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Abstract

Many centralized two-sided markets form a matching between participants by run-
ning a stable matching algorithm. It is a well-known fact that no matching mecha-
nism based on a stable matching algorithm can guarantee truthfulness as a dominant
strategy for participants. However, we show that in a probabilistic setting where the
preference lists on one side of the market are composed of only a constant (independent
of the size of the market) number of entries, each drawn from an arbitrary distribu-
tion, the number of participants that have more than one stable partner is vanishingly
small. This proves (and generalizes) a conjecture of Roth and Peranson [42]. As a
corollary of this result, we show that, with high probability, the truthful strategy is
the best response for a random player when the other players are truthful. We also
analyze equilibria of the deferred acceptance stable matching game. We show that
the game with complete information has an equilibrium in which, in expectation, a
(1 − o(1)) fraction of the strategies are truthful. In the more realistic setting of a
game of incomplete information, we will show that the set of truthful stratiegs form a
(1 + o(1))-approximate Bayesian-Nash equilibrium for uniformly random preferences.
Our results have implications in many practical settings and were inspired by the work
of Roth and Peranson [42] on the National Residency Matching Program.

1 Introduction

Matching is a fundamental paradigm in the design of many centralized two-sided markets.

Prominent examples include the National Residency Matching Program (NRMP) which
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matches medical students to hospitals [36, 41, 42], the kidney exchange program which

matches kidney donors to patients [3, 46, 44, 45], and school choice programs in cities like

Boston and New York which match students to high schools [1, 2], among others [40, 30,

10]. These markets form matchings through a centralized algorithm such as the deferred

acceptance algorithm of Gale and Shapley [14] which solicit Rank Ordered Lists (ROLs), or

preference lists, from participants and then output a matching which is stable in the sense

that no two participants have an incentive to deviate from it.

Empirically, stability has proven to be a key property of two-sided market design [36, 38,

39, 48, 23]. Without it, markets fail, often in drastically undesirable ways, as demonstrated by

the unraveling of regional markets for physicians in the United Kingdom in the 1960s in which

participants formed matches often as early as one and a half years prior to employment [23].

From an economic standpoint, the major question about centralized markets designed

based on stable matching algorithms is whether the participants in such markets have an

incentive to misreport their preference lists, and if so, how this affects the outcome in the

equilibrium. There are simple algorithms, in particular those mimicked by the NRMP, in

which truth-telling is an undominated strategy for one side of the market [11, 35]. However,

as shown by Roth [35], even in simple theoretical models, there is no mechanism for the

stable matching problem in which truth-telling is a dominant strategy for both sides of

the market. The concern about the possibility of strategic manipulation was a main factor

behind the so-called “crisis of confidence” in the NRMP in the mid-90s, as expressed by a

series of articles in Academic Medicine [32, 31, 55, 54]. Medical school advisors and other

professionals in the field began to discuss the possibility of manipulating preferences.

Despite these problems, matching mechanisms have had spectacular success in practical

applications. The medical residency market has been using a centralized stable matching

market system since the 1950s [36]. To this day, most medical residences are formed through

this centralized system (with a redesign in 1998 by Roth [42]). In 1999, Roth and Peran-
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son [42] noted that, in practice, very few students and hospitals could have benefited by

submitting false preferences. They analyzed several years of data from the NRMP and cal-

culated whether any applicant could alter his or her preference list to get a better match

(according to his or her submitted preference list). For example, in 1996, they calculated

that out of 24,749 applicants, just 21 could have affected their match by changing their

submitted preferences.

One explanation for this observation is that the data did not in fact reflect the true

preferences of the applicants but rather an equilibrium of the mechanism, and therefore

it is not surprising that not too many participants can benefit by deviating from their

current strategies. However, this seems rather unlikely, given that the participants do not

have complete information about the preferences of other parties. Furthermore, Roth and

Peranson used computer simulations to show that the same conclusion holds when preference

lists are drawn from certain distributions (as we will describe later).

An alternative explanation is that the preference lists that typically arise in practice are

so that the participants can seldom benefit from misreporting their preferences. Using re-

sults resented in Roth and Sotomayoror [47], this means that with typical preference lists,

almost every participant has a unique stable partner, i.e., he or she is matched to the same

partner in all stable matchings. Roth and Peranson [42] noted two properties of typical

preference lists that might lead to this. The first property is the correlation between pref-

erence lists. Applicants share a general opinion of “desirable” and “undesirable” hospitals.

Similarly, hospitals tend to agree on the “desirable” and “undesirable” applicants. Taken

to the extreme where all preference lists are identical, this correlation induces a unique sta-

ble matching where no participant can benefit by altering their preference list. Conversely,

Knuth, Motwani, and Pittel [25, 26] showed that in the general stable matching setting, if

preference lists are independent random permutations of all members of the opposite sex,

then almost every person has many stable partner.
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The second property of typical preference lists, which was the focus of the analysis of

Roth and Peranson [42], is that they are quite short compared to the market size. In a small

town, every man knows every woman, but in the medical market, a student can not possibly

interview at every hospital. In practice, the length of applicant preference lists is quite

small, about 15, while the number of positions is large, more than 20,000. Experimentally,

Roth and Peranson [42] showed that size matters. They generated random preference lists of

limited length and computed the resulting number of uniquely matched participants. Even

though these randomly generated lists are, in a sense, the worst case (that is, there is no

correlation between the lists), their experiments show that the number of participants with

more than one stable partner (and therefore the number of those that can benefit by lying)

is quite small when the length of the lists is sufficiently limited. This led them to conjecture

that in this probabilistic setting, the fraction of such people tends to zero as the size of the

market tends to infinity.

In this paper, we prove and generalize the conjecture of Roth and Peranson [42]. More

precisely, we prove the following: Consider matching n men and n women, and suppose each

woman has an arbitrary ordering of all men as her preference list. Each man independently

picks a random preference list of a constant (that is, independent of n) number of women by

choosing each woman independently according to an arbitrary distribution D . These are the

true preference lists. We show that in this setting the expected number of people with more

than one stable spouse is vanishingly small. We use the following technique for our proof:

First, we design an algorithm, based on an algorithm of Knuth, Motwani, and Pittel [25, 26],

that for a given woman checks whether she has more than one stable husband in one run of

proposals. Using this algorithm, we prove a relationship between the probability that a given

woman has more than one stable husband and the number of single (that is, unmatched)

women who are more popular than she. This relationship, essential to our main result, seems

difficult to derive directly, without going through the algorithm. Given this relationship, we
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are able to derive our result by computing bounds on the expectation and variance of the

number of single popular women.

This result has a number of interesting economic implications. We can interpret the

preference lists together with a stable matching algorithm as a game G, in which everybody

submits a preference list (not necessarily their true preference list) to the algorithm and

receives a spouse. The goal for each player is to receive the best spouse possible according

to their true preference list. First, we show that, with probability approaching one (as n

approaches infinity), in any stable matching mechanism, the truthful strategy is the best

response for a random player when the other players are truthful. We also show that for any

stable mechanism this game has a Nash equilibrium in which almost all players are truthful.

It is important to note that the above results hold for any distribution D of women. For the

special case of uniform distributions (corresponding to the conjecture of Roth and Peranson),

we get better bounds on the convergence rate in the above results. Furthermore, for this

setting, we obtain a result about the equilibria of a game of incomplete information (where

each player only knows the distribution of the preference lists). Namely, we show that the

set of truthful strategies in the game induced by the women-proposing mechanism form a

(1 + o(1))-approximate Bayesian-Nash equilibrium for this game. In this ordinal setting, a

(1 + ε)-approximate equilibrium is one in which no player can improve the expected rank of

his or her allocation by more than a factor of (1 + ε). If the ratio of the largest cardinal

preference to the smallest cardinal preference is bounded by a constant, our results carry

over to the cardinal setting as well.

