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Abstract

This paper studies a centralized market with idiosyncratic uncertainty

and money as a medium of exchange from a theoretical as well as an

experimental perspective. In our model, prices are fixed and markets

are cleared by rationing. We prove the existence of stationary monetary

equilibria and of an optimum quantity of money. The rational solution

of our model, which is based on the assumption of individual rationality

and rational expectations, is compared with actual behavior in a labora-

tory experiment. The theoretical results are strongly supported by this

experiment.
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1 Introduction

Sweeney and Sweeney’s (1977) report on the Great Capitol Hill Baby Sitting

Co-op, which has been popularized by Krugman (1999), is without doubt an

entertaining anecdote to illustrate the optimum quantity of money. This paper

analyzes whether this story is more than a mere anecdote.

The Great Capitol Hill Baby Sitting Co-op was a “cooperative” of about

150 couples, with the goal of sharing baby-sitting fairly amongst themselves by

introducing a coupon system. One coupon entitled each member to receive half

an hour’s worth of baby-sitting. Initially, one coupon of baby-sitting was issued

to each couple. Supposing that coupons circulated, each couple would, over

time, do as many units of baby-sitting as they received in return. After a short

while, however, the system collapsed, because there was not enough demand

for baby-sitting. Krugman (1999) attributes this breakdown to precautionary

savings. The Co-op solved this problem simply by issuing more coupons. Having

found out that each couple was better off with an increase in the number of

coupons available, the Co-op continued to issue more coupons, which eventually

resulted in a breakdown of the system. The moral of this anecdote is that a

market in which prices are fixed only works efficiently for a specific, ‘optimal’

quantity of money.

The Great Capitol Hill Baby Sitting Co-op is just one example of a trade

circle. Trade circles, which have become increasingly common, provide a field

for clinical studies on the role of money. Trade circle members can buy or sell

services at fixed prices. The supplier of a service receives ‘artificial’ money,
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or coupons, which he/she can then use to buy services. Prices are fixed by

fairness considerations and credit is limited. Money usually has a positive value

in exchange for services, and its introduction leads to a Pareto-improvement

over the situation without money.

While the importance of the quantity of money has not been reported from

other trade circles, the Capitol Hill Baby Sitting Co-op is a beautiful anecdote

to illustrate the role of money in simple markets with idiosyncratic uncertainty

and fixed prices. It suggests that individual rationality is typically at odds

with collective rationality, and that only a specific amount of money helps to

overcome this problem if prices are fixed. From a collective point of view,

it is preferable that all participants hold more money if there is an excessive

amount of it. If money is scarce, then precautionary savings are contrary to the

common interest. The report on the Capitol Hill Baby Sitting Co-op only gives

anecdotal evidence for this quite general claim on the existence of an optimum

quantity of money. It could still be conjectured that the reasons for these

observations are totally different from those put forward above. For example,

one might argue that money holdings are determined by myopic expectations on

the future resale value, so that the market breaks down because expectations

are incorrect in the longterm. Whether the Capitol Hill Baby Sitting Co-op

is, in fact, more than an anecdote for the optimum quantity of money can

only be decided by extracting the underlying fundamental mechanisms and by

studying them in a formal model. This approach will provide us with analytical

results, and it will make the above reasoning testable under controlled conditions

in a laboratory experiment. A sound theory, in combination with additional

experimental observations, can provide more solid evidence for the story told

by the Capitol Hill Baby Sitting Co-op.

In pursuit of this goal, we develop a formal model of a monetary economy

3



with a perishable good that can be traded in a centralized market. Competitive

behavior is ensured by assuming a continuum of agents, each having stochastic

preferences. According to this specification, no agent thinks of him/herself to

be in a position to change market averages resulting from the actions of all

agents. An agent cannot consume his/her own goods, but needs to receive

money in order to finance future consumption. The price is fixed, and trade is

a one-to-one exchange of money against goods. Market clearing is ensured by

rationing. While this model may not be ideal for studying the long-term effects

of monetary policy (because of the assumption of fixed prices), it is arguably

well suited for studying short-term effects.

The model shares with Levine (1991) and Kehoe, Levine, and Woodford

(1992) in assuming stochastic preferences that generate a need for inter-temporal

transfers. But in contrast to these papers, we do not pursue a mechanism design

approach. There is no possibility of lump sum subsidies, no making or losing

money (i.e. no government and no interest involved), and prices are fixed. In

Wallace’s (2002) view, our model takes the extreme position of idiosyncratic

uncertainty across agents and types, anonymity, the absence of any monitoring

and the largest possible market. As a result of these features, the optimum

outcome cannot be achieved in our model. But by using the total trading

volume in the economy as a welfare measure, we can show the existence of an

optimum quantity of money. Money is beneficial in our model of a centralized

market, in the sense that more allocations are possible with money than without

it.

The model also shares some features with the neo-Keynesian models devel-

oped by Clower, Barro and Grossman, Benassy, Malinvaud and Dréze.1 In those
1For a comprehensive account of this theory, see, e.g., Malinvaud (1977) and Benassy

(1982).
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models, prices are fixed, and demand and supply is coordinated by quantity ra-

tioning. However, while the use of money in the standard neo-Keynesian model

is justified by a temporary equilibrium approach, the microeconomic founda-

tion of money that our model provides is based on complete rationality under

rational expectations.

Last, but not least, our model has some features in common with the re-

cent literature on the micro-foundation of money, originating in the seminal

papers of Kiyotaki and Wright (1989, 1991, 1993). In this strand of research,

markets are no longer considered to be well organized, but traders meet ran-

domly in pairs, see e.g. Boldrin, Kiyotaki, and Wright (1993), Trejos and Wright

(1995). Our paper suggests a micro-foundation of money that is complemen-

tary to the standard search model. On the one hand, we assume that markets

are well-organized, in the sense that each potential supplier and each potential

demander of a service can meet traders of the other side of the market in each

period. On the other hand, we assume that the market participants have sto-

chastic preferences: one day a trader would prefer to supply a service, while

on another day he/she prefers to demand it. In this view, the role of money

is to enable the traders to transfer income from supply days to demand days.2

From a more general perspective, our model is similar to the Kiyotaki–Wright

model because, in both approaches, the incentive to hold money arises from the

uncertainty of whether one will be a demander or a supplier of a service in the

future. This uncertainty arises from the stochastic preferences in our model,

and from the possibility of being matched with a trading partner who does not

have ”coincident wants” in the Kiyotaki–Wright model. Indeed, in the formal

analysis of our model (relying on the study of Bellman equations) we reach a
2There are random-matching models with centralized markets and bilateral trade, e.g.,

Lagos and Wright (2003, 2005), Rocheteau and Wright (2005). In these models, however,
money is not needed to trade in the centralized market, as goods are exchanged against
goods.
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similar conclusion to Berentsen (2000, Lemma 1)—using the Kiyotaki–Wright

framework. From this viewpoint, the essential difference of our model is the use

of rationing to clear the market.

