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Manipulation-Resistant Reputation Systems

Eric Friedman and Paul Resnick and Rahul Sami

Abstract

This chapter is an overview of the design and analysis of reputation systems

for strategic users. We consider three specific strategic threats to reputa-

tion systems: the possibility of users with poor reputations starting afresh

(whitewashing); lack of effort or honesty in providing feedback; and sybil

attacks, in which users create phantom feedback from fake identities to ma-

nipulate their own reputation. In each case, we present a simple analytical

model that captures the essence of the strategy, and describe approaches

to solving the strategic problem in the context of this model. We conclude

with a discussion of open questions in this research area.

1.1 Introduction: Why are reputation systems important?

One of the major benefits of the Internet is that it enables potentially ben-

eficial interactions, both commercial and non-commercial, between people,

organizations, or computers that do not share any other common context.

The actual value of an interaction, however, depends heavily on the ability

and reliability of the entities involved. For example, an online shopper may

obtain better or lower-cost items from remote traders, but she may also be

defrauded by a low quality product for which redress (legal or otherwise) is

difficult.

If each entity’s history of previous interactions is made visible to poten-

tial new interaction partners, several benefits ensue. First, a history may

reveal information about an entity’s ability, allowing others to make choices

about whether to interact with that entity, and on what terms. Second, an

expectation that current performance will be visible in the future may de-

ter moral hazard in the present, that hazard being the temptation to cheat

or exert low effort. In other words, visible histories create an incentive to
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Fig. 1.1. Example illustrating reputation system dynamics

reliably perform up to the entity’s ability. Finally, because histories reveal

information about abilities, entities with higher abilities will be drawn to

participate, as they will be distinguishable from those of lower abilities, and

respected or rewarded appropriately. In other words, visible histories avoid

problems of adverse selection.

A reputation system collects, maintains and disseminates reputations –

aggregated records from past interactions – of each participant in a com-

munity. The rapid advance in computational power and communication

capacity on the Internet has been a double-edged sword: On one hand, it

has enabled the construction of reputation systems that can store, gather,

and process large quantities of information. On the other hand, it has al-

lowed more sophisticated attacks on the integrity of the reputation system

to be mounted.

Reputation systems have been designed for use in many settings, including

online auctions, e-storefronts, and a wide range peer-to-peer systems. These

systems naturally have differing interfaces, and track different aspects of user

behavior. However, they all share certain underlying components, which are

illustrated in figure 1.1.

The core of a reputation system involves collecting records of entity A’s

past behavior, and then disseminating reputation information to others who

may potentially interact with A in the future. (We use the term “entity”

to denote the real-world entity to which we seek to attach a reputation;
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typically, this is an individual person, but it could also be an organized

group or a firm, or a node in a computer network.) The records are based on

both objective information independently collected about interactions and

feedback from the entities about each other. The exact nature of both the

objective information and the subjective feedback depend on the application.

For an online auction, the system may record the agreed sale price and ask

the buyer and seller to report their satisfaction with each other’s integrity

and performance after a trade. In a peer-to-peer system, we might ask

each peer to monitor and report how often another peer makes its system

available.

In principle, user A’s reputation could simply be a concatenation of all

records pertaining to A, but in practice, reputations are usually numerical

summary values that permit direct comparison between users. Thus, rep-

utation systems include an internal aggregation procedure to convert the

reports to reputations. If all reports conform to a common structure, there

are two natural dimensions along which to aggregate reports: (1) Aggregat-

ing across users by computing a statistic of all other users’ reports about A.

(2) Aggregation across time by computing a statistic of all past reports. In

addition, the aggregation function may use other structure derived from the

reports, or from the reputations themselves. In particular, it often relies on

some notion of transitivity of trust, in the sense that reports from users with

high reputation are weighted more heavily than reports from users with low

reputation.

Economists have studied models where entities strategically choose actions

with an eye toward the histories they will generate. In these models, the

link between actions and outcomes is probabilistic (bad actions sometimes

lead to good outcomes and vice versa) or outcomes are observed with some

error. The analysis of these models is interesting and complex, but beyond

the scope of this chapter.

Rather than threats to the informativeness of a user history, we focus our

attention on threats to the reputation system itself, the system that collects

histories and associates them with entities. When the histories include sub-

jective feedback, that feedback may not be reported or may not be reported

honestly. Histories may even include phantom feedback from non-existent

interactions.

A second vulnerability comes from the fact that histories may not be tied

directly to entities, but rather to online pseudonyms. In many systems,

pseudonyms are cheap, which leads to two threats: an entity may jettison

its pseudonym if it accumulates a bad reputation, and an entity may acquire
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many pseudonyms and have them rate each other favorably in order to inflate

their reputations.

To summarize, we consider three threats to the integrity of reputation

systems:

(i) Whitewashing. An entity may acquire a new pseudonym and start

over with a clear reputation.

(ii) Incorrectly reported feedback. Entities may not report feedback or

may not report it honestly.

(iii) Phantom feedback. An entity may provide feedback for interactions

that never took place, perhaps using “sock puppet” identities (or

sybils) created for the sole purpose of providing such phantom feed-

back.

We begin in section 1.2 with a stylized model of interactions over time

in a market. Initially, in Section 1.3, we assume that the available objec-

tive data about interactions is sufficient to generate informative histories,

even without any reporting of subjective feedback. We consider the threat

of whitewashing, where an entity can start over with a new pseudonym,

which will not be linked to the history of actions taken under the previous

pseudonym. Reputations can still create an incentive for good behavior,

but only if a pseudonym with no history is forced to “pay its dues” in some

fashion while it builds up a history of good actions.

Section 1.4 relaxes the assumption of objective data about actions. Feed-

back about interactions may not be reported correctly. Entities may not

report feedback or may not report it honestly, for a variety of reasons, in-

cluding fear of retaliation, or a desire to be viewed as a nice or skilled

evaluator.

One approach is to treat the reporting of feedback about an action as

itself an action in some other domain. A history of feedback reports made

by an entity can be generated and, suitably aggregated, becomes an entity’s

reputation as a rater. Just as in any reputation system, rater reputations

can deter moral hazard, creating incentives for effort and honest reporting.

It may, however, be difficult to assess the quality of subjectively reported

feedback. We present a mechanism that does so by comparing it with other

subjectively reported feedback.