1.1 Related Work

Mathematically, much is known about the properties of stable matchings. In simple theoret-

ical models, a stable matching always exists [14]. The set of stable matchings form a lattice

(attributed to Conway in [24]), and there are simple algorithms to find the maximum and the
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minimum elements of the lattice [14] (each of which is optimal for one side of the market),

as well as algorithms which enumerate all stable matchings [21] (albeit not in polynomial

time), or select particular stable matchings according to some “fairness” criteria [51].

Dubins and Freedman [11] and Roth [35] showed that in deferred acceptance mechanisms,

truth-telling is an undominated strategy for one side of the market. However, as shown by

Roth [35], there is no stable mechanism in which truth-telling is a dominant strategy for

both sides of the market (see also [47]). This gave rise to a line of research investigating the

options for manipulation in stable matching markets. In complete information settings, there

are many papers discussing strategic issues and resulting equilibria [4, 5, 15, 28, 37, 50, 52].

Particularly notable is the observation that in complete information settings any strategic

gain can be realized by a so-called truncation strategy in which a participant merely submits

a truncation of his or her true preference list up to and including his or her optimal stable

partner [37, 15]. The incomplete information setting is considerably less well-developed, and

the issues appear significantly more complex. In particular, there are incomplete informa-

tion models requiring more complex strategies than simple truncations [12, 43]. Ehlers and

Massó[13] study stable matching markets as a game of incomplete information, and prove an

equivalence between the game having a singleton core and truthfulness being an equilibrium.

Our main result (proof of the conjecture of Roth and Peranson [42]) implies that in a

sense the core of the stable matching market with short preferences shrinks as the size of the

market grows. This can be regarded as in the same vein as existing results in the literature

such as the seminal paper of Aumann [9] (see also the book by Hildenbrand [18]) which show

that the core of certain markets approaches a single point as the market grows.

Mechanisms that are truthful in a randomized sense (that is, in expectation, or with

high probability) have been a subject of research in theoretical computer science [7, 8].

These mechanisms seek to encourage truthfulness by introducing randomization into the

mechanism. Our results are of a different flavor. We show that one can conclude statements
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regarding truthfulness by introducing randomization into the players’ utility functions. To

the best of our knowledge, our result is the first result of this type.

One can also view our results as an analysis of stable matching with random preferences.

There has been a considerable amount of work in this area [25, 26, 33, 34], mostly assuming

complete preference lists for participants, and none motivated by the economic aspects of

the problem. We will use some of the techniques developed in these papers in our analysis.

Sethuraman, Teo, and Tan [49, 50] have studied the stable matching game when participants

are required to announce complete preference lists, and have given an algorithm to compute

an optimal best-response and several experimental results regarding the chances that an

agent can benefit by lying in this game.

Subsequent to the first draft of this paper and using some of the techniques introduced

here, Kojima and Pathak [27] proved a generalization of our result to a many-to-one matching

model in which participants can manipulate capacity constraints as well as preference lists.

They show under sufficient conditions regarding the distribution of preference lists, the

fraction of participants that can benefit by strategic manipulations when others are truthful

approaches zero. Using this result, they derive a generalization of our corollary regarding

approximate equilibria, showing that for sufficiently “thick” distributions, truthful reporting

is an approximate Bayesian-Nash equilibrium in many-to-one markets.

2 Model

Consider a community consisting of a set W of n women and a set M of n men. Each

person in this community has a preference list, which is a strictly ordered list of a subset of

the members of the opposite sex. If a occurs before b on c’s preference list, we say that c

prefers a to b. Also, if a occurs on c’s preference list and b does not, we say that c prefers

a to c, and prefers c to b. A matching is a mapping µ from M ∪ W to M ∪ W in such a
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way that for every x ∈ M , µ(x) ∈ W ∪ {x} and for every x ∈ W , µ(x) ∈ M ∪ {x}, and

also for every x, y ∈ M ∪ W , x = µ(y) if and only if y = µ(x). If for some m ∈ M and

w ∈ W , µ(m) = w, we say that w is the wife of m and m is the husband of w in µ; or, if for

some x ∈M ∪W , µ(x) = x, we say that x remains single in µ. A pair m ∈M , w ∈ W is

called a blocking pair for a matching µ, if m prefers w to µ(m), and w prefers m to µ(w). A

matching with no blocking pair is called a stable matching. If a man m and a woman w are

a couple in some stable matching µ, we say that m is a stable husband of w, and w is a stable

wife of m. Naturally, each person might have more than one stable partner. In the stable

matching problem, the objective is to find a stable matching given the preference lists of all

men and women.

The stable matching problem was first introduced and studied by Gale and Shapley [14]

in 1962. They proved that a stable matching always exists, and a simple algorithm called the

deferred acceptance procedure can find such a matching. Since the seminal work of Gale and

Shapley, there has been a significant amount of work on the mathematical structure of stable

matchings and related algorithmic questions. See, for example, the books by Knuth [24],

Gusfield and Irving [17], or Roth and Sotomayoror [47].

The deferred acceptance procedure iteratively selects an unmarried man m and creates

a proposal from him to the next woman on his list. If this woman prefers m to her current

assignment, then she tentatively acceptsm’s proposal, and rejects the man she was previously

matched to (if any); otherwise, she rejects the proposal of m. The algorithm ends when every

man either finds a woman that accepts him, or gets rejected by all the women on his list,

in which case he remains single. This algorithm is sometimes called the men-proposing

algorithm. Similarly, one can define the women-proposing algorithm. Gale and Shapley [14]

proved the following.

Theorem 2.1 [14] The men-proposing algorithm always finds a stable matching µ. Fur-

thermore, this stable matching is men-optimal, that is, for every man m and every stable
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wife w of m other than µ(m), m prefers µ(m) to w. At the same time, µ is the worst possible

stable matching for women, that is, for any woman w and any stable husband m of w other

than µ(w), w prefers m to µ(w).

Notice that in the description of the men-proposing algorithm we did not specify the

order in which single men propose. One might naturally think that choosing a different

order for proposals might lead to a different stable matching. However, the above theorem

together with the fact that the men-optimal stable matching is unique imply the following.

Theorem 2.2 [14] The men-proposing algorithm always finds the same stable matching,

independent of the order in which the proposals are made.

We will also need the following theorem of Roth [36] and McVitie and Wilson [29], which

says that the choice of the stable matching algorithm does not affect the number of people

who remain unmarried at the end of the algorithm.

Theorem 2.3 [29, 36] In all stable matchings, the set of people who remain single is the

same.

A stable matching mechanism is a mechanism that elicits a preference list from each

participant, and outputs a matching that is stable with respect to the announced preferences.

We say that truthfulness is a dominant strategy for a participant a if, no matter what strategy

other participants use, a cannot benefit (that is, improve his or her match according to his or

her true preferences) by submitting a list other than his or her true preference list. Ideally,

we would like to design mechanisms in which truthfulness (that is, announcing the true

preference list to the mechanism) is a dominant strategy for all participants. However,

Roth [35] proved that there is no such mechanism for the stable matching problem. On the

positive side, Gale and Sotomayor [15] show that in any stable matching mechanism, each

player has an optimal strategy which is simply a truncation (a prefix) of his true preference
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list. The following theorem (due to Roth [35] and Dubins and Freedman [11]) shows that in

deferred acceptance mechanisms, truthfulness is a dominant strategy for half the population.