Since our model will be based on a rigorous idealization—the notion of sta-

tionary competitive equilibria with rational expectations in a stochastic game—

it is important to contrast the theoretical predictions with the actual behavior

of only a few, possibly bounded rational participants in a laboratory experi-

ment with a finite horizon. The experimental design benefits from the previous

laboratory test of the Kiyotaki–Wright model by Duffy and Ochs (1999) and

McCabe (1989). Duffy and Ochs (1999) conclude that implementing a model

with a continuum of players, an infinite time horizon and discounting as a game

between finitely many players and a finite time horizon, has only a minor in-

fluence on the results. McCabe (1989) finds that, even if the number of time

periods is fixed and small (six periods in his paper), only experienced partici-

pants show behavior inducing a non-monetary equilibrium. Our main interest

is in the behavior of experienced participants. All participants therefore play

a sequence of increasingly demanding games that constitute a ‘learning’ phase

that lasts about four hours. Afterwards, a strategy game is conducted with

the aim of eliciting the strategies from experienced participants. The games

comprise individual decision making experiments and market experiments with

interaction. This will allow to determine whether a participant’s behavior is

shaped by individual optimization or market interaction. This design allows for

a rather detailed test of the predictions derived from the theory.

The laboratory experiment culminated in games in which groups of six par-

ticipants formed a market to repeatedly buy and sell services in exchange for

money, called coupons. Each participant’s potential payoff in a period (repre-

senting an instantaneous utility) was drawn randomly across agents and time
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from a common probability distribution. While this distribution was common

knowledge, the realized, individual payoff values were not revealed to other

participants. All contract positions (buy, sell, stay idle) were available to a

participant, except for ‘buy’ if he/she had no money.

Even though each group consisted of only six participants, their behavior

conformed with the best response to market averages. This observation shows

that the participants’ behavior coincided exactly with the theoretical results,

based on a rational solution concept: agents behave competitively and act ac-

cording to the optimal solution of the individual maximization problem. We

attribute this result to the fact that, as we prove analytically, stationary mon-

etary equilibria can be implemented using three simple heuristics: (1) holding

no money implies offering baby-sitting services; (2) a high payoff-value results

in seeking baby-sitting services, provided money holdings are positive; and (3)

a low payoff-value leads to offering baby-sitting services, as long as money hold-

ings are below a certain quantity m (specified later), and to seeking baby-sitting

services if money holdings are above the quantity m.

Moreover, the median maximum demand for money corresponded closely

with the model’s prediction. It turned out that there was also an optimum

quantity of money, which depended on the average potential payoff from buy-

ing. This optimum quantity, and the maximum money holdings, were slightly

higher in a setting with lower average time value, a case where there is a higher

likelihood of demand shortage. By and large, the experiment provides evidence

that the rational solution concept applied in our model has its descriptive merits.

The essence of our paper is that the story told by the Capitol Hill Baby

Sitting Co-op indeed goes deeper than its anecdotal nature might suggest.

The paper is organized in the following fashion. The next section gives a

precise description of the model that provides a sound theoretical foundation
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for the Capitol Hill Baby Sitting Co-op story. Then, in Section 3, we define

an equilibrium concept, show the existence of two types of equilibria (monetary

and non-monetary), and prove that there is an optimum quantity of money.

Section 4 describes the implementation of the model in a laboratory setting and

discusses the experimental results that provide evidence for the claim derived

from the anecdote. Section 5 concludes.

2 The Model

Our formal model of a monetary economy with a centralized market and anony-

mous agents (which rules out credit) has three distinctive features. First, the

good, or service, cannot be stored and is indivisible. Agents can either consume

or produce one unit in any one period of time, but cannot consume their own

good. Production is costless. Second, there is one centralized market in each

period, where all potential demanders meet all potential suppliers. Every agent

has to decide whether he/she wants to buy or sell before the market opens. As

the price of the good is fixed (to one unit of money for convenience) and the

good is indivisible, the market needs to coordinate and demand supply by some

non-pricing mechanism. Here, the long side of the market is rationed by ran-

domly selecting as many agents on the long side as there are on the short side.

Any agent on the long side is thus subject to a probability of not being able to

carry out his/her planned transaction.3 Third, the agent’s decision problem is

of an intertemporal nature because any future consumption requires the transfer

of income across time. This can only be achieved by the acceptance of money

in exchange for the good, because any form of private credit is ruled out by the
3The one-stage game in any one period of time is such that agents cannot condition their

buy/sell decision on the individual outcome of rationing procedure. The ability to do so would
unambiguously increase the agents’ utility. This, however, constitutes a more general game,
with a secondary market after the first has closed. In such a game, the current situation is
established again by restricting the agents’ strategy space.

8



agents’ anonymity. Money is therefore essential.4

Time is discrete, t = 1, 2, 3, .... There is a continuum of agents, [0, 1]. Agent

i’s discount factor is denoted as βi, 0 < βi < 1. In period t, his/her money

holdings are denoted as mi
t ≥ 0, and the instantaneous utility from consumption

is wi
t ∈ {l, h} (0 < l < h). The individual utility wi

t is determined by a chance

move (independently across agents and time) that assigns probability ph to the

high value h and probability pl = 1 − ph to the low value l. Then the agent

selects one of the three alternatives S (sell), B (buy) or I (stay idle). Anonymity

implies that agents can only select alternative B if mi
t > 0. The agent’s choice

is executed with probability pS resp. pB if he/she chooses alternative S resp. B.

These success probabilities are determined by rationing and, naturally, depend

on the choices of all agents. Since at most one market side is rationed, one of the

probabilities is always equal to one. Depending on the outcome of the rationing

procedure, money holdings change (decrease resp. increase by one if the agent

is successful in buying resp. selling) and instantaneous utility is realized (if

successful in buying).

We will drop the index i in the remainder of this section for notational ease.

A stationary policy ψ(m,w) ∈ {B, S, I} describes an agent’s choice as a

function of current money holdings m and instantaneous utility from consump-

tion w (which can be either high, w = h, or low, w = l, where 0 < l < h).

