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1. INTRODUCTION

Historically, non-governmental organizations have issued their own currencies for
a wide variety of purposes. These currencies, known as scrip, have been used in
company towns where government issued currency was scarce [Timberlake 1987], in
Washington DC to reduce the robbery rate of bus drivers [Washington Metropolitan
Area Transit Commission 1970], and in Ithaca (New York) to promote fairer pay
and improve the local economy [Ithaca Hours Inc. 2005]. Scrip systems are also
becoming more prevalent in online systems.

To give some examples, market-based solutions using scrip systems have been sug-
gested for applications such as system-resource allocation [Miller and Drexler 1988],
managing replication and query optimization in a distributed database [Stonebraker
et al. 1996], and allocating experimental time on a wireless sensor network test bed
[Chun et al. 2005]; a number of sophisticated scrip systems have been proposed
[Gupta et al. 2003; Ioannidis et al. 2002; Vishnumurthy et al. 2003] to allow agents
to pool resources while avoiding what is known as free riding, where agents take
advantage of the resources the system provides while providing none of their own
(as Adar and Huberman [2000] have shown, this behavior certainly takes place in
systems such as Gnutella); and Yootles [Reeves et al. ] uses a scrip system as a way
of helping groups make decisions using economic mechanisms without involving real
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money.
Creating a scrip system creates a new market where goods and services can be

exchanged that may have been impractical or undesirable to implement with stan-
dard currency. However, the potential benefits of a scrip system will not necessarily
be realized simply by creating the framework to support one. The story of the Capi-
tol Hill Baby Sitting Co-op [Sweeney and Sweeney 1977], popularized by Krugman
[1999], provides a cautionary tale. The Capitol Hill Baby Sitting Co-op was a group
of parents working on Capitol Hill who agreed to cooperate to provide babysitting
services to each other. In order to enforce fairness, they issued a supply of scrip
with each coupon worth a half hour of babysitting. At one point, the co-op had a
recession. Many people wanted to save up coupons for when they wanted to spend
an evening out. As a result, they went out less and looked for more opportunities
to babysit. Since a couple could earn coupons only when another couple went out,
no one could accumulate more, and the problem only got worse.

After a number of failed attempts to solve the problem, such as mandating a
certain frequency of going out, the co-op started issuing more coupons. The results
were striking. Since couples had a sufficient reserve of coupons, they were more
comfortable spending them. This in turn made it much easier to earn coupons
when a couple’s supply got low. Unfortunately, the amount of scrip grew to the
point that most of the couples felt “rich.” They had enough scrip for the foreseeable
future, so naturally they didn’t want to devote their evening to babysitting. As a
result, couples who wanted to go out were unable to find another couple willing to
babysit.

This anecdote shows that the amount of scrip in circulation can have a significant
impact on the effectiveness of a scrip system. If there is too little money in the
system, few agents will be able to afford service. At the other extreme, if there is
too much money in the system, people feel rich and stop looking for work. Both of
these extremes lead to inefficient outcomes. This suggests that there is an optimal
amount of money, and that nontrivial deviations from the optimum towards either
extreme can lead to significant degradation in the performance of the system.

In this paper, we provide a formal model in which to analyze scrip systems.
We describe a simple scrip system and show that, under reasonable assumptions,
for each fixed amount of money there is a nontrivial equilibrium involving threshold
strategies, where an agent accepts a request if he has less than $k for some threshold
k.1

An interesting aspect of our analysis is that, in equilibrium, the distribution
of users with each amount of money is the distribution that minimizes relative
entropy to an appropriate distribution (subject to the money supply constraint).
This allows us to use techniques from statistical mechanics to explicitly compute
the distribution of money and thus agents’ best-reply functions.

An understanding of agents’ best-reply functions allows us to compute the money
supply that maximizes social welfare, given the number of agents. As we show,
adding more money decreases the equilibrium number of agents with no money,
thus increasing social welfare. However, this only works up to a point. Once a

1Although we refer to our unit of scrip as the dollar, these are not real dollars nor do we view
them as convertible to dollars.
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critical amount of money is reached, the system experiences a monetary crash:
there is so much money that, in equilibrium, everyone will feel rich and no agents
are willing to work. We show that, to get optimal performance, we want the total
amount of money in the system to be as close as possible to the critical amount,
but not to go over it. If the amount of money in the system is over the critical
amount, we get the worst possible equilibrium, where all agents have utility 0. This
provides a significant tradeoff between efficiency and robustness.

Our equilibrium analysis assumes that all agents have somewhat similar motiva-
tion: in particular, they do not get pleasure simply from performing a service, and
are interested in money only to the extent that they can use it to get services per-
formed. But in real systems, not all agents have this motivation. Some of the more
common “nonstandard” agents are altruists and hoarders. Altruists are willing to
satisfy all requests, even if they go unpaid; hoarders value scrip for its own sake
and are willing to accumulate amounts far beyond what is actually useful. Studies
of the Gnutella peer-to-peer file-sharing network have shown that one percent of
agents satisfy fifty percent of the requests [Adar and Huberman 2000; Hughes et al.
2005]. These agents are doing significantly more work for others than they will
ever have done for them, so can be viewed as altruists. Anecdotal evidence also
suggests that the introduction of any sort of currency seems to inspire hoarding
behavior on the part of some agents, regardless of the benefit of possessing money.
For example, SETI@home has found that contributors put in significant effort to
make it to the top of their contributor rankings. This has included returning fake
results of computations rather than performing them [Zhao et al. 2005].

Altruists and hoarders have opposite effects on a system: having altruists has the
same effect as adding money; having hoarders is essentially equivalent to removing
it. With enough altruists in the system, the system has a monetary crash, in the
sense that standard agents stop being willing to provide service, just as when there
is too much money in the system. We show that, until we get to the point where
the system crashes, the utility of standard agents is improved by the presence of
altruists. We show that the presence of altruists makes the critical point lower than
it would without them. Thus, a system designer trying to optimize the performance
of the system by making the money supply as close as possible to the critical point
(but under it, since being over it would result in a “crash”) needs to be careful
about estimating the number of altruists.

Similarly, we show that, as the fraction of hoarders increases, standard agents
begin to suffer because there is effectively less money in circulation. On the other
hand, hoarders can improve the stability of a system. Since hoarders are willing to
accept an infinite amount of money, they can prevent the monetary crash that would
otherwise occur as money was added. In any case, our results show how the presence
of both altruists and hoarders can be mitigated by appropriately controlling the
money supply.

Beyond nonstandard agents, we also consider two different manipulative behav-
iors in which standard agents may engage: creating multiple identities, known as
sybils [Douceur 2002], and collusion. In scrip systems where each new user is given
an initial amount of scrip, there is an obvious benefit to creating sybils. Even if this
incentive is removed, sybils are still useful: they can be used to increase the likeli-
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hood that an agent will be asked to provide service, which makes it easier for him
to earn money. This increases the utility of the sybilling agent, at the expense of
other agents. From the perspective of an agent considering creating sybils, the first
few sybils can provide him with a significant benefit, but the benefits of additional
sybils rapidly diminish. So if a designer can make sybilling moderately costly, the
number of sybils actually created by rational agents will usually be relatively small.

If a small fraction of agents have sybils, the situation is more subtle. Agents
with sybils still do better than those without, but the situation is not zero-sum.
In particular, even agents without sybils might be better off, due to having more
opportunities to earn money. Somewhat surprisingly, sybils can actually result in
everyone being better off. However, exploiting this fact is generally not desirable.
The same process that leads to an improvement in social welfare can also lead to a
monetary crash, where all agents stop providing service. The system designer can
achieve the same effects by increasing the average amount of money or biasing the
volunteer selection process. In practice, it seems better to do this than to exploit
the possibility of sybils.

In our setting, having sybils is helpful because it increases the likelihood that
an agent will be asked to provide service. Our analysis of sybils applies no matter
how this increase in likelihood occurs. In particular, it applies to advertising.
Thus, our results suggest that there are tradeoffs involved in allowing advertising.
For example, many systems allow agents to announce their connection speed and
other similar factors. If this biases requests towards agents with high connection
speeds, even when agents with lower connection speeds are perfectly capable of
satisfying a particular request, then agents with low connection speeds will have an
unnecessarily worsened experience in the system. This also means that such agents
will have a strong incentive to lie about their connection speed.

While collusion in generally a bad thing, in the context of scrip systems with fixed
prices, it is almost entirely positive. Without collusion, if a user runs out of money
he is unable to request service until he is able to earn some. However, a colluding
group can pool there money so that all members can make a request whenever the
group as a whole has some money. This increases welfare for the agents who collude
because agents who have no money receive no service. Collusion tends to benefit
the non-colluding agents as well. Since colluding agents work less often, it is easier
for everyone to earn money, which ends up making everyone better off. However, as
with sybils, collusion does have the potential of crashing the system if the average
amount of money is high.