Theorem 2.4 [11, 35] In the men-optimal stable matching mechanism, truth-telling is a

dominant strategy for men. Similarly, in the women-optimal mechanism, truth-telling is a

dominant strategy for women.

Consider a situation where there are n men and n women. Assume the preference list of

each man is chosen independently and uniformly at random from the set of all ordered lists

of k women, and the preference list of each woman is picked independently and uniformly at

random from the set of all orderings of all men. We want to bound the expected number of

people who might be tempted to lie to the mechanism about their preferences when the other

players are truthful. As we will show, only people who have more than one stable partner

might be able to influence their final match by altering their preference lists. Therefore, we

focus on bounding the expected number of women with more than one stable husband in

this model. Notice that this number is equal to the expected number of men with more than

one stable wife, since, in a market where the two sides are of equal size, the number of single

and uniquely matched men must equal the number of single and uniquely matched women.

Roth and Peranson [42] conjectured the following.

Conjecture 2.1 [42] Let ck(n) denote the expected number of women who have more than

one stable husband in the above model. Then for all fixed k,

lim
n→∞

ck(n)

n
= 0.

We prove this conjecture. In fact, we will prove the following stronger result. Let D be an

arbitrary fixed distribution over the set of women such that the probability of each woman

in D is nonzero.1 Intuitively, having a high probability in D indicates that a woman is

1This assumption is needed to make sure that the problem is well-defined.
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popular. The preference lists are constructed by picking each entry of the list according to

D , and removing the repetitions. More precisely, we construct a random list (l1, . . . , lk) of

k women as follows. At step i, repeatedly select a women w independently according to D

until w 6∈ {l1, . . . , li−1} and then set li = w. Let Dk be the distribution over lists of size k

produced by this process. Notice that if D is the uniform distribution, Dk is nothing but

the uniform distribution over the set of all lists of size k of women. Therefore, the model

of Roth and Peranson [42] is a special case of our model. We also generalize their model in

another respect: we assume that women have arbitrary complete preference lists, as opposed

to the assumption in [42] that they have random complete preference lists. Our main result

is the following theorem.

Theorem 2.5 Consider a situation where each woman has an arbitrary complete preference

list, and each man has a preference list chosen independently at random according to Dk.

Let ck(n) denote the expected number of women who have more than one stable husband in

this model. Then, for all fixed k,

lim
n→∞

ck(n)

n
= 0.

Remark 2.1 One might hope to further generalize this model to one where each man picks

a random list from an arbitrary distribution over lists of size k. However, the following

example shows that Theorem 2.5 is not true in this model: Assume n is an even number and

women 1, . . . , n/2 rank men in the order 1, 2, . . . , n, and women n/2 + 1, . . . , n rank them

in the reverse order. Each man picks a random i ∈ {1, . . . , n/2}, and with probability 1/2

picks preference list (i, i+n/2) and otherwise picks preference list (i+n/2, i). It is not hard

to see that for any i ∈ {1, . . . , n/2}, if at least two men pick i and rank i and i + n/2 in

opposite orders, then both i and i+ n/2 will have more than one stable partner. Therefore,

for a fixed i the probability p that i (and i + n/2) have more than one stable husband is

one minus the probability that all men who pick i, rank i and i + n/2 in the same order.
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The probability of the latter event, when exactly j men pick i is precisely min(1, 2−j+1).

Therefore, the probability p can be written as follows:

p = 1−
n∑
j=0

Pr[exactly j men pick i] ·min(1, 2−j+1)

= 1−
n∑
j=0

(
n

j

)(
2

n

)j (
1− 2

n

)n−j
min(1, 2−j+1)

= 1− 2
n∑
j=0

(
n

j

)(
1

n

)j (
1− 2

n

)n−j
+

(
1− 2

n

)n
= 1− 2

(
1− 1

n

)n
+

(
1− 2

n

)n
≈ 1− 2e−1 + e−2.

Therefore, when n is large, roughly a 1 − 2e−1 + e−2 ≈ 40% fraction of the participants

have more than one stable partner.

Even though we state and prove our results assuming that all preference lists are of size

exactly k, it is straightforward to see that our proof carries over to the case where preference

lists are of size at most k. For uniform distributions, we can prove a strong result on the

rate of convergence of this limit.

Theorem 2.6 Consider a situation where each woman has an arbitrary complete preference

list, and each man has a preference list of k women chosen uniformly and independently.

Then, the expected number of women who have more than one stable husband is bounded by

ek+1 + k2, a constant that only depends on k (and not on n).
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3 Economic implications

The theorems stated in the previous section have a number of implications on the economic

properties of stable matching mechanisms.2 Our first result states that, with high probability,

a random participant’s best strategy is truth-telling if she believes that the other participants

are truthful.

Corollary 3.1 Fix any stable matching mechanism, and consider an instance with n women

with arbitrary complete preference lists and n men with preference lists drawn from Dk (as in

Theorem 2.5). Then, for a random participant x, the probability (over the men’s preference

lists and the choice of x) that for x the truthful strategy is not the best response in a situ-

ation where the other players are truthful is o(1) (at most O(ek/n) when D is the uniform

distribution).

Proof. We prove that if x is a person with at most one stable partner, then truthfulness

is his or her best strategy when others are truthful. Fix such a person, say a man named

Adam, and suppose all other players are truthful. With respect to the true preferences,

Adam is either single, or has a unique stable wife, Eve. Assume the latter case (the former

is similar). Suppose, for contradiction, that Adam has a strategy that is strictly better than

truthfulness. Let p denote such a strategy, and assume Lilith is the woman matched to

Adam by the stable matching mechanism when he reports the preference list p and others

are truthful. If Adam changes his preference list to only include Lilith, the same matching

is still stable, and hence by Theorem 2.3, he is matched to Lilith in every stable matching.

Therefore, we can assume, without loss of generality, that Adam’s best strategy, p, is a

singleton list consisting only of Lilith. By Theorem 2.3, under these preference lists, the

men-optimal matching also matches Adam with Lilith. However, by Theorem 2.4, in the

2As pointed out to us by Fuhito Kojima, a preliminary version of this paper stated the first and third
result in this section incorrectly.
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men-proposing mechanism, Adam’s dominant strategy is truth-telling. Therefore, Adam

cannot prefer Lilith, his match when he reports p, to Eve, his match when he is truthful.

This contradicts with p being Adam’s best response.

By Theorem 2.5, with probability approaching 1 (as n tends to infinity), a random person

x has at most one stable partner. Therefore, the probability that a random person can benefit

by deviating from the truthful strategy is o(1). �

The previous corollary states that a player can benefit by lying only with a vanishingly

small probability when the other players are truthful. Now we turn to the situation in which

the other players are not necessarily truthful, but are playing an equilibrium strategy of the

game induced by the stable matching mechanism. There are two ways to interpret our stable

matching setting as a game. One way is to consider it as a game of complete information:

Let Pm and Pw denote the preference lists of men and women. Knowing these preferences,

each player chooses a strategy from the strategy space of all possible preference lists. The

corresponding preference lists are submitted to a fixed stable matching mechanism and a

matching is returned. A player’s goal is to choose the strategy that gets him/her a spouse

as high on his/her preference list as possible. Let GPm,Pw denote this game.

Corollary 3.2 Assume the preference lists Pw of women are arbitrary, and the preference

lists Pm of men are drawn from Dk (as in Theorem 2.5). The game GPm,Pw induced by

these preferences and any stable matching mechanism has a Nash equilibrium in which, in

expectation, a (1− o(1)) fraction of strategies are truthful.

