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Abstract

We derive conditions on the learning environment - which encom-
passes both Bayesian and non-Bayesian processes - ensuring that an
e¢ cient allocation of resources is achievable in a dynamic allocation
environment where impatient, privately informed agents arrive over
time, and where the designer gradually learns about the distribution of
agents�values. There are two main kind of conditions: 1) Higher obser-
vations should lead to more optimistic beliefs about the distribution of
future values; 2) The allowed optimism associated with higher observa-
tions needs to be carefully bounded. Our analysis reveals and exploits
close, formal relations between the problem of ensuring monotone -
and hence implementable - allocation rules in our dynamic allocation
problems with incomplete information and learning, and between the
classical problem of �nding optimal stopping policies for search that
are characterized by a reservation price property

1 Introduction

In this paper we derive conditions on the learning process ensuring that an
e¢ cient allocation of resources is implementable in a dynamic allocation en-
vironment, where impatient, privately informed agents arrive over time, and
where the designer gradually learns about the distribution of agents�values.
We also show that these conditions resemble insights about the reservation
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price property in search models obtained by the literature that followed Roth-
schild�s [16] classical paper.
Although rather rare in the mechanism design literature, the assumption

of gradual learning about the environment (which replaces here the standard
assumption whereby the agents�values are not known but their distribution
is) seems to us descriptive of most real-life dynamic allocation problems.
This feature is inconsequential in static models where an e¢ cient allocation
is achieved by the dominant-strategy Vickrey-Clarke-Groves construction,
but leads to new and interesting phenomena in dynamic settings.
The allocation (or assignment) model studied here is based on a classical

model due to Derman, Lieberman and Ross [7] (DLR hereafter). In the DLR
model, a �nite set of possibly heterogenous, commonly ranked objects needs
to be assigned to a set of agents who arrive one at a time. After each arrival,
the designer decides which object (if any) to assign to the present agent (in
a framework with several homogenous objects the decision is simply whether
to assign an object or not).
Both the attribute of the present agent (that determines his value for

the various available objects) and the future distribution of attributes are
known to the designer in the DLR analysis. Learning in the complete-
information DLR model has been �rst analyzed by Albright [1]. In Gershkov
and Moldovanu [8] (GM) we added incomplete information to the learning
model of Albright (resulting in a model of the private values type), and we
showed that the e¢ cient policy need not be implementable if the designer
insists on the simultaneity of physical allocations and monetary payments
(such schemes are called "online mechanisms" in the literature). This con-
trasts available results about e¢ cient dynamic implementation for the stan-
dard case where the designer knows the distribution of values (see for example
Parkes and Singh, [14], and Bergemann and Valimäki [3]). If all payments
can be delayed until a time in the future when no new arrival occurs, the
e¢ cient allocation can always be implemented since the payments can be
then conditioned on the actual allocation in each instance (see also Athey
and Segal [2] who use such schemes in a dynamic mechanism design frame-
work without learning). But such uncoupling of the physical and monetary
parts is not realistic in many applications, and we will abstract from it here
as well.
When learning about the environment takes place, the information re-

vealed by a strategic agent a¤ects both the current and the option values
attached by the designer to various allocations. Since option values for the
future serve as proxies for the values of allocating resources to other (future)
agents, the private values model with learning indirectly generates informa-
tional externalities. Besides illustrating how these externalities can lead to
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the impossibility of e¢ cient implementation, GM [8] derived implicit struc-
tural condition on the allocation policy ensuring that e¢ cient implementation
is possible.
A necessary condition for extracting truthful information about values

is the monotonicity of the allocation rule, i.e., agents with higher values
should not be worse-o¤than contemporaneous agents with lower values. This
monotonicity will hold when the impact of currently revealed information
on today�s values is higher than the impact on option values (see Proposi-
tion 5 below which is a generalization of our previous result ). This insight
translates to the private values dynamic framework with learning well-known
results obtained for the static case with interdependent values.1

A next natural question is to characterize the learning environments
where the monotonicity property holds. Intuitively, monotonicity will be
satis�ed if the increased optimism about the future distribution of values
associated with higher current observation is not too drastic. A drastic opti-
mism may be detrimental for an agent whose information induces it- leading
to a failure of truthful revelation- if the designer decides in response to deny
present resources in order to keep them for the "sunnier" future.
In the present paper we derive direct conditions on the learning environ-

ment - composed of the initial beliefs, and the belief updating process - that
bound the afore mentioned optimism, thus allowing e¢ cient dynamic imple-
mentation. Our analysis reveals and exploits close, formal relations between
the problem of ensuring monotone - and hence implementable - allocation
rules in our dynamic allocation problems with incomplete information and
learning, and between the older, classical problem of obtaining optimal stop-
ping policies for search that are characterized by a reservation price property.
It is important to note that, in the relevant search literature, incomplete in-
formation and strategic interaction did not play any role.
In a famous paper, Rothschild [16] studied the problem of a consumer who

obtains a sequence of price quotations from various sellers, and who must de-
cide when to stop the (costly) search for a lower price. In Rothschild�s model,
the buyer has only partial information about the price distribution, and she
updates (in a Bayesian way) her beliefs after each observation. Under full
information about the environment, the optimal stopping rule is character-
ized by a reservation price R such that that the searcher accepts (or stops
search) at any price less than equal to R; and rejects (or continues to search)
any price higher than R: One of the appealing features of this policy (see

1Dasgupta and Maskin [6] and Jehiel and Moldovanu [9] have analyzed e¢ cient im-
plementation in static models with direct informational externalities. Kittsteiner and
Moldovanu [10] used these insights in a dynamic model with direct externalities and with-
out learning.
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Rothschild�s paper for the others) is that, if all customers follow it, a �rm in
the market will face a well-behaved demand function: expected sales are a
non-increasing function of the price it charges. Such regularity conditions are
extensively used in theoretical and empirical studies, and thus it is of major
interest to �nd out when they are validated by theory. In the classical search
model, price quotations are non-strategic, and the monotonicity requirement
behind the reservation price property is a only a convenient, intuitive feature,
facilitating the application of structural empirical methods in applied studies.
In contrast, implementability is, of course, a "non-plus-ultra" requirement in
our strategic, incomplete information model.
In the case studied by Rothschild, stopping prices necessarily change as

information changes, and hence the optimal policy cannot be characterized
by a single reservation price. But, in order to have expected sales decreasing
in price, it is enough to assume that, for each information state, a searcher
follows a reservation price policy, i.e., for each information state s there
exists a price R(s) such that prices above are rejected and prices below are
accepted. While the optimal Bayesian search rule need not generally have
this property, Rotschild gave an example showing that the property holds
for a searcher who obtains price quotations from a multinomial distribution
which depends on parameters about which prior is Dirichlet2. Albright [1]
computed several cases of Bayesian learning with conjugate priors where a
generalized reservation price property holds in his model with several objects.
This requires then that sets of types to whom particular objects are allocated
are convex and ordered, with better objects being allocated to higher types.
An obvious open problem was to establish some more or less general, su¢ cient
conditions under which optimal search policies have the reservation price
property. Various answers to this problem were o¤ered by Rosen�eld and
Shapiro [15], Morgan [13], Seierstad [18] and Bickchandani and Sharma [4].
The conditions derived in our paper are more stringent than those ob-

tained in the search literature (at least for Bayesian environments), mainly
because of the presence here of multiple objects: these induce a more complex
structure of the optimal search policies, and more stringent conditions are
needed in order to control it3. In particular, and letting aside for a while the
mechanism design/dynamic e¢ ciency interpretation, our results can also be
seen as o¤ering conditions ensuring that the optimal search policy without
recall for highest prices for several (possibly heterogenous) objects exhibits
the relevant reservation price property. Moreover, by a simple inversion of

2The Dirichlet is the conjugate prior of the multinomial distribution, so the posterior
is also Dirichlet in this case.

