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Abstract: “Assignment messages” are maximally general messages to describe 

substitutable preferences by means of a linear program. With “integer assignment 

messages,” there exist integer-valued Walrasian allocations, extending a result of 

Shapley and Shubik. Any pure Nash equilibrium profile of the Walrasian 

mechanism with participants limited to assignment messages is also a Nash 

equilibrium of the unrestricted Walrasian mechanism. Assignment exchanges are 

generalizations of single-product double auctions and are related to ascending 

multi-product clock auctions and the Vickrey mechanism.  Assignment messages 

also have additional applications in mechanism design.  
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In abstract mechanism theory, the designer is often presumed able to create a 

direct mechanism in which each participant reports its “type,” revealing the participant’s 

preferences along with anything else the participant may know. In practice, these details 

can be too numerous to report. For example, in FCC Auction #66 with 1132 licenses for 
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sale, a type includes a vector of values for every subset of licenses; reporting that vector 

would have entailed reporting 21132 numbers.  

One approach to mitigating the length-of-report problem is to simplify reporting 

by limiting the message space. The National Resident Matching Program uses this 

approach: it limits hospitals’ reports to a number of positions and a rank order list of 

candidates. If a hospital has ten openings and interviews fifty candidates, it reports the 

number ten and a list of length fifty – a manageably short message. In contrast, because 

the number of classes of ten or fewer doctors from among fifty is about 1.31010, a 

general type report, including a rank order list of all those classes, would be 

impracticably long.  

This paper introduces and analyzes a new message space – the space of 

assignment messages – designed for use in auctions, exchanges, and other applications 

where goods are substitutes. Assignment messages describe preferences indirectly as the 

value of a linear program for which the set of constraints is describable as a structured 

collection of trees or hierarchies. We show that if the constraints have this form, then the 

goods are substitutes, regardless of the various parameters. Conversely, if the constraints 

describing substitution among different goods do not respect the tree structure, then there 

exist parameters such that goods are not substitutes. In that sense, the constraint structure 

employed by assignment messages is the most general one consistent with substitutable 

preferences in linear programming.  

An assignment exchange is a simplified direct Walrasian mechanism in which 

participants are restricted to report their preferences using assignment messages. The 

properties of assignment exchanges are discussed below.  
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Among the parameters reported by a bidder in an assignment message are ones 

that specify local rates of technical substitution among goods.1 Integer assignment 

messages restrict those rates to be zero or one, and restrict any bounds on groups of 

quantities to be integers. If all traders’ preferences are describable in this way, then there 

is an efficient allocation that is an integer vector.2 Consequently, the integer assignment 

exchange, which is the assignment exchange restricted to integer assignment messages, 

transacts in integer quantities.  

The assignment exchange shares important aspects of its price and payoff 

structure with its namesake, the assignment mechanism of Lloyd S. Shapley and Martin 

Shubik (1972).3 The integer assignment exchange has the further property that all 

equilibrium quantities are integers and extends the Shapley-Shubik mechanism in three 

important ways. First, participants in an integer assignment exchange may buy or sell 

multiple types of goods simultaneously, instead of just one type. Second, they may trade 

any integer number of units of each type of good, instead of just one unit. And third, they 

may buy some goods and sell others, instead of being restricted to just one role as a buyer 

or a seller. 

The integer allocation property can be important for a variety of applications, 

including those in which commodities are most efficiently shipped by the truckload or 

                                                 
1 Strictly speaking, because the model is one of preferences rather than production, rates of “technical 
substitution” are not defined. However, assignment messages report constraints resembling production 
constraints as well as parameters to determine the slopes of those constraints, so it is convenient and 
intuitive to describe the slopes of constraints using the language of producer theory.  
2 When bundles necessarily consist of integer quantities and goods are substitutes, a version of the limited 
one-for-one substitution property is implied. See Faruk Gul and Ennio Stacchetti (1999) and Paul Milgrom 
and Bruno Strulovici (2008).  
3 In both mechanisms, goods are substitutes and the set of market-clearing goods prices is a non-empty, 
closed, convex sublattice. Consequently, there is a seller-best, buyer-worse equilibrium price vector and a 
seller-worst, buyer-best equilibrium price vector.  
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container. Even when goods are perfectly divisible, contracts are often denominated and 

traded in whole numbers of units, so the ability to respect integer constraints may be 

useful even in those applications. 

The restriction of local rates of technical substitution to zero or one is a strong 

one, but it is surprisingly often a reasonable approximation for practical applications. For 

example, an electric utility delivering retail power to its customers might acquire 

wholesale power from generators at three different locations, A, B and C, but may be 

limited in its ability to utilize power from each source by its source-specific transmission 

capacities. When additional transmission capacity is available at source A, one unit of 

power from A can substitute for one unit from any other source. When capacity is not 

available, an additional unit of power at A is unusable; it replaces zero units of power 

from other sources. Similarly, a cereal maker may be able to substitute bushels of grain 

delivered today for bushels delivered tomorrow up to a limit imposed by its grain-storage 

capacity, or it may substitute one unit of a particular type or grade of grain for one of 

another type within limits specified by the product-formulation requirements. A similar 

substitution pattern is sometimes found among sellers, as when a manufacturer can 

deliver several versions of the same processed good in a total amount that is limited by 

the overall capacity of its factory.4 This pattern of limited one-for-one substitution can be 

a useful approximation whenever lots differ in attributes such as time and location of 

availability, grade, degree of processing, delivery and contract terms, or some 

combination of these.  

                                                 
4 The National Resident Matching Program, with its fixed number of slots at each hospital, imposes one-
for-one substitution but excludes resident wages from the process. An assignment auction could be suitable 
for that application, provided that wages are made endogenous. Vincent P. Crawford (2004) proposes a 
simultaneous ascending auction mechanism for the same application.  
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General assignment messages extend the integer assignment messages by 

allowing participants to specify local rates of technical substitution besides zero and one. 