While a designer should generally encourage collusion, we would expect that in
most systems there will be relatively little collusion and what collusion exists will
involve small numbers of agents. After all, scrip systems exist to try and resolve
resource-allocation problems where agents are competing with each other. If they
could collude to optimally allocate resources within the group, they would not
need a scrip system in the first place. However, many of the benefits of collusion
come from agents being allowed to effectively have a negative amount of money (by
borrowing from their collusive partners). These benefits could also be realized if
agents are allowed to borrow money, so designing a loan mechanism could be an
important improvement for a scrip system. Of course, implementing such a loan
Journal of the ACM, Vol. V, No. N, Month 20YY.
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mechanism in a way that prevents abuse requires a careful design.
In order to effectively utilize our results, a system designer needs to be able to

identify characteristics of agents (with what frequency do they make requests, how
likely are they to be chosen to satisfy a request, and so on) and what strategies
they are following. This is particularly useful because finding an amount of money
close to the point of monetary crash, but not past it, relies on an understanding of
the agents in the system. Of course, such information is also of great interest to
social scientists and marketers. We show how relatively simple observations of the
system can be used to infer this information.

The rest of the paper is organized as follows. In Section 2, we review related
work. Then in Section 3, we present the formal model. We analyze the distribution
of money in this model when agents are using threshold strategies in Section 4, and
show that it is characterized by relative entropy. Using this analysis, we show in
Section 5 that, under minimal assumptions, there is a nontrivial equilibrium where
all agents use threshold strategy strategies. These results apply to a sufficiently
large population of agents after a sufficiently long period of time, so in Section 6
we use simulations to demonstrate that these values are reasonable in practice.
We begin applying our analysis in Section 7, where we show that the analysis
leads to an understanding of how to choose the amount of money in the system
(or, equivalently, the cost to fulfill a request) so as to maximize efficiency, and also
shows how to handle new users. In Section 8, we discuss how the model can be used
to understand the effects of altruists, hoarders, sybils, and collusion and provide
guidance about how system designers can handle these user behaviors. All of this
guidance relies on being able to understand what strategies agents are using and
what their preferences are. In Section 9, we discuss how these can be inferred by
examining the system. We conclude in Section 10.

2. RELATED WORK

Scrip systems have a long history in computer science, with two main thrusts:
resource allocation and free-riding prevention. Early applications for resource allo-
cation include agoric systems [Miller and Drexler 1988], which envisioned solving
problems such as processor scheduling using markets, and Mariposa [Stonebraker
et al. 1996], a market-driven query optimizer for distributed databases. More re-
cently, scrip systems have been used to allocate the resources of research testbeds.
Examples include Mirage [Chun et al. 2005] for wireless sensor networks, Bella-
gio [AuYoung et al. 2007] for PlanetLab, and Egg [Brunelle et al. 2006] for grid
computing. Virtual markets have been used to coordinate the activity of nodes of
a sensor network [Mainland et al. 2004]. Yootles [Reeves et al. ] uses a scrip to help
people make everyday decisions, such as where to have lunch, without involving
real money.

Systems that use scrip to prevent free riding include KARMA [Vishnumurthy
et al. 2003], which provides a general framework for P2P networks. Gupta et
al. [2003] propose what they call a “debit-credit reputation computation” for P2P
networks, which is essentially a scrip system. Fileteller [Ioannidis et al. 2002] uses
payments in a network file storage system. Dandelion [Sirivianos et al. 2007] uses
scrip in a content distribution setting. Belenkiy et al. [Belenkiy et al. 2007] consider
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how a BitTorrent-like system can make use of e-cash. Antfarm [Peterson and Sirer
2009] uses scrip to optimize content distribution across a number of BitTorrent-like
swarms.

Despite this tremendous interest in scrip systems, there has been relatively little
work studying how they behave. Chun et al. [2005] studied user behavior in a
deployed scrip system and observed that users tried various (rational) manipulations
of the auction mechanism used by the system. Their observations suggest that
system designers will have to deal with game-theoretic concerns.

Hens et al. [2007] do a theoretical analysis of what can be viewed as a scrip
system in a related model. There are a number of significant differences between
the models. First, in the Hens et al. model, there is essentially only one type of
agent, but an agent’s utility for getting service (our γt) may change over time.
Thus, at any time, there will be agents who differ in their utility. At each round,
we assume that one agent is chosen (by nature) to make a request for service, while
other agents decide whether or not to provide it. In the Hens et al. model, at each
round, each agent decides whether to provide service, request service, or opt out,
as a function of his utilities and the amount of money he has. They assume that
there is no cost for providing service and everyone is able to provide service. Under
this assumption, a system with optimal performance is one where half the agents
request service and the other half are willing to provide it. Despite these differences,
Hens et al. also show that agents will use a threshold strategy. However, although
they have inefficient equilibria, because there is no cost for providing service, their
model does not exhibit the monetary crashes that our model can exhibit.

Aperjis and Johari [2006] examine a model of a P2P filesharing system as an
exchange economy. They associate a price (in bandwidth) with each file and find a
market equilibrium in the resulting economy. However, they do not use an explicit
currency.

The effects of altruists, sybils, and collusion on system behavior have all been
studied in other contexts. Work on the evolution of cooperation stresses the im-
portance of altruists willing to undertake costly punishment [Hauert et al. 2007].
Yokoo et al. [2004] studied the effects of sybils in auctions. Solution concepts such
as strong Nash equilibrium [Aumann 1959] and k-t robust equilibrium [Abraham
et al. 2006] explicitly address collusion in games; Hayrapetyan et al. [2006] study
collusion in congestion games and find cases where, as with scrip systems, collusion
is actually beneficial.

The ultimate goal of a scrip systems is to promote cooperation. While there is
limited theoretical work on scrip systems, there is a large body of work on cooper-
ation. Much of the work involves a large group of agents being randomly matched
to pay a game such as prisoner’s dilemma. Such models were studied in the eco-
nomics literature [Kandori 1992; Ellison 1994] and first applied to online reputations
in [Friedman and Resnick 2001]; Feldman et al. [2004] apply them to P2P systems.

These models fail to capture important asymmetries in the interactions of the
agents. When a request is made, there are typically many people in the network
who can potentially satisfy it (especially in a large P2P network), but not all can.
For example, some people may not have the time or resources to satisfy the request.
The random-matching process ignores the fact that some people may not be able
Journal of the ACM, Vol. V, No. N, Month 20YY.
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to satisfy the request. (Presumably, if the person matched with the requester could
not satisfy the match, he would have to defect.) Moreover, it does not capture the
fact that the decision as to whether to “volunteer” to satisfy the request should be
made before the matching process, not after. That is, the matching process does
not capture the fact that if someone is unwilling to satisfy the request, there will
doubtless be others who can satisfy it. Finally, the actions and payoffs in prisoner’s
dilemma game do not obviously correspond to actual choices that can be made.
For example, it is not clear what defection on the part of the requester means. Our
model addresses all these issues.

Scrip systems are not the only approach to preventing free riding. Two other
approaches often used in P2P networks are barter and reputation systems. Perhaps
the best-known example of a system that uses barter is BitTorrent [Cohen 2003],
where clients downloading a file try to find other clients with parts they are missing
so that they can trade, thus creating a roughly equal amount of work. Since the
barter is restricted to users currently interested in a single file, this works well for
popular files, but tends to have problems maintaining availability of less popular
ones. An example of a barter-like system built on top of a more traditional file-
sharing system is the credit system used by eMule. Each user tracks his history of
interactions with other users and gives priority to those he has downloaded from in
the past. However, in a large system, the probability that a pair of randomly-chosen
users will have interacted before is quite small, so this interaction history will not be
terribly helpful. Anagnostakis and Greenwald [2004] present a more sophisticated
version of this approach, but it still seems to suffer from similar problems.

A number of attempts have been made at providing general reputation systems
(e.g. [Guha et al. 2004; Gupta et al. 2003; Kamvar et al. 2003; Xiong and Liu
2002]). The basic idea is to aggregate each user’s experience into a global number
for each individual that intuitively represents the system’s view of that individual’s
reputation. However, these attempts tend to suffer from practical problems because
they implicitly view users as either “good” or “bad”, assume that the “good”
users will act according to the specified protocol, and that there are relatively few
“bad” users. Unfortunately, if there are easy ways to game the system, once this
information becomes widely available, rational users are likely to make use of it.
We cannot count on only a few users being “bad” (in the sense of not following the
prescribed protocol). For example, Kazaa uses a measure of the ratio of the number
of uploads to the number of downloads to identify good and bad users. However, to
avoid penalizing new users, they gave new users an average rating. Users discovered
that they could use this relatively good rating to free ride for a while and, once
it started to get bad, they could delete their stored information and effectively
come back as a “new” user, thus circumventing the system (see [Anagnostakis and
Greenwald 2004] for a discussion and [Friedman and Resnick 2001] for a formal
analysis of this “whitewashing”). Thus, Kazaa’s reputation system is ineffective.

