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Abstract
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1 Introduction

Mechanisms for collective decision making and resource allocation are often evaluated on nu-

merous dimensions. Some criteria, such as whether a mechanism is efficient or generates an

equitable allocation, are based on the outcomes of the mechanism. Evaluation of these dimen-

sions depends on the predicted behavior of participants. Other criteria relate to the procedural

dimensions of a mechanism or the process by which the outcomes are achieved. A common

desideratum is that a mechanism is “simple” or provide “straightforward” incentives. One of

the most demanding requirements is to focus on strategy-proof mechanisms, where truth-telling

is a dominant strategy for all participants.

Procedural aspects of mechanisms and the desire for straightforward incentives have been

important in many policy discussions. In the 1950s, a committee of the American Medical As-

sociation supported the use of the Boston Pool Plan as the basis for a centralized clearinghouse,

which turned out to be formally equivalent to a deferred acceptance algorithm when selecting

the procedure to place graduating medical students to residencies in the US. One rationale

for their recommendation was the possibility of strategic behavior in the system used to place

medical school graduates to hospital residency programs in New York City in the 1930s (Roth

1984, 2003).1 Over half a century later, school officials in Boston adopted a strategy-proof

mechanism to assign elementary, middle, and high school students to schools over their existing

system, known as the Boston mechanism, because it simplifies the problem faced by students

when they decide how to reveal their preferences over schools to the mechanism. Importantly,

the policy change was seen to protect families who were unaware of the strategic aspects of

school admissions in Boston (Pathak and Sönmez 2008). One reason that New York City’s

Department of Education decided to change their student assignment system, which is used to

assign over 90,000 students to high school every year, was “to reduce the amount of gaming

families had to undertake to navigate a system with a shortage of good schools” (Kerr 2003).

For auctions, the desire for straightforward incentives is one of the leading arguments in

favor of mechanisms based on the Vickrey-Clarke-Groves mechanism, which is strategy-proof.

In the single unit case, dominant strategy incentive compatibility is one argument for Vickrey’s

1Roth (2003) reports that the National Student Internship Committee noted that under the originally pro-
posed algorithm, a student could suffer by submitting a rank-order list that listed as first choice a position he
or she was unlikely to obtain.
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celebrated second-price auction (Vickrey 1961). In their description of the first FCC Spectrum

Auction, McAfee, McMillan, and Wilkie (2008) write “A second aspect of simplicity, and one

harder to implement, requires that a simple strategy be optimal, or nearly optimal, behavior ...

Economists were very much concerned that they could articulate simple bidding strategies for

bidders that would perform well. It was expected that novice bidders would probably adopt

such strategies.”

Providing straightforward incentives to participants has a number of virtues in real-life allo-

cation problems. One virtue is that it is easier to guide participants, and easier for participants

to learn or find their optimal strategy. Another virtue is that simplified incentives may encour-

age entry by unsophisticated players, and this may be desirable. Moreover, truthfully eliciting

information from participants can also be desirable if the information is used for purposes in

addition to computing the allocation, such as in elections where determining the preferences

of the electorate may also influence the policy choices of responsive candidates or in matching

problems, where revealed preferences may be used to decide whether to expand or shut down

a school or residency program.2

Unfortunately, strategy-proof mechanisms are known to exist only in particular domains,

and in many cases strategy-proof mechanisms perform poorly on other dimensions. Moreover,

there are sometimes informal intuitions about the degree to which a mechanism encourages

straightforward play even though a mechanism is either strategy-proof or not. Our goal in this

paper is to develop a notion which can be used to compare mechanisms that are not strategy-

proof based on the degree to which they encourage manipulation. We show how the notion can

formalize intuitions about manipulability in a unified framework.

Our focus is on direct mechanisms, where players report their types. The notion we develop

is based on a comparison of the states under which two mechanisms are manipulable. There

are two versions: Under the first, mechanism ψ is weakly more manipulable than mechanism

ϕ if whenever a player can profitably manipulate ϕ, some player can profitably manipulate

ψ. Equivalently, whenever truth-telling is a Nash equilibrium under ψ, truth-telling is a Nash

equilibrium under ϕ as well. Under the second, mechanism ψ is strongly more manipulable

than mechanism ϕ if whenever a player profitably manipulates ϕ, she can manipulate ψ as well.

2There is some evidence that this is taking place in New York City’s public school choice program. See
Gootman (2006).
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We investigate these two definitions in several well-known mechanisms in the matching and

auction literature. Many of our examples are inspired by the recent literature on “market

design” (cf. Roth 2002, Milgrom 2004). We begin by considering various classes of matching

problems. In many-to-one matching problems (commonly known as the college admissions

model), the student-optimal stable mechanism is strongly more manipulable for colleges than

the college-optimal stable mechanism. In school choice problems, the constrained student-

optimal stable mechanism when students can rank at most k schools is weakly more manipulable

than the constrained student-optimal stable mechanism when students can rank at most ℓ

schools for ℓ > k. Finally, the constrained Boston mechanism when students can rank at most

k schools is weakly more manipulable than the constrained version of the student-optimal stable

mechanism when students can rank at most k schools.

We then consider examples from various auction models. Our first result is for the auction

of a single item: the ℓth price auction is strongly more manipulable than the kth price auction

for ℓ > k ≥ 2. The last two results are for auctions involving multiple units. When there are

multiple items for sale but bidders can only win one item, as in Internet keyword advertisement

auctions, the Generalized First Price Auction is strongly more manipulable than the Generalized

Second Price Auction. In auctions where there are multiple units and bidders can win more

than one unit, as in the case of Treasury bill auctions, the discriminatory auction is strongly

more manipulable than the uniform-price auction.

The next section introduces the general framework and discusses related literature. Section 3

presents examples from problems in two-sided matching and indivisible good allocation. Section

4 presents examples from auction models. The last section concludes.

2 General Framework

2.1 Primitives

There are a finite number of players indexed by i = 1, ..., N . The set of allocations is A which

is finite and has generic element a = (a1, ..., aN) where ai specifies player i’s assignment. Each

player has a preference relation Ri defined over the set of assignments. Let Pi be the strict

counterpart of Ri. Let R = (Ri) denote a profile of preferences. The set of possible types for

4



player i is Ti with generic element ti. We adopt the convention that t−i are the types of players

other than player i, and define R−i and P−i accordingly.

We refer to a problem as a profile of player types (t1, ..., tN ). Let TN = T1 × . . . × TN .