For example, in markets for electric power, if the transmission losses in shipping power 

from A are higher than from B, then one unit of power from A replaces less than one unit 

from B – the rate of technical substitution is positive but less than one. Using integer 

assignment messages, a bidder can account for such transmission losses only 

approximately, by treating the power from different sources as having different money 

values, but general assignment messages allow an exact representation.  

An important attribute of assignment messages is that they allow not only bids to 

buy or sell one of several different goods, but also “swap” bids. For example, in a 

securities market, a swap could specify that an offer to buy shares of stock is executed 

only if an offer to sell certain call options on that stock is also executed. Such a linkage 

can be especially valuable in markets with limited liquidity, because it eliminates 

execution risk.5,  

The ability to report swap bids makes the integer assignment exchange applicable 

to some resource allocation problems involving complementary goods for which package 

exchange mechanisms might have been thought to be necessary.6 This is perhaps 

surprising given that assignment messages can directly only express substitutable 

preferences. Figure 1 displays an example.  

                                                 
5 Some traders call this “leg risk” because the danger is that one “leg” of a transaction is executed while the 
other is not.  
6 See Paul Milgrom (2007) for an introduction to the economic package allocation problem, Noam Nisan 
(2006) for an analysis of some message spaces that might be used in package auctions, and Peter Cramton, 
Yoav Shoham, and Richard Steinberg (2006) for a collection of related articles.  
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Points A, B and C in the figure represent physical locations (in southeast 

Wyoming) where wind farms produce electrical power carried by new long-range 

transmission lines. Point D represents a node (in northwest Colorado) where the power is 

injected into the existing transmission grid. For a producer located at A, transmission 

capacity along lines AC and CD are Leontief complements: the producer is constrained 

by the minimum of the capacity acquired on AC or CD. Similarly, producers at B regard 

BC and CD as Leontief complements. The power producers located at A, B and C 

compete to acquire capacity on the CD link. Let us assume that there are one or more 

separate capacity suppliers for each link and that the costs for any suppliers that can 

supply more than one link are additively separable across links.  

Despite the technical complementarities among successive links, preferences of 

both buyers of transmission links and suppliers of capacity can be expressed using integer 

assignment messages. The key lies in the way lots are defined. Suppose the exchange is 

organized to trade three kinds of lots. Each lot is a package of links sufficient to transmit 

a unit of energy from one of the points A, B or C to point D (AD, BD or CD, 

Figure 1: A Y-Shaped Electrical Transmission Grid 

A B 

C 

D 
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respectively). With lots defined in that way, each energy producer/capacity buyer can bid 

on the lot connecting its location to the root at D, so these participants can express their 

preferences accurately. A supplier who wishes to offer capacity on one of the single links 

AC or BC can do that using a swap bid that links offers to buy and sell. For example, an 

offer to sell capacity on AC at a price of at least X is represented as a swap that links an 

offer to sell capacity on the AD lot with a bid to buy equal capacity on the CD lot at a 

price difference of at least X. Thus, with the specified lots, both buyers and sellers can 

express preferences accurately. The theorems about assignment exchanges apply. Despite 

complementarities and indivisible lots, which often preclude the existence of supporting 

prices, this is a special case in which the existence of market-clearing prices is 

guaranteed.7 

Restricting the messages available to participants in a mechanism can affect 

incentives and performance. In a general simplification, some message profiles may be 

equilibria of the simplified mechanism even though they were not equilibria of the 

original, extended mechanism. A tight simplification is one with the property that, for 

every profile of participant preferences in some specified set and every 0  , all of the 

full-information, pure -Nash equilibria of the simplified mechanism are also -Nash 

equilibria of the original mechanism (see Paul R Milgrom (2008)). Assignment 

exchanges are tight simplifications of general Walrasian exchange mechanisms for any 

preference that can be represented by a continuous, real-valued utility function whose 

arguments are the bidder’s assigned quantity vector and the price vector. Thus, even 

                                                 
7 A similar construction can be used in any acyclic network by identifying one node in each component of 
the graph as a root, and expressing all lots in terms of flows from a node to a root. Demand need not be 
located only at the roots for this construction to work, but the demanded packages of links must lie in 
sequence on one side of the root. 
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though participants may have preferences that are not well described by assignment 

messages, the restriction to assignment messages never introduces any pure -Nash 

equilibrium that was not already present in the full Walrasian mechanism.  

The remainder of this paper is organized as follows. Section I introduces the 

assignment message space and reports three theorems about it. The first is that the 

assignment messages express only substitutable preferences. The second is that when all 

preferences are expressed by assignment messages, the set of market-clearing prices is a 

non-empty, closed, convex sublattice. The third is that if all participants’ preferences are 

expressed with integer assignment messages, then there is an efficient allocation using 

only integer quantities of all goods. Section II provides a partial converse to two of these 

theorems. Assignment messages require that the constraints connecting different goods 

form a “tree.” If that constraint is relaxed at all, then the conclusions of the first two 

theorems of section I are no longer valid. Section III discusses tightness. Its main 

conclusion is that the assignment exchanges, as well as many further simplifications of 

these exchanges, are tight simplifications of a Walrasian mechanism. Section IV 

discusses the connections between the assignment exchange and two familiar 

mechanisms: the single-product double auction and the Vickrey auction. Section V 

discusses some of the most likely applications.  

I. Assignment Messages  

Consider a resource allocation problem with goods indexed by 1,...,k K  and 

participants are indexed by 1,...,n N . If participants’ preferences are quasi-linear, then 

the utility for a trade is expressed as the value ( )n nV q  of the bundle K
nq   acquired 
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plus any net cash transfer. The set of demanded bundles at price vector p is 

arg max ( )
nq n n nV q p q  , where nq  may include both positive and negative components. 

A direct mechanism must specify a message space for describing nV . Assignment 

messages model demand as originating from multiple sources, describing each nq  as the 

sum of vectors jx  for ( )j J n , where j is the serial number of a bid and J(n) is the set of 

serial numbers for bids submitted by bidder n.  