3These more stringent conditions are needed even if all objects are homogenous.
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the interpretation of the optimal policy - better objects are then associated
with lower types - our results also hold for the analogous version where a
buyer sequentially searches for several lowest prices.

The paper is organized as follows: In Section 2 we present the sequential
allocation and learning model. In Section 3 we �rst recall the result, due to
Albright [1], that characterizes the e¢ cient dynamic allocation policy under
complete information about the arriving agents�values. Then, we derive sev-
eral useful structural properties of that policy that are used in the sequel.
In Section 4 we add incomplete information about the agents�value (while
keeping the assumption that the designer gradually learn about the distrib-
ution of values). First, we generalize a result in GM [8] by deriving a simple
su¢ cient condition ensuring that the �rst-best (i.e., complete information)
e¢ cient policy can be implemented also under incomplete information. This
condition requires the optimal cuto¤s de�ning the e¢ cient allocation at each
stage to satisfy a certain Lipschitz condition when regarded as functions of
the current observation (see Proposition 5). The Lipschitz condition ensure
that the impact of new information on option values is lower than the impact
on current values. We next turn to our main results: these describe structural
properties of general learning processes that induce the Lipschitz property.
We o¤er two separate sets of su¢ cient conditions on general learning process,
each set being composed of two requirements. The common requirement is
a stochastic dominance condition: higher current observations should lead
to more optimistic beliefs about the distribution of future values. The other
requirement, respectively, puts a precise bound on the allowed optimism as-
sociated to higher observations in each period of search. The two obtained
bounds di¤er in their response to an increase in the number of objects (or
search periods): in the �rst result, Theorem 6, the bound becomes tighter in
early search stages, while in the second the bound becomes tighter in later
periods. We also o¤ers illustrations for both results within the framework
of standard Bayesian learning. In Subsection 4.1 we highlight the similari-
ties and the di¤erences between our results and several earlier results about
the reservation price property obtained in the search literature. In Section
5 we turn our attention to two special, non-Bayesian learning models where
updating is based on the empirical distribution and on a maximum entropy
principle, respectively. Theorems 11 and 13 show that, given these learning
models, the Lipschitz condition is always satis�ed, and hence the correspond-
ing e¢ cient allocation policy is always implementable. Section 6 concludes.
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2 The Model

There are m items and n agents. Each item i is characterized by a "quality"
qi; and each agent j is characterized by a "type" xj. If an item with quality
qi � 0 is assigned to an agent with type xj , then this agent enjoys a utility
given by qixj. Getting no item generates utility of zero. The goal is to �nd an
assignment that maximizes total welfare. In a static problem, total welfare
is maximized by assigning the item with the highest quality to the agent
with the highest type, the item with the second highest quality to the agent
with the second highest type, and so on... This assignment rule is called
"assortative matching".
Here we assume that agents arrive sequentially, one agent per period of

time, that each agent can only be served upon arrival (there is no recall),
and that assigned items cannot be reallocated in the future.
Let period n denote the �rst period, period n�1 denote the second period,

..., period 1 denote the last period. If m > n we can obviously discard the
m � n worst items without welfare loss. If m < n we can add "dummy"
objects with qi = 0. Thus, we can assume without loss of generality that
m = n.
While the items�properties 0 � q1 � q2::: � qm are assumed to be known,

the agents�types are assumed to be independent and identically distributed
random variables Xi on [0;+1) with common cumulative distribution func-
tion F .
The function F is not known to the designer nor to the agents. At the

beginning of the allocation process the designer has a prior �n over possi-
ble distribution functions, and he updates his beliefs after each additional
observation. Denote by �k (xn; :::; xk+1) the designer�s beliefs about the dis-
tribution function F after observing types xn; :::; xk+1. Given such beliefs, leteFk(xjxn; :::; xk+1) denote the distribution of the next type xk, conditional on
observing xn; :::; xk+1. We assume that the distribution eFk(xjxn; :::; xk+1) is
symmetric with respect to observed signals. The symmetry of eFk(xkj�k+1; xk+1)
may depend on the used updating process. It is satis�ed in Bayesian learning
models and in non-Bayesian models used below.
Finally, we assume that each agent, upon arrival observes the whole his-

tory of the previous play.
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3 The E¢ cient Allocation under Complete
Information

We start by characterizing the dynamically e¢ cient allocation while disre-
garding the agents�incentives to truthfully report their types. Alternatively,
we assume �rst that there is complete information, i.e., the agent�s type is
revealed to the designer upon the agent�s arrival (thus there is still uncer-
tainty about the types of future agents). The e¢ cient allocation maximizes
at each decision period the sum of the expected utilities of all agents, given
all the information available at that period.
Let the history at period k, Hk, be the ordered set of all signals reported

by the agents that arrived at periods n; :::; k + 1 , and of allocations to
those agents. Let Hk be the set of all histories at period k. Denote by
�k the ordered set of signals reported by the agents that arrived at periods
n; :::; k + 1. Finally, denote by �k the set of available objects at k (which
has cardinality k by our convention that equates the number of objects with
the number of periods). Note that an initial inventory �n and a history Hk
completely determine the set �k.
The result below characterizes, at each period, the dynamically e¢ cient

policy in terms of cuto¤s which are determined by the history of observed
signals. This policy can be seen as the dynamic version of the assortative
matching policy that is optimal in the static case where all agents arrive
simultaneously.

Theorem 1 (Albright, 1977)

1. Assume that types xn; ::; xk+1 have been observed, and consider the ar-
rival of an agent with type xk in period k � 1: There exist functions
0 = a0;k (�k; xk) � a1;k (�k; xk) � a2;k(�k; xk)::: � ak;k(�k; xk) = 1
such that the e¢ cient dynamic policy - which maximizes the expected
value of the total reward - assigns the item with the i� th smallest type
if xk 2 (ai�1;k(�k; xk); ai;k(�k; xk)]: The functions ai;k(�k; xk) do not
depend on the q0s.