3. THE MODEL

Before specifying our model formally, we give an intuitive description of what our
model captures. We model a scrip system where, as in the babysitting co-op, agents
provide each other with service. There is a single service (babysitting) that agents
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occasionally want. In practice, at any given time, a number of agents will want
service, but to simplify the formal description and analysis we model the scrip
system as proceeding in a series of rounds where, in each round, a single agent
wants service (the time between rounds will be adjusted to capture the growth in
parallelism as the number of agents grows).2 In each round, after an agent requests
service, other agents have to decide whether they want to volunteer to provide
service. However, not all agents may be able to satisfy the request (not everyone
can babysit every night). While, in practice, the ability of agents to provide service
at various times may be correlated for a number of reasons (some agents might
have very young children that only certain agents are willing to babysit; being
unavailable in one round might be correlated with being unavailable in the next
round; and so on), for simplicity we model the ability to provide service using a
single probability, and assume that the events of an agent being able to provide
service in different rounds or two agents being able to provide service in the same
or different rounds are independent. If there is at least one volunteer, someone is
chosen from among the volunteers (uniformly at random) to satisfy the request.
The requester then gains some utility (he was able to go out because he had a
babysitter) and the volunteer loses some utility (people would rather do something
other than babysit), and the requester pays the volunteer a fee that we fix at one
dollar. As is standard in the literature, we assume that agents discount future
payoffs. This captures the intuition that a util now is worth more than a util
tomorrow, and allows us to compute the total utility derived by an agent in an
infinite game. The amount of utility gained by having a service performed and the
amount lost be performing it, as well as many other parameters may depend on the
agent.

More formally, we assume that agents have a type t drawn from some finite set
T of types. We can describe the entire population of agents using the pair (T, "f),
where "f is a vector of length |T | and ft is the fraction with type t. For most of the
paper, we consider only what we call standard agents. These are agents who derive
no pleasure from performing a service, and for whom money has no intrinsic value.
We can characterize the type of a standard agent by a tuple t = (αt, βt, γt, δt, ρt, χt),
where

—αt > 0 reflects the cost for an agent of type t to satisfy a request;
—0 < βt < 1 is the probability that an agent of type t can satisfy a request;
—γt > αt is the utility that an agent of type t gains for having a request satisfied;
—0 < δt < 1 is the rate at which an agent of type t discounts utility;
—ρt > 0 represents the (relative) request rate (some people need babysitting more

often than others). For example, if there are two types of agents with ρt1 = 2
and ρt2 = 1 then agents of the first type will make requests twice as often as
agents of the second type. Since these request rates are relative, we can multiply
them all by a constant to normalize them. To simplify later notation, we assume
the ρt are normalized so that

∑
t∈T ρtft = 1; and

2For large numbers of agents, our model converges to one in which agents make requests in real
time, and the time between an agent’s requests is exponentially distributed. In addition, the time
between requests served by a single player is also exponentially distributed.
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—χt > 0 represents the (relative) likelihood of an agent to be chosen when he vol-
unteers (some babysitters may be more popular than others). In particular, this
means the relative probability of two given agents being chosen is independent
of which other agents volunteer.

—ωt = βtχt/ρt is not part of the tuple, but is an important derived parameter
that, as we will see in Section 4, helps determine how much money an agent will
have.

We occasionally omit the subscript t on some of these parameters when it is clear
from context or irrelevant.

Representing the population of agents in a system as (T, "f) captures the essential
features of a scrip system we want to model: there are a large number of agents
who may have different types. Note that some tuples (T, "f) may be incompatible
with there being some number N of agents. For example, if there are two types,
and "f says that half of the agents are of each type, then there cannot be 101 agents.
Similar issues arise when we want to talk about the amount of money in example,
by specifying how to assign to types to agents in a way that we could deal with
this problem in a number of ways (for example, by having each agent determine his
type at random according to the distribution "f). For convenience, we simply do
not consider population sizes that are incompatible with "f . This is the approach
used in the literature on N -replica economies [Mas-Colell et al. 1995].

Formally, we consider games specified by a tuple (T, "f, h, m, n), where T and "f
are as defined above, h ∈ N is the base number of agents of each type, n ∈ N is
number of replicas of these agents and m ∈ R+ is the average amount of money.
The total number of agents is thus hn. We ensure that the number of agents of type
t is exactly ft and that the average amount of money is exactly m by requiring that
fth ∈ N and mh ∈ N. Having created a base population satisfying these constraints,
we can make an arbitrary number of copies of it. More precisely, we assume that
agents 0 . . . ft1h−1 have type t1, agents ft1h . . . (ft1 +ft2)h−1 have type t2, and so
on through agent h− 1. These base agents determine the types of all other agents.
Each agent j ∈ {h, . . . , hn − 1} has the same type as j mod h; that is, all the
agents of the form j + kh for k = 1, . . . , n − 1 are replicas of agent j. At the start
of the game, we initially allocate each of the hmn dollars in the system to an agent
chosen uniformly at random.

We now describe (T, "f, h, m, n) as an infinite extensive-form game. A non-root
node in the game tree is associated with a round number (how many requests have
been made so far), a phase number, either 1, 2, 3 , or 4 (which describes how far
along we are in determining the results of the current request), a vector "x where
xi is the current amount of money agent i has, and

∑
i xi = mhn, and, for some

nodes, some additional information whose role will be made clear below. We use
τ(i) to denote the type of agent i.

—The game starts at a special root node, denoted Λ, where nature moves. Intu-
itively, at Λ, nature allocates money uniformly at random, so it transitions to a
node of the form (0, 1, "x): round zero, phase one, and allocation of money "x, and
each possible transition is equally likely.

—At a node of the form (r, 1, "x), nature selects an agent to make a request in the
Journal of the ACM, Vol. V, No. N, Month 20YY.
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current round. Agent i is chosen with probability ρτ(i)/hn. If i is chosen, a
transition is made to (r, 2, "x, i).

—At a node of the form (r, 2, "x, i), nature selects the set V of agents (not including
i) able to satisfy the request. Each agent j #= i is included in V with probability
βτ(j). If V is chosen, a transition is made to (r, 3, "x, i, V ).

—At a node of the form (r, 3, "x, i, V ), each agent in V chooses whether to volun-
teer. If V ′ is the set of agents who choose to volunteer, a transition is made to
(r, 4, "x, i, V ′).

—At a node of the form (r, 4, "x, i, V ′), if V ′ #= ∅, nature chooses a single agent in V ′

to satisfy the request. Each agent j is chosen with probability χτ(j)/
∑

j′∈V ′ χτ(j′).
If j is chosen, a transition is made to (r + 1, 1, "x′), where

x′
j =






xj − 1 if i = j and xj > 0,
xj + 1 if j is chosen by nature and xi > 0,
xj otherwise.

If V ′ = ∅, nature has no choice; a transition is made to (r+1, 1, "x) with probability
1.

A strategy for agent j describes whether or not he will volunteer at every node
of the form (r, 3, "x, i, V ) such that j ∈ V . (These are the only nodes where j can
move.) A strategy profile "S consists of one strategy per agent. A strategy profile "S
determines a probability distribution over paths Pr"S in the game tree. Each path
determines the value of the following random two variables:

—xr
i , the amount of money agent i has during round r, defined as the value of xi

at the nodes with round number r and
—ur

i , the utility of agent i for round r. If i is a standard agent, then

ur
i =






γτ(i) if a node (r, 4, "x, i, V ′) is on the path with V ′ #= 0
−ατ(i) if i is chosen by nature at node (r, 4, "x, j, V ′)
0 otherwise.

Ui("S), the total expected utility of agent i if strategy profile "S, is played is the
discounted sum of his per round utilities ur

i , but the exact form of the discounting
requires some explanation. As the number of agents increases, we would expect
more requests to be made per unit time, and the expected number of requests an
agent makes per unit time to be constant. Since only one agent makes a request
per round, it seems that a reasonable way to model this is to take the time between
rounds to be 1/n, where n is the number of agents. The discount rate—which can
be thought of as the present value of getting one util one round in the future—
has to be modified as well. It turns out that the obvious choice of discount rate,
δ1/n
t , is not appropriate. To understand why, consider an agent who has all of his

requests satisfied. When there are just h agents, he is chosen to make a request each
round with probability ρt/h. His total expected utility with a discount rate of δ is∑∞

r=0 δ
rρtγt/h = (ρtγt/h)/(1 − δt). With n replicas, scaling the discount rate as

δ1/n
t gives

∑∞
r=0 δ

r/n
t ρtγt/(hn) = (ρtγt/(hn))/(1 − δ1/n

t ). Thus, using this scaling,
the agent’s utility for having all his requests satisfied decreases as n increases. This
Journal of the ACM, Vol. V, No. N, Month 20YY.
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seems unnatural. If we instead use the discount rate (1− (1 − δt)/n), his expected
utility is

∑∞
r=0(1 − (1 − δt)/n)r(ρtγt/(hn)) = (ρtγt/(hn))/(1 − (1 − (1 − δt)/n)) =

(ρtγt/h)/(1 − δt), which is independent of n, and seems much more reasonable.
Using the discount rate (1−(1−δt)/n) solves one problem, but leaves another. A

larger δt is meant to reflect a more patient agent, who gives future utility a higher
weight. However, as the preceding equation shows, increasing δt also increases
total utility. To counteract this, we multiply the total discounted sum by (1 −
δt). This is standard in economics, for example in the folk theorem for repeated
games [Fudenberg and Tirole 1991]. With these considerations in mind, the total
expected utility of agent i given the vector of strategies "S is

Ui("S) = (1 − δτ(i))
∞∑

r=0

(1 − (1 − δτ(i))/n)rE"S [ur
i ], (1)

In modeling the game this way, we have implicitly made a number of assumptions.
For example, we have assumed that all of agent i’s requests that are satisfied give
agent i the same utility, and that prices are fixed. We discuss the implications of
these assumptions in Section 10.