Formally, an assignment message consists of a collection of bids and constraints.8 

Each bid by bidder n consists of a 5-tuple ( , , , , )j j j j jk v l u  where kj identifies the type of 

product, vj identifies the “value” of the bid, 0j   identifies the “effectiveness” and the 

remaining two terms are lower and upper bounds on quantity: 0j jl u  . The role of the 

effectiveness coefficient, which is to allow general local rates of technical substitution, 

will be formalized shortly. 

In addition to the bids, participant n’s assignment message expresses quantity 

constraints of two kinds. First are the single-product bid group constraints for each good 

k: 

    for kS j kS nk
j S

l x u S


   T  (1) 

where nkT  includes all singletons { }S j  for which jk k and may include other subsets 

of { ( ) | }nk jR j J n k k   . For the singletons, { }jk j jl l and { }jk j ju u . Second are the 

multi-product bid group constraints indexed by the set 0nT . These are of the form  

                                                 
8 A related precursor to this message space is the space of endowed assignment messages, introduced by 
John W. Hatfield and Paul R. Milgrom (2005). 
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 0 0 0   for S j j S n
j S

l x u S


   T . (2) 

Unlike the sets used in the single-product group constraints, the sets 0nS T  may include 

bids on multiple products. Also, unlike the sums in (1), those in (2) are weighted by the 

effectiveness coefficients, to parameterize the rates of technical substitution among the 

different products. Note that these constraints can apply to bids to buy ( 0kSl  ), bids to 

sell ( 0kSu  ), bids to buy or sell ( 0, 0kS kSl u  ) and swaps between multiple products 

( 0 0 0S Sl u  ).  

To simplify notation, we suppress the bidder index n while we are analyzing the 

reports and preferences of a single bidder; the index will reappear later when we analyze 

allocations for multiple participants. Using the bids and constraints, bidder n’s message is 

interpreted to report a value for any feasible bundle of products 1( ,..., )Kq q q  as 

follows: 

 
0 0 0

( ) max  subject to

for ,  1,...,

 for 

 for 1,...,
k

j jj Jx

kS j kS k
j S

S j j S
j S

j kj R

V q v x

l x u S k K

l x u S

x q k K













   

  

 








T

T
 (3) 

Because the vector ( , ) 0q x   satisfies all the constraints in (3), the zero bundle 

0q   is feasible. By a theorem of linear programming, the set of vectors q  for which the 

problem is feasible is a closed, bounded, convex set KQ   and V is a continuous, 

concave function on that set.  
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The next step is to put more structure on the single- and multi-product bid 

constraints to complete the definition of assignment messages. To describe this structure, 

we need to define three more concepts: trees, constraint forests, and extended predecessor 

functions. 

As we described above, assignment messages allow two kinds of constraints. 

There is a set of constraints that describe substitution among products; these are required 

to form a tree. In addition, for each product k, there may be a set of constraints limiting 

the quantities assigned to each bid; these, too, must form a tree. Together, these trees 

form a constraint forest. To describe the relevant trees in a compact notation, we define 

an extended predecessor function that not only maps sets into their predecessors in the 

tree, but also maps bids into the smallest set in the tree that contains that bid. These 

concepts, and others essential to the theorems of this section, are defined below. 

Definitions.  

1. The demand correspondence for V is ( ) arg max ( )q QD p V q p q   . 

2. The indirect profit function for V is ( )p  max ( )q Q V q p q   .  

3. The valuation V  is substitutable if for all prices , Kp p   and all 

1,...,k K , if ( ) { }D p x  and ( , ) { }k kD p p x    are singletons and 

k kp p  , then k kx x   .  

4. A collection of sets T is a tree if (1) for any two non-disjoint sets 

,S S T , either S S   or S S   and (2) T contains a largest set – the 

union of all its elements. That largest set is the root of T.  
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5. Given a tree of sets T, its extended predecessor function (P) maps each 

element of T, excluding the root R, into its unique predecessor (the 

smallest set in T which contains it) and maps each j R  into the smallest 

set S satisfying j S T . Below, kP  denotes the extended predecessor 

function for tree kT .  

6. A constraint forest is a collection of trees and associated bounds 

0 ,..., ( , ) | , 0,...,K kS kS kl u S k K {T T ,{ T }}  with all 0kS kSl u  . The trees 

satisfy:  

a. The root of 0T  is 0 ( )R J n  and, for 1,...,k K , the root of kT  is 

 ( ) |k jR j J n k k   .  

b. For 1,...,k K , the terminal nodes of tree kT  are the singleton sets 

{ }j  with ( )j J n  and jk k . 

c. All bounds except the root bounds are finite, 0 Sl    and 

0 Su   , but the bounds on the roots may be infinite, 

0
kRl    and 0

kRu   .  

d. For any singleton set { }
jkj T , { }jk j jl l . 

7. The root of 0T  is 0 ( )R J n  and, for 1,...,k K , the root of kT  is 

 ( ) |k jR j J n k k   .  
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8. An integer assignment message is an assignment message with each 

1j   and with all bounds kSl  and kSu  integers.  

9. An assignment exchange is a mechanism mapping profiles of assignment 

messages for each bidder n to an outcome pair * * *
1( ,..., , )Nq q p  where 

 
*

| 1
arg max ( )

n n

N

n nq q Q n
q V q 
   subject to 

1
0

N

nkn
q


  for 1,...,k K  and 

p* is a supporting price vector, that is, for 1,...,n N , 

* arg max ( )
nn q Q nq V q p q

    (equivalently, * *arg min ( )p n np p p q   ).  

10. An integer assignment exchange is an assignment exchange in which the 

messages are restricted to be integer assignment messages.  

The integer assignment messages extend the set of messages allowed by the 

Shapley-Shubik mechanism. In the Shapley-Shubik mechanism, each participant 

occupies just one role, as a buyer or a seller. Each seller message includes just one bid 

( | ( ) | 1J n  ) and each buyer message includes just one bid for each product. If participant 

n is a seller, then the constraints on its one bid are 1 1l    and 1 0u  . If participant n is a 

buyer, then its constraint bounds for each bid are 0jl   and 1ju   and its one multi-

product group constraint has bounds 
00 0

nRl   and 
00 1

nRu  . The integer assignment 

message space extends this Shapley-Shubik message space by allowing more bids, more 

constraints, and general integer bounds.  