The Bellman equation relates the current value and the continuation value of

the game. V (m) denotes the lifetime utility, i.e. the present value of expected

future utility, for an agent with money holdings m. Provided the agent is risk

neutral, and the parameters 0 < ph < 1, 0 < pS ≤ 1 and 0 < pB ≤ 1 are given,
4In a non-monetary barter economy (and without anonymity), agents would need access

to a complete market of contingent commodities, because the future states of the individual
preferences are unknown.
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one has

V (0) = β max
{

pS V (1) + (1− pS) V (0), V (0)
}

(1)

V (m) = β
∑

w=h,l

pw max
{

pB [w/β + V (m− 1)] + (1− pB) V (m),

pS V (m + 1) + (1− pS)V (m), V (m)
}

Existence and uniqueness of a solution to the Bellman equation (1) is straight-

forward, using Blackwell’s sufficient condition for a contraction on the space of

positive functions V with domain N and range R+. Denote this solution by

V ?. Analogously to Berentsen (2000, Lemma 1), one can show that V ? has the

following properties:

Lemma 2.1 The solution V ? to (1) is strictly positive, strictly increasing,

strictly concave, and bounded by h/(1− β).

There also is a maximum amount of money, m, that an agent wants to

accumulate. It is given by

m := min
{

m ≥ 1 | pB l

β
> pS [V ?(m+1)− V ?(m)] + pB [V ?(m)− V ?(m−1)]

}

This result is straightforward according to the Bellman equation (1). Obviously,

if w = h, then “buy” is optimal, provided the agent holds money. It thus

remains to consider the case w = l. An agent (weakly) prefers to sell if, and

only if, pB (l/β+V ?(m−1))+(1−pB) V ?(m) ≤ pS V ?(m+1)+(1−pS) V ?(m).

(“Buy” is preferred when the inequality is reversed.) This condition is equivalent

to pB l/β ≤ pB(V ?(m) − V ?(m − 1)) + pS(V ?(m + 1) − V ?(m)). Concavity

and boundedness of V ? immediately imply that m is well-defined and that

ψ?(m, l) = S for all 0 < m < m and ψ?(m, l) = B for all m ≥ m.

Summarizing these findings, one can state:
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Theorem 2.1 Fix any values 0 < l < h, 0 < ph < 1, 0 < pS ≤ 1, 0 < pB ≤ 1,

and 0 < β < 1. The optimal stationary policy ψ? is given by

• Rule 1: ψ?(0, w) = S for w = h, l;

• Rule 2: ψ?(m,h) = B for all m > 0; and

• Rule 3: ψ?(m, l) = S for all 0 < m < m; and ψ?(m, l) = B for all m ≥ m.

The maximum money holdings m are defined above.

The intuition behind the optimal policy ψ? is as follows. Alternative I,

staying idle, is weakly dominated because the other alternatives may increase

either utility or money holdings. An agent with no money is certainly better off

choosing alternative S (sell), aiming to obtain money for future consumption.

As alternative B (buy) is not available to him/her, rule 1 gives the optimal

choice. Rule 2 uses the fact that the optimal choice of an agent with high

instantaneous utility h (and with money) is alternative B (buy), because this

yields the maximal current utility. Keeping the money would reduce his/her

present value, as future utility is discounted. Rule 3 states that an agent has an

endogenous maximum quantity of money holdings. If his/her money holdings

exceed, or are equal to m, he/she chooses alternative B, even if his/her instan-

taneous utility is low. The reason is as follows. The current decision of an agent

with money holdings m is irrelevant for the optimal continuation in the next

m − 1 periods. An agent can use an additional unit of money obtained today

only after at least m− 1 periods. The lower instantaneous utility in the current

period l (times the success probability) is preferred to alternative S (sell) if the

discounted expected utility in period m − 1 is higher from now on for the first

choice than for the second one. Otherwise an agent should choose to go for an

additional unit of money.
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A numerical solution of the Bellman equation gives m = 4 for both success

probabilities being equal to 1, with equal chances of high, h = 10, and low,

l = 5, instantaneous utility (i.e. ph = pl = 0.5), and a continuation probability

of β = 95%. Increasing the probability for h to ph = 0.8 (and letting pl = 0.2)

gives, ceteris paribus, m = 9.

3 The Market Equilibrium

Agents can be heterogenous with respect to their discount factor. We allow for

finitely many different types i ∈ I, with an individual discount factor 0 < βi < 1.

The relative number of agents of type i is denoted by λi > 0, the Lebesgue

measure of the respective type. Recall that there is a continuum of agents.

In a stationary market equilibrium, the “consistency” of all individually ra-

tional actions has to hold. That is, every agent’s policy is the result of the above

optimization, given the other factors, that the distribution of money holdings is

stationary (across types and quantities), that the success probabilities given by

the stationary distribution are those taken for the determination of the policy,

and that the quantity of money has to be equal to the average money holdings

of agents. The formal definition is as follows:

Definition 3.1 A stationary equilibrium is a tuple ((ψ?
i )i∈I , µ

?, p?
S , p?

B ,M?),

consisting of a stationary policy for every type, a distribution of types over

money holdings, success probabilities, and a quantity of money, such that

(i) given p?
S and p?

B, ψ?
i is an optimal stationary policy for each agent of type

i;

(ii) given (ψ?
i )i∈I , p?

S, and p?
B, µ? is a stationary probability measure for the

corresponding Markov chain on I × N with
∑

m µ?
i (m) = λi for all i ∈ I;
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(iii) given (ψ?
i )i∈I and µ?, the probabilities p?

S and p?
B satisfy the rationing

given by (2); and

(iv) the average money holdings are equal to the average money supply, i.e.
∑

m∈N,i∈I m µ?
i (m) = M?.

The rationing probabilities are given by5

pS = min

{
1,

∑
m∈N,i∈I µi(m)

∑
w=h,l pw 1ψi(m,w)(B)∑

m∈N,i∈I µi(m)
∑

w=h,l pw 1ψi(m,w)(S)

}

(2)

pB = min

{
1,

∑
m∈N,i∈I µi(m)

∑
w=h,l pw 1ψi(m,w)(S)∑

m∈N,i∈I µi(m)
∑

w=h,l pw 1ψi(m,w)(B)

}

A stationary equilibrium is called monetary, if the value function solving (1)

is strictly positive on N for at least one agent type.

3.1 Monetary equilibria and the optimum quantity of money

The existence of stationary equilibria is easily proved. A non-monetary station-

ary equilibrium, for instance, exists for any characteristics of agents and any

amount of money; in this equilibrium, p?
B is zero. In this market, everybody

wants to buy and nobody wants to sell. It is also obvious that no agent improves

his/her situation by selling, because the additional unit of money received can

never be spent.

