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Computationally Manageable 

Combinational Auctions 
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Faculty of Management and Rutgers Centerfor Operations Research, Rutgers University, New Brunswick, New Jersey 08903-5062 

BRICS, Department of Computer Science, University of Aarhus, Denmark* 
Faculty of Management and Rutgers Centerfor Operations Research, Rutgers University, New Brunswick, New Jersey 08903-5062 

There is interest in designing simultaneous auctions for situations such as the recent FCC 
radio spectrum auctions, in which the value of assets to a bidder depends on which other 

assets he or she wins. In such auctions, bidders may wish to submit bids for combinations of 
assets. When this is allowed, the problem of determining the revenue maximizing set of non- 
conflicting bids can be difficult. We analyze this problem, identifying several different structures 
of permitted combinational bids for which computational tractability is constructively demon- 
strated and some structures for which computational tractability cannot be guaranteed. 
(Spectrum Auctions; Combinatorial Auctions; Multi-Item Simultaneous Auctions; Bidding with Syn- 
ergies; Computational Complexity) 

1. Introduction 
Some auctions sell many assets simultaneously. Often 
these assets, like U.S. treasury bills, are interchangeable. 
However, sometimes the assets and the bids for them 
are distinct. This happens frequently, as in the U.S. De- 
partment of the Interior's simultaneous sales of off- 
shore oil leases, in some private farmland auctions, and 
in the Federal Communications Commission's recent 
multi-billion-dollar sales of the rights to use radio spec- 
trum. It also happened in the post-World-War-II dives- 
titure of synthetic rubber plants by the U.S. government. 
In such situations, the value of an asset to a bidder may 
depend strongly on which other assets he or she wins. 
In off-shore oil-lease bidding, this dependency often 
takes the form of diseconomies of scale.' However, in 

* Now at Fuqua School of Business, Duke University, Durham, North 
Carolina 27708-0120. 
'The diseconomies of scale are due to risks associated with the ex- 
treme variability of returns and the large amounts of money involved. 
See Rothkopf (1977) for a discussion of bidding in simultaneous auc- 
tions with a constraint on exposure-i.e., the total of all bids. Such 
constraints are imposed on off-shore oil lease bidding teams by their 
managements to control risks. 

each of the other examples there are clearly situations 
in which the value of an asset is increased if another 
asset or group of assets is won. For example, in the radio 
spectrum auctions, a license for the Philadelphia region 
may be much more valuable to a company if that com- 
pany also has licenses for the New York and/or the 
Washington / Baltimore regions.2 

Because of the possibility of such synergy or super- 
additivity in values, the designers of simultaneous sales 
have reason to consider allowing bids not just for indi- 
vidual assets, but also single bids for combinations of 
assets. Off-shore oil lease sales have not allowed such 
bids. Some farmland sales do (Schackmann 1989), and 
the rubber divestiture ultimately did.3 Recently, a new 

2Efficiencies in marketing to adjacent regions and in the cost of pro- 
viding "roaming privileges" may be involved as well as general econ- 
omies of scale. 
' As described by McCurdy (1981) and Rothkopf (1983), the divesti- 
ture process for synthetic rubber plant units was originally crafted by 
Congress without such bids, but when Shell Chemical Company un- 
der McCurdy submitted a single bid for three units that exceeded the 
sum of bids from others for those units, Congress voted to accept the 
Shell bid. 
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exchange for Southern California pollution rights run 
by Sholtz and Associates and bidding in the United 
Kingdom for school bus contracts (Mercer and Tielin 
1996) have allowed combinational bids. 

Combinational bids (occasionally called package bids 
and sometimes given the misleading name combinato- 
rial bids) have the potential advantage of allowing bid- 
ders to express their synergistic values. Bykowski et al. 
(1995) present some artificial but suggestive examples 
in which allowing combinational bids increases both 
revenue and efficiency. In a specialized model, Harstad 
and Rothkopf (1995) find that efficiency requires per- 
mitting combinational bids. A somewhat different spe- 
cial model by Branco (1995) finds that both a seller seek- 
ing to maximize revenue and a public-sector agency 
seeking an efficient outcome must typically allow com- 
binational bids. 

There are two potential disadvantages to allowing 
combinational bids. The first of these, a "threshold" 
problem (inaptly called the "free-rider" problem in 
Milgrom and Wilson (1993)), can occur when disecon- 
omies of scale predominate. For example, consider 
four bidders competing for two assets: A and B. Sup- 
pose that each bidder's valuation is private informa- 
tion and that no bidder values any asset except as fol- 
lows: A is worth $100 to bidder 1; B is worth $100 to 
bidder 2; and the combination AB is worth $150 to bid- 
der 3 and $110 to bidder 4. In this situation, the most 
economic allocation is to give bidder 1 asset A and bid- 
der 2 asset B. However, if the bids for individual assets 
A and B are each at $1, neither of these bidders acting 
unilaterally can afford the $110 necessary to match a 
bid of, say, $111 for the combination AB by bidder 3. 
It is worth noting that the threshold problem has an 
opposing force, the "exposure" problem. This problem 
is that an unsuccessful attempt to acquire a collection 
of assets, when combinational bidding is not allowed, 
may lead to paying more for some individual assets 
than they are worth. Alternatively, a bidder unwilling 
to risk bidding above his individual valuations on in- 
dividual assets may not be able to obtain a combina- 
tion for which synergies make him the efficient recip- 
ient. This arises in the above example with a single 
change that makes AB worth $250 to bidder 3. If syn- 
ergies are important, the efficiency consequences of the 
exposure problem are likely to outweigh those of the 
threshold problem. Both problems can be magnified 

when many assets are sold and large combinations are 
sought. 

The second potential difficulty with allowing combi- 
national bids is the computational difficulty of finding 
the best (i.e., revenue-maximizing) set of winning bids. 
This issue was raised in the FCC auction design debate 
by McAfee (1993). In the worst case, the bid-taker of- 
fering n assets could receive bids on 2n-1 different com- 
binations of assets. Clearly, bid evaluation could pre- 
sent a computational problem when n is large. For ex- 
amples, the FCC has sold, each time in a single 
simultaneous auction, 99 radio spectrum licenses, 493 
licenses, 1,020 licenses, and recently (August 1996- 
January 1997) 1,472 licenses. 

This paper considers the computational problem of 
evaluating combinational bids. A complete analysis of 
the desirability of certain structures of allowable com- 
binational bids would have to go further than this pa- 
per. Manageability of winner determination is, how- 
ever, the logical first step. Consideration of the revenue 
impact of permitting some combined bids depends on 
an analysis of how allowing combinational bidding af- 
fects bidders' behavior. A necessary first step toward 
modeling bidder behavior is determining how large a 
bid on a particular combination must be to avoid losing, 
given a current set of competing bids for overlapping 
combinations. We show below that the manageability 
of this problem of determining a minimal improving 
(i.e., revenue-increasing) combinational bid is essen- 
tially equivalent to the bid-taker's problem that is our 
focus. 

1.1. Background-The FCC Auction 
There is a great deal of material describing the FCC auc- 
tion design and the debate over it. An interested reader 
should consult McMillan (1994) and the extensive ma- 
terial in the FCC's Docket No. 93.-253.4 The FCC 

4 Among those contributing were Paul Milgrom and Robert Wilson for 
Pacific Bell and Nevada Bell, Robert Weber for TDS, R. Preston McAfee 
for Airtouch, Robert Harris and Michael Katz for Nynex, Barry J. Nale- 
buff and Jeremy I. Bulow for Bell Atlantic, Peter Cramton for MCI, 
and R. Mark Isaac for CTIA. There were also sophisticated rounds of 
replies to the responses, three conferences to discuss issues in the auc- 
tion design, and pilot experiments conducted at the California Institute 
of Technology. McMillan (1994) describes many of the issues. Contin- 
uing issues arise in later dockets, including 96-228, but most of the 
original auction design debate is in 93-253. 
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adopted a series of general policies with respect to the 
kinds of auctions it would hold. These policies dictate 
different sales procedures for different situations. What 
follows is a general description of the process the FCC 
adopted for the first major (i.e., multi-billion-dollar) 
auction ("Broadband MTA"). Eleven auctions have 
been concluded as of this writing and twelve more ten- 
tatively scheduled for 1997; the auction process has so 
far been adjusted only in minor details. 