Section 1.5 takes a second approach. Rather than directly assessing the

quality of subjectively provided feedback, it assumes that an entity’s rep-

utation as a rater is the same as its reputation as an actor in the original

domain. This leads to a notion of transitive trust: if an entity’s actions

in the original domain lead it to have a positive reputation, the entity is
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presumed to be a good rater as well, and its ratings are treated as more

credible and weighted more highly in computing the reputations of other

entities. For example, positive feedback from an eBay member with a good

reputation would count more than positive feedback from a member with

a bad reputation. This naturally leads to a graph model that represents

entities and their feedback about other entities, with actions in the original

domain not represented explicitly. Reputations are computed as scores for

nodes in the graph, subject to the constraints imposed by the link structure

of feedback among entities. We present both possibility and impossibility

results on how transitive trust algorithms can handle the threats of incor-

rectly reported feedback and the problem of phantom feedback from sock

puppet entities, the so-called sybil attack.

1.2 The Effect of Reputations

Economists have developed many game-theoretic models of the impact of

reputations. In this section we present some of the fundamental ideas and

technical tools necessary. We begin with an (over)-simplified example.

Consider the “prisoners’ dilemma”, a classic model from the early days

of game theory. There are 2 agents, Alice (A) and Bob (B), who interact.

If both agents cooperate (C) then then each gains 1 unit of utility, while

if they both defect they gain 0; however if one cooperates and the other

defects (D), the defector gains 2 and the cooperator loses 1. We summarize

this as πA(C,C) = 1, πA(D,D) = 0,πA(D,C) = 2 and πA(C,D) = −1. πB

is similarly defined via symmetry.

Clearly the outcome of this game, when played a single time, should be

(D,D) since it is a dominant strategy for both agents. In an infinitely

repeated game, however, a player may choose C and accept lower payoffs

in one round in order to increase the probability that partners will play C

against her in future stage games, and thus increase her future payoffs. We

denote the game played in each round as the stage game for that round.

Define the discounted payoff to player i in stage game t to be πt
iδ

t, where

πt is the actual payoff in round t and 0 ≤< δ < 1 is the discount factor. The

idea of a discount factor is that it is somehow preferable to get a payoff in

the current round rather than the next round. If the payoffs are monetary,

the possibility of investing the payoff at some interest rate provides a good

intuition for why a discount factor is needed.

We will analyze strategy alternatives that consist of decision rules about

which action to play in each stage game, contingent on a player’s own history

and the histories of all other players. The discounted average payoff of a
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strategy, played infinitely into the future, is defined as:

πi = (1 − δ)
∞
∑

t=0

δtπt
i ,

In this infinitely repeated model, consider the Grim strategy: play C un-

less any player has played D in a previous round. This strategy, pursued by

both players, denoted (Grim,Grim), is a Subgame Perfect Nash Equilibrium

(SPNE), meaning that, if all players pursue this strategy, there is no stage

game at which any player would want to deviate from the strategy.

To prove this is a SPNE, we only need to consider “single deviations” in

which an agent only deviates from Grim once and then returns to playing

it. This follows from a generalization of the single deviation property in

dynamic programming.

Consider a deviation in which Alice plays D in a round 0. Clearly this will

lead to (D,D) in all future rounds for Alice (for everyone, in fact), so Alice’s

discounted average payoff will be (1− δ)(2 + δ ∗ 0 + δ2 ∗ 0 + · · ·) = 2(1 − δ);

however, if she did not deviate, then her payoff would be 1 in every period

leading to (1− δ)(1+ δ + δ2 + · · ·) = 1. Thus, deviating is not advantageous

when 1 ≥ 2(1 − δ) or, equivalently, δ ≥ 1/2. Now, this same argument

applies to any period t > 0 with both sides of the equations multiplied by

δt.

Thus, when δ is small, the promise of future payoffs are not sufficient to

constrain the player’s current behavior. This is true in all reputation sys-

tems: if the players do not value future payoffs sufficiently, then reputations

are of no value.

Other strategies that are “less grim” can also work. For example, punish-

ing for only a small number of periods can lead to a cooperative equilibrium

for higher values of δ.

Now consider a group of N+1 players with N odd, in which in each round

players are paired up at random and play the prisoners’ dilemma. In a simple

reputational extension of the above analysis we consider reputational-grim,

defined as follows: each agent begins with a “good” reputation and keeps

it if she plays C against players with good reputations and D against those

with bad ones. This reputational-grim strategy, if played by all players, is

also an SPNE, for δ ≥ 1/2. This is because, from an defector’s perspective,

the punishments are the same as in the full Grim strategy.

To understand the value of shared reputations, consider an alternative

system where a player remembers others’ interactions with her but histories

are not publicly shared. A natural strategy is to play personalized-Grim, the

variant of Grim where a player views the game as being separated into N



10 E. Friedman, P. Resnick, R. Sami

unrelated games, one with each opponent. In this case, the expected number

of rounds between meeting the same opponent is N so a straightforward

calculation (see exercises) yields a condition for this to be an SPNE, δ ≥

1 − 1/2N which is unreasonably close to 1, for large N .

The analysis above applies to situations where all players have the same

ability, but reputations lead them to strategies where they are reliable part-

ners. To operationalize varying player abilities, models allow different play-

ers different action sets to choose from in the stage game. For example, a

low ability player might only have action D available (or perhaps in some

percentage of stage games have only action D available). A high ability,

honest type might only have action C available. Alternatively, it might take

more effort (cost more) for a low type to play C compared to the high type.

This could arise where C indicates the completion of a high quality prod-

uct. (Player types with only one possible action are called “commitment”

types in the economics literature.) Players with both types of action avail-

able (called “strategic” types in the economics literature) would then want

to choose actions that distinguish them from low-ability players and mimic

those of high ability players.

It is also natural to extend the model to situations where outcomes are

only probabilistically linked to actions, or outcomes are reported with ran-

dom error. This leads to interesting strategic opportunities, including play-

ing C most of the time but sometimes choosing D, which would not be

immediately distinguishable from the actions of high ability honest types

who also have bad outcomes only less frequently. The analysis of these

models is interesting and complex, but beyond the scope of this chapter.

(However, in the following section we will consider random outcomes in a

limited way.)

1.3 Whitewashing

One key issue in online reputation systems is the fragility of identity. Agents

with bad reputations simply reregister with a new username. This is known

as whitewashing. It is easy to see that the ability to whitewash will disable

the functioning of the reputation systems as described in section 1.2, as

agents will simply choose D and then return with a new identity in the

following round.

To prevent this, there needs to be some “initiation fee” upon entry.

For example, simply having an upfront cost of f to register will prevent

whitewashing as long as the cost is sufficiently high. To compute this

f note that the total discounted payoff for deviating once is π′ = (1 −
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δ)(2 − f + δ(1 − f) + δ2 + δ3 · · ·) while following reputational grim obtains

π = (1 − δ)(1 − f + δ + δ2 + · · ·). Thus for an SPNE we need π ≥ π′ which

implies that δf ≥ 1 or f ≥ 1/δ. (Note that we continue to require that

δ ≥ 1/2 to prevent deviation without whitewashing.)