Proof. Let µM denote the men-optimal stable matching with respect to the preferences

(Pm, Pw), and S denote the set of men who have more than one stable partner. By Theo-

rem 2.5, the expected size of S is o(n). We define a strategy profile P ′m for men as follows:

every man not in S reports their true preferences (i.e., as in Pm), and men in S truncate

their preferences after their match in µM . We claim that the strategy profile where men
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report P ′m and women report Pw is an equilibrium. First, we show that µM is the unique

stable matching with respect to the preferences (P ′m, Pw), and therefore when participants

report these preferences, the stable matching mechanism must output µM . It is easy to see

that µM is a stable matching under (P ′m, Pw), since every potential blocking pair for this

matching would be a blocking pair under (Pm, Pw) as well. Now, assume there is another

matching µ′ that is stable with respect to (P ′m, Pw). By Theorem 2.3, µ′ must match every

man in S. Therefore, for every person x, the reported preference of x among people that he

or she weakly prefers to µ′(x) is the same as her true preference. Thus, by the definition of

stability, µ′ is a stable matching with respect to the true preferences (Pm, Pw). However, as

µ′ 6= µM , at least one man must get different matches under µ′ and µM . If this man is not

in S, this would contradict the fact that men not in S have a unique stable match, and if

he is in S, it will contradict the men-optimality of µM . This contradiction shows that µM is

the unique stable matching with respect to (P ′m, Pw).

Given this, by the argument in the proof of Corollary 3.1, no person has a deviation

from (P ′m, Pw) that would be profitable under these preferences (since every person has a

unique stable partner). This, together with the fact that the preference of every person

among alternatives that he or she weakly prefers to his or her match under µM is the same

in (Pm, Pw) and (P ′m, Pw), implies that no person has a deviation from (P ′m, Pw) that is

profitable with respect to the true preferences. Hence, this strategy profile constitutes an

equilibrium of GPm,Pw in which, in expectation, a (1−o(1)) fraction of strategies are truthful.

�

In the above corollary, we assumed that each player knows the preference lists of the other

players when he/she is selecting a strategy, that is, we have a game of complete information.

A more realistic assumption is that each player only knows the distribution of preference

lists of the other players. Each player’s goal is to alter his/her preference list and announce

it to the mechanism in a way that the expected rank of his/her assigned spouse is as high
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as possible. A strategy for a player is a function that outputs an announced preference list

for any input preference list. Hence the truthful strategy is the identity function. We wish

to analyze the Bayesian-Nash equilibria in this incomplete information game. A (1 + ε)-

approximate Bayesian-Nash equilibrium for this game is a collection of strategies, one for

each player, such that no single player can improve the expected rank (computed according

to his/her true preference list) of his/her spouse by more than a multiplicative factor of 1+ε

by deviating from his/her equilibrium strategy.

For this lemma, we will assume that the preference lists are selected according to the

original model due to Roth and Peranson [42], that is, each man has a preference list drawn

uniformly at random from the set of all ordered lists of k women, and each woman ranks

all men according to a permutation picked uniformly at random. This is important, as

in our generalized setting, even though a random person does not benefit significantly from

misreporting his or her preferences, there can be few individuals who benefit a non-negligible

amount.

Corollary 3.3 Consider the game described above with the women-optimal mechanism.

Then for every ε > 0, if n is large enough, the above game has a (1 + ε)-approximate

Bayesian-Nash equilibrium in which everybody is truthful.

Proof. Since the women-optimal mechanism is used, we know by Theorem 2.4 that

truthfulness is a dominant strategy for women. It is enough to show that if all men and

women are truthful, then no man can improve his match by more than a (1 + ε) factor

if he misreports his preferences. Fix a man, Moses. By Theorem 2.6, there are at most

ek+1 + k2 men who have more than one stable partner, and since the model is symmetric

between all men, the probability that Moses is in this set is at most (ek+1 + k2)/n. Hence,

with probability 1− (ek+1 +k2)/n, preferences are such that Moses does not have more than

one stable wife. In this case, the argument used in the proof of Corollary 3.1 shows that
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Moses cannot gain by misreporting his preferences. With probability (ek+1 + k2)/n, Moses

has more than one stable wife, and in that case, he might be able to improve his match from

someone ranked at most k in his list to someone ranked first. However, k is a constant. Using

this, it is easy to verify that on average, he can improve his match by at most a factor of

1 + k(ek+1 + k2)/n = 1 + o(1). Thus, everyone being truthful is an approximate equilibrium

in this game. �

Although we defined approximate equilibrium in Corollary 3.3 with respect to ordinal

preferences, the result also holds in the following cardinal setting: Each player i has a

distinct utility uij ∈ < for being matched to player j (hence the true preference list of i is

(j1, . . . , jl) where uij1 > uij2 > . . . > uijl ≥ 0), and the ratio
maxj(uij)

minj(uij)
of the maximum utility

to the minimum utility is bounded by a constant for all i.

4 Proof of Theorem 2.5

In this section, we will prove our main technical result, Theorem 2.5. The proof consists of

three main components. First, we present an algorithm that, given the preference lists, counts

the number of stable husbands of a given woman (Section 4.1). We would like to analyze the

probability that the output of this algorithm is more than one, over a distribution of inputs.

In Section 4.2, we bound this probability assuming a lemma concerning the number of singles

in a stable matching. This lemma is proved in Section 4.3 by bounding the expectation of

the number of singles and proving that it is concentrated around its expected value using

the Chebyschev inequality.

4.1 Counting the number of stable husbands

The simplest way to check whether a woman g has more than one stable husband or not is to

compute the men-optimal and the women-optimal stable matchings using the algorithm of
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Gale and Shapley (See Theorem 2.1) and then check if g has the same husband in both these

matchings. However, analyzing the probability that g has more than one stable husband

using this algorithm is not easy, since we will not be able to use the principle of deferred

decisions (as described later in Section 4.2). In this section we present a different algorithm

that outputs all stable husbands of a given woman in an arbitrary stable matching problem

in one run of a man-proposing algorithm. This algorithm is a generalization of the algorithm

of Knuth, Motwani, and Pittel [25, 26] to the case of incomplete preference lists.

Suppose we want the stable husbands of woman g. Initially all the people are unmarried

(the matching is empty). The algorithm closely follows the man-proposing algorithm for

finding a stable matching. However, g’s objective is to explore all her options. Therefore,

every time the men-proposing algorithm finds a stable matching, g divorces her husband and

lets the algorithm continue.

Algorithm A

1. Initialization: Run the man-proposing algorithm to find the men-optimal stable match-

ing. If g is unmarried, output ∅.

2. Selection of the suitor: Output the husband m of g as one of her stable husbands.

Remove the pair (m, g) from the matching (woman g and man m are now unmarried)

and set b = m. (The variable b is the current proposing man.)

3. Selection of the courted: If b has already proposed to all the women on his preference

list, terminate. Otherwise, let w be his favorite woman among those he hasn’t proposed

to yet.

4. The courtship:

(a) If w has received a proposal from a man she likes better than b, she rejects b and

the algorithm continues at the third step.
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(b) If not, w accepts b. If w = g, the algorithm continues at the second step. Oth-

erwise, if w was previously married, her previous husband becomes the suitor b

and the algorithm continues at the third step. If w was previously unmarried,

terminate the algorithm.

