have that by chang-
ing prices inside C̄ the only way to violate the matching
constraint is within a subset inside C̄ since by adding any
subset of positions outside C̄ we always increase the amount
of bidders by at least the same amount. By Lemma 4.12 this
cannot happen if |S̄| ≥ 2 and if |S̄| = 1 then it’s impossible
from similar reasoning to the singleton analysis. Therefore,
we cannot stop when there are empty positions. Clearly, if
there are no empty positions by Hall’s theorem there exists
a perfect matching and thus an envy free mapping in prices
Pt.

It still remains to show that these prices can be produced
by bids. Now if the bids are bi = pi−1, then they do indeed
produce the prices, and since pi−1 > pi > Ri, the proof
follows.

Note that in the Tâtonnement process TP we do not neces-
sarily terminate with a price vector Pt which induce equal
payments. We might terminate with prices Pt which do not
induce equal payments, since we already reached a state in
which St = K′. Our proof technique only shows that as long
as St 6= K′ we can increase the price of some position.

4.4 GSP: revenue
It is known that in the setting of position auctions without
minimum prices, the bidder-optimal equilibrium of GSP is
equivalent to the truthful outcome of VCG. So it is natu-
ral to ask how this carries over when we enforce minimum
prices. This is largely still open, but we can prove that
under certain conditions, enforcing minimum prices can im-
prove revenue:

Theorem 4.13. Let PEF be envy-free prices for GSP with
minimum prices and let PV CG be the VCG prices without
minimum price. Then PEF

j ≥ PVCG
j , assuming that for ev-

ery bidder i, vi > Ri.

Proof. We prove it by backward induction on the prices
of PVCG and PEF . For the basis we have that the player
in the kth position pays at least the maximum between her
minimum price and the valuation of the k+1 bidder (other-
wise bidder k + 1 can outbid her and get a positive utility).

Assume the induction holds for all positions `′ > `, i.e.,
PEF

`′ ≥ PVCG
`′ , and prove for `. Let j be the bidder with

5Recall that since we have a matching for St in G(Pt) then
by Hall’s Theorem we have that |S′| ≤ νG(S′).



highest valuation in positions {` + 1, . . . , k}. Clearly, vj ≥
v`+1, and let the position of bidder j be m. Since the prices
PEF are envy free, we have that

βm(vj − PEF
m ) ≥ β`(vj − PEF

` ),

rearranging we obtain that

PEF
` ≥ βmPm + vj(β` − βm)

β`
≥ βmP

VCG
m + vj(β` − βm)

β`

≥ PVCG
` ,

where we used in the last inequality that

PVCG
` =

kX
i=`+1

(βi−1 − βi)vi = PVCG
m +

mX
i=`+1

(βi−1 − βi)vi

≤ PVCG
m + (β` − βm)vj

4.5 Extension to unequal α
While we assumed that all αis are identical this can be fixed
easily by running the same algorithm only this time charg-
ing bidder j for position i max{pi/αj , Rj}. Now one can
verify that all the algorithm properties still hold. To verify
that bids can produce these prices note that we need that
bi+1αi+1 = pi, rewriting it we get that bi+1 = pi/αi+1 ≥
pi+1/αi+1 = Ri+1 and thus the algorithm produces the envy
free prices when different players have different α’s.

5. CONCLUDING REMARKS
Position auctions are important because search engine com-
panies use them to sell advertisements in sponsored search.
Recently, [25, 3] and others developed mathematical notions
to understand the equilibrium properties of such auctions,
in particular, that of GSP which is widely used. Our work
here adds to the understanding of position auctions started
in [25, 3] by incorporating a practical feature that search
engines widely use, namely, bidder-specific minimum prices.
This feature is not innocent since if not handled properly in
VCG pricing, it leads to loss of truthfulness; in case of GSP,
it results in key technical difficulties, but, as we prove in this
paper, it still leads to envy-free equilibrium.

There are a number of open technical and conceptual open
issues. While in this paper we considered the bidder-specific
minimum prices as are currently used by Google, there are
other natural ways to enforce quality:

• Position-specific minimum prices (only). In this case,
there is simply a reserve price for each position. One
is then tempted to apply the multi-item auction of De-
mange et al [8] which works with reserve prices to com-
pute an envy-free price vector. However the problem
is that some positions can go unsold; indeed it some-
times impossible to sell all positions in an envy-free
equilibrium.6 While this is allowable in the context of

6For instance, consider the case of 3 bidders with valuations
(100, 20, 10.5), minimum position prices of (30, 19, 10), and
position multipliers of (1, 1/2, 1/4). Any matching where
everyone pays at most their valuation and at least their re-
serve price puts the third bidder in the third position, and
therefore prices this position at at most 10.5; however then

an abstract multi-item auction, for sponsored search
it is not desirable to have empty slots. It would be
interesting to see if there are other alternatives that
can give a more suitable solution to this case.

• Minimum ctr. Here each bidder has a minimum click-
through-rate (ctr) required to participate in the auc-
tion. If the ctr is exogenous, then this simply applies
filter to the set of bidders and this case reduces to the
others. However, if the bidder has a choice of which
ad to use, with varying ctrs (and values), then this
becomes potentially interesting.

These quality-control techniques (or combinations thereof)
require more research and may have different structural prop-
erties than the bidder-specific minimum prices case we stud-
ied and solved here.
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