Unfortunately collecting fees is not always feasible (or politically viable);

however, we can create an explicit reputational fee. The key idea is to force

the new arrivals to “pay dues” upon arrival. The most efficient way to do

this is to allow veterans to defect against newcomers, where newcomers are

playing for the first time (apparently) and veterans have played at least once

before. Thus, we can define the pay-your-dues (PYD) strategy as: play C

against any veteran who has never deviated from PYD, otherwise play D

against the veteran. Play D against a newcomer, unless you are a newcomer

too, in which case play C.

Intuitively, this leads to the “socially most efficient” SPNE, where social

efficiency measures the sums of all players’ payoffs. Note, however, that the

social efficiency in this equilibrium is less than the maximum social efficiency

that could be attained without whitewashing. This follows because the

maximum social welfare in a single pair playing the PD is 2 while choosing

(D,C) yields a value of 2 − 1 = 1. (One might consider requiring that

newcomers play D against other newcomers, but this obtains a value of 0

and entails further social loss.) Thus, the possibility of whitewashing leads

to an unavoidable cost being imposed on society.

Even allowing for whitewashing, PYD leads to an SPNE where every

player’s average discounted payoff is 1. (You should verify this as in the

exercises.) However, we have left out several important details in this model

which we discuss in the next section!

1.3.1 A More Dynamic Model

Stepping back, we see that the model we just analyzed has a flaw, since any

newcomers in our model are clearly whitewashers. Thus, for that model, al-

ways playing D against an agent who arrived after the first period (and

personalized-grim otherwise) yields a fully socially efficient SPNE, since

(C,C) is played in every interaction.

Thus, it makes sense to extend our model to capture these issues; although

the difficulty is retaining tractability. First, we assume αN real newcomers

arrive every period and an equal number of veterans depart, where the

departing veterans are chosen at random. However, once again this allows us

to easily detect whitewashers – if there are more than αN newcomers in any

period then the players know that there must be at least one whitewasher.
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Thus, there is an equilibrium in which players play PYD as long as there

are exactly αN newcomers in any period and play D-always if there are ever

more. However, it is clear that this equilibrium is extremely fragile, since a

single deviation leads to all players defecting forever. Such fragile equilibria

are artifacts of the ‘noiselessness’ of the game and the perfect rationality

assumptions inherent in game theory.

In order to make our model more robust we add some ‘noise’. We assume

that in any play of the stage game a player accidently plays D with probabil-

ity ǫ > 0 and then returns in the following period as a whitewasher. In this

model, one can show that PYD leads to the most efficient equilibrium (i.e.,

the highest fraction of cooperative outcomes (C,C)). Proving that PYD

is an equilibrium is intuitively similar to above proofs with the addition of

some ideas from dynamic programming, while proving optimality is more

difficult and requires a careful stochastic analysis.

The PYD strategy in this stylized model corresponds in more practical

settings to a mistrust of newcomers. Until they have proven themselves,

veterans do not trust the newcomers sufficiently to allow them to undertake

mutually beneficial interactions. If only the veterans could trust the new-

comers, the newcomers could start right away to interact in beneficial ways

with the veterans. The threat of whitewashing, however, forces a mistrust

of newcomers. Because of the threat of whitewashing, in any equilibrium

newcomers must also be penalized at least the amount that a deviator would

be penalized.

The only way to improve the treatment of newcomers in an equilibrium

with significant cooperation is to make whitewashing difficult, by making it

more difficult or expensive for existing participants to get new pseudonyms

than it is for newcomers. For example, the organization running the repu-

tation system might require entities to reveal their true names, offer them

one free pseudonym, and then restrict the acquisition of addition ones or

require a payment for them.

1.4 Eliciting Effort and Honest Feedback

The previous section described models in which feedback was reported au-

tomatically and objectively. Any system that actually solicits individual

opinions must overcome two challenges. The first is underprovision. Form-

ing and reporting an opinion requires time and effort, yet the information

benefits others. The second challenge is honesty. A desire to be nice, or fear

of retaliation, may cause a rater to withhold negative feedback. Conflicts of
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interest or a desire to improve others’ perception of them may lead raters

to report distorted versions of their true opinions.

An explicit reward system for honest rating and effort may help to over-

come these challenges. When objective information will be publicly revealed

at a future time, individuals’ reports can be compared to that objective in-

formation. For example, weather forecasts and sports betting odds can be

compared to what actually occurs. See Chapter 26 on information markets

for algorithms that create incentives for honest revelation of information in

such settings.

Here, we develop methods to elicit feedback effectively when independent,

objective outcomes are not available. Examples include situations where no

objective outcome exists (e.g., evaluations of a product’s “quality”), and

where the relevant information is objective but not public (e.g., a prod-

uct’s breakdown frequency, which is only available to others if the product’s

current owners reveal it).

In these situations, one solution is to compare raters’ reports to their

peers’ reports and reward agreement.† However, if rewards are made part

of the process, dangers arise. If a particular outcome is highly likely, such

as a positive experience with a seller at eBay who has a stellar feedback

history, then a rater who has a bad experience will still believe that the next

rater is likely to have a good experience. If she were to be rewarded simply

for agreeing with her peers, she will not report her bad experience. This

phenomenon is akin to the problems of herding or information cascades.

We now describe a formal mechanism, the peer-prediction method, to im-

plement the process of comparing with peers. The scheme uses one rater’s

report to update a probability distribution for the report of someone else,

whom we refer to as the reference rater. The first rater is then scored not

on agreement between the ratings, but on a comparison between the prob-

abilities assigned to the reference rater’s possible ratings and the reference

rater’s actual rating. Raters need not perform any complex computations:

so long as a rater trusts that the system will update appropriately, she will

prefer to report honestly.

Scores can be turned into monetary incentives, either as direct payments

or as discounts on future merchandise purchases. In many online systems,

† Subjective evaluations of ratings could be elicited directly instead of relying on correlations
between ratings. For example, the news and commentary site Slashdot.org allows meta-
moderators to rate the ratings of comments given by regular moderators. Meta-evaluation
incurs an obvious inefficiency, since the effort to rate evaluations could presumably be put to
better use in rating comments or other products that are a site’s primary product of interest.
Moreover, meta-evaluation merely pushes the problem of motivating effort and honest report-
ing up one level, to ratings of evaluations. Thus, scoring evaluations in comparison to other
evaluations may be preferable in certain settings.
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however, raters seem to be quite motivated by prestige or privileges within

the system. For example, at Slashdot.org, users accumulate “karma” points

for various actions and higher karma entitles users to rate others’ postings

and to have their own postings begin with higher ratings; at ePinions.com,

reviewers gain status and have their reviews highlighted if they accumulate

points. Similarly, offline point systems that do not provide any tangible

reward seem to motivate chess and bridge players to compete harder and

more frequently.