The three main results of this section can now be stated. Proofs follow just below.  
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Theorem 1. If participant n reports an assignment message, then its valuation 

:V q   as given by (3) is continuous, concave and substitutable and its indirect profit 

function is submodular.  

Theorem 2. If every participant n reports a continuous, concave substitutable 

valuation on a convex, compact set nQ , then the set of market-clearing prices for the 

report profile is 
1

arg min ( )
N

p nn
p

 . This set is a non-empty, closed, convex sublattice. 

Theorem 3. If every participant reports an integer assignment message, then there 

is an integer vector  | 1
* arg max ( )

n n

N

n nq q Q n
q V q 
   subject to 0nkn

q   for all k.  

The proof of theorem 1 makes use of the two lemmas, which are of independent 

interest.  

Lemma 1. Suppose that the valuation function V is such that the corresponding 

indirect profit function  is well defined. Then V is substitutable if and only if its indirect 

profit function  is submodular.9  

Lemma 2. Suppose ( ) min ( )zp g z   subject to ( , )z p S , where g is 

submodular, S is a sublattice in the product order, and p is a parameter. Then,  is 

submodular.  

Proof of Lemma 1. Since  is convex on K , it is locally Lipschitz and 

differentiable almost everywhere. By Hotelling’s lemma, the demand set is a singleton 

( ) { ( )}D p x p  at exactly those points of differentiability and 

                                                 
9 Earlier versions of this result, as in Lawrence M. Ausubel and Paul R. Milgrom (2002) or Milgrom and 
Strulovici (2008), impose additional restrictions, such as discreteness of the goods, which are appropriate 
for those contexts. This version drops the unnecessary additional assumptions.  
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( ) ( ) /k kp p p     ( )kx p . Substitutability is equivalent to the condition that for 

1,...,k K , ( )kx p  is non-decreasing in kp . Submodularity is equivalent to the condition 

that, on the same domain, ( )k p  is non-increasing in kp   for k k  . QED 

Proof of Lemma 2. Let p and p  be two price vectors and let z and z  be 

corresponding optimal solutions, so that ( ) ( )p g z  , ( ) ( )p g z   , and 

( , ), ( , )z p z p S   . Since S is a sublattice,    , , ,z z p p z z p p S        . By the 

definition of  , ( ) ( )p p g z z      and ( ) ( )p p g z z     . Since g is submodular, 

( ) ( ) ( ) ( )g z z g z z g z g z       . Hence, ( ) ( )p p p p       ( ) ( )p p   . QED  

Proof of Theorem 1. We will use the dual program corresponding to (3) to show 

that the indirect profit function   satisfies the assumptions of Lemma 2.  

In program (3), let u
kS  denote the dual price of the upper-bound ( , )k S -

constraints, l
kS  the dual price of the corresponding lower bound constraint, and k  the 

dual price of the product k constraint. Since only one of u
kS  and l

kS  can be non-zero, 

both can be inferred from u l
kS kS kS    . Using the duality theorem of linear 

programming (e.g., see David Gale (1960)) in the second equality below, the indirect 

profit function corresponding to V is: 
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, ( ) 1

0 0 0

, 0

{ | }

( ) max ( )

max  subject to

 for , 1,...,

 for 

0  for 1,...,

min ( ) subject to

k

k

k

q

K

q x j j k kj J n k

kS j kS k
j S

S j j S
j S

j k
j R

K u l
kS kS kS kSk S

kSS j S

p V q p q

v x p q

l x u S k K

l x u S

x q k K

u l 





 



 







 

 

 

 

   

  

  

 

 






 




T

T

T

T

   
0

0{ | }
for all , ( )

  for 1,...,

k j S jS j S

k k

v j J k k j

p k K

  


 

    

 

 T

  (4)

 

Notice that the dual constraints and objective simplify to this form because of the 

tree structure we have imposed. For ( )k j k , the sets in tree kT that include j are exactly 

{ }j , ({ })kP j ,  ({ })k kP P j , …, Rk, and similarly for tree zero. 

A change of variables reveals the lattice structure in (4). For k  0  and    S T
0

, 

define  0
ˆ ˆ0 0|S SS S S


 

   T
 and f

0S
()  u

0S
max(,0)  l

0S
min(,0) . For 

1,...,k K and kS T , define  ˆ ˆ|k
kS ks kSS S S

 
 

   T
 and 

  fkS
()  u

kS
max(,0)  l

kS
min(,0) . For all k  0,...,S  and kS T , kSf  is non-negative 

and convex. Substituting into (4), we obtain:  

 

   

 ( p)  min , f
ks

(
kS
 

kPk (S )
)

STk {Rk }k0

K  f
kRk

(
kRk

 
k
)

k1

K
+ f

0 R0
(

0 R0
)

subject to 


k j { j}

 
j


0 P0{ j}
 v

j
 for all j J


k
 p

k
  for k  1,..., K

 (5) 
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Because each kSf  is convex, each term of the objective in (5) is submodular in 

( , , )p  using the product order. The objective is a sum of submodular functions and 

therefore is itself submodular. A set { | }y l a y u   is a sublattice in the product order if 

and only if any two non-zero elements of the a-vector have opposite signs.10 So, each 

constraint in problem (5) defines a sublattice on the set of possible ( , , )p -vectors, and 

the intersection of sublattices is a sublattice. Hence, by Lemma 2, ( )p  is submodular. 

And therefore, by Lemma 1, V is substitutable. QED 

Proof of Theorem 2. Since the corresponding primal problem can be represented 

as a continuous, concave maximization on a compact set, the maximum exists and 

coincides with the minimum of the dual. Since the valuations are concave, the set of 

market-clearing prices is the set of solutions to the dual problem: 
1

arg min ( )
N

p nn
p

 . 