Notice that in step 4(a) of the algorithm, w compares b to the best man who has proposed

to her so far, and not to the man she is currently matched to. Therefore, after g divorces

one of her stable husbands, she has a higher standard, and will not accept any man worse

than the man she has divorced. For w 6= g, step 4(a) is equivalent to comparing b to the

man w is matched to at the moment.

We must prove that this algorithm outputs all stable husbands of g. In fact, we will

prove something slightly stronger.

Theorem 4.1 Algorithm A outputs all stable husbands of g in order of her preference from

her worst stable husband to her best stable husband.

Proof. We prove the theorem by induction. As the man-proposing algorithm returns

the worst possible matching for the women (by Theorem 2.1), the first output is g’s worst

stable husband. Now suppose the i’th output is g’s i’th worst stable husband mi. Consider

running the man-proposing algorithm with g’s preference list truncated just before man mi

(so that it includes all men she prefers to mi but not mi himself). As the order of proposals

in the men-proposing algorithm does not affect the outcome (Theorem 2.2), let the order

of proposals be the same as Algorithm A. Then, up until Algorithm A outputs the i + 1’st

output mi+1, its tentative matching during the j’th proposal is the same as the tentative

matching of the man-proposing algorithm during the j’th proposal (except, possibly, woman

g is matched in Algorithm A and unmatched in the man-proposing algorithm). Now since

mi+1 was accepted, the fourth step guarantees that g preferred mi+1 to mi. Thus mi+1 is
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on g’s truncated preference list, and so the tentative matchings of the two algorithms are

the same. Furthermore, mi+1 is the first proposal g has accepted in the man-proposing

algorithm. All other women who get married in the set of stable matchings already have

husbands since they have husbands in Algorithm A, and so the man-proposing algorithm

terminates with the current matching. Thus, mi+1 is the worst possible stable husband for

g that is better than mi. �

4.2 Analyzing the expectation

We are interested in the expected number of women with more than one stable husband, or,

equivalently, the probability that a fixed woman g has more than one stable husband. We

can compute this probability by analyzing the output of Algorithm A from Section 4.1 on

male preference lists drawn from the distribution Dk. We simulate this experiment using the

principle of deferred decisions: a man only needs to determine his i’th favorite woman when

he makes his i’th proposal. If we make these deferred decisions independently according to

D , then the distribution of the output of this new algorithm over its coin flips will be exactly

the same as the distribution of the output of the old algorithm over its input. This motivates

the definition of the following algorithm which counts the number xg of stable husbands of

a girl g. At any point in this algorithm, the variable Ai denotes the set of women that man

i has proposed to so far, and the boolean variable FIRST indicates whether we have found

the first (man-optimal) stable matching. Men and women are indexed by numbers between

1 and n.

Algorithm B

1. Initialization: FIRST = false, ∀ 1 ≤ i ≤ n, Ai = ∅, xg = 0. (The matching is empty

and no men have made any proposals).
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2. Selection of the suitor:

(a) If FIRST = false and all single men b have proposed to k women (|Ab| = k), then

set FIRST = true (we have found a stable matching).

(b) If FIRST = false, let b be any single man who hasn’t yet proposed to k women

(|Ab| < k).

(c) If FIRST = true, we have found a new stable matching. If g is single in this stable

matching, then terminate. Otherwise, increment xg, remove the pair (m, g) from

the matching (man m and woman g who were previously married to each other

are now unmarried) and set b = m.

3. Selection of the courted:

(a) If |Ab| = k and FIRST = false (we still haven’t found the first stable matching),

then return to step two.

(b) If |Ab| = k and FIRST = true (we have found a stable matching before and a

previously married man is now single), then terminate.

(c) If |Ab| < k, repeatedly select w randomly according to distribution D from the

set of all women until w 6∈ Ab. Add w to Ab.

4. The courtship:

(a) If w has received a proposal from a man she likes better than b, she rejects b and

the algorithm continues at step 3.

(b) If not, w accepts b.

i. If w was previously married, her previous husband becomes the suitor b and

the algorithm continues at the third step.
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ii. If w was previously single and FIRST = false, the algorithm continues at the

second step.

iii. If w was previously single and FIRST = true, the algorithm continues at the

second step if w = g and terminates if w 6= g.

Before giving a proof of Theorem 2.5, we introduce some notation. For every woman

i, let pi denote the probability of i in the distribution D . We say that a woman i is more

popular than another woman j, if pi ≥ pj. Assume, without loss of generality, that women

are ordered in decreasing order of popularity, that is, p1 ≥ p2 ≥ · · · ≥ pn.

Proof of Theorem 2.5. Recall that ck(n) is the expected number of women with more

than one stable husband. We show that for every ε > 0, if n is large enough, then ck(n)/n ≤ ε.

By linearity of expectation, ck(n) =
∑

g∈W Pr[g has more than one stable husband]. Fix a

woman g ∈ W . We want to bound the probability that g has more than one stable husband.

By Theorem 4.1 and the principle of deferred decisions, this is the same as bounding the

probability that the random variable xg in Algorithm B is more than one.

We divide the execution of Algorithm B into two phases: the first phase is from the

beginning of the algorithm until it finds the first stable matching, and the second phase

is from that point until the algorithm terminates. Assume at the end of the first phase,

Algorithm B has found the first stable matching µ. We bound the probability that xg > 1

conditioned on the event that µ is the matching found at the end of the first phase (we

denote this by Pr[xg > 1 | µ]), and then take the expectation of this bound over µ.

Let the set Sµ(g) denote the set of women more popular than g that remain single in

the stable matching µ and Xµ(g) = |Sµ(g)|. If g is single in µ, then xg = 0 and therefore

Pr[xg > 1 | µ] = 0. Otherwise, xg > 1 if only if woman g accepts another proposal before

the algorithm terminates. We bound this by the probability that g receives another proposal

before the end of the algorithm. The algorithm may terminate in several ways, but we will
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concentrate on the termination condition in step 4(b-iii), that is, that some man proposes

to a previously single woman. Thus, we are interested in the probability that in the second

phase of Algorithm B some man proposes to a previously single woman before any man

proposes to g.

Note that at the end of the first phase of the algorithm, all Ai’s are disjoint from Sµ(g),

since women have complete preference lists. Thus whenever the random oracle in step 3(c)

outputs a woman from set Sµ(g), the algorithm will advance to step 4(b-iii) and terminate.

Thus, the probability Pr[xg > 1 | µ] is less than or equal to the probability that in a sequence

whose elements are independently picked from the distribution D , g appears before any

woman in Sµ(g). By the definition of Sµ(g), for every w ∈ Sµ(g), every time we pick a

woman randomly according to D , the probability that w is picked is at least as large as the

probability that g is picked. Therefore, the probability that g appears before all elements of

Sµ(g) in a sequence whose elements are picked according to D is at most the probability the g

appears first in a random permutation on the elements of {g}∪Sµ(g), which is 1/(Xµ(g)+1).

Thus, for every µ,

Pr[xg > 1 | µ] ≤ 1

Xµ(g) + 1
(1)

Thus,

Pr[xg > 1] = Eµ

[
Pr[xg > 1 | µ]

]
≤ Eµ

[ 1

Xµ(g) + 1

]
. (2)

We complete the proof assuming the following lemma, whose proof is given in Section 4.3.
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Lemma 4.1 For every g > 4k,

E

[
1

Xµ(g) + 1

]
≤ 12e8nk/g

g
.