1.4.1 A Model

We now consider a model to analyze these issues. A number of raters expe-

rience a product and then rate its quality. The product’s quality does not

vary, but is observed with some idiosyncratic error. After experiencing the

product, each rater sends a message to a common processing facility called

the center. The center makes transfers to each rater, awarding or taking

away points based on the raters’ messages. The center has no independent

information, so its scoring decisions can depend only on the information pro-

vided by other raters. As noted above, points may be convertible to money,

discounts or privileges within the system, or merely to prestige. We assume

that raters’ utilities are linear in points. We also assume that raters are risk

neutral, and hence, seek to maximize expected wealth.

We refer to a product’s quality as its type. Assume the number of prod-

uct types is finite, and the types are indexed by t = 1, ..., T . Further, we

assume that there is a commonly known prior probability. Let Pr0 (t) be

the commonly held prior probability assigned to the product’s being type t.

Assume that Pr0 (t) > 0 for all t and
∑T

t=1 Pr0 (t) = 1.

Let I be the set of raters, where |I| ≥ 3. I may be (countably) infinite.

Each rater has a perception of a product’s type, which is called her sig-

nal. Each rater privately observes her own signal; she does not know any

other rater’s signal. Let S = {s1, ..., sM} be the set of possible signals, and

let Si denote the random signal received by rater i. Conditional on the

product’s type, raters’ signals are independent and identically distributed;

the distribution is represented by function f (sm|t) = Pr
(

Si = sm|t
)

, where

f (sm|t) > 0 for all sm and t, and
∑M

m=1 f (sm|t) = 1 for all t. We assume

that this function f (sm|t) is common knowledge. Further, we assume that

the conditional distribution of signals is different for different values of t, so

that the signals are informative about the types.

Throughout this section, we use the following simple example as an illus-

tration. There are only two product types, H and L, with prior Pr0(H) =
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Pr0(L) = .5, and two possible signals, h and l. The distribution of the

signals, conditioned on the true type, is as follows: f(h|H) = .85, f(l|H) =

.15, f(h|L) = .45, f(l|L) = 0.55. Thus, Pr(h) = .5 ∗ .85 + .5 ∗ .45 = .65.

In the mechanism we propose, the center asks each rater to announce her

signal. After all signals are announced to the center, they are revealed to

the other raters and the center computes transfers. We refer to this as the

simultaneous reporting game. Let xi ∈ S denote one such announcement,

and x =
(

x1, ..., xI
)

denote a vector of announcements, one by each rater.

Let xi
m ∈ S denote rater i’s announcement when her signal is sm, and

x̄i =
(

xi
1, ..., x

i
M

)

∈ SM denote rater i’s announcement strategy. Let x̄ =
(

x̄1, ..., x̄I
)

denote a vector of announcement strategies. As is customary,

let the superscript “−i” denote a vector without rater i’s component.

Let τi (x) denote the transfer paid to rater i when the raters make an-

nouncements x, and let τ (x) = (τ1 (x) , ..., τI (x)) be the vector of transfers

made to all agents. An announcement strategy x̄i is a best response to x̄−i

for player i if for each m:

∀x̂i ∈ SES−i

[

τi

(

x̄i
m, x̄−i

)

|Si = sm

]

≥ ES−i

[

τi

(

x̂i, x̄−i
)

|Si = sm

]

. (1.1)

That is, a strategy is a best response if, conditional on receiving signal sm,

the announcement specified by the strategy maximizes that rater’s expected

transfer, where the expectation is taken with respect to the distribution of

all other raters’ signals conditional on Si = sm. Given transfer scheme

τ (x), a vector of announcement strategies x̄ is a Nash Equilibrium of the

reporting game if (1.1) holds for i = 1, ..., I, and a strict Nash Equilibrium

if the inequality in (1.1) is strict for all i = 1,..., I.

Truthful revelation is a Nash Equilibrium of the reporting game if (1.1)

holds for all i when xi
m = sm for all i and all m, Further, truthful revelation

is a strict Nash Equilibrium if the inequality is strict. (In other words, if

all the other players announce truthfully, truthful announcement is a strict

best response.)

Continuing the two-type, two-signal example, suppose that rater i receives

the signal l. Recall that Pr0(H) = .5, f(h|H) = .85, and f(h|L) = .45, so

that Pr
(

si
l

)

= .35. Given i’s signal, the probability that rater j will receive

a signal h is:

Pr
(

Sj = h|Si = l
)

= f (h|H)
f (l|H) Pr0 (H)

Pr (Si = l)
+ f (h|L)

f (l|L) Pr0 (L)

Pr (Si = l)

= .85
.15 ∗ .5

.35
+ .45

.55 ∗ .5

.35
∼= 0.54.
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If i had instead observed h, then:

Pr
(

Sj = h|Si = h
)

= f (h|H)
f (h|H) Pr0 (H)

Pr (Si = h)
+ f (h|L)

f (h|L) Pr0 (L)

Pr (Si = h)

= .85
.85 ∗ .5

.65
+ .45

.45 ∗ .5

.65
∼= 0.71.

1.4.2 Peer-Prediction Scoring

We now describe how to assign points to a rater i, based on her report and

that of another player j. A scoring rule is a function T
(

s|xi
)

that, for each

possible announcement xi of Si, assigns a score to each possible value s ∈ S.

We cannot directly access the signal sj, but in a truthful equilibrium, we

can use player j’s report.

Definition 1.1 A scoring rule is strictly proper if the rater maximizes her

expected score by announcing her true beliefs.

The literature contains a number of strictly proper scoring rules for eliciting

beliefs about the probability of an event. The score can be positive or

negative. For example, one proper scoring rule, the logarithmic scoring rule

is to penalize the player the log of the probability she assigned to the event

that actually occurred. Suppose there are only two possible events (h,l),

and a player is asked to report her belief p̂ of the probability of event h.

The log scoring rule is defined by T (h|p̂) = ln(p̂), T (l|p̂) = ln(1 − p̂). If her

true belief is that h occurs with probability p, then the expected value of

announcement p̂ is p ln p̂ + (1 − p) ln (1 − p̂). Setting the first derivative to

0 gives the first order condition for maximization, which requires p = p̂.