The FCC has sold a given set of licenses in a simul- 
taneous progressive auction with discrete rounds. In 
these auctions, no sale of any license takes place until 
the bidding is concluded on all licenses. Bids on indi- 
vidual licenses are binding. (A bidder withdrawing a 
bid is still subject to covering the FCC's reduced reve- 
nue from the withdrawal, if any.) When there is a round 
of bidding with no bids that increase the price on any 
license, each of the licenses is sold to the bidder cur- 
rently holding the high bid on it. In order to keep bid- 
ders from holding back, there are "activity rules." Early 
in the auction, these are relatively lenient, but by the 
third and final phase of the auction, they are stringent. 
A bidder is considered active on a license in a round if 
he or she held the high bid for the license going into the 
round or raises the bid on the license by at least the 
minimum amount required for the round.5 The Broad- 
band MTA ("A / B block") auction began with daily 
rounds but primarily proceeded at a two-rounds-per- 
day pace. It ended after 112 rounds, selling 99 licenses 
for over $7 billion. A follow-up Broadband BTA ("C 

5 Bidders are allotted five "waivers," which can be used in an individ- 
ual round to preserve their immediately prior activity status until the 
next round. Otherwise, in the first stage of the MTA auction, bidders 
had to remain active on licenses covering a population base that is at 
least 33% of the total population base for which they wished to remain 
eligible to bid. In the second stage, they had to remain active on li- 
censes covering at least 67% of their population base. In the final stage, 
they had to remain active on licenses covering 100% of their eligibility. 
That is, in the 100% eligibility stage, if a bidder ceases competing for 
a license for Philadelphia, for example, he or she can immediately 
switch to bidding on another license or set of licenses, but only if the 
other license(s) cover a smaller total population. This "one-way street" 
phenomenon is part of the way the activity rule forces the bidders to 
bid seriously. It leads bidders to look for ways to "park" eligibility by 
bidding on licenses they do not want but are confident they will not 
win. The particular percentages attached to eligibility rules have been 
tweaked from auction to auction, most notably backing away from 
100% in stage 3 to 95-98%. 

block," smaller regions of license coverage) auction, 
concluded after 184 rounds, built up to eight rounds per 
day as it became less active. Another set of Broadband 
BTA licenses ("D / E / F block") recently required 276 
rounds to complete. 

In our opinion, the FCC chose this auction process 
over one that would permit combinational bids for sev- 
eral reasons. Foremost was a concern with the political 
consequences of failing to conduct a smoothly flowing 
auction: it was critical to be able legitimately to dismiss 
complaints from bidders as only the sour grapes of 
those who were outbid.6 This concern led to disallowing 
combinational bids because the economists' briefs, par- 
ticularly McAfee (1993), implied that the only choice 
was between completely disallowing or else permitting 
all possible combinational bids, and the latter option 
was fraught with worst-case scenarios of being unable 
to compute which bids ought to win. 

In addition, the FCC had a legitimate concern that 
bidders might find selecting combinational bids too 
confusing; even responding to rivals' combinational 
bids might become a frightful burden for a bidder who 
had eschewed contemplating his own combinational 
submissions.7 Finally, several firms that had brought in 
influential economists to explain and critique proposed 
designs may have perceived an incentive to prevent 
combinational bids, in order to tilt the playing field in 
their favor. These economists emphasized the threshold 
problem and downplayed the exposure problem. 

1.2. Background-The Auction Design Problem 
Only a few scholarly papers consider the auction design 
problems introduced by value interdependencies 
among different items for sale. Rothkopf (1977) consid- 
ers the bidder's problem in a simultaneous auction 
without combinational bids when there is an interde- 
pendency introduced by a constraint on the total of his 
or her bids. Smith and Rothkopf (1985) consider the bid- 
der's problem in a simultaneous auction without com- 

6 The FCC's Director of Plans and Policy, Robert Pepper, emphasized 
"I don't want to be a beta test site." (Nonetheless, he and his staff 
showed considerable political courage in moving so far from estab- 
lished auction procedures.) 

7 This was not a farfetched concern for anyone who observed bidders' 
representatives reacting to the demonstration of a continuous-time 
bidding system, with all combinational bids permitted, at the Califor- 
nia Institute of Technology in January 1994. 
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binational bids when there is a fixed charge incurred if 
any bid succeeds. Rassenti et al. (1982), Banks et al. 
(1989) and McCabe et al. (1991) describe laboratory ex- 
periments with continuous-time auction mechanisms 
for simultaneous auctions with interdependent values.8 
Ledyard et al. (1994) describe a combinational bidding 
mechanism for allocating a space mission's resources to 
experiments with varying requirements. Bykowsky et 
al. (1995) discuss "local equilibria" of simple and com- 
plex auction mechanisms. Krishna and Rosenthal (1996) 
consider a simple model where "local" bidders compete 
for only one of two assets, while "global" bidders com- 
pete for both (without permitting combined bids), with 
a synergy should they win both. Harstad and Rothkopf 
(1995) demonstrate the advantages of combinational 
bids in Krishna and Rosenthal's model. Campbell 
(1996) considers the general question of when incentive- 
compatible mechanisms can achieve efficiency in envi- 
ronments with synergies. Aside from these papers and 
the material already cited, we are not aware of any 
scholarly literature on this topic. 

If frictionless aftermarkets existed for the assets being 
sold, the seller concerned only about efficient allocation 
would not have to worry about auction form. Almost 
any form would do since, whatever the initial alloca- 
tion, the aftermarket would costlessly reallocate the as- 
sets efficiently. However, in the common situation in 
which there are significant transaction costs (and per- 
haps costly delays) associated with aftermarket trans- 
actions, the choice of auction form can affect economic 
efficiency. In addition, one of the important roles of auc- 
tions is to provide legitimacy by being demonstrably 
fair. The choice of mechanism may matter from that per- 
spective as well. 

The auction designer must choose between sequential 
sale and simultaneous sale, between a progressive pro- 
cess and one-time sealed bids, and between indepen- 
dent sales and allowing combinational bids. If the assets 
are sold independently, then bid evaluation presents no 
problem. If the assets are sold using one-time sealed 
bids, then there is a good deal of time available for de- 
termining the winning set of bids. Furthermore, the bid- 
taker can resort to what we call a "political" solution of 

8 Rassenti et al. (1982) also state the integer programming problem that 
must be solved to select the set of nonconflicting combinational bids 
that maximizes revenue from the auction. 

the bid selection problem-one that guarantees fairness 
and is likely to be rather effective as well. This "politi- 
cal" solution involves the bid-taker finding the best fea- 
sible solution it can in a reasonable amount of time and 
then announcing it. All interested parties are then given 
an opportunity to report a feasible solution with higher 
revenue. Makers of tentatively losing bids will have an 
incentive to explore bid combinations including their 
bids. If each of them is unable to find such a combina- 
tion in a reasonable amount of time, no one is in a po- 
sition to challenge the fairness of the bid acceptance pro- 
cess. 

If the bidding is progressive, it can either be contin- 
uous or involve discrete rounds. If the bidding is con- 
tinuous, then each new bid can be compared with high 
bids it must displace. If it exceeds all of them, then it 
becomes the current leading bid, and the other bids are 
displaced. This is a simple calculation. However, with 
combinational bids there is an auction design choice. If 
unsuccessful bids are not kept available for use in the 
evaluation, the threshold problem can become quite se- 
rious. If they are, then there is a computational problem. 
In AUSM (Adaptive User Selection Mechanism), a com- 
puterized combinational auction procedure developed 
at the California Institute of Technology, this compu- 
tational problem falls on the bidders. They are given a 
list of unwithdrawn, currently unsuccessful bids. If they 
wish, they may incorporate one or more of the bids in 
this list into their bid. 

An example might make this clearer. Suppose that 
there are four assets, A, B, C, and D, for sale; that the 
current leading bids are $100 for AB and $200 for CD; 
and that there are unwithdrawn losing bids of $50 for A 
and $75 for D. A bidder for BC could combine these two 
losing bids with its bid of $180 for BC to make a winning 
combination. The auctioneer would accept this bid be- 
cause it increases the total revenue from $300 to $305. 
These bids would become the leading bids, and the for- 
merly leading bids for AB and CD would, until they are 
withdrawn, be available to other bidders for making 
combinations of their own. In some variants of the Cal 
Tech procedure, bidders may submit unsuccessful bids 
in hopes that others may choose to use them in combi- 
nation with their own bids. The only limit on the number 
of such submissions is practical rather than formal. 

If there are discrete rounds in the auction, as in the 
current radio spectrum auctions, then the computa- 
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tional problem of finding the winning bids must be 
solved by the bid-taker at each stage. It must be solved 
much more rapidly (in about 10 minutes under the 
FCC's eight-rounds-per-day bidding schedule), so the 
"political" solution described above is not available. In 
this context, the concern of the FCC about allowing 
combinational bids is understandable. However, the po- 
tential computational problems with allowing arbitrary 
combinational bids do not exist with certain structures 
of permitted combinational bids. The work presented in 
this paper is devoted to defining such structures and 
exploring their limits. 

1.3. This Paper: Computability with Limitations on 
Permitted Combinational Bids 

Throughout this paper, the bid-taker's objective is as- 
sumed to be revenue maximization. If so, the optimi- 
zation to be performed when a list of bids is submitted 
is an integer programming problem, formalized in the 
next section. If the submitted bids can include a com- 
binational bid on any combination, then this computa- 
tion becomes unmanageable, at least in worst-case sce- 
narios. 