Thus, using equation (2) and Lemma 4.1 for g ≥ 16nk
ln(n)

, and Pr[xg > 1] ≤ 1 for smaller

g’s, we obtain

ck(n) ≤ 16nk

ln(n)
+

n∑
g= 16nk

ln(n)

12e8nk/g

g

≤ 16nk

ln(n)
+

n∑
g= 16nk

ln(n)

3 ln(n)eln(n)/2

4nk

≤ 16nk

ln(n)
+ 3
√
n ln(n)/(4k) = o(n),

and so for every constant k, the fraction of women with more than one stable husband,

ck(n)/n, goes to zero as n tends to infinity. �

For the case of uniform distributions, since every woman is equally popular, for g > 4k,

E[ 1
Xµ(g)+1

] = E[ 1
Xµ(n)+1

] ≤ 12e8k

n
. Thus, ck(n) ≤ 4k +

∑n
g=4k

12e8k

n
≤ 4k + 12e8k. We derive an

even tighter bound in this case, as stated in Theorem 2.6, using a slightly different technique.

This bound is proved in Section 5.

4.3 Number of singles

In this section we prove Lemma 4.1. This completes the proof of Theorem 2.5. We start

with the following simple fact: the probability that a woman w remains single is greater than

or equal to the probability that w does not appear on the preference list of any man. More

precisely, let Ew denote the event that the woman w does not appear on the preference list
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of any man when these preferences are drawn from Dk. Let Yg denote the number of women

w ≤ g for which the event Ew happens. Then we have the following lemma.

Lemma 4.2 For every g and µ, we always have Xµ(g) ≥ Yg.
3

Proof. Every woman w < g for which Ew happens is a woman who is at least as popular

as g and will remain unmarried in any stable matching. �

We now bound the expectation of 1/(Yg + 1) in a sequence of two lemmas. In Lemma 4.3

we bound the expectation of Yg. Then, in Lemma 4.4 we show the variance of Yg is small

and therefore it does not deviate far from its mean.

Lemma 4.3 For g > 4k, the expected number E[Xµ(g)] of single women more popular than

woman g is at least g
2
e−8nk/g.

Proof. Let Q =
∑k

j=1 pj denote the total probability of the first k women under D . The

probability that a man m does not list a woman w as his i’th preference given that he picks

w1, . . . , wi−1 as his first i− 1 women, is equal to

1− pw

1−
∑i−1

j=1 pwj
≥ 1− pw

1−Q
.

Thus the probability that m does not list w at all is at least (1− pw
1−Q)k, and so the probability

that woman w is not listed by any man is at least (1− pw
1−Q)nk. If w > k, there are at least

w − k women who are at least as popular as w, but not among the k most popular women.

Therefore, pw ≤ 1−Q
w−k . By these two inequalities, for every w > 2k we have

Pr[Ew] ≥ (1− 1

w − k
)nk ≥ e−2nk/(w−k) ≥ e−4nk/w.

Therefore, for every g > 4k, the expectation of Yg is at least

3In more mathematical terms, this means that Xµ(g) stochastically dominates Yg.
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E[Yg] =

g∑
w=1

Pr[Ew] ≥
g∑

j=2k

e−4nk/j ≥
g∑

j=g/2

e−8nk/g =
g

2
e−8nk/g, (3)

yielding the result. �

Lemma 4.4 The variance σ2(Yg) of the random variable Yg is at most its expectation E[Yg].

Proof. We show the events Ei are negatively correlated, that is, for every i and j,

Pr[Ei ∧Ej] ≤ Pr[Ei].Pr[Ej]. Let Fi be the event that a given man does not include woman i

on his preference list. By the independence and symmetry of the preference lists of men, we

have Pr[Ei] = (Pr[Fi])
n, and Pr[Ei ∧ Ej] = (Pr[Fi ∧ Fj])n. Therefore, it is enough to show

that for every i and j, Pr[Fi|Fj] ≤ Pr[Fi].

Let M be an arbitrarily large constant. The following process is one way to simulate the

selection of one preference list L = (l1, . . . , lk): Consider the multiset Σ consisting of bpiMc

copies of the name of woman i for each i. Pick a random permutation π of Σ. Let li be the

i’th distinct name in π. It is not hard to see that as M → ∞, the probability of a given

list L in this process converges to its probability under distribution Dk. Therefore, Pr[Fi]

is equal to the limit as M → ∞ of the probability that k distinct names occur before i in

π. Similarly, if Σ′ denotes the multiset obtained by removing all copies of woman j from Σ,

then Pr[Fi|Fj] is equal to the limit as M →∞ of the probability that k distinct names occur

before i in a random permutation of Σ′. However, this is precisely equal to the probability

that k distinct names other than j occur before i in a random permutation π of Σ. But that

certainly implies that k distinct names (including j) occur before i in π, and so for every π

where Fi|Fj happens, Fi also happens. Therefore, Pr[Fi|Fj] ≤ Pr[Fi]. As argued above, this

implies that Pr[Ei ∧ Ej] ≤ Pr[Ei] · Pr[Ej], and so the variance σ2(Yg) is

σ2(Yg) = E[Y 2
g ]− E[Yg]

2
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=

g∑
i=1

Pr[Ei] + 2
∑

1≤i<j≤g

Pr[Ei ∧ Ej]−
g∑
i=1

Pr[Ei]
2 − 2

∑
1≤i<j≤g

Pr[Ei] · Pr[Ej]

≤
g∑
i=1

Pr[Ei]

= E[Yg]

as required. �

Using the above three lemmas and the Chebyshev inequality (see the book by Alon and

Spencer [6] for a discussion of this and related inequalities), we can easily conclude the

statement of Lemma 4.1.

Proof of Lemma 4.1. Let q be the probability that Yg < E[Yg]/2. By the Chebyshev

inequality and Lemma 4.4,

q ≤ Pr
[∣∣Yg − E[Yg]

∣∣> E[Yg]/2
]

≤ σ2(Yg)

(E[Yg]/2)2

≤ 4

E[Yg]
.

Thus, by Lemma 4.2 and the fact that 1/(Yg + 1) is always at most one, we have

E
[ 1

Xµ(g) + 1

]
≤ E

[ 1

Yg + 1

]
≤ (1− q) 1

E[Yg]/2 + 1
+ q

≤ 6

E[Yg]
,

which together with Lemma 4.3 completes the proof. �

In this section, we analyzed the expected number of agents that remain single in a stable

matching mechanism, and used this lemma to prove our main result. Analyzing the expected
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number of singles in a probabilistic setting is of independent interest, and in Appendix A,

we present a tighter analysis of the expected number of singles when men have uniform

random preference lists of size k and women have uniform random complete preference lists.

If, in addition to the results of this appendix, one could prove that the number of singles

is concentrated around its expectation, then the bound for the setting in Conjecture 2.1

(proven to be (ek + k2)/n in this paper) would be improved.

5 Tighter analysis for the uniform distribution

For the case of uniform distributions (the setting in Theorem 2.6), it is possible to derive a

much tighter bound on the expected number of women with more than one stable husband.

Recall that in the proof of Theorem 2.5, we bounded the probability that a fixed woman

g has more than one stable partner by Eµ[1/(Xµ(g) + 1)], where Xµ(g) is the number of

women at least as popular as g that are single in matching µ. In the case of the uniform

distribution, for every woman g, Xµ(g) is equal to the number of singles in µ. Therefore,

if we define the random variable X as the number of women who remain unmarried in the

men-optimal stable matching (recall that by Theorem 2.3, the set of unmarried women is

independent of the choice of the stable matching algorithm), then we have

ck(n) ≤ nE

[
1

X + 1

]
.

The following lemma shows that if men have random preference lists of size k, then the

expected number of women who have more than one stable partner is at most ek+1 + k2.