Since each n  is continuous and convex, the set of minimizers of the dual problem is 

closed and convex. Since each n  is submodular, by a theorem of Donald Topkis (1978), 

the set of minimizers of the dual problem is a sublattice. QED  

Proof of Theorem 3. To find  
*

| 1
arg max ( )

n n

N

n nq q Q n
q V q 
   subject to 

0nn
q  , we substitute from (3) and introduce variables nkSx  as the sums of their 

successors in the tree (the elements of the set 1( )P S ), so that the optimization is 

converted into one in which every inequality constraint involves just one variable. The 

                                                 
10 This property of the rows of the dual constraint matrix, that no two non-zero entries have the same sign, 
is in remarkable correspondence with the condition required in the proof of Theorem 3 that no two non-
zero entries in the columns of the constraint matrix of the primal problem have the same sign. The dual 
constraint matrix is obtained from the primal constraint matrix essentially by transposition, so the two 
conditions coincide. That is why the structure of assignment messages can be useful for proving both the 
substitutes conclusion of Theorem 1 and the integer allocation conclusion of Theorem 3.  
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tree structure allows us to show something stronger than claimed by the theorem, namely, 

that there is an integer optimal solution *x  to the resulting problem: 

 

( )

0 0 0

( )

max ( ) subject to 0 for 1,...,

max  subject to

 for ,  1,..., , 1,...,

 for , 1,...,

 for 1,...,

max
nk

n nkn nq

j jn j J nx

nkS j nkS nk
j S

n S j n S n
j S

j kn j R

j jn j J nx

V q q k K

v x

l x u S k K n N

l x u S n N

x q k K

v x











 



    

   

 



 
 




 


T

T

1

1
0

( )

0 0 0( )

 subject to

0 for , 1,..., , 1,...,

0 for , 1,...,

 for , 0,..., , 1,...,

0 for 1,...,

nk

n

nk

nkS nkS nkS P S

n S n S nS P S

nkS nkS nkS nk

nkRn

x x S k K n N

x x S n N

l x u S k K n N

x k K









     

   

    

 







T

T

T

 (6) 

The sign restrictions 0nkSl   and 0nkSu   ensure that 0x   satisfies the 

constraints of the problem, so the problem is feasible. The bounds on each variable imply 

that the constraint simplex is bounded. For a feasible, bounded linear program, there is 

always an optimal solution at a vertex of the constraint simplex.11 Hence, to prove the 

theorem, it is sufficient to show that every vertex of the simplex defined by the 

constraints in (6) is an integer vector.  

Each vertex of the constraint simplex is determined by a set of binding upper and 

lower bound constraints of the form nkS nkSx u  or nkS nkSx l  and the equation Ax 0 , 

which describes the equality constraints in (6). Fix any vertex and denote the right-hand 

sides of the binding upper and lower bound constraints by u  and l , which by hypothesis 

                                                 
11 See, for example, Gale (1960). 
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are integer vectors. Write the vector x  in the form ˆ( , , )l ux x x  where the binding 

inequality constraints are l x l , u x u , which we write as ( , ) x u l b . Let A  and 

Â  be the matrices consisting of the columns of A corresponding to x  and x̂ , 

respectively. Then the equation Ax 0  can be written as ˆ ˆˆ ˆ    0 Ax Ax Ax Ax Ab . 

Taking  b Ab , the equality constraints can be written as ˆ ˆ Ax b . Observe that b is an 

integer vector, because A  is an integer matrix and b  is an integer vector.  

It is therefore sufficient to show that for every non-singular sub-matrix Â  of A 

and every integer vector b, there is an integer solution x̂  to ˆ ˆ Ax b . For this, it suffices 

to show that A is totally unimodular.12 According to a theorem attributed to Alan J. 

Hoffman (see I. Heller and C.B. Tomkins (1956)), a matrix is totally unimodular if two 

conditions are satisfied: all the entries of A are elements of the set {0, 1, 1}   and any two 

non-zero entries in the same column have opposite signs. We finish by verifying these 

Hoffman conditions.  

Examine the columns of A as represented in (6) which correspond to the variables 

nkSx . For 0k   and S=Rn0, the root of a 0nT tree for some participant n, 0n Sx  appears in 

only one equality constraint in (6) and so has the single entry +1 in its column. For 

1,...,k K , each of the variables 
nknkRx appears twice (once in its defining equation and 

again in the market-clearing constraint for k ) and its two coefficients, 1 , have opposite 

signs. For 1,...,k K  and all sets { }nk nkS R T , nkSx  appears twice: once with 

coefficient 1  in the equation defining nkSx  and once with coefficient +1 in the equation 

                                                 
12 See the Wikipedia entry on “unimodular matrix” for an accessible treatment of the relevant mathematics. 
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defining ( )nknkP Sx . For 0k   and 0 0{ }n nS R T , 0n Sx appears twice: once with coefficient 

+1 in its defining equation and once with coefficient –1 in the equation defining 
00 ( )nn P Sx . 

Last are the xj variables. Recall that by our extended definition of predecessor, 

1 ( )nkj P S  for exactly two sets, one in 
jnkT  with coefficient +1 and one in 0nT , with 

coefficient –1. Hence, the Hoffman conditions are satisfied. QED 

II. Partial Converse to Theorems 1 and 2 

The structure of assignment messages allows bidders to report values and 

effectiveness coefficients without limitations but restricts the form of constraints to be a 

constraint forest. This section shows that if one fails to impose the restriction that 0nT  is a 

tree, then the conclusions of Theorems 1 and 2 fail.  