2. Each ai;k+1(�k+1; xk+1) equals the expected value of the agent�s type to
which the item with i � th smallest type is assigned in a problem with
k periods before the period k signal is observed. These constants are
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related to each other by the following recursive formulae:

ai;k+1(�k+1; xk+1) =

Z
Ai;k

xkd eFk(xkj�k+1; xk+1)
+

Z
Ai;k

ai�1;k(�k; xk)d eFk(xkj�k+1; xk+1)
+

Z
Ai;k

ai;k(�k; xk)d eFk(xkj�k+1; xk+1) (1)

where4

Ai;k = fxk : xk � ai�1;k(�k; xk)g
Ai;k = fxk : ai�1;k(�k; xk) < xk � ai;k(�k; xk)g
Ai;k = fxk : xk > ai;k(�k; xk)g

Note that, by the above Theorem, we can write

ai;k+1(�k+1; xk+1) = Exkjxk+1Gi;k(xk; xk+1; �k+1) (2)

where the function Gi;k(xk; xk+1; �k+1) is given by:8<:
ai�1;k(�k+1; xk+1; xk) if xk � ai�1;k(�k+1; xk+1; xk)

xk if ai�1;k(�k+1; xk+1; xk) < xk � ai;k(�k+1; xk+1; xk)
ai;k(�k+1; xk+1; xk) if xk > ai;k(�k+1; xk+1; xk)

.

(3)
In other words Gi;k(xk; xk+1; �k+1) is the second-highest order statistic out
of the set fai�1;k(�k+1; xk+1; xk); xk ; ai;k(�k+1; xk+1; xk)g. Note also that
if eFk(xkj�k+1; xk+1) is symmetric with respect to the observed signals, then
ai;k+1(�k+1; xk+1) is symmetric as well.
We next prove two structural results that will be used in the proofs of

our main Theorems. First, we show that the average of all but the extreme
cuto¤s equals the expectation about the next type.

Lemma 2 For any k � n; it holds that

k�1X
i=1

ai;k(�k; xk) = (k � 1)Exkj�k(xk):

4We set +1 � 0 = �1 � 0 = 0:

8



Proof. We prove the claim by induction. For k = 2, a1;2(�2; x2) =R1
0
x1d eF1 (x1j�1; x2) = Ex1j�2;x2x1. Theorem 1 implies that, for any �xed

xk,

kX
i=1

h
ai�1;k(�k; xk)1Ai;k + ai;k(�k; xk)1Ai;k

i
=

k�1X
i=1

ai;k(�k+1; xk+1; xk) (4)

where 1s is an index function. Using (1) and the previous expression we
obtain for period k + 1 that:

kX
i=1

ai;k+1(�k+1; xk+1) =

Z 1

0

xd eFk(xj�k+1; xk+1)
+

k�1X
i=1

Exkj�k+1;xk+1ai;k(�k+1; xk+1; xk) = kExkj�k+1;xk+1xk

where the �rst equality follows from (4) , and where the last equality follows
from the induction argument.
Next, we derive a monotonicity properties of the cuto¤s that holds when-

ever higher observations induce more optimistic beliefs about the distribution
of values:

Lemma 3 Assume that for any k , and for any pair of ordered lists of reports
�k � �0k that di¤er only in one coordinate eFk (xj�k) %FOSD eFk (xj�0k) : Then
the cuto¤ ai;k(�k; xk) is non-decreasing in xk.

Proof. The proof is by induction on the number of remaining periods. For
k = 2 we have

a2;2(�2; x2) = 1

a1;2(�2; x2) =

Z 1

0

x1d eF1 (x1j�2; x2)
a0;2(�2; x2) = 0

Stochastic dominance immediately implies that the cuto¤s are non-decreasing
in x2. We now apply the induction argument, and assume that, for any �k
and for any i; ai;k(�k; xk) is non-decreasing in xk. This implies that the
function Gi;k(xk; xk+1; �k+1) is non-decreasing in xk and that for any i,

ai;k(�k+1; xk+1; xk) = ai;k(�k+1; xk; xk+1) �
ai;k(�k+1; xk; x

0
k+1) = ai;k(�k+1; x

0
k+1; xk)
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where both equalities follow from the assumption of symmetry whereby
switching the order of the observations does not a¤ect the �nal beliefs.
Therefore we obtain Gi;k(xk; xk+1; �k+1) � Gi;k(xk; x

0
k+1; �k+1) for any xk.

Moreover we have that

ai;k+1(�k+1; xk+1) = Exkjxk+1Gi;k(xk; xk+1; �k+1)

� Exkjxk+1Gi;k(xk; x
0
k+1; �k+1)

� Exkjx0k+1Gi;k(xk; x
0
k+1; �k+1) = ai;k+1(�k+1; x

0
k+1)

where the second inequality follows from the assumed stochastic dominance,
and from the fact that, by the induction argument, Gk(xk; x0k+1; �k+1) is
non-decreasing in xk.
The stochastic dominance condition employed in order to obtain the

monotonicity of the cuto¤s de�ning the optimal policy is, for example, a
simple consequence of a standard setting found in the literature: Assume
that values x are drawn according to a density f (xj�) where � 2 R. De-
note by h(�) the density of �; and by H(�) the corresponding probability
distribution - this is here the prior belief which gets then updated after each
observation. Then the following holds:

Lemma 4 Assume that f(xj�) has the Monotone Likelihood Ratio (MLR)
property. That is, for any x > x0;

@

@�

�
f (xj�)
f (x0j�)

�
> 0.

Then, for any k, and for any ordered lists of observations �k � �0k that di¤er
only in one coordinate it holds thateFk (xj�k) � eFk (xj�0k) for all x.
where eF ,the conditional distribution of the next value, is obtained by Bayesian
updating.

Proof. First, recall that the MLR property implies that F (xj�) �rst order
stochastically dominates F (xj�0) if � > �0. Therefore, for any x > 0, we
obtain that F (xj�) decreases with �. Bayes�rule implies then that

eFk (xj�k) = 1Z
�1

F (xj�)h (�j�k) d�.

Consider now two sequences �k and �
0
k that di¤er only in one observation

(say the observation of period i) and such that �k � �0k. Since F (xj�)
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decreases with � for any x > 0, it is su¢ cient to show thatH (�j�k) �rst-order
stochastically dominates H (�j�0k). By a result is Milgrom [12], The MLR
property implies that H (�jx) �rst-order stochastically dominates H (�jx0) if
x > x0. Since Milgrom�s result holds for any prior h (�), we can also apply
it to h (�j�knxi) which represents the posterior belief about the parameter �
after having observed the sequence �k without signal xi. This completes the
proof.

4 Dynamic E¢ cient Implementation

We now assume that there is incomplete information about values. The next
result, related to a result in GM [8], displays a su¢ cient condition on the
cuto¤s of Theorem 1 ensuring that the e¢ cient allocation is implementable.

Proposition 5 Assume that for any k, �k, i 2 f0; ::; kg, the cuto¤ ai;k(�k; xk)
is a Lipschitz function of xk with constant 1. Then, the e¢ cient dynamic
policy is implementable under incomplete information.