Our solution concept is the standard notion of an approximate Nash equilibrium.
As usual, given a strategy profile "S and agent i, we use (S′

i, "S−i) to denote the
strategy profile that is identical to "S except that agent i uses S′

i.

Definition 3.1. A strategy S′
i for agent i is an ε-best reply to a strategy profile

"S−i for the agents other than i in the game (T, "f, h, m, n) if, for all strategies S′′
i ,

Ui(S′′
i , "S−i) ≤ Ui(S′

i, "S−i) + ε.

Definition 3.2. A strategy profile "S for the game (T, "f, h, m, n) is an ε-Nash
equilibrium if for all agents i, Si is an ε-best reply to "S−i. A Nash equilibrium is
an epsilon-Nash equilibrium with ε = 0.

As we show in Section 5, (T, "f, h, m, n) has equilibria where agents use a partic-
ularly simple type of strategy, called a threshold strategy. Intuitively, an agent with
“too little” money will want to work, to minimize the likelihood of running out due
to a making sequence of requests before being able to earn more. On the other
hand, a rational agent with plenty of money will think it is better to delay working,
thanks to discounting. These intuitions suggest that the agent should volunteer if
and only if he has less than a certain amount of money. Let sk be the strategy
where an agent volunteers if and only if the requester has at least 1 dollar and the
agent has less than k dollars. Note that s0 is the strategy where the agent never
volunteers. While everyone playing s0 is a Nash equilibrium (nobody can do better
by volunteering if no one else is willing to), it is an uninteresting one.

We frequently consider the situation where each agent of type t uses the same
threshold skt . In this case, a single vector "k suffices to indicate the threshold of each
type, and we can associate with this vector the strategy "S("k) where "S("k)i = skτ(i)

(i.e., agent i of type τ(i) uses threshold kτ(i)).
For the rest of this paper, we focus on threshold strategies (and show why it is

reasonable to do so). When we consider the threshold strategy "S("k), for ease of
exposition, we assume in our analysis that mhn <

∑
t ftkthn. To understand why,
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note that mhn is the total amount of money in the system. If mhn ≥
∑

t ftkthn,
then if the agents use a threshold "S("k), the system will quickly reach a state where
each agent has kt dollars, so no agent will volunteer. This is equivalent to all agents
using a threshold of 0, and similarly uninteresting.

4. ANALYZING THE DISTRIBUTION OF WEALTH

Our main goal is to show that there exists an approximate equilibrium where all
agents play threshold strategies. In this section, we examine a more basic question:
if all agents play a threshold strategy, what happens? We show that there is some
distribution over money (i.e., a distribution that describes what fraction of people
have each amount of money) such that the system “converges” to this distribution
in a sense to be made precise shortly. In addition to providing an understanding of
system behavior that underpins our later results, this result also provides a strong
guarantee about the stability of the economy.

Suppose that all agents of each type t use the same threshold kt, so we can write
the vector of thresholds as "k. For simplicity, assume that each agent has at most kt

dollars. We can make this assumption with essentially no loss of generality, since if
someone has more than kt dollars, he will just spend money until he has at most kt

dollars. After this point he will never acquire more than kt. Thus, eventually the
system will be in a state where, for all types t, no agent of type t has more than kt

dollars.
We are interested in the vectors "xr that can be observed in round r (recall that

xr
i is the amount of money that agent i has at round r). By assumption, if agent

i has type τ(i), then xr
i ∈ {0, . . . , kτ(i)}. In addition, since the total amount of

money is hmn,

"xr ∈ XT,"f,h,m,n,"k = {"x ∈ Nhn | ∀i.xi ≤ kτi,
∑

i

xi = hmn}.

The evolution of "xr can be described by a Markov chain MT,"f,h,m,n,"k over the
state space XT,"f,h,m,n,"k. For brevity, we refer to the Markov chain and state space
as M and X , respectively, when the subscripts are clear from context. It is possible
to move from state s to state s′ in a single round if, by choosing a particular agent
i to make a request and another agent j to satisfy it, i’s amount of money in s′

is 1 more than in s; j’s amount of money in s′ is 1 less than in s’, and all other
agents have the same amount of money in s and s′. Therefore, the probability of a
transition from a state "x to "y is 0 unless there exist two agents i and j such that
"yi′ = "xi′ for all i′ /∈ {i, j}, "yi = "xi +1, and "yj = "xj −1. In this case, the probability
of transitioning from "x to "y is the probability of j being chosen to make a request
and

i being chosen to satisfy it. Let ∆"f,m,"k denote the set of probability distributions
d on ∪t∈T {t} ×

∏
t{0, . . . , kt} such that for all types t,

∑kt

l=0 d(t, l) = ft. We can
think of d(t, l) as the fraction of agents of type t that have l dollars. We can
associate each state "x with its corresponding distribution d"x. This is a useful way
of looking at the system, since we typically just care about the fraction of people
with each amount of money, not the amount that each particular agent has. We
show that, if n is large, then there is a distribution d∗ ∈ ∆"f,m,"k such that, after a
Journal of the ACM, Vol. V, No. N, Month 20YY.
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sufficient amount of time, the Markov chain M is almost always in a state "x such
that d"x is close to d∗. Thus, agents can base their decisions about what strategy to
use on the assumption that they will be in a state where the distribution of money
is essentially d∗.

We can in fact completely characterize the distribution d∗. Given two distribu-
tions d, q ∈ ∆"f,m,"k, let

H(d||q) = −
∑

{(t,j):q(t,j) &=0}

d(t, j) log d(t, j)/q(t, j)

denote the relative entropy of d relative to q (H(d||q) = ∞ if d(t, j) = 0 and
q(t, j) #= 0 or vice versa); this is also known as the Kullback-Leibler divergence of
q from d [Cover and Thomas 1991]. If ∆ is a closed convex set of distributions,
then it is well known that, for each q, there is a unique distribution in ∆ that
minimizes the entropy relative to q. Since ∆"f,m,"k is easily seen to be a closed
convex set of distributions, in particular, this is the case for ∆"f,m,"k. We now show
that there exists a q such that, for n sufficiently large, the Markov chain M is
almost always in a state "x such that d"x is close to the distribution d∗

q, "f,m
∈ ∆"f,m,"k

that minimizes entropy relative to q. (We omit some or all of the subscripts on d∗

when they are not relevant.) The statement is correct under a number of senses of
“close”. For definiteness, we consider the Euclidean distance. Given ε > 0 and q,
let XT,"f,h,m,n,"k,ε,q (or Xε,q, for brevity) denote the set of states "x ∈ XT,"f,h,m,n,"k

such that
∑

(t,j) |d"x(t, j) − d∗q |2 < ε.
Let Ir

q,n,ε be the random variable that is 1 if d"x
r ∈ Xε,q, and 0 otherwise.

Theorem 4.1. For all games (T, "f, h, m, 1), all vectors "k of thresholds, and all
ε > 0, there exist q ∈ ∆"f,m,"k and nε such that, for all n > nε, there exists a round
r∗ such that, for all r > r∗, we have Pr(Ir

q,n,ε = 1) > 1 − ε.
The proof of Theorem 4.1 can be found in Appendix A. One interesting special

case of the theorem is when there exist β, χ, and ρ such that for all types t, βt = β,
χt = χ, and ρt = ρ. In this case q is the distribution q(t, j) = ft/(kt + 1) (i.e., q is
uniform within each type t). We sketch the proof for this special case here.

Proof. (Sketch) Using standard techniques, we can show that our Markov Chain
has a limit distribution π such that for all "y, limr→∞ Pr("xr = "y) = π("y). Let T"x"y

denote the probability of transitioning from state "x to state "y. It is easily verified
by an explicit computation of the transition probabilities that (in this special case)
T"x"y = T"y"x. It is well known that this symmetry implies that π is the uniform
distribution [Resnick 1992]. Thus, after a sufficient amount of time, the distribution
of "xr will be arbitrarily close to uniform.

Since, for large r, Pr("xr = "y) is approximately 1 / |X |, the probability of "xr

being in a set of states is the size of the set divided by the total number of states.
Using a straightforward combinatorial argument, it can be shown that the fraction
of states not in Xε,q is bounded by p(n)/ecn, where p is a polynomial. This fraction
goes to 0 as n gets large. Thus, for sufficiently large n, Pr(Ir

q,n,ε = 1) > 1 − ε.
The last portion of the proof sketch is actually a standard technique from sta-

tistical mechanics that involves showing that there is a concentration phenomenon
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around the maximum entropy distribution [Jaynes 1978]. In this special case, when
π is the uniform distribution, the number of states corresponding to a particular
distribution d is proportional to enH(d) (where H here is the standard entropy func-
tion). In general, each state is not equally likely, which is why the general proof in
Appendix A uses relative entropy.

Theorem 4.1 tells us that, after enough time, the distribution of money is almost
always close to some d∗, where d∗ can be characterized as a distribution that mini-
mizes relative entropy subject to some constraints. Let q(t, i) = (ωt)i/(

∑
t

∑kt

j=0(ωt)i).
Then the value of d∗ is given by the following lemma.