Evaluation of classes of computational problems in 
terms of worst-case instances is the standard practice in 
the literature on computational complexity. It is the ap- 
propriate way to consider computational problems in 
auction design if retaining legitimacy of the transaction 
is the sort of key concern it was with the FCC. This 
standard practice labels a class of computational prob- 
lems computationally manageable if an upper bound on 
computation time for all such problems can be ex- 
pressed as a polynomial function of the size of the input. 
Appendix A briefly reviews computational complexity 
*and defines the terminology used in the formal presen- 
tation below. 

Our principal point is this: While allowing all com- 
binational bids yields a potentially unmanageable 
(NP-complete) revenue-maximization problem, dis- 
allowing combinational bids completely is not the 
only computationally manageable alternative. We 
provide several examples of structures of permitted 
combinational bids and show constructively that 
they are computationally manageable. For each, the 
structure is on the border of computational manage- 
ability, in the sense that a natural next step reverts 
to an NP-complete problem. In addition, the problem 

of finding a minimal winning bid for a bidder who 
would like to raise a currently losing bid on a par- 
ticular combination enough to include that combi- 
nation in an optimal outcome is shown to be 
computationally manageable whenever the revenue- 
maximization problem is, and potentially unman- 
ageable whenever that also describes the revenue- 
maximization problem. 

Section 3 considers nested structures. When the set of 
permitted combinational bids is nested and thus forms 
a tree structure, a straightforward algorithm for "rolling 
back" the tree is both fast and transparent. An example 
demonstrates that rolling back multiple trees of permit- 
ted combinational bids can fail to find the revenue- 
maximal outcome. 

Section 4 considers cardinality-based structures- 
that is, situations in which bids are permitted on com- 
binations meeting size restrictions. Sufficiently strong 
superadditivity in values may imply that large com- 
binations would be the principal ones for which bid- 
ders would wish to submit single bids. Fast and trans- 
parent algorithms readily permit bids on large com- 
binations of assets. Allowing bids on arbitrary 
doubletons reduces to what is essentially the hardest 
problem for which there is a polynomial-time algo- 
rithm; computational manageability would be at- 
tained, but not transparency. Allowing combinational 
bids on tripletons reverts to NP-completeness. Auc- 
tions of airport landing and takeoff slots are an ex- 
ample of a setting in which bidding on doubletons 
may achieve most of the advantages available from 
combinational bidding. 

Section 5 considers geometric structures. For the 
first case, in which the assets are linearly ordered, like 
selling cellular telephone rights in Chile, a transpar- 
ent dynamic algorithm can maximize revenue effi- 
ciently when bids are permitted on any interval of 
consecutive assets. 

The situation is more complicated when a represen- 
tation of the assets requires two dimensions (such as 
geographic location). We show that permitting bids on 
arbitrary rectangular subsets might revert to computa- 
tional unmanageability. 

However, some restrictions of 2-dimensional grids of 
assets can allow useful combinational bidding. For ex- 
ample, if the set of auctioned assets can be organized in 
a matrix, permitting combinational bids on any row or 
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any column, as would be natural in coin auctions, works 
well. We generalize this idea in a k-dimensional case (by 
presenting a set intersection property behind this gen- 
eralization) and illustrate its limits. 

To ease the exposition, longer proofs and formal 
statements of algorithms are relegated to Appendix B. 

2. Formulation of the Problem 
The bid-taker's revenue maximization problem can be 
formulated as follows. Let A denote the set of all indi- 
vidual assets being auctioned. We assume that there are 
n assets, i.e., I A I = n. Any C s A represents a combi- 
nation of assets. Auction rules can specify which C s A 
are permitted combinations, that is, combinations of 
assets for which bidders may submit a bid. The family 
of all permitted combinations is denoted by 'P; that is, 
f = {C s A: C is a permitted combination}. Obviously, 
|'P I C 2n. 

In any outcome of a simultaneous auction, the win- 
ning combinations must be disjoint since no single asset 
can be sold more than once. Formally, let Q, denote the 
set of outcomes: 

QT:= {X: S : C, CT E v X= c n C' = 0}. (1) 

We analyze a single round of an auction. Computa- 
tional ease in determining winning bids in this case 
readily leads to a manageable multiround progressive 
auction by repeating the designed single-round model. 

Recall that, throughout this paper, the bid-taker's goal 
is assumed to be revenue maximization.9 Also, note that 
we do not require that every asset be sold. 

Let b(C) be the largest bid for the combination C.10 If 
there is no bid for C, we set b(C) = 0.11 For any outcome 
'W (that is, a collection of pairwise disjoint permitted 

9 This is inessential for the mathematics, which only requires a contin- 
uous, quasi-concave objective function, and can readily incorporate 
political constraints, so long as they can be expressed as computable 
intersections of half-spaces. 

'0 It is computationally trivial to parse a list of submitted bids, remov- 
ing a bid if it is below the specified minimum price (if any), or if there 
is a higher bid submitted for the identical combination. We assume 
the bid-taker has adopted some tie-breaking rule, such as accepting 
the chronologically earlier bid (the rule used by the FCC). 

1" This can be viewed as the bid-taker submitting a zero bid for every 
permitted combination C. Hence, when viewed in this way, the bids 
cover the market. 

combinations), we define revQ(W ) : 2= Tce?ob(C). In other 
words, revQ(W ) is the revenue that the bid-taker would 
collect if the assets were sold to bidders who submitted 
the largest bids for the combinations in 'W. 

Our principal focus in this paper is on the bid-taker's 
problem (REV,) of determining revenue maximizing 
outcomeW OPT, that is, the problem of determining 
V OPT E Q such that 

rev(qWOPT) = max{revQW): ( W E Q} 

We call VW OPT an optimal outcome, and we call any com- 
bination C EE iWOPT a winning combination. 

The problem of finding an optimal outcome (REV,) 
can be formulated as an integer programming problem: 

max , b(C)xc 
CE T 

with the constraints: 

VCe P:xce{0,1} and ViEA: Xxc51, 
C3i 

or, in a more compact form, 

max{bTx: Mx C 1, x E {O, 1}lll}, (2) 

where M is a 0-1-matrix defined by miC = 1 if and only 
if i E C, b is the vector whose coordinates are b(C), C 
E P, and 1 is the all ones vector. 

The problem of finding an optimal outcome is equiv- 
alent to a set-packing problem on a hypergraph P with 
weights b(C) for every C E 'P. This problem is known to 
be NP-complete (Karp 1972). However, there are nu- 
merous special cases for which the problem is compu- 
tationally manageable.12 For example, whenever the ma- 
trix M from (2) is totally unimodular, the problem can 
be solved in polynomial time (see, for example, Schrijver 
1986). It is not our intention to list the various special 
cases of problem (2) that are solvable in polynomial time. 
This paper concentrates on special classes of hyper- 
graphs that seem to have potential application in prac- 
tice. For such classes of hypergraphs, we discuss the com- 
plexity of the problem of finding an optimal outcome and 
present efficient algorithms or demonstrate the NP- 
hardness of the problem. For most classes, we can find a 
borderline between computational manageability and 

2 In other words, for certain families T, there exist a polynomial time 
algorithm for finding an optimal outcome WoPTr 
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potential unmanageability. Our purpose is not to provide 
new mathematics; most theorems presented here have 
exact antecedents or can be deduced from antecedents in 
a straightforward manner. Auction designers should 
have available, among other tools, a selection of limited 
structures of permitted combinational bids, without fac- 
ing the specter of computational nightmares. When an 
auction designer learns or infers some information about 
which combinations are likely to yield the principal syn- 
ergies, it would be useful to attempt finding a structure 
to permit bidding on these combinations. 

The other principal computational problems affected 
by the choice of the set T of permitted combinations are 
those facing bidders. Optimal bidding strategy, like op- 
timal auction design, lies beyond the scope of this pa- 
per. However, understanding computational manage- 
ability of the problem (REV,) of finding revenue max- 
imizing outcome 'W OPT is a logical precursor to sensibly 
addressing auction design issues. Both auction design 
and bidding strategy issues cannot be addressed with- 
out understanding the computational complexity of the 
minimal winning bid problem (WIN,): given a per- 
mitted combination C E P, what is the minimal bwin(C) 
so that C becomes (remains) a winning combination 
provided that all other bids b(C'), C' * C e 'P remain 
unchanged? Even specifying the options to consider in 
deciding bidding strategy requires understanding the 
minimal winning bid problem. 

The following Proposition (proved in Appendix B) 
shows that the minimal winning bid problem for C is 
equivalent to the bid-taker's problem of finding revenue 
maximizing outcome for a related auction. 

PROPOSITION 1. Let CL ( ory and let qQR OPT be an 
optimal outcomefor the auction of A*= A\CL with permit- 
ted combinations f = {C EE P: C c A*}. Then 

bwmn(CL) = rev(QWOpT) - rev(QWOPT). 

Similarly, let Cw E 'WopT and let (W ** ) be an optimal 
outcome for the auction of A** = A with permitted combi- 
nations f** := P\I{C*I. Then 

bwn(CW) = b(Cw) - rev(eWOPT) + rev(W ** ). 