In the peer prediction method, for each player we choose a reference rater

r(i). The outcome to be predicted is the reference rater’s announcement

xr(i). Player i does not directly report a probability distribution over the

reference rater’s report: it is inferred from her own report and the prior

probability distribution. Truthful reporting is still a best response if she

believes that the reference rater will report honestly.

We write T (xr(i)|xi) for ln[Pr0(S
r(i) = xr(i)|Si = xi)], i.e., the log of the

inferred probability that r(i) will see xr(i) given that Si sees signal xi. Then,

let:

τ∗
i

(

xi, xr(i)
)

= T
(

xr(i)|xi
)

. (1.2)

Proposition 1: For any mapping r that that assigns to each rater i a

reference rater r (i) 6= i, truthful reporting is a strict Nash equilibrium of the

simultaneous reporting game with transfers τ∗
i .
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Proof : Assume that rater r (i) reports honestly: xr(i) (sm) = sm for all m.

Since Si is stochastically informative for Sr(i), and r (i) reports honestly,

Si is stochastically informative for r (i)’s report as well. For any Si = s∗,

player i chooses xi ∈ S in order to maximize:

M
∑

n=1

T
(

sr(i)
n |xi

)

Pr
(

Sr(i) = sn|Si = s∗
)

. (1.3)

Since T (·|·) is a strictly proper scoring rule, (1.3) is uniquely maximized

by announcing xi = s∗. Thus, given that rater r (i) is truthful, rater i’s

best response is to be truthful as well.

Since 0 < Pr
(

Sr(i) = sn|Si = s∗
)

< 1, ln(Pr
(

Sr(i) = sn|Si = s∗
)

) < 0; we

refer to τ∗
i as rater i’s penalty since it is always negative in this case. (By

adding a suitably large constant that depends only on the distribution f , it

is in principle possible to convert this to a positive score without altering

its strategic properties).

Consider the simple example where rater i received the relatively unlikely

signal l (Pr
(

Si = l
)

= .35). Even contingent on observing l it is unlikely that

rater j will also receive an l signal ( Pr
(

Sj = l|Si = l
)

= 1 − 0.54 = .46).

Thus, if rater i were rewarded merely for matching her report to that of

rater j, she would prefer to report h. With the log scoring rule, an honest

report of l leads to an expected payoff

ln[Pr(Sj =h|Si = l)] Pr(Sj =h|Si = l) + ln[Pr(Sj = l|Si = l)] Pr(Sj = l|Si = l)

= ln (.54) .54 + ln(.46).46 = −0.69.

If, instead, she reports h, rater i’s expected score is:

ln[Pr(Sj =h|Si =h)] Pr(Sj =h|Si = l) + ln[Pr(Sj = l|Si =h)] Pr(Sj = l|Si = l)

= ln (.71) .54 + ln(.29).46 = −0.75.

As claimed, the expected score is maximized by honest reporting.

The key idea is that the scoring function is based on the updated be-

liefs about the reference rater’s signal, given the rater’s report, not simply

matching a rater’s report to the reference report. The updating takes into

account both the priors and the reported signal, and thus reflects the initial

rater’s priors. Thus, she has no reason to shade her report toward the signal

expected from the priors. Note also that she need not perform any complex

Bayesian updating. She merely reports her signal. As long as she trusts the

center to correctly perform the updating and believes other raters will report

honestly, she can be confident that honest reporting is her best action.



18 E. Friedman, P. Resnick, R. Sami

Note that while Proposition 1 establishes that there is a truthful equilib-

rium, it is not unique, and there may be non-truthful equilibria. To illus-

trate, in the example we have been considering two other equilibria are (1)

report h all the time, and (2) report l all the time.† While such non-truthful

equilibria exist, it is reasonable to think that the truthful equilibrium will

be a focal point, especially when communication among raters is limited, or

when some raters are known to have a strong ethical preference for honesty.

In addition, the center can punish all the raters if it detects a completely

uninformative equilibrium such as all h or all l.

A variety of extensions to this base scoring rule have been studied. For

example, adding a constant value to the score increases the expected payoff

without changing the incentives for honest revelation. Multiplying the score

by a constant preserves the incentive for honest revelation but changes the

amount of costly effort a rater will want to exert in order to acquire an infor-

mative signal. The points that each person earns can be debited from some

other participant, so that all scores are settled through transfer payments

rather than subsidies from the center. Alternative proper scoring rules to

reduce the expected size of payments have also been studied.

The payments can be adapted to a sequential interaction scenario where

each rater sees the previous rater’s reports before reporting herself. Each

rater is scored based on the probability distribution inferred from the com-

mon prior beliefs, her own report, and previous reports. Since the center

will take into account others’ reports automatically, it is optimal to report

just her own signal.

The most problematic aspect of the scoring mechanism is its reliance on

common prior beliefs about the distribution of types and the distribution of

signals contingent on types. These are needed to infer from a user’s reported

signal xi the probability distribution R for the reference rater’s signal, which

is used to determine the user’s point score. A seemingly attractive alterna-

tive is to elicit R directly, but player i may also be a reference rater for some

other player, and so xi must be truthfully elicited in order to score that

other player.

The requirement of common priors can be relaxed somewhat if each player

is asked to report her personal priors about the item’s type before receiving

her information signal about the item, and then to report her signal once

she receives it. There still is a requirement of common beliefs about the

distribution of signals contingent on types, in order to perform Bayesian

† To verify the “always play h equilibrium,” note that if the reference rater always reports high,
the rater expects ln (.54) 1 + ln (.46) 0 = −0.616 19 if she reports l, and ln (.71) 1 + ln (.29) 0 =
−0.342 49 if she reports h. Similar reasoning verifies the “always play l equilibrium.”
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updating correctly. One solution would be to define the types empirically

according to the distribution of signals they elicit (e.g., type 1 yields 10%

h signals; type 2 yields 20%, etc.) Then, the beliefs about distribution of

signals contingent on type would, by construction, be commonly held.

Many open questions remain about the peer-prediction method. Can it

be extended to situations where raters vary in their abilities and scores are

used both to assess the credibility of raters and to give them incentives

for effort and honest reporting? Can the method be extended to situations

where entities choose their interactions partners rather than being randomly

matched? Can it be made robust to collusion among entities or sybil attacks

with fake entities providing confirmatory ratings?