Proof. GM [8] showed that the e¢ cient allocation is implementable if and
only if for any k, i � k and �k the set fx : ai;k(�k; x) > x � ai�1;k(�k; x)g
is convex. The characterization of the complete information e¢ cient alloca-
tion provided by Albright states that for any k, i � k, x and �k we have
ai;k(�k; x) � ai�1;k(�k; x). Therefore, it is su¢ cient to show that if there exist
k, �k and i 2 f0; ::; kg, and a signal xk with ai;k(�k; xk) < xk, then there is
no x0k > xk such that ai;k(�k; x

0
k) > x

0
k. Assume that such x

0
k exists. Since

ai;k is Lipschitz with constant 1, ai;k(�k; x
0
k) � x0k � xk + ai;k(�k; xk). Since

ai;k(�k; xk) < xk, we obtain ai;k(�k; x
0
k) < x0k, which yields a contradiction.

Due to the learning process, the current information a¤ects both the cur-
rent value of allocating some object to the arriving agent and the option
value of keeping that object and allocating it in the future. The previous
result requires the e¤ect of the current information on the current value to
be stronger than the e¤ect on the option value. But what conditions on the
models�primitives induce the Lipschitz property, and hence the possibility of
implementing the �rst-best dynamically e¢ cient allocation also under condi-
tions of incomplete information? The next Theorems provide several distinct
answers to this question.

Theorem 6 Assume that for any k; and for any pair of ordered lists of
reports �k � �0k that di¤er only in one coordinate, the following conditions
hold:

11



su¤1 eFk (xj�k) %FOSD eFk (xj�0k)
su¤2 E (xj�k) � E (xj�0k) � �

k�1where � is size of the di¤erence between
�k and �

0
k

Then, the e¢ cient dynamic policy can be implemented also under in-
complete information.

Proof. Lemma 2 and the second condition in the Theorem�s statement imply
that
k�1X
i=1

(ai;k(�k; xk)� ai;k(�k; x0k)) = (k � 1)
�
Exk�1j�k;xkxk�1 � Exk�1j�k;x0kxk�1

�
� k � 1
k � 1 (xk � x

0
k) . (5)

In other words, the sum of cuto¤s
k�1P
i=1

ai;k(�k; xk) is a Lipschitz function with

constant 1 of xk. By Lemma 3 , and the stochastic dominance condition, we
know that the cuto¤ai;k(�k; xk) is a non-decreasing function of xk: Therefore,
inequality 5 implies that, for any i , the function ai;k(�k; xk) must also be
a Lipschitz function with constant 1 of xk. By Proposition 5, the e¢ cient
dynamic policy is then implementable.
The �rst condition (stochastic dominance) in the above Theorem says

that higher observations should lead to optimism about future observations,
while the second condition puts a bound on this optimism. The result is
simple, but its disadvantage is that, as the number of objects (or search
periods) grows, the second condition gets tougher (i.e., the bound on the
optimism associated to higher observation gradually decreases) in the early
search periods. Here is an illustration of this phenomenon:

Example 7 Assume that with probability p the arriving agent�s type x is
distributed on the interval [0; 1] with density f1(x) = 1� b1

2
+ b1x , and with

probability 1 � p it is distributed on [0; 1] with density f2(x) = 1 � b2
2
+ b2x,

where b1; b2 2 [�2; 2). Note that

E [Fi] =
1

2
+
bi
12
and

E (xj�k) = Pr (bi = b1jxn; ::; xk+1)E [F1] + Pr (bi = b2jxn; ::; xk+1)E [F2]

Using Bayesian updating we get that

Pr (bi = b1jxn; ::; xk+1) =
 
1 +

1� p
p

nY
j=k+1

1� b2
2
+ b2xj

1� b1
2
+ b1xj

!�1
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Therefore,

E (xj�k)� E (xj�0k) =
b1 � b2
12

[Pr (bi = b1j�k)� Pr (bi = b1j�0k)] .

Let �k and �
0
k be two sequences of observed signals that di¤er only in one

coordinate, with �k � �0k. Then

Pr (bi = b1j�k)� Pr (bi = b1j�0k)

=

1�p
p

nY
j=k+1

1� b2
2
+b2xj

1� b1
2
+b1xj

(b1�b2)(xi�x0i)
(1� b2

2
+b2xi)(1� b1

2
+b1x0i) 

1 + 1�p
p

nY
j=k+1

1� b2
2
+b2xj

1� b1
2
+b1xj

! 
1 + 1�p

p

nY
j=k+1

1� b2
2
+b2x0j

1� b1
2
+b1x0j

! .

Since
1�p
p

nY
j=k+1

1� b2
2
+b2xj

1� b1
2
+b1xj 

1 + 1�p
p

nY
j=k+1

1� b2
2
+b2xj

1� b1
2
+b1xj

! 
1 + 1�p

p

nY
j=k+1

1� b2
2
+b2x0j

1� b1
2
+b1x0j

! < 1

we obtain

E (xj�k)� E (xj�0k) <
(b1 � b2)2

12

(xi � x0i)�
1� b2

2
+ b2xi

� �
1� b1

2
+ b1x0i

�
� (b1 � b2)2

3 (2� b2) (2� b1)
(xi � x0i) .

Finally, if
(b1 � b2)2

3 (2� b2) (2� b1)
� 1

n� 1 , (6)

we obtain that

E (xj�k)� E (xj�0k) �
(xi � x0i)
n� 1 � (xi � x0i)

k � 1 .

as desired. It is obvious that the set of parameters fb1; b2g where the condition
is satis�ed shrinks as n goes to in�nity

In order to obtain conditions on the learning process that hold indepen-
dently of the number of objects/ periods, we focus now on bounds that, as

13



the number of objects grows, get tighter in late, rather than in early pe-
riods. Such conditions are, in principle, easier to satisfy generally since in
many learning models (in particular in those learning models where beliefs
converge, say, to the true distribution) the impact of later observations on
beliefs is signi�cantly lower than that of early observations. Thus, a tighter
bound on the allowed optimism associated with higher observations is less
likely to be binding in late periods. The proof of the next result is somewhat
more involved. For mathematical convenience, we make a mild di¤erentia-
bility assumption that allows us to work with bounds on derivatives rather
than with the Lipschitz condition of Proposition 5.

Theorem 8 Assume that, for all k; all x; and all n� k � i � 1; the condi-
tional distribution function eFk (xjxn; ::; xk+1) and the density efk (xjxn; � � �; xk+1)
are continuously di¤erentiable with respect to xk+i. If for all x, �k, and all
n� k � i � 1, it holds that

0 � @ eFk (xj�k)
@xk+i

� � 1

n� k
efk (xj�k) (7)

then the e¢ cient dynamic policy can be implemented also under incomplete
information.