An important consequence of Proposition 1 is the fol- 
lowing Corollary."3 

13 The proof (see Appendix B) is based on the observation that an algorithm 
for solving the problem (REV,) can be used to solve the problem (WIN,). 

COROLLARY 2. If the problem of finding revenue maxi- 
mizing outcome (REV,) is computationally manageable, 
then, given C E 'P, the minimum winning bid problem 

(WIN,) is also computationally manageable. 

If the number of assets being auctioned, n, is small, 
determining winning combinations is manageable, but 
if n is large, this problem for arbitrary 'P (e.g., 'P = 2A) 

may be unsolvable for practical purposes. However, for 
some special classes of 6P there exist fast and easy al- 
gorithms for finding an optimal outcome of the auction. 
Even in the most general cases, some combinations need 
not to be considered as candidates for winning combi- 
nations. The following Observation shows that super- 
additivity plays a straightforward role in determining 
winning bids. Combination C* will never be a winning 
combination if some of the assets in C can be sold for a 
larger total amount. 

OBSERVATION 3. Let WOPT be an optimal outcome and 
let C* EE OPT be a winning combination. Let C* 2 C1 
U C2 U ... U Ck where Ci's are pairwise disjoint permitted 
combinations (C1, C2, . . ., Ck E f and Ci n Cj = Ofor all 
1 ? i < j ? k). Then, b(C*) 2 V1=1 b(Ci). 

One way to determine an optimal outcome is to eval- 
uate all possible outcomes. In Appendix B, we present 
a dynamic algorithm (Algorithm 1), which uses Obser- 
vation 3 to determine an optimal outcome lWOPT in 
0(3n) steps. This algorithm is presented only for com- 
pleteness; it is only useful when the number of assets is 
sufficiently small that 3n operations can be carried out 
in a reasonable amount of time. If bids on all combina- 
tions were permitted, and the number of combinations 
for which bids were submitted grew exponentially with 
n, the algorithm would be polynomial in the size of the 
input. Of course, if the size of the input grew exponen- 
tially in n, then even the problem of recording all the 
input data would not be computationally manageable. 

As we just mentioned, there is no way of being sure 
that the simultaneous auction procedure is manageable 
for large n if there are no restrictions on the set 'P, not 
only because the problem is NP-complete, but also be- 
cause the size of the input itself might become unman- 
ageable. 

As will be demonstrated in the later sections, the 
manageability of a simultaneous auction depends upon 
the structure of P rather than the size of 'P (the number 
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of permitted combinations). Therefore, merely limiting 
the number of bids each bidder is allowed to submit 
will not, in general, guarantee that the bid evaluation 
problem is computationally manageable."4 

3. Nested Structures 
Perhaps the simplest example of this sort of structure is 
the following. Suppose all assets to be auctioned are 
either on the East Coast or the West Coast, and the un- 
derlying economics augurs against any synergies from 
combinations mixing East- and West-Coast assets, per- 
haps excepting the grand combination (all assets). Ac- 
cordingly, suppose the auctioneer limits permitted com- 
binations to the grand combination and combinations 
involving assets from only one coast. Then, the optimal 
outcome can be determined by finding the optimal out- 
comes for the East Coast and West Coast separately, and 
then comparing the revenue from these outcomes to the 
best bid for all assets. 

Whenever the set of assets can be decomposed into k 
disjoint parts such that each permitted combination ex- 
cept the grand combination is contained within one of 
these parts, an optimal outcome of the auction can be 
found by simply comparing the union of optimal out- 
comes for the parts with the bid for all assets. Thus, the 
problem of finding an optimal outcome reduces to k 
smaller problems, which can reduce computational bur- 
dens by orders of magnitude. 

Obviously, it might be possible to use this observation 
recursively to further simplify the problem of finding 
q(OPT. For certain structures of families of permitted 
combinations, this not only will simplify but indeed will 
solve the problem. A family of sets 'P forms a tree struc- 
ture if for all C, C' EE P, (C n C') is one of 0, C, C'. 
That is, every two sets in the family are disjoint or one 
is a subset of the other. 

EXAMPLE. Let A = {a, b, c, d, e} and suppose that 
permitted combinations are all singletons and {a, b, c), 
{d, e}, and A. Figure 1 shows all permitted combinations 
represented as a tree. Suppose that numbers adjacent to 
C E 'P in Figure 1 represent b(C). 

" Of course, to be computationally manageable, any bidding plan 
must limit the number of bids itself (i.e., the size of the input of the 
bid evaluation problem) to a manageable level. 

Figure 1 Example of a Tree Structure 

32 

a 

21 14 

ac d 

5 1 5 5 

On noting that the bids for singletons {al, {b}, and {c} 
sum to 20, less than the highest bid for {a, b, c} (21), an 
algorithm need no longer consider {al, {b}, and {cl. Sim- 
ilarly, {d}, and {e} will never be winning combinations. 
Comparing to the grand combination, IW OPT = {a, b, cl, 
{d, e } (because 21 + 14 > 32). 

The steps taken to solve this simple example gener- 
alize to handle arbitrarily complex tree structures 'P. 
'W OPT can be obtained by recursively simplifying the 
problem via splitting 'P into several smaller subfamilies 
of permitted combinations. Since 'P forms a tree, struc- 
ture, any 'P' s 'P either is a singleton or permits further 
decomposition as described above. Although the intui- 
tion behind computational manageability when permit- 
ted combinations form a tree structure is recursive, it is 
not hard to develop an efficient nonrecursive algorithm. 
It is clear that a polynomial time algorithm must exist 
since the matrix M from (2) is totally unimodular, given 
that P forms a tree structure.'5 An example is Algorithm 
2, presented in Appendix B, which computes OpT in 
0(n2) time. This algorithm "builds up" 1 OPT, starting 
with smaller combinations and then gradually consid- 
ering larger ones. 

The following theorem summarizes the observations 
above. 

THEOREM 4. Let ? form a tree structure. Then an optimal 
outcome can be determined in 0(n2) time. 

Auctioneers might find it advantageous to restrict 
permitted combinational bids to form a tree structure 
in situations where the underlying economics pointed 
to a particular superset of some set of assets as being 
the set at which the next synergistic valuation step 

15 An equivalent problem is an exercise in Murty (1992). 
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occurred. If there were some sense in which synergies 
that were unattainable within a metropolitan area 
did not become attainable until the coverage extended 
to well-defined regions (e.g., the Federal Reserve 
Bank regions), then permitting bids on metropolitan 
areas, these regions, and the grand combination 
might allow bidders to submit bids on the efficient 
outcome. 

One might hope that Algorithm 2 could be used to 
find V On when all permitted combinations can be rep- 
resented by two or more tree structures. A heuristic ap- 
proach would be to find an optimal outcome for each 
of the tree structures and then choose the best one 
among them. Unfortunately, in the case of the multiple 
tree structures, this heuristic approach could fail to de- 
termine an optimal outcome. 

EXAMPLE. Suppose that, in addition to permitted 
combinations from the previous example, we also allow 
bids on combinations ta, b} and tc, d, e}. Figure 2 shows 
two tree structures representing all permitted combi- 
nations. 

As indicated on the figure, we suppose that b({c, d, 
e}) = 21 and b({a, b}) = 14. An optimal outcome is lY OPT 

= Ila, b}, tcl, td, e}} with rev(VYOPT) = 38. However, the 
revenue maximizing outcomes on each of the tree struc- 
tures would lead to total revenue of 35. 

Particular situations representable as multiple-tree 
structures can remain computationally manageable; one 
example is presented in Section 5. In general, however, 
computational manageability for multiple-tree struc- 
tures cannot be guaranteed. 

4. Cardinality-Based Structures 
In a variety of situations, the combinations that are crit- 
ical to attaining the key synergies may not allow nesting 

Figure 2 Example of a Multiple Tree Structure 

32 32 

abcde abd 

21 14 14 21 

ab d e a b C d e 

5 0 5 5 5 5 5 

but may be structured by cardinality-that is, by the 
number of assets in the permitted combinations. An 
auction designer who can predict how large are the 
combinations on which bidders might wish to submit 
combinational bids may be able to take advantage of 
the tools presented in this section. 

EXAMPLE. Suppose a building of differentiated 
apartments is converted into condominiums, which 
are then auctioned. It is unlikely that important syn- 
ergies result from purchasing two or three units, but 
purchasing a large enough block to gain voting con- 
trol over changes in the condominium charter may be 
worth more than the sum of the values of the units in 
the block. 

Permitting large combinations and singletons yields 
a computationally manageable auction. For example, if 
for every nonsingleton combination C E P', I C I > n / 2, 
then there can be at most one such combination in any 
optimal outcome. (This is because every two sets in lY 
must be disjoint.) More generally, if there exists k > 0 
such that every C E 'P is either a singleton or I C I > n / k, 
then there can be at most k - 1 nonsingletons in any 
outcome V. This idea can be generalized for any mea- 
sure of sets in A, not just the number of elements of the 
set. For example, the FCC auctions could have allowed 
bids on any combination of licenses covering more than 
one-third of the U.S. population. In such cases, q OPT 

can be determined by simply evaluating rev(WY ) for all 
outcomes V . Since there can be at most k - 1 nonsin- 
gletons in any outcome, the number of outcomes is not 
large. 