Lemma 4.1.

d∗(t, i) =
ftλiq(t, i)

∑kt

j=0 λ
jq(t, j)

, (2)

where λ is the unique value such that
∑

t

∑

i

id∗(t, i) = m. (3)

The proof of Lemma 4.1 is omitted because it can be easily checked using La-
grange multipliers in the manner of [Jaynes 1978] where the function to be mini-
mized is the entropy of d∗ relative to q and the constraints are there a ft fraction
of the agents are of type t and the average amount of money is m.

5. EXISTENCE OF EQUILIBRIA

We have seen that the system is well behaved if the agents all follow a threshold
strategy; we now want to show that, if the discount factor δ is sufficiently large
for all agents, there is a nontrivial approximate Nash equilibrium where they do
so (that is, an approximate Nash equilibrium where all the agents use sk for some
k > 0.) To understand why we need δ to be sufficiently large, note that if δ
is small, then agents have no incentive to work. Intuitively, if future utility is
sufficiently discounted, then all that matters is the present, and there is no point in
volunteering to work. Thus, for sufficiently small δ, s0 is the only equilibrium. To
show that there is a nontrivial equilibrium if the discount factor is sufficiently large,
we first show that, if every other agent is playing a threshold strategy, then there
is an approximate best reply that is also a threshold strategy. Furthermore, we
show that the best-reply function is monotone; that is, if some agents change their
strategy to one with a higher threshold, no other agent can do better by lowering
his threshold. This makes our game one with what Milgrom and Roberts [1900] call
strategic complementarities. Using results of Tarski [1955], Topkis [1979] showed
that there are pure strategy equilibria in such games, since the process of starting
with a strategy profile where everyone always volunteers (i.e., the threshold is ∞)
and then iteratively computing the best-reply profile to it converges to a Nash
equilibrium in pure strategies. This procedure also provides an efficient algorithm
for explicitly computing equilibria.

To see that threshold strategies are approximately optimal, consider a single
agent i of type t and fix the vector "k of thresholds used by the other agents. If
we assume that the number of agents is large, what an agent i does has essentially
Journal of the ACM, Vol. V, No. N, Month 20YY.
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no affect on the behavior of the system (although it will, of course, affect that
agent’s payoffs). In particular, this means that the distribution q of Theorem 4.1
characterizes the distribution of money in the system. This distribution, together
with the vector "k of thresholds, determines what fraction of agents volunteers at
each step. This, in turn, means that from the perspective of agent i, the problem of
finding an optimal response to the strategies of the other agents reduces to finding
an optimal policy in a Markov decision process (MDP) PG,"S("k),t. The behavior of
the MDP PG,"S("k),t depends on two probabilities: pu and pd. Informally, pu is the
probability of i earning a dollar during each round if is willing to volunteer, and
pd is the probability that i will be chosen to make a request during each round.
Note that pu depends on m, "k, and t (although it turns out that pd depends only
on n, the number of agents in the system) and t; if the dependence of pu on m, "k,
and/or t is important, we add the relevant parameters to the superscript, writing,
for example, pm,"k

u . We show that the optimal policy for i in PG,"S("k),t is a threshold
policy, and that this policy is an ε-optimal strategy for G. Importantly, the same
policy is optimal independent of the value of n. This allows us to ignore the exact
size of the system in our later analysis.

For many of our later results and discussion, it will be important to understand
how pu, pd, and t affect the optimal policy for PG,"S("k),t, and thus the ε-optimal
strategies in the game. We use this understanding in this section to show that
there exist nontrivial equilibria in Lemma 5.3, to show that adding money increases
social welfare in Section 7, to understand how agent behaviors affect social welfare
in Section 8, and to identify agent types from their behavior in Section 9.

In the following lemma, whose proof (and the relevant formal definitions) are
deferred to Appendix B, Equation (4), quantifies the effects of these parameters.
When choosing whether he should volunteer with his current amount of money, an
agent faces a choice of whether to pay a utility cost of αt now in exchange for a
discounted payoff of γt when he eventually spends the resulting dollar. His choice
will depend on how much time he expects to pass before he spends that dollar,
which in turn depends on his current amount of money k and the probabilities pu

and pd. The following lemma quantifies this calculation.

Lemma 5.1. Consider the games Gn = (T, "f, h, m, n) (where T , "f , h, and m are
fixed, but n may vary). There exists a k such that for all n, sk is an optimal policy
for PGn,"S("k),t. The threshold k is the maximum value of κ such that

αt ≤ E[(1 − (1 − δt)/n)J(κ,pu,pd)]γt, (4)

where J(κ, pu, pd) is a random variable whose value is the first round in which an
agent starting with κ dollars, using strategy sκ, and with probabilities pu and pd of
earning a dollar and of being chosen given that he volunteers, respectively, runs out
of money.

The following theorem shows that an optimal threshold policy for PG,"S("k),t is an
ε-optimal strategy for G. In particular, this means that Equation (4) allows us to
understand how changing parameters affect an ε-optimal strategy for G, not just
for PG,"S("k),t.
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Theorem 5.1. For all games G = (T, "f, h, m, n), all vectors "k of thresholds, and all
ε > 0, there exist n∗

ε and δ∗ε,n such that for all n > n∗
ε, types t ∈ T , and δt > δ∗ε,n,

an optimal threshold policy for PG,"S("k),t is an ε-best reply to the strategy profile
"S("k)−i for every agent i of type t.

We defer the proof of Theorem 5.1 to Appendix B. While, in this and later
theorems, the acceptable values of δ∗ε,n depend on n, they are independent if, as we
suggest in Section 6, the Markov Chain from Section 4 is rapidly mixing.

Given a game G = (T, "f, h, m, n) and a vector "k of thresholds, Lemma 5.1 gives
an optimal threshold k′

t for each type t. Theorem 5.1 guarantees that sk′
t

is an
ε-best reply to "S−i("k), but does not rule out the possibility of other best replies.
However, for ease of exposition, we will call k′

t the best reply to "S−i and call
BRG("k) = "k′ the best-reply function. The following lemma shows that this function
is monotone (non-decreasing). Along the way, we prove that several other quantities
are monotone. First, we show that λm,"k, the value of λ from Lemma 4.1 given m

and "k, is non-decreasing in m and non-increasing in "k. We use this to show that
pm,"k

u is non-increasing in "k, which is needed to show the monotonicity of BRG. We
defer the proof to Appendix B.

Lemma 5.2. Consider the family of games Gm = (T, "f, h, m, n) and the strategies
"S("k), for mhn <

∑
t ftkthn. For this family of game, λm,"k is non-decreasing in m

and non-increasing in "k; pm,"k
u is non-decreasing in m and non-increasing in "k; and

the function BRG is non-decreasing in "k and non-increasing in m.

Monotonicity is enough to guarantee the existence of an equilibrium. Unfortu-
nately, we know that a trivial equilibrium always exists in threshold strategies: all
agents choose a threshold of $0, so no agent ever volunteers. To guarantee the
existence of a nontrivial equilibrium, it is sufficient to show there is some vector "k
of thresholds such that BRG("k) > "k. The following lemma, whose proof is again
deferred to Appendix B, shows that we can always find such a point for sufficiently
large δt.

Lemma 5.3. For all games G = (T, "f, h, m, n), there exists a δ∗ < 1 such that if
δt > δ∗ for all t, there is a vector "k of thresholds such that BRG("k) > "k.

We are now ready to prove our main theorem: there exists a non-trivial equilib-
rium where all agents play threshold strategies greater than zero.

Theorem 5.2. For all games G = (T, "f, h, m, 1) and all ε, there exist n∗
ε and δ∗ε,n

such that, if n > n∗
ε and δt > δ∗ε,n for all t, then there exists a nontrivial vector "k

of thresholds that is an ε-Nash equilibrium. Moreover, there exists a greatest such
vector.

Proof. By Lemma 5.2, BRG is a non-decreasing function on a complete lattice,
so Tarski’s fixed point theorem [Tarski 1955] guarantees the existence of a greatest
and least fixed point; these fixed points are equilibria. The least fixed point is
the trivial equilibrium. We can compute the greatest fixed point by starting with
the strategy profile (∞, . . . ,∞) (where each agent uses the strategy S∞ of always
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volunteering) and considering ε-best-reply dynamics, that is, iteratively computing
the ε-best-reply strategy profile. Monotonicity guarantees this process converges to
the greatest fixed point, which is an equilibrium (and is bound to be an equilibrium
in pure strategies, since the best reply is always a pure strategy). Since there is
a finite amount of money, this process needs to be repeated only a finite number
of times. By Lemma 5.3, there exists a "k such that BRG("k) > "k. Monotonicity
then guarantees that BRG(BRG("k)) ≥ BRG("k) and similarly for any number of
applications of BRG. If "k∗ is the greatest fixed point of BRG, then "k∗ > "k. Thus,
the greatest fixed point is a nontrivial equilibrium.

The proof of Theorem 5.2 also provides an algorithm for finding equilibria that
seems efficient in practice: start with the strategy profile (∞, . . . ,∞) and iterate
the best-reply dynamics until an equilibrium is reached.