Proof. Note �rst that

@E (xkj�k)
@xk+i

=
@

@xk+i

1Z
0

�
1� eFk (xkj�k)� dxk

� 1

n� k

1Z
0

efk (xkj�k) dxk = 1

n� k (8)

where the inequality follows from the condition of the theorem. By Propo-
sition 5, it is su¢ cient to show that for any k, any history of reports �k,
and any n � k � i � 1, the cuto¤ ai;k(�k; xk) is di¤erentiable and satis�es
@
@xk
ai;k(�k; xk) � 1. Since ai;k(�k; xk) = Exk�1j�k;xkGi;k�1(xk�1; xk; �k); we

need to show that @
@xk
Exk�1j�k;xkGi;k�1(xk�1; xk; �k) exists and that

@

@xk
Exk�1j�k;xkGi;k�1(xk�1; xk; �k) � 1:

We claim now that Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1) is di¤erentiable and
that

@Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1)

@xk+1
� 1

n� k

14



This yields @
@xk+1

ai;k+1(�k+1; xk+1) � 1
n�k for any history of signals �k+1, any

pair of signals xk; xk+1, any period k + 1 > 1, and any item i.
We prove the claim by induction on the number of the remaining periods

k. For k = 1, note that a0;1(�2; x2; x1) = 0 and a1;1(�2; x2; x1) = 1: Hence,
we have G1;1(x1; x2; �2) = x1. Therefore, inequality (8) implies

@

@x2
Ex1j�2;x2G1;1(x1; x2; �2) � 1

n� 1 and

@

@x2
a1;2(�2; x2) � 1

n� 1

Note also that continuous di¤erentiability of ef1 (xjxn; :::; x2) implies contin-
uous di¤erentiability of a1;2(�2; x2). Assume now that ai;k(�k; xk) is contin-
uously di¤erentiable and that

@Exk�1j�k;xkGi;k�1(xk�1; xk; �k)

@xk
� 1

n� k + 1 ;

@ai;k(�k; xk)

@xk
� 1

n� k + 1

Since ai;k(�k; xk) is continuous, the induction hypothesis implies that for any
i 2 f1; :::; k�1g there exists at most one solution to the equation ai;k(�k; x) =
x. Denote this solution by a�i;k(�k). If ai;k(�k; x) > x for any x, de�ne
a�i;k(�k) = 1, and if ai;k(�k; x) < x for any x de�ne a�i;k(�k) = 0. Recall
that, by induction, we can rewrite

Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1)

=

a�i�1;k(�k)Z
0

ai�1;k(�k+1; xk+1; xk)f
�
xkj�k+1; xk+1

�
dxk

+

a�i;k(�k)Z
a�i�1;k(�k)

xkf
�
xkj�k+1; xk+1

�
dxk

+

1Z
a�i;k(�k)

ai;k(�k+1; xk+1; xk)f
�
xkj�k+1; xk+1

�
dxk.

Since ai;k(�k+1; xk+1; xk) is continuously di¤erentiable in xk+1 for any i 2
f1; :::; k� 1g by the induction argument, and since efk �xkj�k+1; xk+1� is con-
tinuously di¤erentiable by assumption, we can invoke the Implicit Function
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Theorem to deduce that the �xed point a�i;k(�k) is continuously di¤erentiable
in xk+1. Thus, we obtain that Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1) is continuously
di¤erentiable in xk+1.
We now show that @

@xk+1
Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1) �

1
n�k . We have

@

@xk+1

1Z
0

Gi;k(xk; xk+1; �k+1) efk �xkjxk+1; �k+1� dxk
=

1Z
0

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk (9)

+

1Z
0

@ efk �xkjxk+1; �k+1�
@xk+1

Gi;k(xk; xk+1; �k+1)dxk. (10)

Consider �rst the term in the sum above (9):

1Z
0

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk

=

a�i�1;k(xk+1;�k+1)Z
0

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk

+

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk

+

1Z
a�i;k(xk+1;�k+1)

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk

� 1

n� k + 1 �
1

n� k + 1

h eFk �a�i;k �xk+1; �k+1� jxk+1; �k+1�� eFk �a�i�1;k �xk+1; �k+1� jxk+1; �k+1�i
where the existence of the �xed points a�i;k

�
xk+1; �k+1

�
and a�i�1;k

�
xk+1; �k+1

�
follows from the induction argument, while the inequality follows from the
induction argument and from the fact that @Gi;k(xk;xk+1;�k+1)

@xk+1
= 0 if xk 2�

a�i�1;k
�
xk+1; �k+1

�
; a�i;k

�
xk+1; �k+1

��
.
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Consider now the second term in the sum (10):

1Z
0

@ efk �xkjxk+1; �k+1�
@xk+1

Gi;k(xk; xk+1; �k+1)dxk

=
@ eFk �xkjxk+1; �k+1�

@xk+1
Gi;k(xk; xk+1; �k+1)

�����
1

xk=0

�
1Z
0

@ eFk �xkjxk+1; �k+1�
@xk+1

@Gi;k(xk; xk+1; �k+1)

@xk
dxk

= �
1Z
0

@ eFk �xkjxk+1; �k+1�
@xk+1

@Gi;k(xk; xk+1; �k+1)

@xk
dxk

� 1

n� k + 1

1Z
0

@
h
1� eFk �xkjxk+1; �k+1�i

@xk+1
dxk

� n� k
n� k + 1

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@ eFk �xkjxk+1; �k+1�
@xk+1

dxk

� 1

n� k + 1
1

n� k �
n� k

n� k + 1

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@ eFk �xkjxk+1; �k+1�
@xk+1

dxk

where the �rst equality follows by integration by parts, and where the second
equality follows because limx!1 eFk �xjxk+1; �k+1� = 1 and eFk �0jxk+1; �k+1� =
0. The �rst inequality follows by the induction argument (which implies the
existence of the �xed points a�i;k

�
xk+1; �k+1

�
, a�i�1;k

�
xk+1; �k+1

�
) and be-

cause

@Gi;k(xk; xk+1; �k+1)

@xk

�
= 1 if xk 2

�
a�i�1;k

�
xk+1; �k+1

�
; a�i;k

�
xk+1; �k+1

��
� 1

n�k+1 if xk =2
�
a�i�1;k

�
xk+1; �k+1

�
; a�i;k

�
xk+1; �k+1

�� .
Combining now the two terms 9 and 10 we obtain

17



@

@xk+1

1Z
0

Gi;k(xk; xk+1; �k+1) efk �xkjxk+1; �k+1� dxk
� 1

n� k + 1 �
1

n� k + 1

h eFk �a�i;k �xk+1; �k+1� jxk+1; �k+1�� eFk �a�i�1;k �xk+1; �k+1� jxk+1; �k+1�i

+
1

n� k + 1
1

n� k �
n� k

n� k + 1

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@ eFk �xkjxk+1; �k+1�
@xk+1

dxk (11)

Recalling the miraculous relation

1

n� k + 1
1

n� k +
1

n� k + 1 =
1

n� k
it is therefore su¢ cient to prove that

1

n� k

h eFk �a�i;k �xk+1; �k+1� jxk+1; �k+1�� eFk �a�i�1;k �xk+1; �k+1� jxk+1; �k+1�i

� �

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@ eFk �xkjxk+1; �k+1�
@xk+1

dxk.