THEOREM 5. Let ,u be a given finite measure on 2A.16 Let 
P = {C c A: ICI = 1 or ,u(C) > ,u(A)/k}. Let S {C 
E 'P : ,u(C) > ,u(A)/k and b(C) > 0}. Then WOPT can be 
determined in O(n I S Ik) time. 

For example, if k = 2 in the Theorem, then we have 
at most I S I + 1 candidates for L OPT: every C E S and 
C = 0 defines an outcome, XV c, consisting of C and all 
singletons disjoint from C (c :={C} U {{x}: x EtC). 

A simple special case that is covered by Theorem 5 is 
when the finite measure puts more weight on one asset 

16 We assume that there are no computational difficulties involved 
with evaluation of ,(C). If the complexity of evaluating ,u is known, 
our results have a straightforward generalization. 
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than on all of the others combined. In this case, any 
combination involving that asset can be allowed. For 
example, an auction of a mainframe computer and 
various peripheral devices could allow bids on any 
combination involving the mainframe. 

Now we turn our,attention to the obverse situations, 
in which combinations capturing synergies are small 
sets. A trivial combinational auction is an auction where 
'P = {{x}: x E A}. In such an auction, bids can be sub- 
mitted for single assets only, and an optimal outcome 
iS & OPT = 'P where the winning bids are the highest 
submitted bids for particular assets. But there are also 
nontrivial possibilities. 

EXAMPLE. Consider auctions of takeoff and landing 
rights. One of the key concerns in designing such auc- 
tions is the interrelatedness of the rights. Such rights 
often make economic sense only in pairs. If rights at 
multiple airports are being sold simultaneously, then a 
flight between two of the airports involved would re- 
quire a takeoff right at one and a landing right at the 
other. For example, a flight from La Guardia to O'Hare 
would need a takeoff right at La Guardia and a landing 
right a given time later at O'Hare. 

Suppose combinational bids are not permitted on any 
sets of size 3 or larger, but are permitted on all dou- 
bletons. Then, it is possible to determine the winning 
bids in polynomial time. This is because the problem of 
finding an optimal outcome reduces to finding a maxi- 
mal weighted matching in a graph (and we show the 
reduction in the proof of Theorem 6). But the latter 
problem is well studied and there exist polynomial-time 
algorithms for solving it (the first one was given by Ed- 
monds (1965); more about matchings can be found in 
Pulleyblank (1995)). 

Algorithms for finding maximum-weight matching 
are not particularly transparent and are considered to 
be among the most complicated polynomial-time algo- 
rithms. Therefore, it should not be surprising that allow- 
ing bids on any combination of size three risks serious 
computational problems. 

THEOREM 6. (a) If6P s {C C A: IC I 2}, then WOPT 

can be determined in 0(n3) time. (b) If6P = {C C A: IC 
? 3}, then finding WOPT is NP-complete. 

Without significantly increasing computational diffi- 
culty, combinations of size two and large combinations 

can be allowed simultaneously. The following result 
compiles results from this section: 

THEOREM 7. Let ,u be a given finite measure on 2A. Let 
'P = {C s A: ICI ? 2 or ,u(C) > ,u(A)Ik}. Let S := {C 
E 'P : ,u(C) > ,u(A)/k and b(C) > 0. Then OOPT can be 
determined in O(n3l S I k-1) time. 

5. Geometry-Based Structures 
Often there exists some physical connection between the 
assets. For example, a group of neighboring assets may 
be more valuable as a combination than some otherwise 
equivalent random group of assets. 

EXAMPLE. Some years ago California sold oil 
leases in Southern California that formed a single 
swath of offshore waters. In such a situation, most 
of the interesting combinations are groups of neigh- 
boring assets. 

Suppose that there exists a total ordering among the 
assets. In other words, for every two assets i, j E A: i 
< j or j < i. For example, licenses for radio frequencies 
in the cities on the East Coast could be ordered accord- 
ing to a North-South geographical ordering of the cities. 
Suppose that we allow combined bids for any set of 
consecutive assets [i, j] := {x E A : i ? x ? j} (Ci,j is an 
interval). Note that if the assets can be put in the total 
order, then we can label them in a way that A = {1, 2, 
... n} with the ordinary relation <. Hence, A = [1, n]. 

For example, suppose that the licenses for Boston, 
New York, Philadelphia, Baltimore, and Washington, 
D.C., are numbered 1, 2, 3, 4, and 5, respectively. Then 
a combined bid for New York, Philadelphia, and Balti- 
more licenses is [2, 4] = {2, 3, 4}. Note that, if only bids 
for sets of consecutive licenses are permitted, then, for 
example, it is not possible submit a combinational bid 
for only the New York and Washington, D.C. licenses 
(C = { 2, 51) because any permitted combination con- 
taining both of these licenses must contain all licenses 
between them-that is, the Philadelphia and Baltimore 
licenses. 

It should not be surprising that there exist efficient 
algorithms for determining 'e OPT when only bids for 
combinations of consecutive assets are permitted. It 
is easy to see that in this case the matrix M in (2) is 
totally unimodular since it has so-called "consecutive 
ones" property (see Murty 1992). Network flow al- 
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gorithms, as well as dynamic programming approach 
can be used to solve (2) in this case (see Ahuja et al. 
1993). Here we present a simple dynamic program- 
ming algorithm (Algorithm 3 in Appendix B) that 
produces VYO6PT when A = [1, n] and the permitted 
combinations are sets of consecutive assets (i.e., IP 

t[i, j]: 1 c i c j c n}). The main idea of the algo- 
rithm is that the value of the first k assets can be eval- 
uated by evaluating the value of first 1 assets and add- 
ing b([l + 1, k]) (I = O, ..., k - 1). 

Instead of considering intervals (sets of consecutive 
assets) on the line (totally ordered set) we can consider 
intervals on the circle"7 (for example, offshore tracts sur- 
rounding an island might define such a structure) and 
determine lY o0r by repeated use of any algorithm for 
determining qlYOPT for auctions of consecutive assets 
(for example, Algorithm 3). The algorithm gets applied 
n times, taking each of n elements to be the first one in 
the linear order defined by the cyclic order. For exam- 
ple, the k-th run of the algorithm considers the order: k, 
k + 1, ..., n, 1, 2, . . ., k - 1. At the end,V le OPT is chosen 
by comparing these n outcomes. 

Analysis of Algorithm 3 yields the following the- 
orem: 

THEOREM 8 Let A = [1, n]. (a) If IP s {[i, j] : 1 --- i 
c j c n}, then Wopr can be determined in 0(n2) time. 

(b) If? = {[i,j] :1 c i, j n} where [i,j] {i, i + 1, 
.. ., j} if i j and [i, j] := {i, i + 1 ... ., n, 1,. j} if i 
> j, then OPT can be determined in 0(n3) time. 

In many cases, assets can be identified as elements of 
a .direct product of two linear orders. Geographic loca- 
tion of an asset (position on a map) is an example. 
Clearly, X can be represented as A = [1, m] x [1, n]. The 
two dimensional analogues of the intervals are rectan- 
gles [a, b] x [c, d]:= (x, y) e A: a ?x ? b and c ? y 
c d}. Unfortunately, there is no hope for finding a com- 
putationally manageable algorithm for an auction of A 
if combinational bids are permitted on all rectangles. In 
fact, as demonstrated in the proof of the following the- 
orem, even when all two-by-two rectangles are permit- 
ted combinations, the problem of finding an optimal 
outcome is NP-complete. 

17 The matrix M in (2) has the so-called "circular ones" property. Bar- 
tholdi, Orlin, and Ratliff (1980) presented efficient algorithms for solv- 
ing (2) when M has the circular ones property. 

THEOREM 9. Let A = [1, m] x [1, n] and let 'P - {[a, 
b] x [c, d]: 1 ? a ? b ? m and 1 ? c ? d ? n}. Then 
finding a VOPT is an NP-complete problem. 

If we allow only rectangles of a specific type, there 
may be a computationally easy algorithm for finding 
V OPT. For example, rows and columns of an m x n 
rectangular grid can be viewed as rectangles. 

EXAMPLE. This might be an appropriate representa- 
tion of a situation in which a set of collectible assets is 
to be sold where assets have two different properties of 
interest to different collectors, as with the years and de- 
nominations of coins. Synergies may primarily be 
gained when a collection comprises a complete set for 
a given year, or else a collection of, say, nickels for a 
lengthy set of consecutive years. 