0 5 10 15 20 25
0

5

10

15

20

25

Strategy of Rest of Agents

Be
st

 R
ep

ly

Fig. 1. A hypothetical best-reply function with one type of agent.

There is a subtlety in our results. In general, there may be many equilibria.
From the perspective of social welfare, some will be better than others. As we show
in Section 7, strategies that use smaller (but nonzero) thresholds increase social
welfare. Consider the best-reply function shown in Figure 1. In the game G in the
example, there is only one type of agent, so BRG : N → N. In equilibrium, we must
have must have BR(k) = k; that is, an equilibrium is characterized by a point on
the line y = x. This example has three equilibria, where all agents play s0, s5, and
s10 respectively. The strategy profile where all agents play s5 is the equilibrium
that maximizes social welfare, while s10 is the greatest equilibrium.

In the rest of this paper, we focus on the greatest equilibrium in all our appli-
cations (although a number of our results hold for all nontrivial equilibria). This
equilibrium has several desirable properties. First, it is guaranteed to be stable;
best-reply dynamics from nearby points converge to it. By way of contrast, best-
reply dynamics moves the system away from the equilibrium S5 in Figure 1. Un-
stable equilibria are difficult to find in practice, and seem unlikely to be maintained
for any length of time. Second, the “greatest” equilibrium is the one found by the
natural algorithm given in Theorem 5.2. The proof of the theorem shows that it
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is also the outcome that will occur if agents adopt the reasonable initial strategy
of starting with a large threshold and then using best-reply dynamics. Finally,
by focusing on the worst nontrivial equilibrium, our results provide guarantees on
social welfare, in the same way that results on price of anarchy [Roughgarden and
Tardos 2002] provide guarantees (since price of anarchy considers the social welfare
of the Nash equilibrium with the worst social welfare).

6. SIMULATIONS

Theorem 4.1 proves that, for a sufficiently large number n of agents, and after a
sufficiently large number r of rounds, the distribution of wealth will almost always
be close to the distribution that minimizes relative entropy. In this section, we
simulate the game to gain an understanding of how large n and r need to be in
practice. The simulations show that our theoretical results apply even to relatively
small systems; we get tight convergence with a few thousand agents, and weaker
convergence for smaller numbers, in very few rounds rounds, indeed, a constant
number per agent.
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Fig. 2. Maximum distance from minimum relative entropy distribution over 106 timesteps.

The first simulation explores the tightness of convergence to the distribution that
minimizes relative entropy for various values of n. We used a single type of agent,
with β = ρ = χ = 1, m = 2, and k = 5. For each value of n, the simulation
was started with a distribution of money as close as possible to the distribution d∗

that minimizes relative entropy to the distribution q defined in Theorem 4.1 that
characterizes the distribution of money in equilibrium (when the threshold strategy
5 is used). We then computed the maximum Euclidean distance between d∗ and
the observed distribution over 106 rounds. As Figure 2 shows, the system does not
move far from d∗ once it is there. For example, if n = 5000, the system is never
more than distance .001 from d∗. If n = 25, 000, it is never more than .0002 from
d∗.

Figure 2 does show a larger distance for n = 1000, although in absolute terms it
is still small. The next simulation shows that, while the system may occasionally
move away from d∗, it quickly converges back to it. We averaged 10 runs of the
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Fig. 3. Distance from minimum relative entropy distribution with 1000 agents.

Markov chain, starting from an extreme distribution (every agent has either $0 or
$5), and considered the average time needed to come within various distances of
d∗. As Figure 3 shows, after 2 rounds per agent, on average, the Euclidean distance
from the average distribution of money to d∗ is .008; after 3 rounds per agent, the
distance is down to .001.

0 5000 10000 15000 20000 25000
Number of Agents

0

20000

40000

60000

T
i
m
e
t
o
D
i
s
t
a
n
c
e
.
0
0
1

Fig. 4. Average time to get within .001 of the minimum relative entropy distribution.

Finally, we considered more carefully how quickly the system converges to d∗ for
various values of n. There are approximately kn possible states, so the convergence
time could in principle be quite large. However, we suspect that the Markov chain
that arises here is rapidly mixing, which means that it will converge significantly
faster (see [Lovasz and Winkler 1995] for more details about rapid mixing). We
believe that the actually time needed is O(n). This behavior is illustrated in Fig-
ure 4, which shows that for our example chain (again averaged over 10 runs), after
approximately 3n steps, the Euclidean distance between the actual distribution of
money in the system and d∗ is less than .001. This suggests that we should expect
the system to converge in a constant number of rounds per agent.
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7. SOCIAL WELFARE AND SCALABILITY

In this section, we consider a fundamental question faced by system designers: what
is the optimal amount of money and how does it depend on the size of the system?
We discuss how our theoretical results from Sections 4 and 5 show that in order to
maximize social welfare, the optimal amount of money is some constant per agent.
Thus, a system designer that wants to maximize social welfare should manage the
average quantity of money appropriately. However, we also show that this must be
done carefully. Specifically, we show that increasing the amount of money improves
performance up to a certain point, after which the system experiences a monetary
crash. Once the system crashes, the only equilibrium will be the trivial one where all
agents play s0. Thus, optimizing the performance of the system involves discovering
how much money the system can handle before it crashes.

In Section 3, we define the game using a tuple G = (T, "f, h, m, n). Thus, our
definition of a game uses the average amount of money m rather than the equally
reasonable total amount of money mhn. The choice is motivated by our theoretical
results. Theorem 4.1 shows that the long-term distribution of money d∗ depends
on the average amount of money, but is independent n, provided it is sufficiently
large. Thus, since we normalize δt by the number of agents in computing utility,
the optimal threshold policy for the MDP developed in Appendix B is also inde-
pendent of n. Theorems 5.1 and 5.2 show that such policies constitute an ε-Nash
equilibrium. Thus, modulo a technical issue regarding the rate of convergence of
the Markov Chain towards its stationary distribution, to determine the optimal
amount of money for a large system, it suffices to determine the optimal value of
m, the average amount of money per agent.

We remark that, in practice, it may be easier for the designer to vary the price
of fulfilling a request than to control the amount of money in the system. This
produces the same effect. For example, changing the cost of fulfilling a request
from $1 to $2 is equivalent to halving the amount of money that each agent has.
Similarly, halving the the cost of fulfilling a request is equivalent to doubling the
amount of money that everyone has. With a fixed amount hmn of money, there is
an optimal product hnc of the number hn of agents and the cost c of fulfilling a
request.

This also tells us how to deal with a dynamic pool of agents. Our system can
handle newcomers relatively easily: simply allow them to join with no money. This
gives existing agents no incentive to leave and rejoin as newcomers. (By way of
contrast, in systems where each new agent starts off with a small amount of money,
such an incentive clearly exists.) We then change the price of fulfilling a request so
that the optimal ratio is maintained. This method has the nice feature that it can be
implemented in a distributed fashion; if all nodes in the system have a good estimate
of n, then they can all adjust prices automatically. (Alternatively, the number of
agents in the system can be posted in a public place.) Approaches that rely on
adjusting the amount of money may require expensive system-wide computations
(see [Vishnumurthy et al. 2003] for an example), and must be carefully tuned to
avoid creating incentives for agents to manipulate the system by which this is done.

Note that, in principle, the realization that the cost of fulfilling a request can
change can affect an agent’s strategy. For example, if an agent expects the cost
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to increase, then he may want to defer volunteering to fulfill a request. However,
if the number of agents in the system is always increasing, then the cost always
decreases, so there is never any advantage in waiting. There may be an advantage
in delaying a request, but it is far more costly, in terms of waiting costs than in
providing service, since we assume the need for a service is often subject to real
waiting costs. In particular, many service requests, such as those for information
or computation, cannot be delayed without losing most of their value.

Issues of implementation aside, we have now reduced the problem of determining
the optimal total amount of money for a large system to that of determining the op-
timal average amount of money, independent of the exact number of agents. Before
we can determine the optimal value of m, we have to answer a more fundamental
question: given an equilibrium that arose for some value of m, how good is it?

Consider a single round of the game with a population of a single type t and an
equilibrium threshold k. If a request is satisfied, social welfare increases by γt −αt;
the requester gains γt utility and the satisfier pays a cost of αt. If no request is
satisfied then no utility is gained. What is the probability that a request will be
satisfied? This requires two events to occur. First, the agent chosen to make a
request must have a dollar, which happens with probability approximately 1 − ζ,
where ζ = d∗(t, 0) is the fraction of agents with no money. Second, there must be
a volunteer able and willing to satisfy the request. Any agent who does not have
his threshold amount of money is willing to volunteer. Thus, if θ = d∗(t, kt) is the
fraction of agents at their threshold, then the probability of having a volunteer is
1 − (1 − βt)(1−θ)n. We believe that in most large systems this probability is quite
close to 1; otherwise, either βt must be unrealistically small or θ must be very close
to 1. For example, even if β = .01 (i.e., an agent can satisfy 1% of requests), 1000
agents will be able to satisfy 99.99% of requests. If θ is close to 1, then agents
will have an easier time earning money then spending money (the probability of
spending a dollar is at most 1/n, while for large β the probability of earning a
dollar if an agent volunteers is roughly (1/n)(1/(1 − θ))). If an agent is playing s4

and there are n rounds played a day, this means that for θ = .9 he would be willing
to pay αt today to receive γt over 10 years from now. For most systems, it seems
unreasonable to have δt or γt/αt this large. Thus, for the purposes of our analysis,
we approximate 1 − (1 − βt)(1−θ)n by 1.