The problem can be illustrated with an example of a buyer for whom the lower 

bounds lj and lkS are all zero. Suppose that there are three goods and that this buyer has 

three bids, 1, 2,3j  , each with 2.9jv  , jk j  and 2ju  . Suppose that the multi-

product group constraints in the problem are 1 2 3x x   and 2 3 3x x  , violating the tree 

structure. Then, for the price vector (0,1,2), the corresponding demand is (2,1,2) and for 

the price vector (3,1,2), the corresponding demand is (0,2,1): raising the price of good 1 

reduces the demand for good 3, violating the substitutes condition. Moreover, if the 

available quantities are one unit of good 2 and two units each of goods 1 and 3, then the 

market clears for price vectors (0,1,2) or (2,1,0) but not for the join, which is (2,1,2), so 

the set of clearing prices in this example is not a sublattice.  
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More generally, given any set of constraints 0nT  that fails to have the tree 

structure, we can find a similar counter-example as follows. Since the constraints do not 

form a tree, there are two sets, 0, nS S T , such that each of the three disjoint sets S S  , 

S S  , and S S   are non-empty. Let goods 1, 2 and 3 denote elements of these sets and 

specify that the values of any other goods are zero. Let the bounds constraining these 

goods be given as in the preceding paragraph and let the bounds on all other constraints 

be very large, so that those constraints do not bind. This specification reproduces the 

example of the preceding paragraph starting from any 0nT  that is not a tree. That proves 

the following theorem.  

Theorem 4. If the set 0nT  is not a tree, then there exist bids and integer bounds for 

each 0nS T  and supplies for the other participants such that the valuation nV  is not a 

substitutes valuation, the indirect profit function n  is not submodular, and the set of 

market-clearing prices is not a sublattice. 

III. Tightness 

A direct mechanism is a triple ( , , )N M  , where N is the set of participants, M is 

the product space of types (“message profiles”), and : M  , where  is the set of 

possible outcomes. The mechanism ˆ( , , )N M   is a simplification of the mechanism 

( , , )N M   provided M̂ M . For tightness analysis, it is assumed that n N n   , 

where each n is a topological space, and that each player n’s payoff is represented by a 

continuous function :n nu   .  
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A simplified direct mechanism has the outcome closure property if for every 

player n, strategy profile ˆˆ n nm M  , strategy n nm M , and every open set nO   such 

that ˆ( , )n n nm m O   , there is a strategy ˆˆ n nm M  such that ˆ( )n m O  . In words, this 

means that when other participants are limited to using simplified messages, limiting n to 

do the same has little or no effect on the set of outcomes that n can produce. The 

mechanism ˆ( , , )N M   is a tight simplification of ( , , )N M   if for all utility profiles 

( )n n Nu u   and every 0  , every pure-strategy profile that is an -Nash equilibrium of 

the simplified mechanism is also an -Nash equilibrium of the original, extended 

mechanism. The Simplification Theorem of Milgrom (2008) asserts that if ˆ( , , )N M   has 

the outcome closure property with respect to ( , , )N M  , then the simplification is tight. 

For this application, we take ( , )n nq p  . This specification permits each 

participant to care about his own goods assignment and the prices, but not about the 

goods assigned to others. In standard equilibrium theory, preferences for a participant n 

depend only on ( , )n nq p q – his goods assignment and payment. By including the price 

vector in a more general way, the tightness analysis allows that a participant may prefer 

that its competitor’s product commands a low price or that its partner’s product 

commands a high price. It also allows a participant to have any preference for which the 

preferred sets are all closed and convex, but participants are not limited to such 

preferences and certainly not to just the preferences that are describable using assignment 

messages.  

The next theorem applies not just to the full assignment exchange, but also to 

mechanisms that limit the messages participants can use to a subset of the assignment 
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messages. To describe the permissible limitations on messages, let us say that an 

assignment message mn is minimally constrained if its only finite constraint bounds 

( , )S Sl u  correspond to the singleton sets { }S j . An elementary assignment message mn 

for participant n is an assignment message that is minimally constrained and includes at 

most two bids for any product k: |{ ( ) : } | 2jj J n k k    for 1,...,k K . A full Walrasian 

exchange is any mechanism that (1) accepts messages describing, for each participant, 

closed convex preferences over net trades and a feasible consumption set with the null 

trade in its interior and (2) maps any message profile into a corresponding competitive 

equilibrium outcome, whenever one exists.  

Theorem 5. Any simplified Walrasian exchange in which each bidder n’s message 

space contains only assignment messages and contains all elementary assignment 

messages satisfies the outcome closure property with respect to any full Walrasian 

exchange and (hence) is a tight simplification.  

Theorem 5 is proved by showing that for any price vector and goods assignment 

that can be obtained by some general message, a buyer can obtain nearly the same 

outcome by an elementary assignment message that bids for the equilibrium quantities at 

slightly higher than equilibrium prices and that bids for additional quantities at slightly 

lower prices. For the full proof, details are added to ensure that this construction applies 

not only to buyers but also to sellers and to participants who bid to buy some items and to 

sell others. This establishes the outcome closure property; the tightness conclusion then 

follows from the Simplification Theorem.  
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Proof. Let ˆ
nM  be bidder n’s simplified message space and let nM  be the message 

space used by a full Walrasian mechanism, as described above. Fix a participant n and 

messages ˆˆ n nm M   and n nm M . Let ˆ( , ) ( , )n np q m m  . We now construct the 

elementary message described informally in the preceding paragraph.  

Let ( ) { 1,0,1}nk nksign q     and fix 0  . Since n’s message space includes all 

elementary assignment messages, it includes the message ˆ nm  with bids 1,..., 2j K  as 

follows. For 1,..., 2j K , let / 2jk j     (the smallest integer weakly exceeding / 2j ) 

and set 2 1k k nkv p     , 2k k nkv p    , 2 1 2 max(0, )k k nku u q    and 

2 1 2 min(0, )k k nkl l q   . The message ˆ nm  specifies no other finite bounds. Let ˆ ˆ( , )p q  be 

the competitive equilibrium outcome selected by the full Walrasian mechanism when the 

message profile is m̂ .  