Formally, rows Ra and columns Cb of an m X n rec- 
tangular grid are rectangles of the form Ra := [a, a] 
x [1,n] = {(a,y) EA:yE [1,n]}(a = 1,...,m)and 
Cb:= [1, m] X [b, b] = {(x, b) e A :x e [1, m]} (b = 1, 
... . n). Then, if bids on singletons, rows, and columns 
are permitted, W OPT can be determined in a very trans- 
parent way. Note that in any outcome W, there cannot 
be a row and a column at the same time because Ra 

n Cb = {(a, b)} * 0. Therefore, every outcome contains 
rows and singletons only or columns and singletons 
only. Since rows (columns) are pairwise disjoint, an op- 
timal outcome containing rows (columns) is easily de- 
termined by checking whether replacing a row (col- 
umn) by singletons increases rev(W ). At the end, only 
the best of the outcomes containing rows and the best 
of the outcomes containing columns need to be com- 
pared.'8 

A straightforward k-dimensional generalization is the 
situation where the assets can be described by k differ- 
ent properties. 

EXAMPLE. Let A be vertices of a cube and let 'P con- 
sist of vertices (singletons) and edges (some double- 
tons) of the cube. Let b(C) = 1 for every vertex, let b(e1) 
= b(e2) = b(e3) = 5, and let b(e) = 3 for every other edge 

(edges el, e2 and e3 are denoted in Figure 3). Note that 

18 This is an example where repeated use of Algorithm 2 (for tree struc- 

tures) produces an optimal outcome for a multiple tree structure. Note 
that all singletons, all rows (resp. columns), and the set of all assets A 
form a tree structure. Hence, all C c 'P form two tree structures. 
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Figure 3 An Example of Auctioning the Vertices and the Edges of a 
Cube, Showing that an Optional Outcome Can Contain Edges 
of all Three Orientations 

1 e3 5 1 
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3 3 
3 V 

e1 1 , 1 

5 /j -3 1 
3 5~~~ 

z~~~~~~~~~~~ 

1 ~~31 

there are three types of edges in the drawing: horizon- 
tal, vertical, and "diagonal." If we were to follow the 
approach for the 2-dimensional case, we would find and 
evaluate optimal outcomes containing just one type of 
edge. In all three cases, we get 3 + 3 + 3 + 5 = 14, and 
no singletons are involved. However, the optimal out- 
come {el, e2, e3, vl, v21 has value 5 + 5 + 5 + 1 + 1 = 17 
and includes edges of different types. The reason why 
this approach doesn't work in this case is that there are 
edges of different types that are disjoint. 

When can the problem of finding VWOpT be decom- 
posed into several simpler problems (as in the example 
where bids on rows and columns are allowed)? One 
example is when permitted nontrivial (i.e., nonsingle- 
ton) combinations can be partitioned into k families, so 
that any two combinations drawn from different fami- 
lies intersect. If so, an optimal outcome contains com- 
binations from only one family. More formally, 

PROPOSITION 10. Let f = S U Yl U P2 U ... U ?k 

where S = {{x} x E A) (singletons) and for any i * j, 
A E P, B E j A nB =0. Then WOPT C S U Pi for' 
some i. 

PROOF. If W is an outcome, then it cannot contain 
nontrivial combinations from more than one family Ti 
because every two sets from 1e must be disjoint. There- 
fore, s 6 U 'Pi for some i. O 

Also note that if ? satisfies conditions of Proposition 
10, then for any C E 'Pi, 'P* = {C E 'P : C s A\C1}l s 
U 'Pi (i.e., 'P * is contained in the remainder of Cl's fam- 
ily). Hence, determining how much a losing bid must 
be raised is as hard as finding an optimal outcome for 
A\C1 with permitted combinations from 'P * C S U 'P 
only. 

The 2-dimensional example satisfies the conditions of 
Proposition 10 with 'P1 being the set of all rows and 'P2 

being the set of all columns. As long as finding an op- 
timal outcome where permitted combinations are un- 
ions of rows (resp. columns) is computationally man- 
ageable, the problem of finding W opr is computation- 
ally manageable also. For example, we may allow bids 
on any combination of consecutive rows or columns 
(i.e., rectangles of type [a, b] x [1, n] and of type [1, m] 
x [c, d] are permitted combinations) and use Algorithm 
3 twice to determine W oprT 

In fact, in addition to rows and columns, one can also 
allow bidding on any other family of combinations 
whose elements intersect every row and every column. 
For example, in the n X n case we can always allow bids 
on n "diagonal" combinations also. Figure 4 shows four 
diagonals in the 4 x 4 case. 

This idea can be generalized. If A can be represented 
as a k-dimensional vector space over a finite field, then 

Figure 4 Four Diagonals (Black, White, Gray, and Shaded) Intersect 
Every Row and Every Column 

0 
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we can allow bids on any combination representing a 
hyperplane (i.e., a (k - 1)-dimensional plane). Note that 
we can partition all hyperplanes of a k-dimensional vec- 
tor space into families of parallel hyperplanes. Then, 
any pair of hyperplanes drawn from different families 
intersects. (Note that the cube in Figure 3 is just a 3- 
dimensional vector space over the field of two elements, 
and the edges are 1-dimensional planes. Since 1- 
dimensional planes are not hyperplanes in a 3- 
dimensional vector space, we could find disjoint edges 
from different families.) For example, the previous coin 
example might fit this generalization if potential syn- 
ergies in values resulted from three aspects of coins: 
year, denomination, and origin (Philadelphia, Denver, 
or San Francisco Mint). 

6. Concluding Remarks 
Some auction markets sell a considerable number of as- 
sets simultaneously. Often, the value of an asset to a 
bidder depends on which other assets he or she also 
wins. In such situations, allowing bidding on combi- 
nations of assets may offer a way of increasing the ef- 
ficiency of the allocation of assets, but it can raise com- 
putational problems.'9 

Those who determine the rules for simultaneous auc- 
tions must determine for which combinations to allow 
bids. In sales with many assets, "all combinations" may 
not be a workable answer, and "no combinations" may 
not be a desirable one. In this paper, we have considered 
restricted sets of combinations for which combinational 
bidding presents a provably manageable computational 
burden. We hope that this will allow auction designers 
to design workable auctions that are more efficient. 

'9 This paper has explored extensively the effects on our ability to guar- 
antee computational tractability in determining the revenue- 
maximizing set of bids by restricting the kinds of combinations upon 
which bidders are allowed to bid. We have also commented on the 
ineffectiveness, in general, of merely restricting the number of com- 
binational bids a bidder may submit. However, we have not consid- 
ered the computational implications of combined policies in which 
both the number of combinational bids and the types of combinational 
bids are jointly restricted. It is possible that when the number of bid- 
ders is small, there are potentially useful forms of restriction that allow 
each bidder one or, possibly, a few bids on more general combinations 
than can be handled with unrestricted numbers of bids, and that such 
restrictions lead to guaranteed computational manageability. We leave 
the exploration of this possibility to further research. 

Deciding for which combinations to allow bids puts 
a responsibility on auction designers-a responsibility 
that some of them may find politically risky to fulfill. 
We note that computational impossibility does not pro- 
tect against such responsibility, and that "no combina- 
tions" is only one choice among what we have now 
established are many feasible possibilities. Responsible 
auction designers will try to determine the kinds of 
combinations of greatest economic significance and will 
attempt to allow bids on them in the auction-at least 
when there is reason to believe that economies of scale 
exist. The politically astute among them may well try to 
involve the potential bidders in that determination pro- 
cess. Perhaps, the Department of the Interior's use of a 
nomination process in deciding which offshore tracts to 
offer for sale at a given time could serve as a model.20 

20 authors thank Richard Engelbrecht-Wiggans, Eric Greenleaf, 
Karla Hoffman, Edward Kaplan, and two referees for helpful com- 
ments, and gratefully acknowledge the National Science Foundation 
for its support under grant number SBR 93-09333 to Rutgers Univer- 
sity. 

Appendix A 

Additional Background-Computational Complexity 
The difficulty of computational problems does depend on particular 
details of the problem and the computing capabilities that are to be 
applied to solve it. It is useful, however, for scholars to have ways of 
discussing computational complexity for broad classes of problems, 
and for these discussions to be meaningful independent of problem 
details or computer size and speed. The salient and unavoidable fact 
is that solutions become more difficult to compute as the problems 
grow in the size.of the input (principally the numbers of control and 
state variables, and constraints). 

Mathematicians have focused on how time needed to obtain a so- 
lution (measured in the number of computations) grows as a function 
of the size of the input. If there exists an algorithm for which the num- 
ber of steps needed to compute the solution to any problem in that 
problem class (i.e., for any data instance of that problem) can be ex- 
pressed as a polynomial function of input size, then the problem is 
considered to be relatively tractable computationally. Such problems 
fall within the polynomial class (P), and are then further classified by 
the degree of the bounding polynomial function. If the bound on the 
number of steps needed to compute the solution is a superpolynomial 
function of input size (i.e., cannot be bounded by any polynomial func- 
tion; any exponential function is an example) then the algorithm is 
considered to be inefficient since solving every data instance of the 
problem using such an algorithm cannot be guaranteed even for prob- 
lems with relatively small input sizes. 