It requires more work to prove the existence of monetary equilibria for given

agent types and success probabilities pB > 0 and pS > 0. For given success

probabilities, the optimal policies are determined by solving the Bellman equa-

tion for every agent type. Then a stationary distribution over money holdings is

constructed. This distribution has to be consistent with the success probabilities

taken for the determination of the individually optimal policies.
51ψi(m,w)(S) is the indicator function, which takes on the value 1 if ψi(m, w) = S and the

value zero otherwise.
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Theorem 3.1 Given any agent types and any prescribed success probabilities

pB > 0 and pS > 0 (one of them being equal to one), there exists a quantity of

money and a corresponding monetary stationary equilibrium such that p?
B = pB,

p?
S = pS and each type i agent’s optimal policy ψ?

i is given by Theorem 2.1.

The proof of Theorem 3.1 relies on the results of the value function V ? and the

optimal policy. Let ψ?
i denote the optimal policy for agents of type i for given

success probabilities pB > 0 and pS > 0. Denote the corresponding maximum

money holdings by mi.

The distribution of time values can be implemented such that (a) time values

are iid for each agent and (b) the distribution prevails across types and money

holdings. Rationing can be implemented such that (a) each rationed agent faces

an iid draw and (b) for each type of agent and money holdings, the actual ratio

of rationed agents to all agents on the same side of the market is equal to the

rationing probability. Throughout the following procedure, such a mechanism

is supposed to operate in the economy.

Fix a type i. Given the policy ψ?
i and success probabilities pB > 0 and

pS > 0, a Markov chain on the set of money holdings Xi := {0, ..., mi} is defined.

The transition probabilities Pi(m,m′), m,m′ ∈ Xi are as follows. Trade takes

place at price one, therefore Pi(m,m′) can be strictly positive if and only if

|m−m′| ≤ 1. One has Pi(0, 1) = pS (because any agent without money prefers

to sell), Pi(mi, mi− 1) = pB (because mi is the maximal money holdings), and,

for all 0 < m < mi, Pi(m,m − 1) = pB ph and Pi(m,m + 1) = pS pl. All of

these transition probabilities are strictly positive because pB > 0, pS > 0, and

0 < ph < 1. These findings imply that the Markov chain on Xi is irreducible.

Denote the corresponding unique stationary distribution by µ̃i. We can now

define a probability measure µ? on I × N by µ?
i (m) := λi µ̃i(m), i ∈ I, and
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define the corresponding quantity of money by M? :=
∑

i∈I,m∈Nmµ?
i (m).

It remains to show that ((ψ?
i )i∈I , µ

?, p?
B , p?

S ,M?) actually is a stationary

equilibrium, where p?
B := pB and p?

S := pS . We check each condition in Defin-

ition 3.1 in turn. First, the stationary policies ψ?
i are optimal by construction.

Second, µ? is stationary and the marginal distribution over types is
∑

m µ?
i (m)

= λi
∑

m µ̃i(m) = λi, also by construction. Third, we have to show that the

actual success probabilities, cf. (2), are equal to the prescribed ones p?
B and p?

S .

Let us consider the case p?
S = 1 (the case p?

B = 1 is analogous). Condition (iii)

is satisfied if and only if

p?
B

∑

m∈N,i∈I,w=l,h

µ?
i (m) pw 1ψ?

i (m,w)(B) =
∑

m∈N,i∈I,w=l,h

µ?
i (m) pw 1ψ?

i (m,w)(S) (3)

Stationarity of µ̃i implies

p?
B

(
µ̃i(m̄i) +

∑

0<m<mi

µ̃i(m)ph

)
= µ̃i(0) +

∑

0<m<mi

µ̃i(m)pl

That is, for each fixed type of agent, the amount of agents whose money holdings

decrease by one unit (due to actually buying the good) is equal to the amount

of agents whose money holdings increase by one unit(due to actually selling the

good). This holds by stationarity of µ̃i for the corresponding Markov chain on

Xi. Multiplying both sides of the last equation by λi and summing up over

i ∈ I, we obtain (3), taking the optimal policy into account.

Finally, condition (iv) holds by our definition of M?. The equilibrium is

monetary. This completes the proof.

This result can also be interpreted as follows. Agents assume certain success

probabilities (for example: pS = pB = 1, i.e. that no rationing will occur)

and choose their policies accordingly. The quantity of money and the policies

determine a dynamic process over money holdings, which in turn determine the

success probabilities in the market. The quantity of money is the parameter
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that allows to adjust the success probabilities of the process to the success

probabilities taken for the determination of the policy.

The general existence result Theorem 3.1 for monetary equilibria, in which

the quantity of money can be chosen by an outside institution, raises the ques-

tion of an optimum quantity of money. A non-monetary equilibrium is obvi-

ously Pareto-dominated by every monetary equilibrium. This does not provide

a satisfactory answer, however, in the case of a benevolent social planner who

maximizes the welfare in the economy. The most simple measure is that of the

number of trades, which is maximal if no rationing occurs (p?
B = p?

S = 1). If

there is rationing, some agents cannot trade, and thus obtain lower utility than

in an equilibrium without rationing. While this criterion measures individual

welfare only, and not social welfare, it provides a simple benchmark for the social

planner’s policy. This observation resembles findings in the random-matching

literature, e.g. Berentsen (2002, Proposition 1), where total welfare is maximal

if the number of those pair-wise matchings is minimized in which either buyers

have no money or sellers are at their maximum money holdings.

We have the following result:

Corollary 3.1 Given any agent types, there exists some quantity of money

M? and a corresponding monetary stationary equilibrium in which no rationing

occurs (p?
B = p?

S = 1).

Every quantity of money different to M? leads to a monetary stationary

equilibrium in which the number of trades is strictly less than with M?.

This Corollary can be shown as follows. Theorem 3.1 ensures the existence

of an equilibrium with p?
B = p?

S = 1. In this equilibrium, there is no rationing.

Consequently, the number of trades is maximal.

We have to compare an agent’s utility in this equilibrium with the one ob-
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tained in any other equilibrium with a different quantity of money M1. In the

second equilibrium, rationing has to occur because, if p?
B = p?

S = 1, the policies

of the agents would be the same. This leads to the same Markov chain and the

same quantity of money. In an equilibrium with rationing, an agent’s utility

under his/her optimal policy is lower than when adopting the same policy in an

economy (which is not in equilibrium) without rationing and a different quan-

tity of money M2. This non-equilibrium policy combination is dominated by the

equilibrium policy combination with p?
B = p?

S = 1 and the quantity of money

M?, because the equilibrium policy is the solution to the Bellman equations

without rationing.

This shows that it is legitimate to call the quantity of money that is deter-

mined this way the optimum quantity of money.

For instance, if agents are risk neutral, and ph = pl = 0.5, the optimum

quantity of money is equal to half of the average maximum money holdings

across types (weighted according to their frequency) because of the symmetry

of the stationary distribution of the Markov chain. This finding is related to

Berentsen (2002), where instantaneous utility is certain. If the probability ph 6=
0.5, the optimum quantity of money will, in general, not have this property.