1.5 Reputations based on transitive trust

In this section, we discuss the transitive trust approach to dealing with the

lack of objective feedback. The foundation of this approach is the postulate

that the credibility of an agent’s feedback is tied to the credibility of her non-

feedback actions. This assumption enables the construction of reputation

systems in the absence of any external signals of interaction outcomes or

feedback quality: an entity’s reputation is calculated by weighting ratings of

the entity according to the raters’ credibilities, which are in turn calculated

from those raters’ reputations. Thus, if we begin with some set of credible

agents, we can potentially grow this set transitively: If the currently credible

agents have positive feedback about i, i can be included in the set of credible

agents. This is a recursive construction; we need to carefully define how

to bootstrap the credibility calculation, how to propagate the credibility

through the network, and when to terminate the calculation.

One additional simplification is often employed in reputation algorithms,

which is to ignore the temporal order in which feedback is received. Now,

the feedback can be succinctly expressed in graphical form: At a given

point of time, let t(ij) denote the summary feedback (trust) that i reports

about j, based on interactions between them thus far. We assume that the

trust can be expressed as a nonnegative real value. Then, the input to the

reputation system can be viewed as a “trust graph” G = (V,E, t), where

V is the set of agents, E the set of directed edges and t : E → ℜ+ \ {0}

the weights. (Note that typically the graph will be quite sparse, so for

algorithmic considerations we explicitly include E.)

We assume that the reputations computed by our system are numeric

values. Then, the reputation aggregation mechanism can be represented as

a function from a trust graph to a set of reputation values, F : G → ℜ|V |,
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where Fv(G) is the reputation value of vertex v ∈ V . The reputation values

determine an ordering or ranking of the nodes. A reputation function is

trivial if the ranking induced by F (G) is constant over all G; we restrict our

attention to nontrivial reputation functions.

This model captures the many reputation systems that have been pro-

posed or used in practice. One important example is PageRank, a mecha-

nism used by Google to rank web pages. In this case v ∈ V is a web page,

(v,w) ∈ E is a directed edge showing that web page v has a hyperlink to

page w and t(v,w) = 1/Out(v), where Out(v) is the outdegree of v. In a

P2P system, v ∈ V is a peer, (v,w) ∈ E is a directed edge showing that

peer v has interacted with w and t(v,w) represents the degree of trust that

v has in w, which can depend on the number, type and outcomes of v’s

interactions with w.

There are numerous ways in which the reputations can be computed from

the trust graph. We consider a simple version of PageRank, in which the

ranking function is given by

Fv(G) = ǫ + (1 − ǫ)
∑

v′|(v′,v)∈E

Fv′(G)t(v′, v).

Another interesting aggregation function, used in the Advogato system, is

the max-flow algorithm, where Fv(G) is the maximum flow from some start

node v0 ∈ V to v. In the P2P setting it is natural to create personalized

reputation functions where each node uses itself as the start node. In the

web ranking setting one can simply choose one (or several) ‘trusted’ nodes as

the start nodes. Lastly, for comparison, we consider the Pathrank algorithm

where Fv(G) is the shortest path from some start node v0 ∈ V to v, where

the length of an edge is simply the inverse of the trust value.

A reputation system is monotonic if adding an incoming edge to v never

reduces the rank of v relative to any other node w, i.e., for E′ = E
⋃

{uv},

Fv(V,E) > Fw(V,E) ⇒ Fv(V,E′) > Fw(V,E′) and Fv(V,E) ≥ Fw(V,E) ⇒

Fv(V,E′) ≥ Fw(V,E′). All the reputation schemes described above are

monotonic. A reputation system is symmetric if the function F commutes

with permutation of the node names, i.e., the reputations depend only on

the graph structure, and not on the labels of the nodes. The simple variant of

PageRank described above is symmetric, but the other reputation functions

are not: the start node v0 enjoys a privileged position.
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1.5.1 Incentives for honest reporting

With the transitive trust model, the incentive problems are particularly

acute. Entities are not rewarded or penalized directly for the quality of the

ratings they provide, only for the ratings they receive from others. Thus, an

entity has no incentive to provide informative feedback. Further, depending

on the reputation function F , she may have a strong incentive provide in-

correct feedback, so as to influence the credibility of other agents’ feedback

about herself.

Therefore, we would like a reputation function F in which an agent v

cannot strategically choose feedback to boost her own standing. Define a

reputation system as rank-strategyproof if, for every graph G and every agent

v ∈ V , agent v cannot boost her rank ordering by strategic choices of how

she rates other agents. This formulation allows an agent to manipulate its

own or others’ reputation scores as long as it is unable to improve its position

in the rank ordering of reputation scores.

It turns out that rank-strategyproofness is very difficult to achieve in

symmetric reputation systems: Any nontrivial, monotonic reputation sys-

tem that is symmetric cannot be rank-strategyproof. For example, in the

PageRank ranking system, a node v may be able to improve her rank by

dropping an outgoing edge vu to a higher-ranked node u, thereby reducing

u’s reputation. We refer readers to the references at the end of this chap-

ter for additional results in this vein. We note that this impossibility result

does not apply to non-symmetric reputation systems; the Pathrank function

satisfies both the rank-strategyproofness and monotonicity properties.

1.5.2 Sybils and Sybilproofness

Next, we consider robustness to another attack on reputation systems: sybil

attacks. In a sybil attack, a single agent creates many fake online identities

to boost the reputation of its primary online identity. Formally, we assume

that a node can create any number of sybil nodes, with any set of trust

values between them. In addition, we allow the node to divide incoming

trust edges among the sybils in any way that preserves the total trust,
∑

v′|(v′,v)∈V t(v′, v) and manipulate the outgoing trust links in any manner it

chooses. Note that many other formulations are possible depending on the

specific system being modeled. Most of the results we discuss below hold in

many of the other possible formulations.

Definition 1.2 Given a graph G = (V,E, t) and a user v ∈ V , we say that

a graph G′ = (V ′, E′, t′) along with a subset U ′ ⊆ V ′ is a sybil strategy
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for user v in the network G = (V,E, t) if v ∈ U ′ and collapsing U ′ into a

single node with label v in G′ yields G. We can refer to U ′ as the sybils of

v, and denote a sybil strategy by (G′, U ′).

We define two different notions of sybilproofness for reputation functions.

Definition 1.3 A reputation function F is value-sybilproof if for all graphs

G = (V,E), and all users v ∈ V , there is no sybil strategy for v, (G′, U ′),

with G′ = (V ′, E′) such that for some u ∈ U ′, Fu(G′) > Fv(G)

Definition 1.4 A reputation function F is rank-sybilproof if for all graphs

G = (V,E), and all users v ∈ V , there is no Sybil strategy (G′, U ′) for v (with

G′ = (V ′, E′)) such that, for some u ∈ U ′ and w ∈ V \{v}, Fu(G′) ≥ Fw(G′)

while Fv(G) < Fw(G).