A direct mechanism is a function ϕ : TN → A. It is a single-valued mapping of the profile of

player types to an element in A. Let ϕi(t) be the assignment that player i obtains from the

mechanism ϕ when the reported types are t.

Definition 1. A mechanism ϕ is manipulable by player i at problem t if there exists a type

t′i such that ϕi(t
′
i, t−i)Piϕi(t).

For a mechanism to be manipulated by player i, she must strictly prefer her allocation when

she reports a type other than her true type over what she obtains when she reports her true

type.

Definition 2. A mechanism ϕ is manipulable if there exists some player i and problem t

such that the mechanism is manipulable by player i at problem t.

A mechanism is strategy-proof if truth-telling is a dominant strategy for all players. A

strategy-proof mechanism is not manipulable. We consider the following two notions to compare

the manipulability of mechanisms.

Definition 3. A mechanism ψ is weakly more manipulable than mechanism ϕ if

i) for any problem where ϕ is manipulable, ψ is manipulable, and

ii) there is at least one problem where ψ is manipulable although ϕ is not.

Definition 4. A mechanism ψ is strongly more manipulable than mechanism ϕ if

i) for any problem where ϕ is manipulable, ψ is manipulable by any player who can manip-

ulate ϕ, and

ii) there is at least one problem where ψ is manipulable although ϕ is not.

The second requirement in either concept eliminates the possibility that any one of the two

mechanisms is more manipulable than the other. It follows from the definitions that if ψ is

strongly more manipulable than ϕ, then ψ is also weakly more manipulable than ϕ.
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If ϕ is a strategy-proof mechanism and ψ is not, then ψ is both weakly and strongly more

manipulable than ϕ. Our main interest is in the case where ψ and ϕ are both not strategy-proof

mechanisms. While both notions make no explicit reference to equilibrium behavior, the weak

notion is equivalent to the following: if at any problem, truth-telling is a Nash equilibrium

under ϕ, it is also a Nash equilibrium under ψ even though the converse does not hold.

2.2 Related literature

There are other complementary approaches to comparing the ease of manipulation in mecha-

nisms which are not strategy-proof. The most related literature is the one which characterizes

the domains under which a mechanism is not manipulable (see, for instance, Moulin 1980, Ergin

2002). Our weak notion is related to this literature because it is equivalent to a comparison of

domains. An equivalent definition of weak manipulability is to require that the set of types for

which truth-telling is a Nash equilibrium in ψ is a strict subset of the set of types for which

truth-telling is a Nash equilibrium under ϕ. One main difference is that this earlier literature

has characterized non-manipulable domains for specific mechanisms, while our aim is to make

comparisons across mechanisms in a variety of problems.

Another related paper is Day and Milgrom (2008)’s study of core selecting auctions. They

define an incentive profile to be vector of each bidder’s maximal gain from truthful reporting

when all other bidders report truthfully and consider auctions which minimize the incentive

profile subject to selecting a core allocation. The idea of making comparisons across mechanisms

is also related to Dasgupta and Maskin (2008). They show that if a voting rule satisfies various

axioms for a set of preferences, then simple majority voting rule also satisfies those axioms

on the same set of preferences. Other than focusing on voting rules, another major difference

is that our focus is on comparing mechanisms based on the extent to which they encourage

manipulation, while Dasgupta and Maskin focus on other properties.
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3 Matching mechanisms

3.1 Comparing stable matching mechanisms

In the college admissions model, there are a number of students each of whom should be assigned

a seat at one of a number of colleges. Each student has a strict preference ordering over all

colleges as well as remaining unassigned and each college has a strict preference ordering over

students. Each college has a maximum quota.

Formally, a college admissions problem is tuple Γ = (S,C, PS, PC). S and C are sets of

students and colleges and PS = (Ps)s∈S and PC = (Pc)c∈C . For each student s ∈ S, Ps is

a strict preference relation over C and being unmatched (being unmatched is denoted by s).

Each college c has maximum capacity qc, and we assume that each college’s preferences are

responsive (Roth 1985). That is, the ranking of a student is independent of her colleagues, and

any set of students exceeding quota is unacceptable.3 Given this assumption, we sometimes

abuse notation and let Pc be the preference list of college c defined over singleton sets and the

empty set. If sPc∅, then s is said to be acceptable to c. Similarly, c is acceptable to s if cPss.

Non-strict counterparts of Ps and Pc are denoted by Rs and Rc, respectively.

A matching µ is a mapping from S ∪ C to S ∪ C such that (i) for every s, |µ(s)| = 1, and

µ(s) = s if µ(s) /∈ C, (ii) µ(c) ⊆ S for every c ∈ C, and (iii) µ(s) = c if and only if s ∈ µ(c).

Given a matching µ, we say that it is blocked by pair (s, c) if s prefers c to µ(s) and either

(i) c prefers s to some s′ ∈ µ(c) or (ii) |µ(c)| < qc and s is acceptable to c. A matching µ is

individually rational if for each student s ∈ S, we have that µ(s)Rss and for each c ∈ C

and each s ∈ µ(c), we have that sPc∅. A matching µ is stable if it is individually rational and

is not blocked. A mechanism is a systematic way of assigning students to colleges. A stable

mechanism is a mechanism that yields a stable matching for any college admissions problem.

Gale and Shapley (1962) introduce the following student-proposing deferred acceptance

algorithm:

Round 1: Each student applies to her first choice college. Each college rejects the lowest-ranking

students in excess of its capacity and all unacceptable students among those who applied

3The preference relation over sets of students is responsive if, whenever S′ = S′′∪{s}\{s′′} for some s′′ ∈ S′′

and s 6∈ S′′, college c prefers S′ to S′′ if and only if college c prefers s to s′′.
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to it, keeping the rest of students temporarily (so students not rejected at this step may

be rejected in later steps.)

In general,

Round k: Each student who was rejected in Round k-1 applies to her next highest choice (if any).

Each college considers these students and students who are temporarily held from the

previous step together, and rejects the lowest-ranking students in excess of its capacity

and all unacceptable students, keeping the rest of students temporarily (so students not

rejected at this step may be rejected in later steps.)

The algorithm terminates either when every student is matched to a college or every un-

matched student has been rejected by every acceptable college. Since there are a finite number

of students and colleges, the algorithm terminates in a finite number of steps.

Gale and Shapley (1962) show that this procedure results in a stable matching that each

student weakly prefers, the student-optimal stable matching, to any other stable matching. We

refer to the mechanism employing this algorithm as the student-optimal stable mechanism and

denote it as GSS . Dubins and Freedman (1981) and Roth (1982) show that truth-telling is a

dominant strategy for each student under GSS .