While the size of problems that can be solved grows with advances 
in both algorithms and affordable computing power, this distinction 
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is still quite useful. An interesting class of problems, for which no 
polynomial time algorithm for finding a solution to every data instance 
is known, are NP-complete problems (the general integer program- 
ming problem, for example, is NP-complete). Existence of a poly- 
nomial time algorithm for solving any NP-complete problem would 
imply that there are also polynomial time algorithms for solving every 
other NP-complete problem. It is widely believed that no polynomial 
time algorithm exists for any such problem, although this is still an 
open question in complexity theory. Thus, if the problem is shown to 
be NP-complete, it is currently (and probably always will be) impos- 
sible to guarantee that it can be solved in polynomial time; it is in this 
sense that it is computationally intractable. We note, however, that it 
is quite possible that there exist a polynomial time algorithm for solv- 
ing a particular instance (or a set of instances) of an NP-complete 
problem. In fact, many problems arising in industry that are NP- 
complete are routinely solved to proven optimality because there exist 
efficient algorithms for solving the problem instances arising in prac- 
tice. 

In our analysis of the computational complexity of finding an 
optimal outcome for a variety of combinational auctions, we heav- 
ily use the standard asymptotic notation for growth of functions 
(for example, see Cormen et al. 1990). Let f and g be two functions 
from N to N (where N denotes the set of natural numbers, i.e., N 

=t1,2,3, .1). 
If there exist c > 0 and no such thatf(n) - cg(n) for all n 2 no, then 

we say that g is an asymptotic lower bound (within a constant) for f 
and use the notation f = Q(g). 

Similarly, if there exist c > 0 and no such thatf(n) - cg(n) for all n 
2 no, then we say that g is an asymptotic upper bound (within a 
constant) for f and use the notation f = 0(g). If, in addition, for any c 
> 0 we can find no, then we say that f = O(g) (in other words, f = o(g) 
if and only if lim,,f(n)/g(n) = 0). 

In this notation, the problem is in the class P if there is an algorithm 
that finds the solution in 0(nk) steps (O(nk) time) for some fixed k. An 
example of a superpolynomial algorithm would be an algorithm that 
needs Q(2') time to find a solution. More on computational complexity 
can be found in Papadimitriou (1994), and in Garey and Johnson 
(1979). 

Appendix B 

Algorithms and Proofs of Theorems 

PROOF OF PROPOSITION 1. We first consider CL t V OPrT* CL 

W OPT becomes a winning combination if and only if one of the 
outcomes that contains CL becomes a winning outcome. Hence, 

bWjn (CL) - b(CL) = rev (WOPT) 

- maxtrev(W): W E2 Q, CL E . (3) 

This is because increasing b(CL) by some amount increases rev (W ) by 
the same amount if and only if CL e7 W. Also note that for any V 
E Q: CL eW, if and only if \ CL} E QY* (i.e., V \CL} is an outcome 
for auction of A* where permitted combinations are P *). Furthermore, 
for V 3 CL, rev (W ) = b(CL) + rev (W \tCLd). Therefore, subtracting 
b(CL) from both sides of (3) yields 

bw,m,(CL) = rev(Wopr) - maxfrev(W.): W E Q,2) 

= rev(W opr) - rev(W1Orr) 

Next consider Cw EG Kop. Clearly, for any outcome W 3 Cw, de- 
creasing b(Cw) will decrease rev(W ) by the same amount. Hence, Cw 
will remain a winning combination as long as one of the WK 3 Cw 
remains optimal. In other words, 

b(Cw) - bwi,(Cw) = rev(Wopr) - maxfrev(W): W, E Q: Cw 1 W) 

from which 

b,in(Cw) = b(Cw) - rev(Wopr) + rev(Worr) 

follows immediately. O 

PROOF OF COROLLARY 2. It suffices to show that any algorithm with 
input b(C), C E 6P, and output rev(W opr), can be used to solve min- 
imal winning bid problem for a given C G 'P. By Proposition 1, we 
only need to show that the same algorithm can be used to find 
rev(W * r) and rev(W o**r). Note that rev(W 

* 
r) = rev(W opT) when- 

ever b(C) = 0 for every C E 'P such that C n CL * 0. Hence, by setting 
b(C) = 0 for every C E ' MP *, the algorithm for finding rev(W Opr) 
can be used to find rev(W o*pr). Similarly, by setting b(Cw) = 0, the 
algorithm will find rev(W r) (since rev(W r) = rev(W opr) when- 
ever b(Cw) = 0). OI 

PROOF OF OBSERVATION 3. Define W':= (WOpT\JC*)) U {C1, C2, 
Ckl. 

2 b(C) = 2 b(C) - b(C*) + b(CI) + b(C2) + - + b(Ck). 
CEw CG ' o vor 

Since 2c,',op b(C) = rev(Worr) 2 rev(W') = IcE w b(C) (because 

Wopr is an optimal outcome), b(Ci) + b(C2) + * + b(Ck) b(C*) 
follows. O 

Algorithm 1: Dynamic Algorithm for the General Problem21 
INPUT: b(C) for all C c A (if no bids are submitted or C Z 'P then 
b(C) = 0). 

1. For all x E A, setf(( x)) b((x)), e((x)) I x}. 
2. For i = 2 to n, do: 

ForallCsAsuchthat ICI = i, do: 
(a) f(C) := max{f(C\C') + f(C'): C' c C and 1 s IC'l 

-2 J 

(b) Iff(C) 2 b(C), then set C(C):= C* where C* maximizes right 
hand side of (a). 

(c) If f(C) < b(C), then set f(C) b(C) and e(C) C. 
3. Set WOPT:= (A). 
4. For every C EG &OPT, do: 

If e(C) * C, then 
(a) Set opTv:= (WopT\(C) U {e(C), C\e(C)Q. 

21 It is possible that there is more than one optimal outcome. Each 
algorithm we present incorporates tie-breaking rules in its execution, 
outputting a single optimal outcome. Each can be adjusted (in a 
straightforward way, essentially not compromising its complexity) to 
output all optimal outcomes. 
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(b) Go to 4 and start it with the new W opr. 

There is a constant K such that this algorithm requires fewer steps 
than 

n n\ 
n2 + E K2k1() = 0(3f) 

k=1 k 

After the first two steps,f(A) will be exactly rev(W orpr) (i.e., ccE wovr 
b(C)). f(C) is calculated using the fact that all the assets from C will 
be sold to a single bidder (who submitted the highest bid for C) if and 
only if any dividing of C into smaller combinations will not lead to 
the higher value collected by the bid-taker. The variable e(C) keeps 
track of the structure of W orp, which is being determined recursively 
in Step 4. 

Note that the algorithm doesn't need to evaluate the function f for 
every subset of A. It suffices to check only the sets S 5 A in the smallest 
algebra A c 2A of sets containing IP (or only those C E IP for which a 
bid is submitted). (An algebra A of sets is a family of sets A E A 5 2A 

closed under union and taking complements, i.e., A E ,4 =X AC E A 
and A, A' E A =X A U A' E A.) 

The value of f(A\C) is exactly rev(W Kwr) for every C c A. A 

W o*r can be determined by setting W or :=A\C and then executing 
Step 4. In many cases, this information won't be a byproduct of an 
algorithm to find an optimal solution. However, the existence of an 
easy way to determine an optimal outcome automatically gives an 
easy way to determine an optimal outcome for an auction of the 
smaller set of assets (A\C), provided permitted combinations on the 
smaller set of assets are of the same type as permitted combinations 
on the original set of assets. 

Algorithm 2: Finding W opT for Tree Structures 
Before presenting the algorithm, note that the sets in a tree structure 

IP define a directed tree T(TP) in a natural way: IP is the set of vertices 
of T(Q), and (C, C') is an arc in T(P) if and only if C D C' and there 
is no C" EE P such that C D C" D C'. In other words, (C, C') is an arc 
in the tree T(Q) if and only if C covers C' in 'P. For any arc (C, C'), we 
say that C is the tail and C' is the head of the arc. Precise definitions 
of the standard graph theoretic terms that we are using here can be 
found in any textbook on graph theory (for example, see Bondy and 
Murty 1976). Note that C1 D C2 if and only if there exist a directed 
path P c T(? ) from C1 to C2. The length of the directed path P from 
C1 to C2 (i.e., the number of arcs in P) is denoted by d(Cl, C2). If there 
is no directed path from Cl to C2, nor from C2 to C1, then C1 n C2 
= 0, since 'P forms a tree structure. 

Note that we can always add A to 'P without violating the tree struc- 
ture property. In other words, if 6P forms a tree structure, 'P U {A) 
U I{x) : x E A) also forms a tree structure. Also note that every C has 
at most one ingoing arc (otherwise there would be two sets covering 
C and then their intersection would be at least C * 0). If A E T, then 
every C * A will have exactly one ingoing arc. 

We call C E ' a leaf, if C has no outgoing arcs. 