Integrating with respect to x both sides of the assumed inequality

�@
eFk (xj�k)
@xk+i

� 1

n� k
efk (xj�k)

between the �xed points a�i�1;k
�
xk+1; �k+1

�
and a�i;k

�
xk+1; �k+1

�
yields the

desired result.
While the left hand inequality in condition 7 is just another way to ex-

press the stochastic dominance condition also employed in Theorem 6, it is
worth to explore deeper the right hand side. Putting aside di¤erentiabil-
ity for a moment, this condition is equivalent to requiring that the functioneFk �x+ z

n�k jxk+1; :; xk+i + z; xk+i+1; :; xn
�
is non-decreasing in z. In other

words, after having already obtained n�k observations, a shift to the right -
which moves the value of the distribution upwards - is enough to compensate
the downward shift in the value of the distribution caused by an (n�k) times
larger upward shift in one of the past observations (recall that, by stochastic
dominance, higher observations move the entire distribution downwards).
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Example 9 A simple illustration where the conditions in the above Theorem
are satis�ed is obtained by considering a normal distribution of values ex �
N(�; 1) with unknown mean �, and prior beliefs about � of the form e� �
N(�0; 1=�) where � > 0: After observing xn; ::xk+1 the posterior on e� is
given by N(�; 1=(� + n� k)) where

� =
��0 +

P
xi

� + (n� k)

This yields eFk(xjxn; :::; xk+1) = N(�; 1 + 1=(� + n� k))
Note that

eFk(x+ z

� + (n� k) jxn; ::; xi + z; ::; xk+1) =
eFk(xjxn; ::; xi; ::; xk+1) (12)

so that the stochastic dominance condition necessarily holds. By di¤erentiat-
ing with respect to z both sides of the identity 12, and by letting z go to zero,
we obtain that

@ eFk (xjxn; :::; xk+1)
@xk+i

= � 1

� + n� k
efk (xjxn; :::; xk+1))

@ eFk (xjxn; :::; xk+1)
@xk+i

� � 1

n� k
efk (xjxn; :::; xk+1)

as desired.

4.1 A Connection to Search for the Lowest Price

As mentioned in the Introduction, the �rst general conditions ensuring that
the optimal search policy in Rothschild�s search model is characterized by
a sequence of reservation prices appear in a subtle paper by Rosen�eld and
Shapiro [15]. In order to understand the relation between our results and
theirs, recall �rst our condition from Theorem 8: For all x , �k ;and all
n� k � i � 1

0 � @ eFk (xj�k)
@xk+i

� � 1

n� k
efk (xj�k) (13)

The �rst requirement in the paper by Rosen�eld and Shapiro is identical
to our stochastic dominance condition (the left hand side of condition 13),
while their second condition - translated to the di¤erentiable case and to the
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case of a searching seller instead of a searching buyer in order to facilitate
comparison- reads: For all x; k; �k and all n� k � i � 1Z 1

x

@ eFk (yj�k) dy
@xk+i

� � 1

n� k (1�
eFk(xj�k) (14)

In other words, theirs is simply the "average" version of the right hand side
side of our condition 13, and hence it is obviously implied by it.
Seierstad [18] o¤ers another variant. Besides stochastic dominance, his

condition reads (again in the di¤erentiable case): For all x; k and �k

n�kX
i=1

@ eFk (xj�k)
@xk+i

� � efk (xj�k) (15)

which is also clearly implied by our condition 13. The reason why we
need stronger conditions than both Rosen�eld and Shapiro�s and Seierstad�s
is intimately related to the fact that we do analyze a model with several
objects: at each point in time we have several critical cuto¤s to control,
instead of only one. In particular, the reservation price property is connected
in our model to the existence of several �xed points at each period, and we
need to control the conditional distribution of future values between any two
such �xed points (without a-priori knowing where they will be). In contrast,
in the one-object search problem there are only two �xed points to consider
at each period, and one of them is trivially equal to either "minus in�nity"
(for a searching buyer) or "plus in�nity" (for a searching seller). This fact
allows Rosen�eld and Shapiro to use an average bound, and Seierstad to use
a bound that aggregates the e¤ect of all past observations.

5 Non-Bayesian Learning

In this Section we study two adaptive, non-Bayesian learning process that
have been analyzed in the classical one-object search framework by Bickchan-
dani and Sharma [4], and by Chou and Talmain [5], respectively. Both
processes are consistent in the sense that they uniformly converge to the
true distribution as the number of observations goes to in�nity5.
In both cases, we prove that the e¢ cient allocation is always imple-

mentable6. A word of caution is needed here: Our results do not imply
5In both cases, this is a consequence of the well known Glivenko-Cantelli Theorem
6As in the case of Bayesian learning, the e¢ cient allocation maximizes at each decision

period the sum of the expected utilities of all agents, given all the available information.
The only di¤erence to the Bayesian approach is in the inference made from new informa-
tion.
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that the considered non-Bayesian procedures are "better" than Bayesian up-
dating for the purposes of e¢ cient implementation! They just say that the
complete information e¢ cient allocation - whose calculation proceeds given
an assumed learning procedure - can always be implemented for the partic-
ular adaptive processes studied here. Of course, if full rationality is taken to
include Bayesian learning, the considered procedures implement the "wrong"
allocation to start with.

5.1 Learning Based on the Empirical Distribution

Assume that before stage n (the �rst stage), the designer�s prior belief about
the distribution of the �rst type xn is given by a given distribution H. Then,
conditional on sequentially observing xn; xn�1:::; xk+1 at stages n; n�1; :::k+
1, the designer�s belief about the distribution of the next type x = x

k
is given

by:

eFk(xjxn; :::; xk+1) = (1��nk)H(x)+�nk 1

n� k

nX
i=k+1

1[xi;1)(x); k = 1; 2; :::n�1

where 0 < �nk < 1 , and where 1[z;1)(x) denotes the indicator function of
the set [z;1): Thus at each stage, the posterior distribution is given by a
convex combination of the prior distribution and of the empirical distribution.
Since, by the Glivenko-Cantelli theorem, the empirical distribution uniformly
converges to the true underlying distribution, the posterior distribution also
converges to the true distribution if the weight on the empirical distribution
satis�es: 8k; limn!1 �

n
k = 1:

For the proof of our main result in this Subsection we need the following
well-known Lemma:

Lemma 10 Let u(x) be a function on the interval [a; b] such that there exist
a division of the interval a = z0 < z1:: < zn = b and values c1; :::cn with u(x)
= ci for zi < x < zi+1; i = 0; 1; ::n � 1: Then, for any continuous function
v(x) on [a; b]; it holds thatZ b

a

v(x)du(x) =
nX
i=0

v(zi)(ci+1 � ci)

where
R
denotes here the Stieltjes integral.
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Theorem 11 Assume that the designer learns based on the empirical distri-
bution. Then, the e¢ cient dynamic policy can always be implemented under
incomplete information.

Proof. Analogously to our proof of Theorem 8 we will show that for any i,
k, �k and xk; the cuto¤ ai;k (�k; xk) is continuously di¤erentiable in xk , and
that @

@xk
ai;k(�k; xk) � 1. Let mx = (x; x; :::x) denote an m�vector of x:

We �rst show by induction that 8m; m � n � k + 1, the function
ai;k (xn; ::xk+m;mx) is continuously di¤erentiable in the observed signals and
that

8i; k; @ai;k (xn; ::xk+m;mx)

@x
< 1.