Responsiveness of college preferences allows us to define a college-proposing variant of the

deferred acceptance algorithm, which yields the most preferred stable matching for colleges.4

We refer to this variant of the mechanism as GSC.

While truth-telling is a dominant strategy for each student under GSS , an analogous result

does not hold for colleges under GSC. In fact, there is no stable mechanism where truth-telling

is a dominant strategy for colleges in the college admissions model (Roth 1985). The following

example illustrates this possibility.

Example 1. There are two students, s1 and s2, and two colleges, c1 and c2, where c1 has two

seats and c2 has one seat. The preferences are:

Rs1
: c1, c2, s1 Rc1 : {s1, s2}, {s2}, {s1}, ∅

Rs2
: c2, c1, s2 Rc2 : {s1}, {s2}, ∅.

4Responsiveness is not necessary to define the college-proposing version of deferred acceptance (Kelso and
Crawford 1982).
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The only stable matching for this problem is:

(

s1 s2

c1 c2

)

,

which means that student s1 is matched to college c1 and student s2 is matched to college c2.

Now suppose college c1 submits the manipulated preference R
′

c1
where only student s2 is

acceptable. With this report, the only stable matching is:

(

s1 s2

c2 c1

)

.

Hence college c1 benefits by manipulating its preferences under any stable mechanism (including

the college-optimal stable mechanism).

We are ready to present our first result. Fix all student preferences so that only colleges

can potentially manipulate.

Proposition 1. The student-optimal stable mechanism (GSS) is strongly more manipulable

than the college-optimal stable mechanism (GSC).

Proof. Fix student preferences, let P denote college preferences, and let P−c denote the pref-

erences of colleges other than college c. Suppose there is some college c and preference P̂c such

that

GSC

c (P̂c, P−c) Pc GS
C

c (P ). (1)

We want to show that there exists some P̃c such that

GSS

c (P̃c, P−c) Pc GS
S

c (P ).

First, by Gale and Shapley (1962), the college-optimal stable matching is weakly more preferred

by colleges than the student-optimal stable matching:

GSC

c (P ) Rc GS
S

c (P ). (2)
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Construct P̃c as follows: for any s ∈ S,

sP̃c∅ ⇔ s ∈ GSC

c (P̂c, P−c).

That is, only students in GSC
c (P̂c, P−c) are acceptable to college c under P̃c.

Since matching GSC(P̂c, P−c) is stable under (P̂c, P−c), it is also stable under (P̃c, P−c).

Moreover by Roth (1984), college c is assigned the same number of students at any stable

matching under profile (P̃c, P−c). Since only students in GSC
c (P̂c, P−c) are acceptable to college

c under P̃c, we have

GSS

c (P̃c, P−c) = GSC

c (P̂c, P−c). (3)

Hence, by (1), (2), and (3), we have

GSC

c (P̂c, P−c)
︸ ︷︷ ︸

=GSS
c

(P̃c,P−c)

Pc GS
C

c (P ) Rc GS
S

c (P ),

which shows that college c can manipulate GSS with report P̃c.

Finally, we describe a problem where GSC is not manipulable by any college, while some

college can manipulate GSS . Suppose there are two students, s1 and s2, and two colleges, c1

and c2, each with one seat. The student and college preferences are

Rs1
: c1, c2, s1 Rc1 : {s2}, {s1}, ∅

Rs2
: c2, c1, s2 Rc2 : {s1}, {s2}, ∅.

Since each college obtains her top choice under GSC, no college can manipulate. However, if

college c1 declares that only s2 is acceptable, it can manipulate GSS . This completes the proof.

The same argument can be used to generalize this result in a few directions. We state these

here and omit the complete proofs.

Let ϕ be an arbitrary stable mechanism. Then

a) ϕ is strongly more manipulable than GSC for colleges,

b) GSS is strongly more manipulable than ϕ for colleges, and
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c) GSC is strongly more manipulable than ϕ for students.

This result is also related to the recent policy discussion about the reforms of the National

Resident Matching Program (NRMP), the job market clearinghouse that annually fills more

than 25,000 jobs for new physicians in the United States. Prior to 1998, the mechanism was

inspired by the college-proposing deferred acceptance algorithm. As we have discussed, in

the college-optimal stable mechanism truth-telling is not a dominant strategy for students or

colleges. In the mid-1990s, the NRMP came under increased scrutiny by students and their

advisors who believed that the NRMP did not function in the best interest of students and was

open to the possibility of different kinds of strategic behavior (Roth and Rothblum 1999). The

mechanism was changed to one based on the student-proposing deferred acceptance algorithm

(Roth and Peranson 1999).5 One reason for this change was that truth-telling is a dominant

strategy for students. In contrast, the result states that the student-optimal stable mechanism

is the most manipulable stable matching mechanism for colleges.

3.2 School choice mechanisms

The college admissions model is closely related to another model introduced by Abdulkadiroğlu

and Sönmez (2003), known as the school choice problem. In this model, students are the

only players and school seats are objects to be consumed even though for each school there is

a priority ranking of students. The priority ranking of students has the same mathematical

structure as the preferences of colleges in the college admissions model. Let π = (π)c∈C denote

the school priorities. For any school c, the function πc : {1, ..., n} → {s1, ..., sn} is the priority

ordering at school c, where πc(1) indicates the student with the highest priority, πc(2) indicates

the student with the second highest priority and so on.

Vulnerability of school choice mechanisms to manipulation has played a major role in the

adoption of new student assignment procedures in Boston and New York City (see Abdulka-

diroğlu, Pathak, Roth, and Sönmez (2005) and Abdulkadiroğlu, Pathak, and Roth (2005)).

For instance, in Fall 2003, the New York City Department of Education changed their assign-

ment mechanism to one based on the student-proposing deferred acceptance algorithm. One

5This reform was mimicked in a number of other clearinghouses. A comprehensive list of 43 clearinghouses
is presented in Table 1 in Roth (2008).
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of the features of this system is that it only allows students to submit a rank order list of their

top 12 choices. Based on the strategy-proofness of the student-optimal stable mechanism, the

following advice was given to students:

You must now rank your 12 choices according to your true preferences.

However, for a student who has more than 12 acceptable schools, truth-telling is no longer

a dominant strategy. In practice, between 20 to 30 percent of students rank 12 schools.6 This

issue was first theoretically investigated by Haeringer and Klijn (2007).

Our next result formalizes the idea that the greater the number of choices a student can

make, the less vulnerable the constrained version of student-optimal stable mechanism is to

manipulation. Let GS be the student-optimal stable mechanism, and GSk be the constrained

version of the student-optimal stable mechanism where only the top k choices are considered.