This completes the proof of Theorem 2.6.
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Lemma 5.1 Let X denote the random variable defined above. Then,

E

[
1

X + 1

]
≤ ek+1 + k2

n
.

The proof of the above lemma is based on a connection between the stable matching problem

and the classical occupancy problem. In the occupancy problem, m balls are distributed

amongst n bins. The distribution of the number of balls that end up in each bin has been

studied extensively from the perspective of probability theory [22]. We denote the occupancy

problem with m balls and n bins by the (m,n)-occupancy problem. The following lemma

establishes the connection between the number of singles in the stable matching game and

the number of empty bins in the occupancy problem.

We use the techniques of amnesia, the principle of deferred decisions, and the principle of

negligible perturbations used by Knuth [24] and Knuth, Motwani, and Pittel [25, 26]. These

techniques allow us to show that our algorithm is almost equivalent to the following random

experiment: every man names exactly k + 1 (not necessarily different) women. Thus, there

are (k + 1)n proposals which we will think of as balls. There are n women which we will

think of as bins. The number of women who are not named in this experiment, denoted by

X ′, is closely related to the number of singles, X, in the algorithm.

Lemma 5.2 Let Ym,n denote the number of empty bins in the (m,n)-occupancy problem and

X denote the random variable in Lemma 5.1. Then,

E
[ 1

X + 1

]
≤ E

[ 1

Y(k+1)n,n + 1

]
+
k2

n
.

Proof. Assume every woman has an arbitrary ordering of all men. We define the following

five random experiments:

• Experiment 1 is the experiment defined before Lemma 5.1: every man chooses a random
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list of k different women as his preference list. Then, we run the men-proposing stable

matching algorithm, and let the random variable X1 = X indicates the number of

single women at the end of this experiment. Notice that in this experiment, as in

Section 4.2, men do not have to select their entire preference list before running the

algorithm. Instead, every time a man has to propose to the next woman on his list,

he chooses a random woman among the women he has not proposed to so far, and

proposes to that woman. It is clear that this does not change the experiment.

• In Experiment 2, each man names k different women at random. We let X2 be the

number of women that no man names in this game.

• Experiment 3 is the same as experiment 2, except here the men are amnesiacs. That is,

every time a man wants to name a woman, he picks a woman at random from the set

of all women. Therefore, there is a chance that he names a woman that he has already

named. However, each man stops as soon as he names k different women. Let X3 be

the number of women who are not named in this process.

• In Experiment 4, we restrict every man to name at most k+ 1 women. Therefore, each

man stops as soon as either he names k different women, or when he names k + 1

women in total (counting repetitions). Let X4 denote the number of women who are

not named in this experiment.

• In Experiment 5 every man names exactly k+ 1 (not necessarily different) women. The

number of women who are not named in this experiment is denoted by X5. Clearly,

X5 = Y(k+1)n,n.

Now, we show how the random variables X1 through X5 are related. It is easy to see

that for any set of men’s preference lists, the number of unmarried women in Experiment 1
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is at least the number of women who are not named in Experiment 2. Therefore, X1 ≥ X2.

Also, it is clear from the description of Experiments 2 and 3 that X2 = X3.

In order to relate X3 and X4, we use the principle of negligible perturbations. Experiments

4 is essentially the same as Experiment 3, except in X4 we only count women who are not

named by any man as one of his first k + 1 choices. Let E denote the event that no man

names more than k + 1 women in Experiment 3. We first show that Pr[Ē] < k2/n. Fix a

man, say Adam. We want to bound the probability that Adam names at least k+ 2 women

before the number of different women he has named reaches k. By the union bound, this

probability is at most the sum, over all pairs {i, j} ⊂ {1, . . . , k + 2} that the i’th and j’th

proposal of Adam are redundant (i.e., both equal to each other and some other proposal of

Adam). It is easy to see that for any such pair, this probability is at most 1/n2. Therefore,

the probability that Adam makes more than k + 1 proposals is at most
(
k+2
2

)
/n2 < k2/n2.

Thus, by the union bound, the probability of this happens for at least one man is less

than k2/n. That is, Pr[Ē] < k2/n. Now, notice that by the definition of X3 and X4, the

random variables X3 and X4 are equal when conditioned on the occurrence of E. Therefore,

E
[

1
X3+1
|E
]

= E
[

1
X4+1
|E
]
. Let C =

∣∣∣E [ 1
X3+1

]
− E

[
1

X4+1

]∣∣∣ be the unconditioned difference

of these expectations. Then, letting q = Pr[E] and q̄ = Pr[Ē],

C =

∣∣∣∣qE [ 1

X3 + 1
|E
]
+ q̄E

[ 1

X3 + 1
|Ē
]
− qE

[ 1

X4 + 1
|E
]
− q̄E

[ 1

X4 + 1
|Ē
]∣∣∣∣

= q̄

∣∣∣∣E [ 1

X3 + 1
|Ē
]
− E

[ 1

X4 + 1
|Ē
]∣∣∣∣

≤ q̄

<
k2

n
.

Finally, we observe that by the definition of Experiments 4 and 5, we have X4 ≥ X5. The
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above observations imply

E
[ 1

X + 1

]
≤ E

[ 1

X2 + 1

]
= E

[ 1

X3 + 1

]
≤ E

[ 1

X4 + 1

]
+
k2

n

≤ E
[ 1

Y(k+1)n,n + 1

]
+
k2

n
.

This completes the proof of the lemma. �

By the above lemma, the only thing we need to do is to analyze the expected value

of 1/(Ym,n + 1) in the occupancy problem. We do this by writing the expected value of

1/(Ym,n + 1) as a summation and bounding this summation by comparing it term-by-term

to another summation whose value is known.

Lemma 5.3 Let Ym,n denote the number of empty bins in the (m,n)-occupancy problem.

Then,

E

[
1

Ym,n + 1

]
≤ em/n

n
.

Proof. Let Pr(m,n) be the probability that exactly r bins are empty in the (m,n)-

occupancy problem. Then P0(m,n), the probability of no empty bin, can be written as the

following summation by the principle of inclusion-exclusion.4

P0(m,n) =
n∑
i=0

(−1)i
(
n

i

)(
1− i

n

)
m (4)

The probability Pr(m,n) of exactly r empty bins can be written in terms of the probability

4This can also be derived by dividing a well-known formula for Stirling numbers of the second kind (see,
for example, [16, 53]) by nm.
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of no empty bin in the (m,n− r)-occupancy problem:

Pr(m,n) =

(
n

r

)(
1− r

n

)
mP0(m,n− r). (5)

By equations 4 and 5,

Pr(m,n) =
n−r∑
i=0

(−1)i
(
n

r, i

)(
1− r + i

n

)
m, (6)

where
(
n
a,b

)
denotes the multinomial coefficient n!

a! b! (n−a−b)! . Using equation 6 and the defini-

tion of expected value we have,

E[
1

Ym,n + 1
] =

n∑
r=0

1

r + 1
Pr(m,n) (7)

=
n∑
r=0

n−r∑
i=0

(−1)i

r + 1

(
n

r, i

)(
1− r + i

n

)
m

=
n∑
r=0

n−r∑
i=0

(−1)i

n+ 1

(
n+ 1

r + 1, i

)(
1− r + i

n

)
m

=
n+1∑
r=1

n+1−r∑
i=0

(−1)i

n+ 1

(
n+ 1

r, i

)(
1− r + i− 1

n

)
m.

It is probably impossible to simplify the above summation as a closed-form formula. There-

fore, we use the following trick: we consider another summation S with the same number

of terms, and bound the ratio between the corresponding terms in these two summations.