This gives a theoretical foundation for the claim made in the anecdote of the

Capitol Hill Baby Sitting Co-op.

4 The Experiment

Since the model analyzed above is based on a rigorous idealization—the notion

of stationary competitive equilibria with rational expectations in a stochastic

game—it is important to compare the predictions with actual behavior in a lab-

oratory experiment. Our goal in this experiment is to test the main predictions

of the model. The two central issues are whether participants’ individual be-
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havior coincides with the optimal policy derived in Theorem 2.1, and whether

there is indeed an optimum quantity of money as assured by Corollary 3.1. This

section presents the experiments and its results. A description of the experi-

ment’s design is followed by an outline of its specific implementation. Then,

hypotheses are formulated that draw on the theoretical model and its findings.

Finally, the results of the experiment are presented in detail.

4.1 Design

The goal of our experiment is to study a game in which a finite number of

participants can repeatedly buy or sell an abstract, perishable commodity in

a central market. Since the experimental analysis of the interaction of a rel-

atively small number of players in a game with private information, common

knowledge about some distributions, endogenous execution probabilities of sub-

jects’ contractual positions, and potential non-stationarity is quite an ambitious

goal, the experiment is constructed as a sequence of increasingly more difficult

treatments.

Participants first tackle individual decision problems, which are followed by

two treatments with market interaction. In the first individual decision prob-

lem, discounting is implemented, but every demand for the abstract commodity

is satisfied, i.e. no rationing (Game N). In the second decision problem, dis-

counting and rationing are implemented (Game R). A chance move determines

whether the player is rationed, i.e. whether the contractual buy/sell position is

not satisfied. Both market games have discounting and endogenous rationing,

but differ in the probability distribution of the participants’ time values. In the

first market game (Game M.5), the high time value occurred with 50% proba-

bility, while, in the second market game (Game M.2), the high time value had a

20% probability. The same group of participants interacts in all market games.
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The actual play of these four games constitutes the learning phase. A strat-

egy game is then played to extract the participants’ (stationary) strategies. In

this game, the participants have to specify in writing their strategies for each

game they played in the learning phase. The specified strategies of all mem-

bers of one group are then implemented and simulated on a computer. The

participants’ success (in terms of accrued time values) in all games—actual and

simulated—is rewarded in Swiss currency. Realized time values have ten times

more weight in the strategy game than in the actual game.

The following list summarizes the sequence of the treatments:

1. Actual Play

(a) Individual Games

i. Game N (no rationing)

ii. Game R (rationing)

(b) Market Games

i. Game M.5 (high time value with 50% probability)

ii. Game M.2 (high time value with 20% probability)

2. Strategy Game for the Games N, R, M.5 and M.2

4.2 Implementation

This section explains in detail how the model is operationalized to allow for an

experimental test in the laboratory. The number of participants in a market

is finite rather than infinite, as postulated in the model, with six subjects in-

teracting in each market game. Potential monetary payoffs correspond to time

values. Discounting is implemented as the probability of the continuation of

the game after the current period. A detailed description of the two treat-

ment types, individual decision and market interaction, follows. The reader
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may also consult the instructions given to the participants, see www.schenk-

hoppe.net/babysitting.html.

Figure 1 is a schematic presentation of the games. In the individual decision

problems, rationing is determined exogenously by a random draw, while it is

endogenous in the market games. Rationing in the market games is implemented

as a random draw that selects who can trade out of those agents on the longer

side of the market.

Individual Games

Two games have been implemented to analyze the individual behavior in a sta-

tionary situation. It is instructive to think of these games as trading in a market

with perfectly stable conditions, such as never-changing rationing probabilities.

The following describes how Figure 1 is to be interpreted in the individual de-

cision games in which the market only has a ‘shadow existence.’

Every period follows the same sequence of events and decisions. At the be-

ginning of each period, a participant’s current potential payoff wt is determined

by a random draw that is independent and identically distributed (iid). The

time values are l = 5 and h = 10. The probability of the two values is set to

ph = pl = 0.5. After observing the time value, the subject has to choose one of

the three alternatives S (sell), B (buy), or I (stay idle). Alternative B is only

available if money holdings are positive. A random draw determines whether

the choice is executed (and leads to a transaction) or the subject fails to trade.

In the first individual game (Game N = no rationing), the success probabilities

are set to pB = pS = 1, i.e. subjects are never rationed and each choice leads to

a transaction. The second individual game (Game R = rationing) has success

probabilities pB = pS = 0.8, i.e. rationing takes place and each ‘buy’ or ‘sell’

choice is only executed with 80% probability. According to the outcome of the
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Figure 1: Schematic presentation of the games N, R, M.5 and M.2. Rationing is
exogenous in individual decision games N and R, while it is endogenous in the
market games M.5 and M.2. Subjects’ initial money holdings m0 coincide with
the quantity of money, and are exogenous. The payoff account has a balance of
zero at the start of the game, Π0 = 0.

rationing process, money holdings and accumulated payoffs are updated. If S

is chosen and the subject is successful, money holdings increase by one. The

successful choice of B decreases money holdings by one and adds the current

time value to the payoff account. Nothing happens if I is chosen, or the subject

is singled out not to trade by the rationing mechanism. At the end of the period,

a random draw determines whether the game is finished or not. The probability
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of continuation is set to β = 0.95. If the game is finished, the accumulated

payoffs are paid out as cash, and the current money holdings become worthless.

Market Games

The behavior of participants interacting in a centralized market was analyzed in

two games with six subjects per market. The order of events within each period

was analogous to the individual games. This is illustrated in Figure 1. The

random draw, determining current potential payoffs for each participant, was

iid across time and subjects. The high and low time values, and the continuation

probability, were the same as in the individual games.

The main difference to the above game is that the success probabilities pS

and pB depended on the choices of all participants. In each period, the longer

side of the market was rationed according to an iid random draw, so that only as

many participants were selected to trade on the long side as there were subjects

on the short side. In the two market games, we considered different probability

distributions of time values while retaining the potential outcomes. In the first

market game (Game M.5), the probability of the high value was ph = 0.5; and,

in the second market game (Game M.2), we set ph = .2.

A central issue in these market games arises from the fact that only six

participants interact in a market. This implementation stretches the theory to

quite an extreme, as rationing probabilities vary considerably, even if all par-

ticipants follow stationary strategies. The lack of stable market conditions is

attributable to the fact that the average of the assigned time values very often

does not match the expected value. For instance, if ph = 0.5, then, in almost

11% of all cases, at least five participants were assigned the low value. This

effect is further amplified by the induced variation of the distribution of money

holdings. In any finite market, this distribution cannot be strictly stationary.
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If the two market experiments are successful despite this ‘noise’, the support

for the model is even stronger. The extent of this distortion for the individu-

ally optimal decisions in the market games can be gauged by comparison with

the benchmark provided by Game R, in which the rationing probabilities are

exogenously fixed.