Proposition 2. Let ℓ > k > 0 and suppose there are at least ℓ schools. Then GSk is weakly

more manipulable than GSℓ.7

Proof. Suppose there is a student i and preference P̂i such that

GSℓ
i (P̂i, P−i) Pi GS

ℓ
i (P ). (4)

For any student j, let P ℓ
j be the truncation of Pj after the ℓth choice. This means that in

P ℓ
j any choice after the top ℓ in Pj are unacceptable, and choices among the top ℓ are ordered

according to Pj . Observe that relation (4) implies that

GSi(P̂
ℓ
i , P

ℓ
−i) Pi GSi(P

ℓ). (5)

Since GS is strategy-proof, relation (5) implies that student i does not receive one of her top ℓ

choices from the GS mechanism under profile P ℓ. Hence, GSi(P
ℓ) = GSℓ

i (P ) = i.

6These details together with the entire description of the new assignment procedure is contained in Abdulka-
diroğlu, Pathak and Roth (2008).

7We thank an NSF reviewer who pointed out that Proposition 2 is implied by Theorem 6.5 of Haeringer and
Klijn (2007) which states that the set of Nash equilibria of the preference revelation game induced by GSk is a
subset of the set of Nash equilibria of the preference revelation game induced by GSℓ.
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For k < ℓ, there are two cases to consider.

Case 1: GSk
i (P ) = i.

Let GSℓ
i (P̂i, P−i) = c and let P̃i be such that c is the only acceptable school.

Claim: GSk
i (P̃i, P−i) = c.

Proof : First note that GSℓ
i (P̃i, P−i) = c. Moreover, by definition

GSℓ(P̃i, P−i) = GS(P̃i, P
ℓ
−i) and GSk(P̃i, P−i) = GS(P̃i, P

k
−i).

Gale and Sotomayor (1985) (see also Theorem 5.34 of Roth and Sotomayor 1990) implies

that

GSi(P̃i, P
k
−i) Ri GSi(P̃i, P

ℓ
−i).

Substituting the definitions,

GSk
i (P̃i, P−i) Ri GSℓ

i (P̃i, P−i)
︸ ︷︷ ︸

=c

.

Since c is the only acceptable school in P̃i, the claim follows. ⋄

Thus, in the first case, student i can manipulate GSk:

GSk
i (P̃i, P−i)

︸ ︷︷ ︸

=c

Pi GSk
i (P )

︸ ︷︷ ︸

=i

.

Case 2: GSk
i (P ) 6= i.

Claim 1 : ∃j ∈ S such that GSk
j (P ) = j although GSℓ

j(P ) 6= j.

Proof : Suppose not. Then since GSℓ
i (P ) = i and GSk

i (P ) 6= i, there is a college who is

assigned strictly more students under GSk(P ) than GSℓ(P ). This is a contradiction to Gale

and Sotomayor (1985), which requires that each colleges is weakly worse off under GSk (since

profile P k is a truncation of profile P ℓ). ⋄

Pick any j ∈ S such that GSk
j (P ) = j although GSℓ

j(P ) 6= j. Let GSℓ
j(P ) = c and let P̃j be

such that c is the only acceptable school.

Claim 2 : GSk
j (P̃j , P−j) = c.

Proof : Since GSℓ
j(P ) = c, we have GSℓ

j(P̃j , P−j) = c as well. Moreover, by definition
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GSℓ(P̃j , P−j) = GS(P̃j, P
ℓ
−j) and GSk(P̃j , P−j) = GS(P̃j, P

k
−j).

Gale and Sotomayor (1985) implies that

GSj(P̃j , P
k
−j) Rj GSj(P̃j , P

ℓ
−j).

Substituting the definitions,

GSk
j (P̃j, P−j) Rj GSℓ

j(P̃j , P−j)
︸ ︷︷ ︸

=c

.

Since c is the only acceptable school in P̃j ,

GSk
j (P̃j, P−j) = c,

which establishes the claim. ⋄

Thus, for the second case, student j can manipulate GSk:

GSk
j (P̃j, P−j)

︸ ︷︷ ︸

=c

Pj GSk
j (P )

︸ ︷︷ ︸

=j

.

Finally, we describe a problem where GSℓ is not manipulable by any students, but GSk is

manipulable by some student. Suppose there are two students, s1 and s2, and two schools, c1

and c2, each with one seat. The students have identical preferences which rank c1 ahead of c2

and both schools have identical priority orderings: s1 is ordered ahead of s2. Under GS2, no

student can manipulate because each obtains her top or second choice and GS is strategy-proof.

Under GS1, s2 is unassigned, and can benefit from ranking c2 as her top choice. This example

can be generalized to the case of GSk and GSℓ. This completes the proof.

The result of Proposition 2 does not extent to strong manipulability as the following example

illustrates:

Example 2. There are three students, s1, s2, and s3, and three schools, c1, c2, and c3, each
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with one seat. Suppose that the student preferences and school priorities are:

Rs1
: c1, c2, c3, s1 πc1 : s2, s3, s1

Rs2
: c2, c3, c1, s2 πc2 : s2, s3, s1

Rs3
: c2, c1, c3, s3 πc3 : s1, s2, s3.

We show that while student s1 can manipulate GS2, she cannot manipulate GS1. The

outcome of GS2 is:

(

s1 s2 s3

s1 c2 c1

)

.

Student s1 is unassigned, and she can manipulate by declaring that c3 is her only acceptable

school. The outcome of GS1 is:

(

s1 s2 s3

c1 c2 s3

)

.

Since student s1 obtains her top choice, she cannot manipulate GS1.

3.3 The Boston mechanism

Another widely studied and popular mechanism for the school choice problem is the Boston

mechanism. From July 1999 to July 2005, the mechanism has been used by school authorities

in Boston to assign over 75,000 students to public school. Variants of the mechanism have been

used in many different US school districts including: Cambridge MA, Charlotte-Mecklensburg

NC, Denver CO, Miami-Dade FL, Minneapolis MN, Providence RI, and Tampa-St. Petersburg

FL.

For given student preferences and school priorities, the outcome of the Boston mechanism

is determined with the following procedure:

Round 1: Only the first choices of students are considered. For each school, consider the students

who have listed it as their first choice and assign seats of the school to these students one
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at a time following their priority order until there are no seats left or there is no student

left who has listed it as her first choice.