This gives us a bound on the ratio of the summation in equation 7 to the summation S. The

value of S can be bounded easily using a combinatorial argument.

Consider the (m,n + 1)-occupancy problem. The probability that at least one bin is

empty is the sum, over r = 1, . . . , n + 1, of Pr(m,n + 1). We denote this probability by S.
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By equation 6 we have

S =
n+1∑
r=1

n+1−r∑
i=0

(−1)i
(
n+ 1

r, i

)(
1− r + i

n+ 1

)
m ≤ 1,

where the inequality follows from the fact that S is the probability of an event. The sum-

mation in equation 7 and S have the same number of terms, and the ratio of each term in

the summation in equation 7 to the corresponding term in S is equal to

(1− r+i−1
n

)m

(n+ 1)(1− r+i
n+1

)m
=

(n−r−i+1
n

)m

(n+ 1)(n+1−r−i
n+1

)m
=

(1 + 1
n
)m

n+ 1
.

Therefore,

E
[ 1

Ym,n + 1

]
=

1

n+ 1

(
1 +

1

n

)
mS <

em/n

n
,

as desired. �

Lemma 5.1 immediately follows from Lemmas 5.2 and 5.3.
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anism for combinatorial auctions with single parameter agents. Internet Mathematics,

1(2):129–150, 2003.

[8] A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proceedings

of the 42nd IEEE Symposium on Foundations of Computer Science, pages 482–491,

2001.

[9] R.J. Aumann. Markets with a continuum of traders. Econometrica, 32:39–50, 1964.

[10] L. Bodin and (Rabbi) A. Panken. High tech for a Higher authority: the placement of

graduating rabbis from Hebrew Union College–Jewish Institute of Religion. INTER-

FACES, 33(3):1–11, May-June 2003.

[11] L.E. Dubins and D.A. Freedman. Machiavelli and the Gale-Shapley algorithm. American

Mathematical Monthly, 88(7):485–494, 1981.

35



[12] L. Ehlers. In search of advice for participants in matching markets which use the

deferred-acceptance algorithm. Games and Economic Behavior, 48:249–270, 2004.
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A Expected Number of Singles in Two-Sided Markets

In this appendix, we analyze the expected number of singles in a stable matching when men

have uniform random preference lists of size k and women have uniform random complete

preference lists.

Lemma A.1 Consider a collection of n men and n women, each man having a uniform

random ordering of k random women, and each woman having a uniform random ordering

of men. Let pk(n) denote the probability that in a stable matching with respect to these

preference lists a fixed man remains single. Then for k ≥ 2, pk(n) ≥ 1
k2k+2 (1− o(1)).

In order to prove the above lemma, we first generalize the scenario to a case where there

are m men and n women (m ≤ n). Let pk(m,n) denote the probability that a fixed man

remains unmarried in this scenario. Therefore, pk(n) = pk(n, n). We start by proving that if

the population of women remains constant, an increase in the number of men can only make

it harder for a man to find a stable wife.

Lemma A.2 For every k, n,m1, and m2, if m1 ≤ m2 then pk(m1, n) ≤ pk(m2, n).

Proof. It is sufficient to prove that for every k, n, and m, pk(m,n) ≤ pk(m+1, n). Consider

a fixed man, Cain, in the scenario where there are m + 1 men. We want to compute the

40



probability that after running the men-proposing algorithm, Cain remains single. By Theo-

rem 2.2 we know that the order of proposals does not affect the outcome of the algorithm.

Therefore, we can assume that one of the m + 1 men, say Abel, starts proposing to women

only after everyone else is done with his proposals. By definition, before Abel starts propos-

ing, the probability that Cain is single is precisely pk(m,n). If Cain is married at this point,

then there is a chance he becomes single after Abel starts proposing, since his wife might

leave him. However, if he is single before Abel starts proposing, then all the women on his

preference list have rejected him and so there is no chance that he gets married. Therefore,

the probability that Cain remains single is at least pk(m,n). �

Proof of Lemma A.1. Let c < 1 be a constant that will be fixed later. By Lemma A.2,

we have pk(n) = pk(n, n) ≥ pk(dcne+1, n), so it is enough to prove that pk(dcne+1, n) ≥ 1
ek2k

.

The proof of this is based on the following inequalities.

pk(dcne+ 1, n) ≥
(
c

2
(1− pk(dcne, n))− k

2n

)k
(8)

pk(dcne, n) ≤ ck (9)

We start by proving inequality 9. Consider the situation where there are dcne men and

n women. Fix a man, say Abel. The probability that Abel remains single is pk(dcne, n).

Now, consider the men-proposing algorithm. Since the order of proposals does not change

the outcome, we can assume that Abel will wait until everyone else stops proposing, and

then he will make his first proposal. Suppose there are s single women at this point and

let S denote the set of single women. At this moment, there are at most dcne − 1 < cn

women who are married, so s ≥ (1 − c)n. Since Abel’s list consists of k randomly chosen

women, the probability that his i’th choice is not in S given that his first (i− 1) choices are

not in S is n−s
n−i+1

. Therefore, the probability that none of his choices are in S is at most∏k
i=1

(
n−s
n−i+1

)
≤
(
n−s
n

)k ≤ ck. We claim that if at least one of the women in Abel’s list is in
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S then Abel will find a wife. The reason is that every time Abel makes a proposal, if he

proposes to a single woman, the proposal will be accepted and the algorithm ends. But if

he proposes to a married woman, he might start a chain of proposals that will either end

at a single woman, in which case Abel ends up married, or gets back to Abel, in which

case the set of single women does not change and we can repeat the same argument for the

next proposal of Abel until he reaches a woman in his list that is in S. By this claim, the

probability that Abel remains single is upper bounded by the probability that none of the

women in his list are in S, which is at most ck.

Now, we prove inequality 8. Consider a situation where there are dcne + 1 men and n

women, and fix a man, say Cain. We bound the probability Cain remains single. Consider the

men-proposing algorithm, and let everyone other than Cain make proposals. Let M denote

the set of married women at this point and s denote its size. Then, let Cain enter and start

proposing. The probability that Cain’s i’th proposal is to a married woman given that his

first (i − 1) choices were married is s−i+1
n−i+1

. A married woman rejects a new proposal with

probability at least 1/2. Therefore, conditioning on the random choices of the other men,

the probability Cain faces rejection immediately after each of his proposals and therefore

ends up single is at least
∏k

i=1
s−i+1

2(n−i+1)
≥
(

s−k+1
2(n−k+1)

)k
≥
(
s−k
2n

)k
. Removing the conditioning,

this probability becomes the expectation E[( s−k
2n

)k] ≥ (E[s]
2n
− k

2n
)k over the random choices of

the other men. The expected size E[s] of M is the same as the expected number of married

men, which, by the definition of pk(m,n), is (1 − pk(dcne, n))dcne ≥ cn(1 − pk(dcne, n)).

Thus the probability that Cain ends up single is at least
(
c
2
(1− pk(dcne, n))− k

2n

)k
.

Inequalities 8 and 9 imply that pk(dcne+1, n) ≥ 1
2k

(
c(1− ck)− k

n

)k
. Choosing c = k−1/k,

we see that for k ≥ 2

pk(dcne+ 1, n) ≥ 1

2k

(
k−1/k(1− 1

k
)− k

n

)k
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≥ 1

4k2k

(
1− k

nk−1/k(1− 1
k
)

)k
≥ 1

k2k+2

(
1− k2

nk−1/k(1− 1
k
)

)
≥ 1

k2k+2
(1− o(1)) ,

as desired. �
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