INPUT: T(Q U A) and b(C) for all C E 'P. 
1. Set V opT(C) = {C) for every leaf C. 
2. For every C EE T, calculate d(C) := d(A, C). 
3. Find Cmax such that d(Cma.) - d(C') for all C' e 'P. 

4. (a) Let C0 be tail of the unique ingoing arc of Cmn, (i.e., C0 covers 

Cmax)- 

(b) Let 8 :C E P: (C0, C) is an arc in (T(P ))). (Note that by 
the choice of Cmax every C E 8 is a leaf) 

(c) Calculate rev(S):= -c s b(C). 
(d) If b(Co) > rev(S), then set W opT(Co) :C0o 
(e) If b(CO) c rev(S), then set b(CO) rev(S) and W OpT(CO) 

:= UceSOrPT(C). 

5. If C0 = A, then STOP (W opr(A) is an optimal outcome). 
6. Set := 'P \ 8 and go to Step 3. (C0 becomes a leaf in T(Q)) 

Steps 1, 2, and 3 require 0( I P I) time. Steps 4, 5, and 6 require 0(n) 
time since any C can have at most I C I c n outgoing arcs. Steps 3 to 
6 can be repeated at most I ? I times since every time 'P is updated in 
Step 6, at least Cmax is deleted from 'P. Hence, the algorithm requires 

O(VP I(LT I + n)) time. 

PROOF OF THEOREM 4. Let us first show by induction on I 'P U {A) I 
that W OPT(A) from Algorithm 2 is an optimal outcome. Obviously, the 
algorithm produces an optimal outcome for 'P U {A) = {A). 

Let : {C E P: (A, C) E A(T(P))). Note that 'Pc {C' E ': C' 
c C) forms a tree structure and the algorithm produces an optimal 
outcome for every 'Pc where C EE S. Also note that V1&opr(C) is this 
optimal outcome and that rev(W OPT(C)) = b(C) in the original algo- 
rithm. Since every C' E 'P (C' * A) intersects exactly one C EE 5, any 
optimal outcome for 'P is either opT = {A) or a disjoint union of 
optimal outcomes in c. Therefore, & OpT (A) is an optimal outcome. 

It remains to show that the algorithm requires at most 0(n2) time. 
Since the algorithm requires 0( I ' I( ' I + n)) time, it suffices to show 
that for any tree structure P, I ' P 2n - 1. This can be easily proved 
by induction. Clearly, the statement is true for n = 1. Let D E 'P be 
maximal in P \ {A) (that is, there is no combination in P \ {A) containing 
D). Then, from the definition of tree structures, 

I'P \ {A) I = I IC GES' : CcD) I + I IC ES-' :C cA\D). 

So, by induction, we conclude that PI - 1 + I 'P\ {A}I I 1 + (21 DI 
-1) + (2(n - IDI) -1) = 2n-1. 0 

PROOF OF THEOREM 5. By Observation 3, we can eliminate any C 
E S such that b(C) ' 7Eec b(fx)). This can be done in 0(1 S I n) time. 

Note that there can be at most k sets from S in any outcome W. This 
is because every two sets in W must be disjoint and there can be at 
most k - 1 disjoint sets C E W, ,(C) > ,(A) /k. Therefore, there are 
all together 

i i 

i=O 

candidates for & oPr. For each such W, we need to calculate rev(W) 
(this can be done in at most n steps) and then find V OPT among them. 
All together, we need 0(n I S Ik-1) time. L 

PROOF OF THEOREM 6. We first show (a). Let G' be a graph whose 
set of vertices is A and set of edges is the set of all combinations of 
size two, i.e., {x, y) is an edge in the graph G' if and only if tx, y) 
E 'P. Let G be a graph obtained from G' by adding a vertex x-and an 
edge ex:= (x, x) with b(ex) := b({x)) for every {x) e 'P. Obviously, G 
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has at most 2n vertices. Note that the natural one-to-one correspon- 
dence between the edges of G and the combinations C E 6P preserves 
disjointness, and therefore, W is an outcome if and only if correspond- 
ing edges are matching in G. But the maximum weight matching in G 
can be found in 0((2n)3) = 0(n3) time by Edmonds' algorithm (see 
Lawler 1976). 

In order to show (b), we will show that the problem of finding OPT 
is NP-complete in a particular special case of such an auction. Suppose 
that b(C) = 0 for all C such that I C I s 2 and b(C) = 0 or 1 for all other 
C E 'P. Then W orp is an optimal outcome if and only if IC G loepr: 
b(C) = 1) is an maximal 3-set packing on a hypergraph 'P. The 3-set 
packing problem is known to be NP-complete (Garey and Johnson 
1979). Hence, even in the very simple case when all b(C) are either 0 
or 1, this problem is NP-complete. O 

PROOF OF THEOREM 7. As it was shown in Theorem 5, there are 
only 0(I SI k) different outcomes W containing disjoint sets from S 
(Maybe some additional sets from S can be eliminated using Obser- 
vation 3 and 0(l A\C I') time is needed to check if C should be elim- 
inated. All together, 0( I S I n3) will suffice). 

Let W opr be an optimal outcome for auction of A* = A\(Ucrs,,o 
C)where P*= {CcA*:CE p andl Cl s2.W* Prcanbedetermined 
in ?(I A* I') time by Theorem 6. Then 'W U W o*pr is a candidate for 

'WOpr with rev((W U 'W pr) = rev (W rr) + Ycesn,o b(C). 
Therefore, we can find 'W oPr in O(n3 1S I) time. O 

Algorithm 3: Finding W OPT for Intervals 
INPUT: b([i, j]) for all i, j. 
1. Set W (1):= {[1, 1]) and w(l):= b([1, 1]). Set r:= 2. 
2. Set w(r) := b([1, r]) and W (r) := {[1, r]). 
3. For 1 = 2 to r, do: 

If w(l - 1) + b([l, r]) > w(r), then 

(a) Set w(r):= w(l - 1) + b([l, r]) 
(b) SetW (r):= 'W (l - 1) U {[1, r]) 

4. If r < n, thenset r:= r + 1 and go to Step 2. 
5. STOP (W (n) is an optimal outcome and rev(W opr) = w(n)). 

PROOF OF THEOREM 8. Obviously, the presented algorithm needs 
0(n2) time. We will show by induction on n that 'W (n) is an optimal 
outcome. Clearly, 'W (1) = {[1,1]) is an optimal outcome when n = 1. 
Suppose that 'W (m) is an optimal outcome for the auction of first m 
assets whenever m < n. Let GW oPT be an optimal outcome for the auc- 
tion of A. Let * := GKopr\{[m + 1, n]f where [m + 1, n] is the unique 
set from 'W oPr containing asset n. Note that IW * is an outcome for the 
auction of [1, m]. From Proposition 1 and the induction hypothesis, 
rev(QW *) = w(m) and rev(W Opr) = w(m) + b([m + 1, n]) s w(n). The 
last inequality follows from the Step 3 of the algorithm when I = m 
+ 1 and r = n. By optimality of GWopr, we conclude that the last in- 
equality can be replaced by equality and 'W (n) is an optimal schedule. 
Hence, (a) follows. 

Any outcome 'W contains at most one set [i, j] where i > j because 
1 and n are in every such set and sets in 'W are disjoint. If an outcome 
'W contains such [i,j] then, for any other [1, r] E 1W, j < 1 s r < i 
(because GW is a collection of disjoint sets). If we rename all the assets 
k < i into k' := k + n, then A becomes {i, i + 1,...,n, (n +1), ...,n 
+ i - 1), [i, j] becomes [i, n + j], and any other [1, r] E 'W becomes 

[n + 1, n + r]. Hence, the algorithm will determine an optimal outcome 
for the auction of Xi:= {i, i + 1..., n, (n + ),...,n + i - 1 where 

( := {[1, r]: i s 1 s r s n + i - 1). Since every outcome 'W is an 
outcome for the auction of Xi (Find [i, j] E 'W that contains 1), it 
suffices to compare optimal outcomes for auctions of Xi. All this can 
be done in O(n3) time. O 

PROOF OF THEOREM 9. We will show that the problem is NP- 
complete even if i consists of all two by two rectangles only (i.e., i 

:[a, a + 1] x [c, c + 1]: 1 - a <m and 1 s a < n)).22 
As was shown in Berman et al. (1990), the optimal 2 x 2 salvage 

problem is NP-complete. The input for this problem is an n X n grid 
and some set S of unit squares with integer coordinates. A 2 x 2 rec- 
tangle with integer vertices is called functional if all four of its unit 
squares belong to S. The problem is to determine a maximal number 
of functional nonoverlapping (disjoint) 2 x 2 rectangles. 

Any set S of unit squares with integer coordinates defines b(C) for 
every C E IP in a natural way: set b(C) 1 if C is functional and set 
b(C) := 0 if C is not functional. Then finding WopTr is equivalent to 
solving the optimal 2 x 2 salvage problem. O 

22 This is equivalent to the assumption that b(C) = 0 for all other rec- 
tangles C. Hence, we will show that problem is NP-complete even in 
this restricted case. 
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