Theorem 1.5 There is no (nontrivial) symmetric rank-sybilproof reputa-

tion function.

Proof Given a graph G = (V,E) and reputation function F , let v,w ∈ V

with Fw(G) > Fv(G). Now consider the graph G′ which is simply 2 disjoint

copies of G where U is the second copy of G combined with v. By symmetry,

there is a node u ∈ U such that Fu(G′) = Fw(G′). Thus F is not rank-

sybilproof.

Note that this result does not require the assumption that F is monotonic.

In fact, symmetric reputation functions cannot be sybilproof even for an

attack with a single sybil.

Definition 1.6 We say that a reputation function is K-rank-sybilproof

if it is rank-sybilproof for all possible sybil strategies (G′, U ′), with |U ′| ≤

K + 1.

Theorem 1.7 There is no symmetric K-rank-sybilproof nontrivial reputa-

tion function for K > 0.

Proof Consider the graphs in the previous example, where V = {v =

v1, v2, . . . , vr = w} is the original vertex set and U = {u1, u2, . . . , ur} is the

duplicate; let V ′ = V
⋃

U . Define Gt to be the subgraph of G′ with V t =

V
⋃

{u1, . . . , ut} and G0 = G. Then Fw(G0) > Fv(G
0), while Fur

(Gr) =

Fw(Gr) (where ur is the copy of node vr = w), so there must exist a t such

that maxi∈{v,u1,···,ut} Fi(G
t) < Fw(Gt), but maxi∈{v,u1,···,ut+1} Fi(G

t+1) ≥

Fw(Gt+1). Let m be the node in {v, u1, · · · , ut} that achieves the greatest
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Fig. 1.2. Node (a) improves its ranking by adding a sybil (a’) under max-flow.

reputation in Gt+1. Then either Fm(Gt+1) ≥ Fw(Gt+1) or Fut+1
(Gt+1) ≥

Fw(Gt+1). It follows that the addition of node ut+1 is a successful sybil

strategy for m in Gt. Hence, F is not 1-rank-sybilproof on all graphs.

Now, consider PageRank. It is clearly symmetric – changing the labels on

the nodes does not change the reputation values. This immediately implies

that it is not rank-sybilproof.

One natural approach to overcoming this result is to break the symmetry

of the reputation system by using a specific trusted node (or nodes) as

a seed. However, care is still needed to achieve robustness against sybil

attacks. Here, we consider two simple reputation functions that are provably

sybil-resistant.

We first consider the max-flow based ranking mechanism. It is easy to

show that it is value-sybilproof:

Theorem 1.8 The max-flow based ranking mechanism is value-sybilproof.

Proof This follows directly from max-flow equals min-cut after noticing that

all sybils of v ∈ V must be on the same side of the cut as v and thus on

the other side of the cut from the source s. Thus, no sybil can have a value

higher than the min-cut which is equal to Fv(G).

However, the max-flow based ranking mechanism is not rank-sybilproof,

as the example in figure 1.2 shows. This is because while v ∈ V cannot

increase it’s own value, it can reduce the value of nodes for which it is

on a max-flow path. Nonetheless, there do exist nontrivial rank-sybilproof

algorithms. The Pathrank reputation mechanism is one example:

Theorem 1.9 The Pathrank ranking mechanism is value-sybilproof and rank-

sybilproof.

Proof It is value sybilproof since sybils cannot decrease the length of the

shortest path. Rank-sybilproofness follows from the fact that the only time
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a node v can affect the value of another node w is if v is on the shortest

path from s to w; however, in that case, we must have Fv(G) > Fw(G).

The basic property that flow based mechanisms are value sybilproof but

not rank-sybilproof can be generalized to include a wide variety generalized

flow mechanisms, such as those with “leaky pipes”. Similarly, it can be

shown that generalized path based methods are value and rank-sybilproof

and only path-based methods are rank-sybilproof in a large class of reputa-

tion mechanisms.

Lastly, we note that there are many open questions in this area. For exam-

ple, while both PageRank and max-flow mechanisms are not rank sybilproof

in the worst case, they are very useful reputation systems, and might be less

manipulable on average. A precise formulation and analysis of this question

is still open. For example, about half the pages on the web could double

their PageRank using only a single sybil.

1.6 Conclusion and Extensions

Reputations provide one of the most successful incentive mechanisms, and

reputation systems are widespread on the Internet today. However, many

reputation systems find themselves constantly under attack, and have to

resort to fixing strategic problems after they are detected. In particular,

many reputation systems are engaged in a constant arms race against at-

tackers, where the systems change their ranking procedure and the attackers

experiment until they find a weakness.

We believe that theoretical results on what can and cannot be accom-

plished by reputation systems, as well as provably secure system designs,

would very useful. In this chapter, we have described three components of

this theory; several other directions have been explored, and much research

remains to be done.

1.6.1 Extensions and Open Problems

Distributed Reputation Systems Up to this point, we have considered

that users may strategically manipulate the feedback they provide or the

identities they use, but we have implicitly assumed that they cannot directly

manipulate the way in which the feedback is aggregated or the content of

other users’ feedback. This is a reasonable assumption as long as the users

do not have any control over the communication medium or the server(s)

used to compute the reputations. However, many proposed applications of

reputation systems are settings, such as peer-to-peer applications or wireless
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ad-hoc networks, in which these assumptions might be violated: there is no

neutral trusted party to compute reputations, and users might be able to

intercept each others’ messages.

This has led many researchers to study distributed reputation systems in

which the reputations are computed by the users themselves, but measures

are adopted to minimize the risk of manipulation. One fundamental tech-

nique is to use replication: The same computation is performed at multiple

nodes, and there are protocols to detect inconsistencies in the results. Simi-

larly, if the users control portions of the communication network, it may be

possible to send messages along multiple redundant paths so that no user

can block or modify communication between two other users.

Much work remains to be done in this area. In particular, the redundancy

technique is vulnerable to collusive attacks; the main design approach is to

make these attacks difficult by requiring that a large number of users collude.

This may be compromised by the existence of pseudonyms and sybil attacks.

Dynamic attacks The basic model we have studied assumes that a user

has full knowledge of which online identity she is interacting with. In some

applications, it may be possible for users to claim credit for an interaction

that another user executed, or to freeride by copying another user’s actions.

For example, if the contribution being measured is the number of puzzles a

user solves, or the quality of ratings she gives to online articles, she may be

able to garner a high reputation simply by copying another user.