In general,

Round k: Consider the remaining students. In Round k, only the kth choices of these students are

considered. For each school with still available seats, consider the students who have

listed it as their kth choice and assign the remaining seats to these students one at a time

following their priority order until there are no seats left or there is no student left who

has listed it as her kth choice.

The procedure terminates when each student is assigned a seat at a school.

The Boston mechanism is vulnerable to preference manipulation. Loosely speaking, the

Boston mechanism attempts to assign as many students as possible to their first choice school,

and only after all such assignments have been made does it consider assignments of students

to their second choices, and so on. If a student is not admitted to her first choice school, her

second choice may be filled with students who have listed it as their first choice. That is, a

student may fail to get a place in her second choice school that would have been available had

she listed that school as her first choice.

Some families understand these features of the Boston mechanism and have developed rules

of thumb for submitting preferences strategically. See, for instance, the description of the

strategies employed by the West Zone Parents Group in Boston in Pathak and Sönmez (2008).

Similar heuristics have developed in other school districts as well (see Ergin and Sönmez 2006

for more examples). Finally, in controlled experiments, Chen and Sönmez (2006) show that

more than 70% of participants in their experiment do not reveal their preferences truthfully

under the Boston mechanism. Of course, the Boston mechanism is strongly more manipulable

than the student-optimal stable mechanism, which is strategy-proof.

In practice, many school districts using mechanisms based on the Boston mechanism limit

the number of schools that participants may rank. In Providence Rhode Island, students may

only list two schools, while in Cambridge Massachusetts, students may only list three schools.8

8See Parent Handbook, Providence Public Schools available at http://www.providenceschools.org/
and Controlled Choice Plan, Cambridge Public Schools, available at
http://www.cpsd.us/Web/PubInfo/ControlledChoice.pdf.
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Let β be the Boston mechanism and βk be the Boston mechanism when only the top k choices

of students are considered.

Our next result shows that not only is the Boston mechanism more manipulable than

the student-optimal stable mechanism, its constrained version is more manipulable than the

constrained version of the student-optimal stable mechanism.

Proposition 3. Suppose there are at least k schools where k > 1. Then βk is weakly more

manipulable than GSk.

Proof. For any student j, let P k
j be the truncation of Pj after the kth choice. By definition,

βk(P ) = β(P k) and GSk(P ) = GS(P k).

Suppose that no student can manipulate βk. We will show that no student can manipulate

GSk either. Consider two cases:

Case 1: βk(P ) = β(P k) is stable under profile P .

Since β(P k) is stable under P , it is stable under P k as well. Moreover, GS(P k) is stable

for P k by definition. Since the set of unmatched students across stable matchings is the same

(McVitie and Wilson 1970), for all s ∈ S,

GSs(P
k) = s ⇔ βs(P

k) = s. (6)

Pick some s ∈ S. If GSk
s (P k) 6= s, then student s receives one of her top k choices. This

implies that s receives one of her top k choices under GS. Since GS is strategy-proof, student

s cannot manipulate GSk.

Suppose GSk
s (P k) = s and s can manipulate. We derive a contradiction. Since s can

manipulate, there exists some school c and preference P̂s such that

GSk
s (P̂s, P

k
−s)

︸ ︷︷ ︸

=c

Ps s.

Observe that c is not one of the top k choices of student s under Ps for otherwise student

s could manipulate GS. Construct P̃s which lists c as the only acceptable school.
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Matching GSk(P̂s, P
k
−s) remains stable under (P̃s, P

k
−s) and therefore

GSk
s (P̃s, P

k
−s) = c.

Since GS(P k) is stable under P k and GSk
s (P k) = s by assumption, relation (6) implies

βs(P
k) = s.

By Roth (1984), matching β(P k) is not stable under (P̃s, P
k
−s) since student s remains single

under β(P k) although not under stable matching GSk(P̂s, P
k
−s). Since matching β(P k) is not

stable under (P̃s, P
k
−s), but it is stable for P k, the only possible blocking pair of β(P k) in

(P̃s, P
k
−s) is (s, c). But since βs(P

k) = s, this implies that (s, c) also blocks β(P k) under P k,

which is the desired contradiction. Thus, in case 1, no student can manipulate GSk.

Case 2: β(P k) is not stable for profile P .

In this case, some pair (s, c) blocks β(P k), so that there exists s′ ∈ βc(P
k) such that s

obtains higher priority than s′ at school c and cPsβc(P
k).

Construct P̃s so that school c is the only acceptable school for student s. Since s′ ∈ βc(P
k)

and student s has higher priority than student s′ at school c, we must have s ∈ βc(P̃s, P
k
−s).

But this means that

βs(P̃s, P
k
−s)

︸ ︷︷ ︸

=c

Ps βs(P
k),

contradicting the assumption that no student can manipulate β at P k.

Finally, the following example describes a problem where the constrained version of the

Boston mechanism is manipulable although the constrained version of the student-optimal

stable mechanism is not. There are three students and three schools each with one seat. The

student preferences and school priorities are:

Rs1
: c1, c2, c3, i1 πc1 : s1, s3, s2

Rs2
: c2, c3, c1, i2 πc2 : s3, s2, s1

Rs3
: c1, c2, c3, i3 πc3 : s3, s1, s2.

18



The matchings produced by β2 and GS2 are:

(

s1 s2 s3

c1 c2 s3

)

and

(

s1 s2 s3

c1 c3 c2

)

,

respectively. Since no student receives an outcome worse than her second choice from GS2,

no student can manipulate GS2 by the strategy-proofness of GS. On the other hand, student

s3 can manipulate β2 by declaring that c2 is her only acceptable school. This example can be

generalized to the case of GSk and βk. This completes the proof.

The comparison does not extend to strong manipulability, as shown in the next example.

Example 3. There are three students, s1, s2, and s3, and three schools, c1, c2, and c3, each

with one seat. Suppose that the student preferences and school priorities are:

Rs1
: c1, c2, c3, s1 πc1 : s2, s3, s1

Rs2
: c2, c3, c1, s2 πc2 : s2, s3, s1

Rs3
: c2, c1, c3, s3 πc3 : s1, s2, s3.

We will show that while student s1 can manipulate GS2, she cannot manipulate β2. The

matching produced by GS2 is: (

s1 s2 s3

s1 c2 c1

)

.

Student s1 can manipulate GS2 by declaring that c3 is her top choice. The matching produced

by β2 is: (

s1 s2 s3

c1 c2 s3

)

.