With this approximation, we can write the expected increase in social welfare
each round as (1 − ζ)(γt − αt). Since Ui("S) is normalized by the discount factor,
the total expected social welfare summed over all rounds is also (1 − ζ)(γt − αt).
If we have more than one type of agent, the situation is essentially the same. The
equation for social welfare is more complicated because now the gain in welfare
depends on the γ, α, and δ of the agents chosen in that round, but the overall
analysis is the same, albeit with more cases. In the general case,

ζ =
∑

t

d∗(t, 0) (5)

Thus our goal is clear: find the amount of money that, in equilibrium, minimizes
ζ.

In general, as the following theorem shows, ζ decreases as m increases. More
specifically, given our assumption that the system is starting at the greatest equi-
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librium "k, increasing m and then following best response dynamics leads to the new
greatest equilibrium "k′. As long as "k′ is non-trivial, ζm′,"k′ ≤ ζm,"k.

Theorems 4.1, 5.1, and 5.2 place requirements on the values of n and δt. Intu-
itively, the theorems require that the δts is sufficiently large to ensure that agents
are patient enough that their decisions are dominated by long-run behavior rather
than short-term utility, and that n is sufficiently large to ensure that small changes
in the distribution of money do not move it far from d∗. In the theorems in this
section, assume that these conditions are satisfied. To simplify the statements
of the theorems, we use “the standard conditions hold” to mean that the game
G = (T, "f, h, m, n) under consideration is such that n > n∗ and δt > δ∗ for the n∗

and δ∗ needed for the results of Theorems 4.1, 5.1, and 5.2 to apply.

Theorem 7.1. Let G = (T, "f, h, m, n) be such that the standard conditions hold,
and let "k be the greatest equilibrium for G. Then if m′ > m, the best-reply dynamics
in G′ = (T, "f, h, m′, n) starting at "k converge to some "k′ ≤ "k that is the greatest
equilibrium of G′. If "k′ is a nontrivial equilibrium, then ζm′,"k′ ≤ ζm,"k.

Proof. Since "k is an equilibrium, BRG("k) = "k. By Lemma 5.2, BRG is non-
increasing in m. Thus, "k = BRG("k) ≥ BRG′("k). Applying best-reply dynamics to
BRG′ starting at "k as in Theorem 5.2 gives us an equilibrium "k′ such that "k′ ≤ "k.
By Lemma 5.2, BRG("k′′) is non-decreasing in "k′′, so this is the greatest equilibrium.
Suppose "k′ is nontrivial. By Equations (2) and (5),

ζm,"k =
∑

t

d∗(t, 0) =
∑

t

ftλi
m,"k

q(t, i)
∑kt

j=0 λ
j

m,"k
q(t, j)

.

Again by Lemma 5.2, λm,"k is non-decreasing in m and non-increasing in "k. Thus,
ζm′,"k′ ≤ ζm,"k.

Theorem 7.1 tells us that, as long as the system does not crash, more money is
better. The following corollary tells us that such a crash is an essential feature; a
sufficient increase in the amount of money leads to a monetary crash. Moreover,
once the system has crashed, adding more money does not cause the system to
become “uncrashed.”

Corollary 7.1. Consider the family of games Gm = (T, "f, h, m, n) such that the
standard conditions hold. There exists a critical average amount m∗ of money such
that if m < m∗, then Gm has a nontrivial equilibrium, while if m > m∗, then Gm

has no nontrivial equilibrium. (A nontrivial equilibrium may or may not exist if
m = m∗.)

Proof. To see that there is some m for which Gm has no nontrivial equilibrium,
fix m. If there is no nontrivial equilibrium in Gm, we are done. Otherwise, suppose
that the greatest equilibrium in Gm is "k. Choose m′ >

∑
t ftkt, and let "k′ be the

greatest equilibrium in Gm′ . By Theorem 7.1, "k′ ≤ "k. But if "k′ is a nontrivial
equilibrium then, in equilibrium, each agent of type t has at most k′

t ≤ kt dollars.
But then m′ >

∑
t ftkt ≥

∑
ftk′

t, a contradiction.
Let m∗ be the infimum over all m for which no nontrivial equilibrium exists in

the game Gm. Clearly, by choice of m∗, if m < m∗, there is a nontrivial equilibrium
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in Gm. Now suppose that m > m∗. By the construction of m∗, there exists m′ with
m > m′ ≥ m∗ such that no nontrivial equilibrium exists in Gm′ . Let the greatest
equilibria with m′ and m be "k′ and "k, respectively. By Theorem 7.1, "k ≤ "k′. Thus
"k is also trivial.

Figure 5 shows an example of the monetary crash in the game

({(.05, 1, 1, .95, 1), (.15, 1, 1, .95, 1)}, (.3, .7), 10, m, 100).
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Fig. 5. Social welfare for various average amounts of money, demonstrating a monetary crash.

In light of Corollary 7.1, the system designer should try to find m∗, the point
where social welfare is maximized. We discuss how she might go about finding m∗

is practice in Section 9. The system designer may wish to choose the m somewhat
less than m∗. Since there will be a crash for any m > m∗, small changes in the
characteristics of the population or mistakes by the designer in modeling them could
lead to a crash if she chooses m too close to m∗.

The phenomenon of a monetary crash is intimately tied to our assumption of fixed
prices. We saw such a crash in practice in the babysitting co-op example. If the
price is allowed to float freely, we expect that, as the money supply increases, there
will be inflation; the price will increase so as to avoid a crash. However, floating
prices can create other monetary problems, such as speculation, booms, and busts.
Floating prices also impose transaction costs on agents. In systems where prices
would normally be relatively stable, these transaction costs may well outweigh the
benefits of floating prices, so a system designer may opt for fixed prices, despite the
risk of a crash.

8. DEALING WITH NONSTANDARD AGENTS

The model in Section 3 defines the utility of standard agents, who value service
and dislike using their resources to provide it to others. This seems like a natural
description of the way most people use distributed systems. However, in a real
system, not every user will behave they way the designer intends. A practical
system needs to be robust to nonstandard behaviors. In this section, we show
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how our model can be used to understand the effects of four interesting types of
nonstandard behavior. First, an agent might provide service even when he will
receive nothing in return, behaving as an altruist. Second, rather than viewing
money as a means to satisfy future requests, an agent might place an inherent
value on it and start hoarding it. Third, an agent might create additional identities,
known as sybils, to try and manipulate the system. Finally, agents might collude
with each other.

The results of this section give a system designer insight into how to design a scrip
system that takes into account (and is robust to) a number of frequently-observed
behaviors.

8.1 Altruists

P2P filesharing systems often have large numbers of free riders; they work because
a small number of altruistic users provide most of the files. For example, Adar
and Huberman [2000] found that, in the Gnutella network, nearly 50 percent of
responses are from the top 1 percent of sharing hosts. A wide variety of systems
have been proposed to discourage free riding (see Section 2). However, in our model,
unless this system mostly eliminates the altruistic users, adding such a system will
have no effect on rational users.

To make this precise, take an altruist to be someone who always volunteers to
fulfill requests, regardless of whether the other agent can pay. Agent i might ratio-
nally behave altruistically if, rather than suffering a loss of utility when satisfying
a request, i derives positive utility from satisfying it. Such a utility function is a
reasonable representation of the pleasure that some people get from the sense that
they provide the music that everyone is playing. For such altruistic agents, the
strategy of always volunteering is dominant. While having a nonstandard utility
function might be one reason that a rational agent might use this strategy, there
are certainly others. For example a naive user of filesharing software with a good
connection might well follow this strategy. All that matters for the following dis-
cussion is that there are some agents that use this strategy, for whatever reason.
For simplicity, we assume that all such agents have the same type ta.

Suppose that a system has a altruists. Intuitively, if a is moderately large, they
will manage to satisfy most of the requests in the system even if other agents do
no work. Thus, there is little incentive for any other agent to volunteer, because
he is already getting full advantage of participating in the system. Based on this
intuition, it is a relatively straightforward calculation to determine a value of a that
depends only on the types, but not the number n, of agents in the system, such
that the dominant strategy for all standard agents i is to never volunteer to satisfy
any requests.

Proposition 8.1. For all games (T, "f, h, m, 1) with fta > 0, there exists a value a
such that, if n > a/(ftah), then never volunteering is a dominant strategy for all
standard agents.

Proof. Consider the strategy for a standard agent i in the presence of a altruists.
Even with no money, agent i will get a request satisfied with probability 1−(1−βta)a

just through the actions of the altruists. Consider a round when agent i is chosen
to make a request. If he has no money (because he never volunteered), his expected
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utility is γτ(i)(1 − (1 − βta)a). His maximum possible utility for the round is γτ(i).
Thus, a strategy where he volunteers can increase his utility for a round by at most
γτ(i)(1 − βta)a. Thus, even if the agent gets every request satisfied, his expected
utility can increase by at most

(1 − δτ(i))
∑∞

r=1(ρτ(i)/hn)γτ(i)(1 − βta)a(1 − (1 − δτ(i))/n))r

= (1 − δτ(i))(ρτ(i)/h)γτ(i)(1 − βta)a(1 − δτ(i))
= (ρτ(i)/h)γτ(i)(1 − βta)a.