On the other hand, dynamics may restrict the range of attacks in some

settings. For example, in a P2P system a peer cannot divide incoming links

among its sybils arbitrarily, since one needs an interaction to obtain a link

and a low ranked sybil might have difficulty finding (non-sybil) partners.

Metrics and benchmarks Strategic analysis of reputation systems of-

ten takes the form of proving robustness against attacks. While robust-

ness against attacks is certainly desirable, we should not lose sight of the

performance of the reputation system. In the extreme, a system in which

everybody has zero reputation would be perfectly secure but completely use-

less. We need to develop metrics (or empirical benchmarks) of how well a

particular aggregation method serves the users’ information needs. One ap-

proach which has been taken is to formulate the performance in terms of an

economic welfare measure, but a more direct formulation may be valuable.

Drawing on other social sciences We have concentrated on economic

and game theoretic approaches to reputation. Reputation has also been
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studied in sociology and social psychology, especially in the form of the

broader, but clearly related, notion of trust. Insights from this literature are

valuable in the design of reputation systems.

Putting it all together The major challenge in reputation systems is to

design a system that coherently puts together all the ideas that have been

explored, including accurate feedback elicitation, robustness to whitewash-

ing and sybil attacks, and distributed computation. This remains the key

challenge for the reader!

1.7 Exercises

For context, each problem is preceded by the number of the relevant section.

(i) (1.2) Verify that if the stage game payoff is constant, the (discounted)

average payoff per round equals that constant. That is if piti = c then

πi = c.

(ii) (1.2) The well known “tit-for-tat” (TFT) strategy can be defined

as: in round i play the strategy that your opponent played in round

i − 1, starting with C. Show that TFT, played by all players, is not

an SPNE for any δ < 1.

(iii) (1.2) Recall our definition of the Grim strategy: play C unless some

player has played D in a previous round. Explain why it should

not be defined in the apparently equivalent manner: “Play C unless

the other player has played D in a previous round.” (Hint: SPNE

strategies need to optimal even on play paths that should not arise!)

(iv) (1.3) Verify that PYD indeed an SPNE. In particular, show that

deviating from the PYD strategy by playing D instead of C is not

profitable when δ > 1/2. (Hint: argue that, no matter the reputation

of the deviator’s partner in the next round, she could get a payoff 2

higher if her own reputation is good than if it is bad.)

(v) (1.3) Compute the equilibrium conditions for personalized-grim. (Hint:

Consider each personalized game as a separate game where players

only play in some randomly chosen periods.)

(vi) (1.4) Suppose a rater i can see the ratings of a rater j (j 6= r(i))

before she submits her rating. Suppose i was paid off according to

the scoring rule T (xr(i)|xi) defined in equation 1.2. Construct an

example in which honest rating is not always optimal for i.

(vii) (1.4)Consider a situation with two events h and l, in which a player

is asked to report her belief p̂ about the probability of h. The
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quadratic scoring rule is defined by T (h|p̂) = a+2bp̂−b[p̂2 +(1− p̂)2],

T (l|p̂) = a + 2b(1 − p̂) − b[p̂2 + (1 − p̂)2], where a and b are constant

parameters. Show that the quadratic scoring rule is a proper scoring

rule. Derive upper and lower bounds on the player’s score (in terms

of the parameters).

(viii) (1.5) Modify the assumptions in the sybilproofness argument for a

specific setting and check which of the results are changed. (For ex-

ample, assume that incoming trust edges cannot be moved, as would

be the case for web page ranking.)

(ix) (1.5) Compute the probability that a sybil changes the rank ordering

of two nodes for a randomly generated trust graph for the ranking

procedures discussed. (Choose any random model you like and either

try to prove a general result or explicitly compute for a small, 3-5

node, graph.)

1.8 Bibliographic notes

Below we provide pointers to relevant literature. Our list is meant to provide

access to the literature and is certainly not comprehensive, i.e., for each topic

we give one or two representative publications from which the reader can

iterate the reference finding process.

Several chapters in this book extend our discussion, both providing a

more detailed introduction to game theory, and discussing some examples

on reputation systems. In particular, Chapter 23 on incentives in peer-to-

peer systems includes a detailed discussion on the use of reputation systems

in P2P environments.

There is a large literature on economic models of reputation. The follow-

ing classic articles provide some foundations: Kreps and Wilson [KW82],

Milgrom and Roberts [MR82], Fudenberg and Levine [FL89], and Kan-

dori [Kan92]. Tadelis [Tad99] considers trading reputations, and shows that

it is not always undesirable. Dellarocas [Del01] analyzes the economic effi-

ciency of different feedback aggregation mechanisms. For broad overviews

of this area, see Dellarocas [Del03] and Resnick et al. [RZFK00].

Our presentation of whitewashing follows Friedman and Resnick [RF01].

That paper includes a detailed proof that no equilibrium can yield substan-

tially more cooperation than the Paying Your Dues equilibrium. Also see

[LFCS03], which introduced the term whitewashing.

Recently, the robustness of reputation systems to manipulation has at-

tracted considerable research. The peer-prediction method to elicit honest

feedback was originally described in an article by Miller et al. [MRZ05]. See
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Cooke [Coo91, p.139] and Selten [Sel98] for a discussion of strictly proper

scoring rules. Jurca and Faltings [JF06] study modifications to the scoring

rule to reduce the total expected payment. Bhattacharjee and Goel [BG06]

treat the revenues generated by a set of ratings as an objective indicator

of the quality of the ratings. They provide an algorithm for dividing the

revenues among raters in a way that creates incentives for entities to correct

errors in the current community rating consensus.

Maintaining reputations for raters can provide signals about rater qual-

ity, in addition to incentives for good performance. Awerbuch and Klein-

berg [AK05] describe an algorithm that agents can use to learn who the good

raters are. Their solution is robust to malicious as well as strategic attack-

ers, provided that there are some altruistic raters who will rate accurately

without incentives.

Many researchers have presented transitive-trust approaches to calculat-

ing reputations; a general framework using path algebras is described by

Richardsonet al. [RAD03]. Altman and Tenneholtz [AT06] study reputa-

tion systems from an axiomatic point of view, and present many possibility

and impossibility results of the same flavor found in Section 1.5.1. Chien et

al. [CDK+03] prove that PageRank is monotonic. Our presentation of the

sybilproofness of reputation systems follows Cheng and Friedman [CF05].

Many proposed solutions to the sybil attack implicitly or explicitly use the

idea of a seed to break the symmetry of the reputations; for example, see

Gyöngyi et al. [GGMP04]. The Advogato metric proposed by Levien [Lev04]

also falls in this category. An alternative approach is described by Goel et

al. [ZGG+04, BG05].
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