Since ( , )p q  is a competitive equilibrium for the report profile ˆ( , )n nm m , 

   
|

ˆarg max max ( | ) ( | )
n n l nl n

n x n n n l l ll nx x x
q V x m V x m

 


    
 . And since n demands nq  

at prices p, ( , )p q  is also a competitive equilibrium for report profile m̂ . From that and 

the fact that 0  , nq  uniquely solves 

   
|

ˆ ˆmax max ( | ) ( | )
n n l nl n

x n n n l l ll nx x x
V x m V x m

 



  . Hence, even though there may be 

multiple competitive equilibria for the message profile m̂ , all assign the bundle nq  to 

participant n: ˆn nq q . Moreover, since every market-clearing price vector supports this 

choice by n, the price vector p̂  must satisfy ˆk k kp p p      for every product k. 
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Since  can be arbitrarily small, the outcome closure property is proved. Tightness then 

follows from the Simplification Theorem cited above. QED 

IV. Connections to Two Familiar Mechanisms 

In case 1K  , each participant’s assignment message describes a step supply or 

demand function. The assignment exchange is then a familiar double auction, in which 

the allocation is determined by intersecting single-product supply and demand curves. 

When the market-clearing prices or quantities are not unique, any selection rule is 

consistent with the assignment exchange.13 In general, the assignment exchange extends 

the single-product double auction by allowing multiple products and a rich set of 

substitution possibilities among them. 

The integer assignment exchange is connected to the Vickrey auction. In a 

Vickrey auction, if a participant n acquires a single unit of a single good k, its payment is 

the opportunity cost of that good, which is equal to the incremental value of one 

additional unit of good k to the coalition of all other participants. In the linear program 

for the integer assignment exchange, the lowest market-clearing price kp  for good k is its 

lowest dual price – the amount by which the optimal value would increase if an 

additional unit of good k were made available to the coalition of all players. If participant 

n has demand for just one unit in total and acquires a unit of good k, then the additional 

unit for the coalition of all participants is actually assigned to someone besides n, so kp  

is the increased optimal value of that unit to the other participants – n’s Vickrey price.  

                                                 
13 In one-sided cases (with just bids to buy and a fixed supply, or bids to sell and a fixed demand), the kinds 
of problems found in share auctions (Robert B. Wilson (1979)) can present themselves. Typical solutions to 
these problems, such as proposed in David McAdams (2002) and Ilan Kremer and Kjell G. Nyborg (2004), 
can be adapted to the assignment exchange.  
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Theorem 6. Suppose that some participant n bids to acquire at most one unit in an 

integer assignment exchange and that the exchange selects the price vector p that is the 

minimum market-clearing price vector. Then, if n acquires a unit of good k, the price kp  

is equal to n’s Vickrey payment.  

A symmetric statement can be made about participants who sell one unit and 

exchanges that select the maximum market-clearing price vector.  

V. Likely Applications  

The most immediate opportunity for application of the assignment exchange 

technology is to auctions of two or more substitute products, for which the length-of-

report problem is important. Paul D. Klemperer (2008) has independently proposed a 

simple version of the assignment auction design. For this section, an auction is simply an 

exchange with one seller and many buyers or one buyer and many sellers.14  

The previous best-practice mechanisms for dealing with the length-of-report 

problem had been sequential mechanisms: the simultaneous ascending and descending 

clock auctions (Lawrence M. Ausubel (2007)). In simultaneous clock mechanisms, 

bidders are asked to report supplies or demands at each of a sequence of announced 

prices and the reported information is used to find approximate market-clearing prices 

and allocations. Because demands are announced for only a finite number of price 

vectors, the information reported is much less than that of a full direct mechanism.  

                                                 
14 Assignment auctions have several variations, mirroring the variations common in other sealed-bid 
auctions. For example, the auctioneer (whether buyer or seller) may move first, possibly announcing target 
quantities or reserve prices or a supply or demand curve, or perhaps announcing rates of substitution among 
products. Or, there may be multiple stages, for example a qualifying stage with just some bidders invited to 
the second stage. 
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Simultaneous ascending or descending multi-product auctions of various kinds 

have been used for several high-value applications, most commonly ones involving radio 

spectrum, electricity, or natural gas (Paul Milgrom (2004)), but also for real estate 

transactions and certain agricultural-commodities markets.15 When the goods for sale are 

substitutes and participants bid myopically, various versions of the simultaneous 

ascending or descending auctions have been found not only to economize on 

communications but also to identify allocations that are efficient or stable or to find 

minimum or maximum market-clearing prices (Alexander Kelso and Vincent P. 

Crawford (1982), Faruk Gul and Ennio Stacchetti (2000), Paul Milgrom (2000), 

Lawrence M. Ausubel (2004), Milgrom and Strulovici (2008)). This property makes 

these auctions directly comparable to assignment auctions.  

Because simultaneous ascending and descending auctions economize on 

communications and enable bidders to substitute in response to changing prices, they 

have important advantages over independent auctions of different goods. But they also 

have properties that make them unsuitable for many applications. Four of these 

disadvantageous properties are high participant costs, long times-to-completion, 

imprecise computations, and difficulties of scheduling. Any multi-round, real-time 

process adds the cost of real-time bidding to the costs of preparing for the auction. In 

current practice, dynamic auctions for gas and electricity take several hours to reach 

completion, while spectrum auctions take days, weeks, or even months. Such long times-

to-completion cripple these mechanisms for the most time-sensitive markets, such as 

hour-ahead power markets, where only minutes are available to complete an exchange. In 

                                                 
15 In a simultaneous ascending auction, prices can be called by the auctioneer – these are the so-called 
“clock auctions” – or by individual bidders. 
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practice, ascending and descending auctions fail to identify exact market-clearing prices, 

because they change the direction of price increments only a small number of times, 

using discrete price increments.16 Finally, in export markets, where potential buyers may 

reside in a dozen or more different time zones, scheduling a convenient time for several 

hours of real-time bidding may be impossible. These four problems are avoided by direct 

mechanisms, including simplified direct mechanisms like the assignment auction.  

The two main practical limitations of assignment exchanges arise because the 

message space may be too narrow to express bidders’ actual preferences and because, as 

a static mechanism, the auction provides no opportunity for bidders to learn from 

competing bids. The latter can be significant when there is uncertainty about a common 

factor that raises or lowers all values together or when a bidder’s preferred trades depend 

on the trades made by other bidders.  