Since the conditional distribution eFk(xjxn; :::; xk+1) does not have a well-
de�ned density, we use below the notion of Stieltjes integral. In the last but
one period k = 2; the only relevant, non-trivial cuto¤ is:

a1;2(xn; :::; x2) =

Z 1

0

x1d eF1 (x1jxn; ::; x2)
; = (1� �n2 )

Z 1

0

x1dH(x1) + �
n
2

Z 1

0

x1d

 
nX
i=2

1[xi;1)(x1)

!

= (1� �n2 )E(H) + �n2
1

n� 1

nX
i=2

xi

The second equality follows by the additivity property of the Stieltjes inte-
gral. The third equality follows by Lemma 10 since

Pn
i=2 1[xi;1)(x) is a step

function. Thus, as required, we obtain that a1;2(xn; :::; x2) is continuously
di¤erentiable and that

@a1;2 (xn; ::; x2+m;mx)

@x
� m�n2
n� 1 < 1; m = 1; 2; :::n� 1

Assume now that the statement holds for all periods up to k (recall that
period 1 is the last period, and so on...) and let us look at period k+1; and
at m � n� k. Recalling the de�nition of the function Gi;k(�k+1; xk+1; xk) in
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equation ??, we obtain that

ai;k+1 (xn; ::xk+m+1;mx)

=

Z 1

0

Gi;k(xn; ::xk+1+m;mx; xk)d eFk(xkj(xn; ::xk+1+m;mx))
= (1� �nk+1)

Z 1

0

Gi;k(xn; ::xk+1+m;mx; xk)dH(xk)

+
m�nk+1
n� k [Gi;k(xn; ::xk+m; (m+ 1)x)]

+
�nk+1
n� k

nX
j=k+m

Gi;k(xn; ::xk+m;mx; xj)

where the second equality follows from Lemma 10. Continuous di¤erentia-
bility of ai;k+1 (xn; ::xk+m+1;mx) follows here from the same argument as in
Theorem 8. Hence, for any m � n� k , we obtain that:

@ai;k+1 ((xn; ::xk+m+1;mx)

@x

= (1� �nk+1)
Z 1

0

@Gi;k(xn; ::xn�k�m;mx; xk)

@x
dH(xk)

+
m�nk+1
n� k

@Gi;k(xn; ::xk+1+m; (m+ 1)x)

@x

+
�nk+1
n� k

nX
j=k+m

@Gi;k(xn; ::xk+m;mx; xj)

@x

< (1� �nk+1) + �nk+1(
m

n� k +
n� k �m
n� k ) = 1

where the inequality follows by the induction hypothesis. By setting m = 1;
we obtain from the above that:

8i; k @ai;k (xn; :::; xk+1)

@xk+1
< 1

which, together with Proposition 5 , proves the result.
Recalling the word of caution at the beginning of the Section, it is illus-

trative to compare Bayesian and non-Bayesian learning in a simple exam-
ple where the dynamically e¢ cient allocation is not implementable under
Bayesian learning:

Example 12 There are two periods and one indivisible object. Before start-
ing the allocation process, the designer believes that the distribution of values
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is uniform on the interval [0; 1] with probability 0:5; while with probability 0:5
he believes that it is uniform on [1; 2]: Under Bayesian learning, the posterior
after observing x2 < (>)1; is that x1 is uniformly distributed on [0; 1] ([1; 2]).
This yields

aB12(x2) =

8<:
0:5 if x2 < 1
1 if x2 = 1
1:5 if x2 > 1

Thus, the �rst arriving agent should e¢ ciently get the object if x2 2 [0:5; 1][
[1:5; 2]: This non-convex allocation policy cannot be implemented (see GM
[8])
Consider now the adaptive learning process with weight 0 < � < 1 on

the empirical distribution. Then, after having observed x2; the beliefs of the
designer are given by F (x1jx2) = (1� �)U([0; 2]) + �1[x2;2] ; which yields

aA12(x2) = (1� �) + �x2.

Thus, the �rst arriving agent should get the object if and only if x2 �
aA12(x2) = (1 � �) + �x2 , x2 � 1; which can be implemented by a take-it-
or-leave-it o¤er at a price of 1: Note how the implemented allocation di¤ers
here from the one that needs to be implemented under Bayesian learning.

For special prior distributions, the process studied above does in fact
coincide with the standard Bayesian learning. This is the case, for example,
for a multinomial Dirichlet prior or for a Dirichlet process prior. Thus, for
such priors, Theorem 11 asserts the implementability of the e¢ cient dynamic
allocation under Bayesian learning.
Bickchandani and Sharma [4] showed that the above learning model in-

duces optimal search with the reservation price property in Rothschild�s
model. As shown above, this insight continues to hold unchanged for the
case with several objects.

5.2 Maximum Entropy/Quantile Preserving Learning

For the current purpose we only assume that designer believes that types
distribute continuously on a �nite interval, which we normalize here to be
the interval [0; 1]: Recall �rst that the maximum entropy distribution among
all continuous distributions with support on an interval [a; b] is the uniform
distribution on this interval. More generally, consider a sub-division a = a0 <
a1 < ::am = b and probabilities p1; ::pm which add up to one, and consider
the class of all continuous distributions supported on [a; b] such that

Prfai�1 � X � aig = pi; i = 1; ::;m
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Then, the density of the maximum entropy distribution for this class is con-
stant on each of the intervals [aj�1; aj). Guided by this principle, Chou and
Talmain [5] looked at the following quantile preserving updating procedure7:
Prior to any observation, the designer estimates the unknown distribution by
the uniform distribution. Suppose that m observations were observed, and
order them in increasing order

�
x(1); :::; x(m)

	
. Let x(0) = 0 and x(m+1) = 1.

Then, the type of the next arrival is estimated according to the density

fk (xjxn; :::; xn�m+1) =
m+1X
i=1

1[x(i�1);x(i))(x)

(m+ 1)
�
x(i) � x(i�1)

� .
In other words, each interval of the form [x(i�1); x(i)) gets assigned a probabil-
ity pi = 1

m+1
; and the density within the interval is constant. The rationale

behind the equal weights of 1
m+1

for each interval becomes apparent by re-
calling that, for m large,

E[Xi;m] � F�1(
i

m+ 1
) and F (E[Xi;m])� F (E[Xi�1;m] �

1

m+ 1

where the Xi;m is the i � th highest order statistic, i = 1; ::m; of a random
variable X distributed according to distribution F: As above, the Glivenko-
Cantelli theorem implies that the above estimated distribution uniformly
converges to the true distribution. Our last result shows that the e¢ cient
allocation associated with this estimation procedure is always implementable.

Theorem 13 Assume that the designer uses the maximum entropy/quantile
preserving learning procedure. Then the e¢ cient dynamic policy can always
be implemented under incomplete information.