Since student s1 receives her top choice, she cannot manipulate β2.
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4 Auction mechanisms

4.1 Single unit auctions: kth price auction

Our next application involves a seller who wishes to sell a single unit of an object. There are N

bidders and bidder i has value vi for the object. We assume that the utilities are quasi-linear,

so the utility of bidder i who receives the object at a price of p is

ui = vi − p.

We consider kth price sealed-bid auctions pioneered by Vickrey (1961), when k = 2 and

later examined by Kagel and Levin (1993) for k = 3. Under the kth price auction, each player

simultaneously bids for the object. The highest bidder receives the object and pays the kth

highest price.9

Vickrey’s second-price auction is perhaps the most well-known strategy-proof mechanism.

None of the other kth price auctions are strategy-proof. Hence, they are all strongly more

manipulable than the second-price auction. Our next result extends this well-known result:

Proposition 4. For any ℓ > k ≥ 2, the ℓth price auction is strongly more manipulable than kth

price auction.

Proof. Fix the bids of all bidders except bidder i. Suppose that bidder i can manipulate the

kth price auction. This means that bidder i’s valuation is not higher than all of the other bids,

and her valuation is higher than the kth highest bid. In this case, she can bid higher than the

highest bid and obtain the object at a price of the kth highest bid. The same bidder could also

manipulate the ℓth price auction exactly the same way since her valuation is necessarily higher

than the ℓth highest bid. This shows that any bidder who can manipulate the kth price auction

can manipulate the ℓth price auction as well.

Finally, consider an example where the highest k valuations are the same although the

(k + 1)th valuation is strictly lower. In this case, the kth price auction cannot be manipulated,

although the ℓth price auction can be manipulated by any of the bidders who do not receive

the object and are one of the highest valuation bidders.

9For the purposes of the exposition, we adopt the convention that all ties are broken in favor of the bidder
with the lower index i.
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4.2 Auctions for Internet Advertising

The next application we consider involves the model for internet advertising pioneered by

Edelman, Ostrovsky and Schwarz (2007) and Varian (2006). When an Internet user enters

a search term into an online search engine, she obtains a webpage with search results and

sponsored links. The advertisements are ordered on the webpage in different positions, with an

advertisement shown at the top of the page more likely to be clicked than one at the bottom of

the page. The process by which these advertisement slots are allocated to webpages is currently

one of the largest auction markets: in 2005, Google generated more than 6 billion dollars in

revenue via their auction mechanism (Edelman et. al 2007).

Our notation and model follow Edelman, Ostrovsky and Schwarz (2007). There are N

bidders, and S < N ordered slots on a webpage. Each slot has a click-through rate of αs, where

α1 > α2 > . . . > αS. We assume that the click-through rates are common knowledge among

bidders. Bidder i has a value of vi per click. The highest value bidder wins the first slot, the

second highest value bidder wins the second slot, and so on. When there are ties, we assume

that they are broken with some fixed tie-breaking rule. If bidder i wins slot s and pays price

p, then her utility is:

ui = αsvi − p.

Edelman, Ostrovsky and Schwarz (2007) present a detailed historical overview of the origins

of this market. In 1997, Overture introduced an auction for selling Internet advertising. In

the original design, each advertiser simultaneously bids for a slot for a particular keyword.

The highest bidder receives the first slot at a price of her bid times the click-through rate of

slot 1, the second highest bidder receives the second slot at a price of her bid times the click-

through rate of slot 2, and so on. Overture’s search platform was adopted by major search

engines including Yahoo! and MSN. This auction format is known as the Generalized First

Price (GFP) auction.

In February 2002, Google introduced its own pay-per-click system, AdWords Select, based on

a different payment rule. The highest bidder receives the first slot at a price of the second highest

bid times the click-through rate of slot 1, the second highest bidder receives the second slot at

a price of the third highest bid times the click-through rate of slot 2, and so on. This auction

format has come to be known as the Generalized Second Price (GSP) auction. Once Google
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introduced this new format, many search engines including Yahoo!/Overture also switched to

the GSP.

While neither mechanism is strategy-proof, Edelman, Ostrovsky, and Schwarz (2007) argue

that

The second-price structure makes the market more user friendly and less susceptible to

gaming.

Our next result formalizes their insight.

Proposition 5. The Generalized First Price Auction is strongly more manipulable than the

Generalized Second Price Auction.

Proof. Fix the bids of all bidders except bidder i and order the bids of the others from highest to

lowest: b1, b2, .... Suppose bidder i can manipulate the GSP. We argue that bidder i’s valuation

has to be at least as large as bS−1, the (S − 1)th highest bid.

There are two cases. First, suppose bidder i’s valuation is less than or equal to the Sth

highest bid. If bidder i declares her true valuation, she receives a payoff of zero. To win a

slot, she must declare a value greater than the Sth highest bid. Consider such a manipulation,

so the bidder obtains the ℓth slot, where ℓ ∈ {1, ..., S}. Under the GSP, the payoff from this

manipulation is:

αℓvi − αℓbℓ ≤ 0,

since vi ≤ bℓ for any ℓ ∈ {1, ..., S}. Therefore, bidder i cannot manipulate the GSP if her value

is less than or equal to the Sth highest bid.

Next, suppose that bidder i’s valuation is less than the (S − 1)th bid, but greater than the

Sth bid. If bidder i declares her true valuation, she wins slot S and receives payoff of

αSvi − αSbS > 0,

since vi > bS. It is not profitable to manipulate by declaring that her value is less than bS

because she does not win a slot. Suppose she declares her value is greater than bS−1. Consider

such a manipulation, so the bidder obtains the ℓth slot, where ℓ ∈ {1, ..., S − 1}. Under the
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GSP, the payoff from this manipulation is:

αℓvi − αℓbℓ ≤ 0,

since vi ≤ bℓ for any ℓ = {1, ..., S − 1}. Therefore, if bidder i can manipulate, her value must

be at least as large as bS−1.

If bidder i has a value at least as large as bS−1, then she wins a slot when she truthfully

reveals her value. Let the slot she receives when she declares her true valuation be the sth slot.

This means that her value vi is not larger than bs−1 but not smaller than bs. Under the GSP,

her payoff is

αsvi − αsbs ≥ 0. (7)

We claim that bidder i cannot manipulate by reporting a value greater than her true value.

If bidder i’s value is greater than b1, she will not affect her payoff by declaring a higher value.

Otherwise, suppose she declares her value to obtain slot ℓ ∈ {1, ..., s− 1} with a greater click-

through rate than slot s. Her payoff is

αℓvi − αℓbℓ ≤ 0,

since vi ≤ bs−1 ≤ bℓ for any ℓ ∈ {1, ..., s− 1} and so this manipulation is unprofitable.