Even the integer assignment messages, with their limited one-for-one substitution, 

allow ample expressiveness for some applications. Suppose, for example, that an 

electricity buyer can purchase power from any of three sources, {1,2,3}k , subject to 

transmission costs 1 2 3( , , )t t t  and transmission capacity limits 1 2 3( , , )U U U . If the buyer 

needs to buy P units of power and the value per unit is , then bids 1,2,3j   with 

jk j , j jv t  , j ju U , 0jl   and one constraint for {1,2,3}S   with Su P  and 

0Sl   accurately express the bidder’s demand. If there are also significant transmission 

losses from some source j, a general assignment message accommodates those by 

allowing the bidder to set 1j  . 

                                                 
16 Lawrence M. Ausubel and Peter Cramton (2004) show how a clock auction with a richer message space 
(“intra-round bidding”) can avoid some of the disadvantages of discrete price increments.  
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In a double-auction with multiple buyers and sellers of electric power, other kinds 

of assignment messages can be valuable. For even if a buyer has already filled all of its 

power needs for some time period, it may be willing to sell up to  units power at source 

1 and buy the same quantity at 2 or 3, provided the price differential is favorable. This 

swap can be encoded with three bids and the constraints: 10 x    , 2 3, 0x x   , 

1 2 3 0x x x   .  

Swap bids have the potential to add liquidity to an exchange hindered by lack of 

volume. Investigating this fully is beyond the scope of this paper: it requires a theory of 

why owners do not constantly participate in and provide liquidity to markets. 

Nevertheless, it is clear that in a market with modest liquidity, swaps encourage 

participation by limiting the risk that one part of an intended transaction might be 

executed without the other parts. With separate markets, a swapper with a budget limit 

might have to sell one commodity before buying the other in order to raise funds to 

transact, leaving the swapper exposed to the risk of not finding a seller for the other part 

of the planned transaction. By eliminating such risks, swaps make participation safer, 

increasing liquidity.  

The power of simple assignment messages in the preceding example is important 

because simplicity is often a design goal. One might simplify the general assignment 

exchange by limiting the number of bids, constraints, or levels in the constraint trees. 

Theorems 1, 2, 3 and 5 have been constructed to apply even to exchanges that incorporate 

such additional simplifications.  
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One common limitation imposed by auctioneers is a credit limit on buyers. 

Buyers might also want to express a budget limit. The assignment message space does 

not allow this to be done directly, but it does allow surrogates, such as a limit on the 

maximum total bid from a bidder or on the maximum quantities that can be demanded.  

Maximum quantities limits on some bidder or set of bidders can also be useful for 

a government auctioneer when bidder market power is a concern, or when there is a goal 

of promoting entry. Sometimes, this goal is best implemented by careful product 

definitions. For example, if the auctioneer wants to limit bidders 1 and 2 to purchase no 

more than half of the available units of good 1, it can accomplish that by splitting good 1 

into types 1A and 1B and restricting bidders 1 and 2 from bidding on type 1B. This 

procedure is similar to the set-asides used by the U.S. Federal Communications 

Commission to restrict purchases by incumbents in some radio spectrum auctions.17  

Whether the assignment messages are sufficiently encompassing is likely to vary 

by application. Certainly, scale economies and complements among lots are sometimes 

important and cannot generally be solved by redefining lots. For example, in electricity, 

generating plants typically have large fixed costs that require all or nothing decisions 

about whether to use their power capacity. While such limits are not directly expressible 

using assignment messages, it is often possible to use the assignment exchange as part of 

a solution. One ad hoc procedure is to operate the exchange in two or more rounds to 

allow preliminary price discovery to guide bids at the final round. This does not entirely 

eliminate the fixed-cost problem, but it may sometimes mitigate it sufficiently. Staged 

dynamics of this sort may also be helpful when there are important common value 

                                                 
17 The FCC combined this with restrictions on post-auction transfers to limit gaming of the system. 



 31

elements or when bidders can invest in information gathering during the process, as in 

Olivier Compte and Philippe Jehiel (2000) or Leonardo Rezende (2005).  

Three key properties of assignment and integer assignment messages – that they 

are simple to use, express only substitutable preferences, and that integer assignment 

messages lead to efficient integer solutions – make them potentially valuable for use with 

other mechanisms in addition to the Walrasian exchange. For example, two principal 

disadvantages of “standard” Vickrey auctions – the length-of-report problem and “low” 

seller revenues (less than in any core allocation) – hinge on the requirement to report a 

separate value for each possible package and the availability of messages that report non-

substitutable values, respectively.18 A simplified Vickrey auction in which bidders are 

limited to reporting assignment messages escapes both of these disadvantages. There may 

also be applications to matching problems, without cash transfers, such as the problems 

of assigning students to courses or flight attendants to routes, where integer allocations 

are essential and the substitutes structure may be a reasonable approximation.19  

Simplification represents a promising approach to applied mechanism design, and 

assignment messages show high potential for use in simplified mechanisms for trading 

substitutable goods. Exchanges that utilize assignment messages are tight, easy for 

bidders to use, quick to run, precise in determining both equilibrium prices and goods 

assignments, and adaptable to settings that require integer solutions. The assignment 

exchange design is robust, in the sense that its key properties remain intact even when the 

assignment message space is further restricted in any way that does not eliminate any 

                                                 
18 Milgrom (2004), sections 2.5 and 8.1, and Lawrence M. Ausubel and Paul R. Milgrom (2006). 
19 Eric Budish, Yeon-Koo Che, Fuhito Kojima, and Paul R. Milgrom (2008) have begun to study this 
problem. 
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elementary assignment messages. It is also maximal in the sense no extension of the 

constraint tree architecture is possible without destroying the key substitutes property of 

the message space. Taken together, these attributes make the assignment exchange an 

attractive candidate for the many practical applications. 
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