All treatments of the games followed the same procedure. This structure, and

all parameter values, were listed in the instructions and, therefore, were common

knowledge to the participants. Each game was played for 20 periods without

discounting. Then discounting was implemented. The game was terminated

after 100 periods if it did not end before. The continuation probability is β =

0.95 (i.e. the break–off probability is 5% in each period). It was implemented

by throwing a pair of identical and independent 10-sided dice. The game ended

if both faces matched each other with 1, 2, 3, 4, or 5. All participants were

given identical initial endowments M of coupons at the beginning of each game.

For each game, there were three treatments, with M = 1, M = 3 and M = 8,

respectively. In Game N and Game R, the time values were determined by

flipping a coin, while this was computerized in Game M.5 and Game M.2.

The experiment was conducted with 36 students in the computer laboratory

of the Institute for Empirical Research in Economics at the University of Zurich.

All participants first played the four games on computer terminals (learning

phase). After this learning phase, participants played the strategy games, in

which the strategies for each game had to be detailed in writing. A form was

supplied for the strategy game, but participants could alternatively use a blank

sheet of paper. In the market games, each market comprised six participants

who stayed together throughout the experiment. With a total of 36 participants,

we had six independent observations of the market games.

Communication between participants was not allowed and computer termi-
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nals were separated from one another. Each game was played for about one

hour, with instructions given in the first 15 minutes. The experiment lasted

about four hours. The payment of each participant was based on individual

performance. Each accrued unit of time value in the strategy game was worth

0.05 CHF (≈ $0.03). Performance in the learning phase was rewarded with 10%

of this amount. Participants earned, on average, about 100.00 CHF (≈ $70).

4.3 Hypotheses

This section details the hypotheses that are tested in the experiment. Pre-

dictions derived from the theoretical model fall into two categories; individual

behavior in a market and the outcome of the market interaction.

Optimal individual behavior in a market equilibrium is described in Theo-

rem 2.1. The optimal strategy is stationary, depends only on current money

holdings and time value (for given parameters), and has a cut-off feature. It

can be summarized in three simple statements: (1) if an agent holds no money,

he/she chooses action S (sell), regardless of the time value. For positive money

holdings, the following two rules apply: (2) if the current time value is equal to

the high value, the agent chooses action B (buy); and (3) if the current time

value is equal to the low value, the agent chooses action S, as long as the money

holdings are below a certain quantity m. If the agent’s money holdings are equal

to or larger than m, he/she chooses action B. The term cut-off is justified, as

up to the threshold money holdings m, a high time value implies ‘buy’ and a

low time value implies ‘sell’ (except for zero money holdings, where there is no

real choice). Money holdings beyond the threshold m carry too much risk of be-

coming worthless, and ’buy’ is the right action even when the time value is low.

The maximum amount of money an agent wants to accumulate is determined

by the parameters of the model, cf. Theorem 2.1.
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This prediction is summarized as follows:

Hypothesis 1 (Optimal Individual Policy)

Every subject follows cut-off strategies in all games.

The model provides precise information on the values of the maximum money

holdings m for all games. A risk neutral subject, with a correct perception of the

discount factor, has maximum holdings m = 4 in Game N and m = 3 in Game

R. If rationing is assumed to be absent, then m = 4 in Game M.5 and m = 2 in

Game M.2. These values are independent of the quantity of money and initial

holdings. We used MATLAB scripts to numerically determine these values, and

the scripts were also used in all further simulations. They are available on the

web at www.schenk-hoppe.net/babysitting.html.

The second hypothesis concerns our assumption that agents play the field

and do not engage in strategic reasonings on how to influence market averages.

This assumption is central to the equilibrium notion in the model, Definition 3.1.

Its implication is that the individual behavior described in the first hypothesis

should be observed with or without market interaction. This assumption also

underlies the result on the optimum quantity of money, Corollary 3.1.

Hypothesis 2 (Playing the Field)

Subjects take the market conditions as given and do not act strategically to

influence rationing or the distribution of money.

This hypothesis would not be rejected if subjects follow cut-off strategies

with identical m in Games R and M.5, and use a smaller m in Game M.2 than

in Game M.5. In particular, an increase in the total money supply should not

have an effect on the threshold m.

The last hypothesis is concerned with the optimum quantity of money, which

is interpreted as the quantity maximizing the average number of transactions
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in a market. Corollary 3.1 ensures its existence under the assumptions of our

model. As the number of market participants is small, market conditions can

vary quite substantially, even if all subjects follow stationary strategies. Subjects

may, in addition, have different maximum money holdings, due to individual

perceptions of the actual continuation probability β, or varying degrees of risk

aversion. Another source of distortion could be the uniform initial distribution of

money (i.e. helicopter money). It is, therefore, of interest to determine whether

there are any systematic deviations from the theoretical forecast.

Hypothesis 3 (Optimum Quantity of Money)

In each market game, there is a quantity of money M? which, if given as an

initial endowment to the participants, maximizes the average number of trades.

The benchmark for the actual optimum quantity of money M? is provided

by our model. Computer simulations of Game M.5, with six agents following

cut-off strategies where m = 4, show that the average number of trades (as well

as payoffs) is maximal for M∗ = 2. One finds an average number of trades of

2.13 and an average payoff of 3.35. In Game M.2, where m = 2, the optimum

quantity of money is M∗ = 1, with an average number of trades of 1.85 and

an average payoff of 2.30. As reported in detail later, most subjects are willing

to hold a higher amount of coupons in Game M.2 than is predicted by the

model. We therefore simulate this with a maximum amount m = 3, and find

an optimum quantity of money of M = 2, an average number of trades of 2.08

and an average payoff of 2.57. Both averages are higher than with m = 2

and M∗ = 1. This deviation from full individual rationality leads to a Pareto

improvement which benefits all members in the market.
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4.4 Results

The experimental outcomes of the strategy game are analyzed to discuss the

validity of the three hypotheses. The strategy game captured the behavior of

experienced subjects who had completed the learning phase described above. In

all treatments in this game, it was made explicitly clear that the game lasts at

least 20 periods and at most 100 periods. The strategies specified by subjects

were labeled with the periods of their validity. Almost all participants chose

to supply strategies for three phases, corresponding to the beginning, middle

and end part of the treatment (roughly equal on average to periods 1-20, 21-94,

and 95-100). The following analysis focuses only on the (stationary) behavior

during the middle phase.