Proof. Analogously to our proof of Theorem 8 we will show that for any
i, k, �k and xk; the cuto¤ ai;k (�k; xk) is continuously di¤erentiable in xk
, and that @

@xk
ai;k(�k; xk) � 1

n�k+2 . We prove this result by induction on
k; the number of remaining periods. Note �rst that Lemma 3 yields the
monotonicity of ai;k+1(�k+1; xk+1) in xk+1:
We denote by x(i), the i�th lowest observation among the n � k + 1

observations made up to an including period k , with x(0) = 0 and x(n�k+2) =

7They studied search with recall and did not look at the reservation price property for
search without recall.
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1. For k = 2, we have:

a1;2 (xn; :::; x2) =
nX
i=1

x(i)Z
x(i�1)

x

n
�
x(i) � x(i�1)

�dx

=

1 + 2
n�1P
i=1

x(i)

2n
=

1 + 2
nP
i=2

xi

2n
)

@a1;2 (xn; :::; x2)

@x2
=

1

n
:

Assume now that the statement holds for all periods up to k. This implies
that there exists at most one solution to the equation ai;k(�k; xk) = xk, de-
noted by a�i;k(�k). Let l = max

�
j : x(j) � a�i�1;k(�k)

	
andm = max

�
j : x(j) � a�i;k(�k)

	
;

and assume, for simplicity, that m > l (the case m = l is analogous). Using
the de�nition of ai;k+1(�k+1; xk+1) we obtain

ai;k+1(�k+1; xk+1)

=
lX

j=1

x(j)R
x(j�1)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j) � x(j�1)

� +
a�i�1;k(�k)R

x(l)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(l+1) � x(l)

�

+

x(l+1)R
a�i�1;k(�k)

xkdxk

(n� k + 1)
�
x(l+1) � x(l)

� + mX
j=l+2

x(j)R
x(j�1)

xkdxk

(n� k + 1)
�
x(j) � x(j�1)

�

+

a�i;k(�k)R
x(m)

xkdxk

(n� k + 1)
�
x(m+1) � x(m)

� +
x(m+1)R
a�i;k(�k)

ai;k(�k; xk)dxk

(n� k + 1)
�
x(m+1) � x(m)

�

+
n�k+1X
j=m+1

x(j)R
x(j�1)

ai;k(�k; xk)dxk

(n� k + 1)
�
x(j) � x(j�1)

� .
Let j the index satisfying x(j) = xk+1.There are three di¤erent cases: 1.
xk+1 � x(l) ; 2. x(m) � xk+1 > x(l) ; 3. xk+1 > x(m). We prove the result for
the �rst case; the proofs of the other two cases are very similar, and we omit
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them here. We obtain:

@ai;k+1(�k+1; xk+1)

@xk+1

=
ai�1;k(�k; x(j))

(n� k + 1)
�
x(j) � x(j�1)

� � ai�1;k(�k; x(j))

(n� k + 1)
�
x(j+1) � x(j)

�

+
lX

j=1

x(j)R
x(j�1)

@ai�1;k(�k;xk)
@xk+1

dxk

(n� k + 1)
�
x(j) � x(j�1)

� +
a�i�1;k(�k)R

x(l)

@ai�1;k(�k;xk)
@xk+1

dxk

(n� k + 1)
�
x(l+1) � x(l)

�

+

x(m+1)R
a�i;k(�k)

@ai;k(�k;xk)

@xk+1
dxk

(n� k + 1)
�
x(m+1) � x(m)

� + n�k+1X
j=m+1

x(j)R
x(j�1)

@ai;k(�k;xk)

@xk+1
dxk

(n� k + 1)
�
x(j) � x(j�1)

�

�

x(j)R
x(j�1)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j) � x(j�1)

�2 +
x(j+1)R
x(j)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j+1) � x(j)

�2
Note that

lX
j=1

x(j)R
x(j�1)

@ai�1;k(�k;xk)
@xk+1

dxk

(n� k + 1)
�
x(j) � x(j�1)

� +
a�i�1;k(�k)R

x(l)

@ai�1;k(�k;xk)
@xk+1

dxk

(n� k + 1)
�
x(l+1) � x(l)

� (16)

+

x(m+1)R
a�i;k(�k)

@ai;k(�k;xk)

@xk+1
dxk

(n� k + 1)
�
x(m+1) � x(m)

� + n�k+1X
j=m+1

x(j)R
x(j�1)

@ai;k(�k;xk)

@xk+1
dxk

(n� k + 1)
�
x(j) � x(j�1)

�
� 1

(n� k + 1)
n� k �m+ l + 1

n� k + 2 � 1

(n� k + 1)
n� k

n� k + 2
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where the �rst inequality follows from the inductive assumption ( @ai�1;k(�k;xk)
@xk+1

�
1

n�k+2 ) while the second inequality follows because m > l. In addition,

ai�1;k(�k; x(j))

(n� k + 1)
�
x(j) � x(j�1)

� � ai�1;k(�k; x(j))

(n� k + 1)
�
x(j+1) � x(j)

� (17)

�

x(j)R
x(j�1)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j) � x(j�1)

�2 +
x(j+1)R
x(j)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j+1) � x(j)

�2
�

ai�1;k(�k; x(j))

(n� k + 1)
�
x(j) � x(j�1)

� � ai�1;k(�k; x(j))

(n� k + 1)
�
x(j+1) � x(j)

�
�

ai�1;k(�k; x(j�1))

(n� k + 1)
�
x(j) � x(j�1)

� + ai�1;k(�k; x(j+1))

(n� k + 1)
�
x(j+1) � x(j)

�
=

ai�1;k(�k; x(j))� ai�1;k(�k; x(j�1))
(n� k + 1)

�
x(j) � x(j�1)

� +
ai�1;k(�k; x(j+1))� ai�1;k(�k; x(j))

(n� k + 1)
�
x(j+1) � x(j)

�
=

1

n� k + 1

�
@

@xk+1
ai�1;k(�k; x

0
k) +

@

@xk+1
ai�1;k(�k; x

00
k)

�
� 1

n� k + 1
2

n� k + 2

where x0k 2
�
x(j�1); x(j)

�
and x00k 2

�
x(j); x(j+1)

�
: The �rst inequality follows

from the monotonicity of ai�1;k(�k; xk), and the last inequality follows from
the induction argument. Combining (16) and (17) we obtain

@ai;k+1(�k+1; xk+1)

@xk+1
� 1

n� k + 1 .

as desired.

6 Conclusion

We have derived conditions on the primitives of the learning environment
that allow e¢ cient dynamic implementation. The analysis has used insights
from static mechanism design with interdependent values, and has revealed
close connections to the problem of ensuring that optimal search policies
display a reservation price property.
In contrast to our focus on dynamic welfare maximization, there is an

extensive literature on dynamic revenue maximization in the �eld of yield or
revenue management (see the book of Talluri and Van Ryzin [19]). Roughly
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speaking, this literature considers intuitive pricing schemes, and does not
focus on implementation issues (since in most considered settings this is not
an issue). As soon as learning about the environment takes place simulta-
neously with allocation decisions, one has to be more careful: not all ad-hoc
pricing schemes will be generally implementable, and the revenue maximiza-
tion exercise must take this fact into account, as �rst illustrated by Riley and
Zeckhauser [17] in their "haggling" model. Their argument can be adapted to
our own framework in order to show that the second-best optimal policy (in
situations where the �rst best cannot be implemented) is also deterministic,
and hence has the form of cuto¤s.
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