Therefore, the only remaining possibility is that bidder i manipulates to win a slot with a

lower click-through rate. It is not profitable to report a valuation less than bS. Suppose instead,

that her report is greater than bℓ but less than bℓ−1 for some ℓ ∈ {s+1, ..., S}. In this case, she

wins slot ℓ and her payoff is

αℓvi − αℓbℓ ≥ 0.

Without further assumptions on values and click-through rates, this manipulation might be

profitable. Suppose that values and click-through rates are such that for some ℓ ∈ {s+1, ..., S},

αℓ(vi − bℓ) > αs(vi − bs) ≥ 0 (8)

where αs(vi − bs) ≥ 0 from inequality (7). In this case bidder i can profitably manipulate by

submitting a bid to win the ℓth slot.
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Under the GFP, when this bidder declares her true value, she obtains a payoff of zero.

Consider the deviation where she reports her true value to be less than vi such that she wins

the ℓth slot for some ℓ ∈ {s + 1, ..., S}. For simplicity, let her report be bℓ + ǫ for some ǫ > 0

small.

Under the GFP, her payoff from this report is

αℓvi − αℓ (bℓ + ǫ) = αℓ(vi − bℓ) − αℓǫ.

Since αℓ(vi − bℓ) > 0 from inequality (8), there exists an ǫ small enough that her GFP payoff

is strictly greater than zero.

To complete the proof, we describe a problem where some bidder can manipulate the GFP,

but no bidder can manipulate the GSP. Suppose v1 > v2 = . . . = vS = vS−1 > vS−2 > . . . > vN .

First we show that no bidder can manipulate the GSP. Under the GSP, the highest value

bidder’s payoff from reporting her true valuation is α1(v1 − v2). If she reports her value to

be v2, she obtains a zero payoff. If she reports her value to be less than v2, she also obtains

zero payoff, so she cannot manipulate the GSP. Any bidder with value equal to v2 cannot

manipulate the GSP because if she still obtains a slot after manipulation, the next highest

report is unchanged, so her payoff is zero. Moreover, if such a bidder manipulates with a report

where she does not win a slot, she also receives zero. Therefore, no bidder can manipulate the

GSP. In contrast, in the GFP, suppose the highest value bidder declares her value to be less

than v1 but greater than v2. With this report, she wins the first slot, but pays a lower price for

the first slot than she would if she reported her true value. This shows that the highest value

bidder can manipulate the GFP.

4.3 Multi-unit auctions

Unlike the two previous examples, the next model we consider involves the auctioning of mul-

tiple units of identical objects. The US Treasury’s bond issue auctions, auctions for electricity

and other commodities, and financial market auctions such as the opening batch auctions at the

NYSE, Paris, and Amsterdam exchanges are examples of auctions involving multiple identical
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objects.10 We are interested in comparing two sealed-bid auction formats. In each format, a

bidder is asked to submit bids for each of the k units indicating how much she is willing to pay

for each unit.

In the discriminatory format, also known as the pay-your-bid auction, each bidder pays an

amount equal to the sum of her bids that are winning bids. The discriminatory auction is

a natural multi-unit extension of the first-price sealed bid auction. Milton Friedman (1960)

initially proposed a uniform-price auction, where all k units are sold at a “market-clearing”

price such that the total amount demanded is equal to the total amount supplied.

Formally, a seller wishes to sell k of identical items to N bidders, where we assume N ≥ k.

The bidders are asked to report their valuations for the k objects, where vℓ
i is bidder i’s valuation

for the ℓth unit of the item for sale. In both auctions we consider, a total of N k-dimensional

reports are collected, and the k units are awarded to the bidders with the k highest reported

valuations.11

The utility of bidder i who wins ℓ objects at a total price of p is:

ui = v1
i + ...+ vℓ

i − p.

We will assume that marginal values are declining for each bidder: v1
i ≥ v2

i ≥ ... ≥ vk
i .

The two payment rules we consider are:

• discriminatory auction: for the units awarded, the bidder pays the value declared for each

unit.

• uniform-price auction: for the units awarded, the bidder pays the (k+ 1)th highest value

for each unit.12

The US Treasury has employed a discriminatory format since 1929 for the sale of short-term

treasury securities. Since the 1970s, the US Treasury also employed a discriminatory format to

auction Treasury bonds. In 1992, the US Treasury switched to a uniform-price auction for 2 and

10See Krishna (2002) for more examples and discussion.
11For both the discriminatory and uniform-price auction, we adopt the convention that when there is a tie, it

is broken in favor of the bidder with fewer units, and if the bidders have the same number of units, it is broken
in favor of the bidder with the lower index i.

12It is possible to consider other “market clearing” rules such as paying the kth value or paying a value
between the kth and (k + 1)th value. The comparison between formats is not sensitive to this choice.
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5 year notes. Throughout these policy changes, the Treasury has been influenced by a number

of arguments. One of the most influential arguments is from Milton Friedman’s testimony to

the Joint Economic Committee of the US Congress in 1959. In this testimony, Friedman argued

that a uniform-price format levels the playing field by reducing the importance of specialized

knowledge among dealers. According to Friedman, more bidders would be induced to bid

directly in uniform-price auctions because the fear of being awarded securities at too high a

price is eliminated. Merton Miller supported this argument stating, “All of that [gaming] is

eliminated if you use the [uniform-price] auction. You just bid what you think it’s worth.”

A US government report issued around that time jointly signed by the Treasury Department,

SEC, and Federal Reserve Board states: “Moving to a uniform-price award method permits

bidding at the auction to reflect the true nature of investor preferences.”13

Both the discriminatory and uniform-price auctions are not strategy-proof. In particular,

in both formats, bidders have an incentive to shade their bids. In a discriminatory auction,

bidders have an incentive to report that their bids are just above the lowest bid that wins a

unit. In a uniform-price auction, a bidder has an incentive to shade her bid for the units other

than the first one because these bids have the potential to influence the market-clearing price if

she wins. This “demand-reduction” feature of the uniform-price auction prevents it from being

strategy-proof.

The next proposition supports Milton Friedman’s original argument about the incentive

properties of the uniform-price auction relative to the discriminatory auction.

Proposition 6. The discriminatory auction is strongly more manipulable than the uniform-

price auction.

Proof. Fix the reports of every bidder except for bidder i. Let b1, b2, ... be these per unit bids

ordered from highest to lowest.

The first case we consider is if bidder i’s highest value for a unit is less than the kth highest

bid of the other bidders (e.g., v1
i ≤ bk).