Discussion of Hypothesis 1 (Optimal Individual Policy)

This hypothesis is fully backed up by the experiment. All 36 subjects in all of

the games followed a cut-off strategy6, though the maximum money holdings m

varied substantially across participants within each game. Figures 2–5 provide

a full description of the results of the individual decision games N and R and

of the market games M.5 and M.2. We can conclude that our first prediction is

not rejected by the data.

The maximum number of coupons m held by participants can be studied in

more detail. The figures report the median of m across each group and show the

theoretical benchmark. The median m over all participants is given by m = 4

in the Games N, R, and M.5 for all initial endowments of coupons (M = 1, 3, 8),

except for Game M.5 with M = 1, in which the median is m = 3.5. In Game

M.2, one has a median of m = 2.75 for the initial endowment M = 1, and a
6The hypothesis that half of the population from which participants were drawn would

pursue a different strategy was rejected in a one-sided binomial test on a significance level of
0.1%.
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median of m = 3 for the initial endowments M = 3, 8. These medians are in

good overall agreement with the theoretical predictions, which are based on the

assumption of risk-neutrality and correct perception of all probabilities. The

considerable variation of the maximum amount m across individuals can, for

instance, be due to a misperception of the continuation probability β. If a

subject perceives the discount factor in Games N and M.5 as .957 < β < .971,

then m = 5; .931 < β < .957 yields m = 4; and .868 < β < .931 gives m = 3.

A remarkable, systematic deviation in the subjects’ behavior was observed

when rationing was quite common, which is the case in Game R and Game

M.2. There was a clear tendency to hold more coupons at the maximum than

predicted. Another interesting feature was the change of maximum holdings

as a function of the endowment. While most subjects chose the same m in

all treatments within a game, a few had increasing maximum holdings. One

can anticipate that these properties have an effect on the optimum quantity of

money. These points will be discussed in detail later.

Summarizing these findings, we can state that the experimental results on

the maximum amount of money holdings are in good agreement with the theo-

retical model.

Discussion of Hypothesis 2 (Playing the Field)

The hypothesis that subjects do not engage in strategic reasonings, how to

influence market averages and thus ‘play the field,’ is central to our model.

Its validity can be studied by comparing the change in participants’ behavior

between games.

The first comparison has to be between the individual decision games and

the market games. Only in the latter part can the participants influence aggre-

gates. Table 1 summarizes the changes in maximum money holdings m, with
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a perspective on the median behavior within groups. We have six indepen-

dent observations, one for each group. The individual changes are tabulated in

Figures 2–5.

N → R N → M.5 R → M.5 M.5 → M.2
Median of (initial M) (initial M) (initial M) (initial M)

change of m 1 3 8 1 3 8 1 3 8 1 3 8
positive 0 0 0 0 0 1 0 0 2 0 0 0

zero 5 6 6 4 5 3 4 4 3 1 0 0
negative 1 0 0 2 1 2 2 2 1 5 6 6

Table 1: Evaluation of the change in subjects’ behavior by comparison of max-
imum money holdings across different strategy games (with the same initial
money endowments). The table indicates the number of groups in which the
median (taken within a group) of the changes of individual maximum money
holdings m is positive, zero or negative.

Table 1 looks at the change of subjects’ maximum holdings m, and sum-

marizes this information by reporting the direction of change of the maximum

holdings’ median within each group. It gives the number of groups in which

the median of changes in individual’s m is positive, zero or negative. There is

obviously no clear-cut pattern in the observations, except for the comparison

between Games M.5 and M.2.

The theoretical prediction states that there should be no change in the me-

dians when moving from Game N to Game M.5 while holding the quantity of

money fixed. In both cases, the median of actual maximum holdings and the

theoretical prediction are m = 4. Table 1 shows that the median of individual

changes is zero in most groups. There is a tendency, however, for a decrease in

the median within groups. If subjects were to act strategically, there should be

a (strong) increase in the money holdings, in particular for M = 8.

Another important aspect is related to the change in behavior between the

two market games, Games M.5 and M.2. If subjects were to try to positively in-
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fluence averages, the maximum money holdings should not decrease, but rather

increase, as this means that more of the benefits of the infrequent high time

value can be reaped. Table 1 shows that the change in m from Game M.5 to

Game M.2 is significant and negative. In all groups but one (and this only for

M = 8), m decreases.7

Further evidence for hypothesis 2 can be drawn from a comparison of dif-

ferent money endowments within the same game. If subjects act in a strategic

fashion, both market games M.5 and M.2 should see a strong increase in m as M

increases from 1 to 8. Indeed, given the uniform initial distribution of coupons

in order to have any trade, m must be higher than the endowment. Table 2

shows that nothing of this sort happens. In 44 out of 48 cases, the median of the

changes is zero. The only exception is Game M.5, in which an increase in the

quantity of money from 1 to 3 induces some subjects to increase m. A further

increase to M = 8 however, does not lead to a significant increase in maximum

holdings.

The conclusion is that our second hypothesis is supported by the data.

Median of Game N Game R Game M.5 Game M.2
change of m 1 → 3 3 → 8 1 → 3 3 → 8 1 → 3 3 → 8 1 → 3 3 → 8

positive 0 0 0 0 3 0 1 0
zero 6 6 6 6 3 6 5 6

negative 0 0 0 0 0 0 0 0

Table 2: Evaluation of the change in subjects’ behavior by comparing changes in
behavior for different money holdings within the same game. The table indicates
the number of groups in which the median (taken within a group) of the changes
of individual maximum money holdings m is positive, zero or negative.

Discussion of Hypothesis 3 (Optimum Quantity of Money)

7The hypothesis that half of the population would hold more money in Game M.2 than in
Game M.5 is rejected in a one-sided binomial test at a significance level of 2% for the changes
of the medians and at the 5% level for the medians of the changes.
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The analysis of the third hypothesis is based on the strategies supplied by the

participants for the market games M.5 and M.2 with M = 1, 3, 8, see Figures 4

and 5. To extract the average number of trades and realized payoffs for each of

the six groups, numerical simulations were carried out for different quantities of

money. The outcome of this simulation of the strategy game also determined the

participants’ monetary payoffs. In order to obtain comprehensive information on

the effect of different quantities of money, we linearly interpolated individuals’

maximum holdings m over non-retrieved initial money holdings by using the

available data for M = 1, 3, 8.

Starting from a uniform initial distribution of money holdings M to partic-

ipants (M is also the quantity of money), we simulated the market interaction

for 50, 000 iterations, ignoring the break-off probability. From this data, we cal-

culated the average number of trades in a single period, as well as the average

time values realized by the participants. Figures 6 and 7 give the results.

In both games, increasing the quantity of money had a similar effect. The

average number of transactions was positive for M = 1 and it increased when M

was raised to 2. Then the frequency of transactions leveled out and decreased

rapidly as M was raised further. Trade broke down completely for all groups in

Game M.5 (M.2) if the quantity of money M ≥ 8 (M ≥ 5). The hypothesis that

the number of transactions does not depend on the initial endowment is rejected

at a 2% significance level in a binomial test for all markets. A comparison of the

averages taken across all groups showed that the optimum quantity of money

was M∗
experiment = 2 in both games. In Game M.2, the average number of

transaction was actually slightly larger with M = 3, but the average payoffs

proved to be about 10% higher with M = 2. The median payoff was also higher

with M = 2.

In Game M.5, with M = 2, the strategy game gave rise to a realized trade
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frequency of 2.11, and a realized average payoff of 3.30. The theoretical bench-

mark, which assumes m = 4 and M∗ = 2 in Game M.5, was given by an average

number of trades of 2.13 and an average payoff of 3.35. A comparison of these

numbers shows that the monetary economy, determined by the strategy game,

works surprisingly well. It almost achieves the benchmark. From a statistical

viewpoint, 4 out of 6 observations conform with M = 2 being the optimum

quantity of money in Game M.5. The hypothesis that the optimum quantity

is not in the interval [2, 3] can be rejected at a significance level of 5% in a

binomial test. In group 1, the behavior of participant 3 stood out because of

a very high maximum holding m. This behavior stimulated trade within the

respective group for high quantities of money.

The discussion of the optimum quantity of money in Game M.2 is slightly

more complicated, due to a systematic deviation from the theoretical prediction

on the individually optimal maximum money holdings. The outcome of the

strategy game for Game M.2, with M = 2, gave rise to a frequency of trade of

1.58 and a realized average payoff of 2.06. The median of the maximum money

holdings is calculated as m = 3 (with linear interpolation).

The theoretical benchmark for Game M.2 is the stationary equilibrium with

m = 2 and an optimum quantity of money M∗ = 1. The average number of

trades is 1.85 and the average payoff is 2.31. As the median of actual maximum

holdings for M = 2 is one unit higher than in this benchmark, we simulate the

modified economy with m = 3. In Game M.2, with homogenous m = 3, the

optimum quantity of money is M = 2. The corresponding average number of

trades is 2.08 and the average payoff is 2.57. Both averages are higher than in

Game M.2 with m = 2 and M∗ = 1. These numbers imply that the systematic

deviation from full individual rationality leads to a Pareto improvement, which

benefits all subjects within a group.
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Compared to these benchmarks, both the actual frequency of trade and the

realized payoffs fall short of the optimum. The actual frequency of trade 1.58 is

15% less than in the stationary equilibrium. The gap for the potential number of

trades (m = 3 and M = 2) is even larger, and subjects fall short by 24%. This

gap is not surprising because of the heterogeneity in the subjects’ maximum

money holdings. On the one hand, this behavior gives rise to some inefficiency

for the optimum quantity of money, but, on the other hand, it can stimulate

trade within the respective group for high quantities of money. For instance,

participants 31 and 35 in group 6 had very high maximum holdings for M = 8.

Their holdings could compensate for the reluctance of others to hold money;

though trade ceased after finitely many transactions for M = 8, since the sum

of the maximum holdings was less than 49(= 6×8+1), the minimum permitting

trade at M = 8.

Overall, there is a reasonable level of agreement between the prediction on

the optimum quantity of money and the actual outcome in the laboratory ex-

periment. The third hypothesis is well supported.

Summary of Discussion

Summarizing the experimental results, one can state that the appropriateness

of our theoretical model is confirmed and the evidence is quite strong. The

individual strategies of the participants coincide with the optimal behavior of

rational agents, as predicted by the model. The concept of a stationary mone-

tary market equilibrium, which assumes that agents “play the field,” was also

confirmed by the experiments. Even though each market consisted of only six

participants, the median of their behavior conformed with the best response to

market averages. Only in Game M.2, the market game with uneven distribution

of potential payoffs and frequent rationing, did participants show a systematic

33



tendency to hold one unit of money more than predicted. Money circulated

well in the different markets and the average number of trades and realized

time values were surprisingly high. In each market game, an optimum quantity

of money could be determined.

5 Conclusion

Our paper provides a combined theoretical and empirical investigation of the

optimum quantity of money. The backdrop to this analysis was provided by

the anecdote about the Great Capitol Hill Baby Sitting Co-op. This co-op

was modeled as a centralized market with idiosyncratic uncertainty, and money

as a medium of exchange. Prices were fixed, and markets were cleared by

rationing. We first showed the existence of stationary monetary equilibria and

proved that there is an optimum quantity of money. The rational solution of

our model, which is based on individual rationality, competitive behavior and

rational expectations, was then compared with actual behavior in a laboratory

experiment. The experimental results strongly supported the hypotheses on

optimal individual behavior, competitive behavior and the optimum quantity

of money, which were derived from the model. In essence, we showed that the

Great Capitol Hill Baby Sitting Co-op is more than a mere anecdote for the

optimum quantity of money. It can be modeled very exactly using advanced

dynamic equilibrium concepts, and its predictions can be verified in controlled

laboratory experiments.

One important feature of the Great Capitol Hill Baby Sitting Co-op is the

fixed prices. This is a characteristic trait of trade circles in which fairness

considerations play a role. The next natural step would be to consider markets

with flexible prices. One might venture to claim that, in a model in which

prices are flexible but sticky downwards, a reduction in the quantity of money
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will result in an efficiency loss (in the very short run). One application might be

labor markets in which wages are sticky downwards (e.g. in Continental Europe).

We hope that our paper stimulates further research in this direction.
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Figure 2: Game N (individual decision game). The figure reports individual
maximum money holdings and medians across groups. These groups later
formed markets, each with six subjects. All subjects (1-36) followed cut-off
strategies. The predicted value was m = 4. (Participant 23 was indifferent be-
tween 2 and 3, as maximum money holdings, and uniformly randomized between
them.)
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Figure 3: Game R (individual decision game). Results and legend are analogous
to Figure 2. The predicted value was m = 3.
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Figure 4: Game M.5 (market game). The predicted value for maximum money
holdings was m = 4. Legend as in Figure 2.
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Figure 5: Game M.2 (market game). The predicted value for maximum money
holdings was m = 2. Legend as in Figure 2.
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Figure 6: Optimum quantity of money, Game M.5. Average number of trans-
actions for each subject and averages across groups for different quantities of
money.
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Figure 7: Optimum quantity of money, Game M.2. Average number of trans-
actions for each subject and averages across groups for different quantities of
money.
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