If bidder i reports her true values, then in a uniform-price auction, the market-clearing price

is max{v1
i , bk+1}. Since bidder i’s highest value is less than k of the other bids, if v1

i < bk, she

13For more discussion on the influence of Friedman’s argument, see Malvey, Archibald and Flynn (1995) and
Ausubel and Cramton (2002).
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does not obtain any units in a uniform-price auction and if v1
i = bk she only wins a unit if she

wins the tie-breaking. In either case, her payoff is 0.

Bidder i could manipulate to win n units by reporting that n of her valuations are greater

than bk−n+1. If n < k, denote her declared valuation for the (n + 1)th unit by v̂n+1
i . This

manipulation yields a market-clearing price of p̃ = max{v̂n+1
i , bk−n+1}. The payoff from this

manipulation is:

(v1
i + . . .+ vn

i ) − n · p̃.

Since v1
i ≤ bk and bk ≤ p̃, this is not profitable.

The next case we consider is when bidder i’s m highest values where m ∈ {1, ..., k} are

among the top k highest bids (e.g., vm
i ≥ bk−m+1 and if m 6= k, vm+1

i ≤ bk−m+1).

If bidder i reports her true values, then in a uniform-price auction, the market-clearing price

is p = max{vm+1
i , bk−m+1} and bidder i wins m units. Her profit is

(v1
i + . . .+ vm

i ) −m · p ≥ 0. (9)

We argue that a manipulation by bidder i in the uniform-price auction to win more than m

units is unprofitable. If m = k, bidder i wins all units and the market-clearing price is set by

another bidder. In this case, it is impossible to win more units. When m 6= k, suppose bidder

i reports bids such that she wins n > m units where n ≤ k and if n < k, declaring that her

(n + 1)th highest value is v̂n+1
i . In this case, in a uniform-price auction, the market-clearing

price is p̂ = max{v̂n+1
i , bk−n+1} and bidder i wins n units. Her profit is

(v1
i + . . .+ vn

i ) − n · p̂.

We will show that

(v1
i + . . .+ vm

i ) −m · p ≥ (v1
i + . . .+ vn

i ) − n · p̂,

which demonstrates this manipulation is not profitable.

First, since n > m, we have that bk−n+1 ≥ bk−m+1 and bk−m+1 ≥ vm+1
i . As a result,

p̂ ≥ p,
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or the manipulation leads to a weakly higher market-clearing price. Hence, for j = 1, ..., m:

vj
i − p ≥ vj

i − p̂.

For each of the first m units, when the bidder manipulates, she receives no additional utility

because the price is higher. Next, for j = m+ 1, ..., n, we have that

vj
i − p̂ ≤ 0,

since vm+1
i ≤ bk−m+1 ≤ bk−n+1. For each extra unit that the bidders wins when she manipulates,

she loses utility. Therefore, a manipulation by bidder i to win more thanm units is not profitable

in the uniform-price auction.

The last remaining case is if bidder i manipulates to win fewer units. Suppose bidder i

reports bids such that she wins ℓ < m units and that her valuation for the (ℓ+1)th unit is v̂ℓ+1
i .

In this case, in a uniform-price auction, the market-clearing price is p′ = max{v̂ℓ+1
i , bk−ℓ+1} and

bidder i obtains ℓ units. Her profit is

(v1
i + . . .+ vℓ

i ) − ℓ · p′.

Suppose the values are such that

(v1
i + . . .+ vℓ

i ) − ℓ · p′ > (v1
i + . . .+ vm

i ) −m · p. (10)

In this case, it is profitable for bidder i to manipulate and win fewer units than she would if she

reported her true values. In a discriminatory auction, if bidder i reported her true valuations,

she receives m units. Since she pays her reported value for each unit, her payoff is zero. Suppose

that bidder i manipulates by reporting that her ℓ highest values are equal to bk−ℓ+1 and all

other values are less than bk−ℓ+1. In a discriminatory auction, with this report, she wins ℓ units,

and pays bk−ℓ+1 for each unit. Her profit is

(v1
i + . . .+ vℓ

i ) − ℓ · bk−ℓ+1.
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Since bk−ℓ+1 ≤ max{v̂ℓ+1
i , bk−ℓ+1} = p′, equations (9) and (10) imply that

(v1
i + . . .+ vℓ

i ) − ℓ · bk−ℓ+1 > 0.

Therefore, bidder i also finds it profitable to manipulate the discriminatory auction.

To complete the proof, we describe a problem where no bidder can manipulate the uniform-

price auction, while some bidder can manipulate the discriminatory format. Suppose that v1
1 is

strictly larger than any other valuation of the other bidders, all valuations of all bidders other

than bidder 1 are equal to v̄, and v̄ > v2
1 > . . . > vk

1 . Under the uniform-price auction, when

bidders report truthfully, each bidder wins a unit. If bidder 1 wishes to win an additional unit,

she must pay v̄ which is less than her marginal value for the unit. No other bidder would find

it profitable to win more than one unit because if a bidder reported any of her values to be

greater than v̄, she would have to pay at least v̄ for each unit she wins. Therefore, no bidder can

manipulate the uniform-price auction. In contrast, bidder 1 would find it profitable to report

that her value for the first unit is lower than v1
1, but not lower than v̄. In this manipulation,

bidder 1 wins one unit, but pays a lower price than what she would pay if she reported her true

valuations.

5 Conclusion

While strategy-proofness is a very plausible property of a mechanism, it is at the same time

very demanding. One goal of this paper is to develop an approach to comparing mechanisms

that are not strategy-proof based on the incentives they generate. We believe that our approach

complements other approaches, confirms existing views on the manipulability of mechanisms,

and is useful in many prominent applications. The applications we have considered in this paper

are problems from matching and auctions. We are hopeful about the possibility to investigate

the concept in other settings where manipulation has been studied such as in social choice and

political economy or other resource allocation contexts, such as those involving public goods or

cost-sharing.

Another goal of this paper is to make specific comparisons between mechanisms that have
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found practical use in real-world allocation problems. Many of our applications were motivated

by problems from the recent “market-design” literature. Our first result is inspired by the

reform of the National Residency Matching Program, the second result is motivated by the new

student assignment system in New York City, and the third result provides a way to formalize

the idea that the Boston mechanism is a highly manipulable mechanism. The examples of

the internet advertisement auctions and the multi-unit auctions are also cases where ideas

from economics have inspired the design of actual mechanisms. In situations like these, where

providing straightforward incentives may be desirable, our results may serve as another factor

in deciding between mechanisms.
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