Clearly this expression goes to 0 as a goes to infinity. If we take a large enough
that the expression is less than αt for all types t, then the value of having every
future request satisfied is less than the cost of volunteering now, so no agent will
ever volunteer.

Consider the following reasonable values for our parameters: βt = .01 (so that
each player can satisfy 1% of the requests), γt = 1, αt = .1 (a low but non-
negligible cost), δt = .9999/day (which corresponds to a yearly discount factor of
approximately 0.95), and an average of 1 request per day per player. Then as long
as a > 1145 to ensure that not volunteering is a dominant strategy. While this is a
large number, it is small relative to the size of a large P2P network.

Proposition 8.1 shows that with enough altruists, the system eventually expe-
riences a monetary crash, since all agents will use a threshold of zero. However,
interesting behavior can still arise with smaller numbers of altruists. Consider the
situation where an a fraction of requests are immediately satisfied at no cost with-
out the requester needing to ask for volunteers. Intuitively, these are the requests
satisfied by the altruists, although the following result also applies to any setting
where agents occasionally have a (free) outside option. The following theorem shows
that social welfare is increasing in a.

Let G = ({t}, 1, h, m, n) be a game with a single type for which the standard
conditions hold. Consider the family Ga of games (parameterized by a) that result
from G if a fraction a of requests can be satisfied at no cost. That is, the game Ga

is the same as G, except that if an agent i makes a request, with probability a, it
is satisfied at no cost, and with probability 1 − a, an agent is chosen among the
volunteers to satisfy the request, just as in G, and the i is charged 1 dollar to have
the request satisfied.

Theorem 8.1. For the interval of values of a where there is no monetary crash in
Ga, social welfare increases as a increases (assuming that the greatest equilibrium
is played by all agents in Ga).

Proof. An agent’s utility in a round where he makes a request and it is satisfied
at no cost is γt. Since such rounds occur with probability a, by assumption, our
normalization guarantees that the sum of an agent’s expected utility in rounds
where a request is satisfied at no cost is aγt The same analysis as in Section 7
shows that the some of an agent’s expected utility in the remaining rounds is
(1− a)(1− ζ(a))(γt −αt), where, as before, ζ(a) = d∗(t, 0, a), the equilibrium value
of d∗(t, 0) in the game Ga. Thus, expected utility as a function of a is

aγt + (1 − a)(1 − ζ(a))(γt − αt). (6)
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To see that this expression increases as a increases, we would like to take the
derivative relative to a and show it is positive. Unfortunately, ζ(a) may not even
be continuous. Because strategies are integers, there will be regions where ζ(a) is
constant, and then a jump when a critical value of a is reached that causes the
equilibrium to change. At a point a in a region where ζ(a) is constant, ζ′(a) = 0, so
the derivative of Equation (6) is γt − (1− ζ(a))(γt − αt) > 0. Hence, social welfare
is increasing at such points.

Now consider a point a where ζ(a) is discontinuous. Such a discontinutity occurs
when the greatest equilibrium, the greatest value "k for which BRGa("k) = "k, changes.
We show that, for a fixed "k, BRGa("k) is non-increasing in a. Since increasing a can
only cause the BRGa("k) to decrease, the discontinuity must be caused by a change
from an equilibrium "k to a new equilibrium "k′ < "k. Fix a vector "k of thresholds,
and let p

"k,m,a
u be the probability that i will be earn a dollar in a given round if he

is willing to volunteer, given that a fraction a of requests is satisfied at no cost (so
that p

"k,m,0
u is what we earlier called p

"k,m
u ); we similarly define p

"k,m,a
d . It is easy to

see that p
"k,m,a
u = (1 − a)p"k,m,0

u and p
"k,m,a
d = (1 − a)p

"k,m,0
d . The random variable

J(κ, pu, pd) in Equation (4) describes the first time at which an agent starting with
κ dollars and using the threshold κ while earning a dollar with probability pu and
spending a dollar with probability pd reaches zero dollars. As a increases, p

"k,m,a
u

and p
"k,m,a
d both decrease, but the ratio p

"k,m,a
u /p

"k,m,a
d remains constant. Intuitively,

this means that the agent “slows down” his random walk on amounts of money
by a factor of 1/(1 − a). Thus, the value of the expectation in Equation (4),
and hence the right-hand side of Equation (4), is decreasing as a function of a.
By Lemma 5.1, (BRGa("k))t is the maximum value of κ such that Equation (4) is
satisfied. Decreasing the right-hand side can only decrease the maximum value of
κ, so BRGa("k) is non-increasing as a function of a.

By Lemma 5.2, λm,"k is non-increasing in "k (unless the system crashes). Since,
as we have just shown, if there is a discontinuity at ζ(a) when a increases, the
greatest equilibrium changes at a from "k to "k′ < "k, we must have λm,"k′ ≥ λm,"k.
In Equation (2) for i = 0, the value of the numerator is independent of λ, but the
denominator with λm,"k′ is greater than or equal to the denominator with λm,"k.
Thus d∗(t, 0, a) = ζ(a) is non-increasing at a. By Equation (6), this means that
expected utility is increasing at a. Thus, in either case, social welfare is increasing
in a.

Theorem 8.1 and Proposition 8.1 combine to tell us that a little altruism is
good for the system, but too much causes a crash. Figure 6 demonstrates this
phenomenon. As we saw in Section 7, such crashes are caused when m, the average
amount of money, is too large. By decreasing m appropriately, even relatively
large values of a can be exploited, as Figure 7 shows. The “social welfare without
adjustment” plot is the same data from Figure 6, with the corresponding plot
of the amount of money horizontal since m was held fixed. By decreasing the
average amount of money appropriately as the number of altruists increases, a
system designer can increase social welfare while avoiding a crash.
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Fig. 6. Altruists can cause a crash.
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8.2 Hoarders

Whenever a system allows agents to accumulate something, be it work done, as in
SETI@home, friends on online social networking sites, or “gold” in an online game,
a certain group of users seems to make it their goal to accumulate as much of it
as possible. In pursuit of this, they will engage in behavior that seems irrational.
For simplicity here, we model hoarders as playing the strategy s∞. This means
that they will volunteer under all circumstances. Our analysis would not change
significantly if we also required that they never made a request for work. Our first
result shows that, for a fixed money supply, having more hoarders makes standard
agents worse off.

Consider a game G = (T, "f, h, m, n) such that the standard conditions hold.
Consider the family Gfh of games (parameterized by fh) that result from G if a
fraction fh of agents are hoarders. That is, Gfh = (T × {0, 1}, "f ′, h′, m, n) where
at agent of type (t, 0) is a standard agent of type t, but an agent of type (t, 1) is
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a hoarder and always uses the strategy s∞ (his probabilities are still determined
by βt, ρt, and χt). Define "f ′ by taking f ′

(t,0) = (1 − fh)ft and f ′
(t,1) = fhft for

all types t. Let h′ be the smallest multiple of h such that f(t,i)h
′ is an integer for

all t and i. (We need to adjust h because otherwise the number of agents in the
base game may not be well defined.) Finally, to account for the changed h, let
δ(t,i) = 1 − (1 − δt)h/h′.

Theorem 8.2. In the family Gfh of games, social welfare is non-increasing in fh

(if the greatest equilibrium is played by all agents in Gfh).

Proof. Let "k(fh) denote the greatest equilibrium in Gfh . An increase in fh is
equivalent to taking some number of standard agents and increasing their strategy
to s∞. It follows from Lemma 5.2 that BRGfh

is non-decreasing in fh, and so "κ(fh)
is non-decreasing in fh. Again by Lemma 5.2, λm,"k(fh) is non-increasing in fh.
Let ζfh = 1/(1 − fh)

∑
t d∗((t, 0), 0, fh) be the fraction of non-hoarders with zero

dollars, where d∗((t, 0), 0, fh) is the value of d∗((t, 0), 0) at the greatest equilibrium
of Gfh . By Equation (2), ζ(fh) is non-decreasing in fh. Thus, social welfare is
non-increasing in fh.

Hoarders do have a beneficial aspect. As we have observed, a monetary crash
occurs when a dollar becomes valueless, because there are no agents willing to
take it. However, with hoarders in the system, there is always someone who will
volunteer, so there cannot be a crash. Thus, for any m, the greatest equilibrium will
be nontrivial and, by Theorem 7.1, social welfare keeps increasing as m increases.
So, in contrast to altruism, where the appropriate response was to decrease m,
the appropriate response to hoarders is to increase m. In fact, our results indicate
that the optimal response to hoarders is to make m infinite. This is due to our
unrealistic assumption that hoarders would use the strategy s∞ regardless of the
value of m. There is likely an upper limit on the value of m in practice, since it is
unlikely that hoarders would be willing to hoard scrip if it is so easily available.

8.3 Sybils

Unless identities in a system are tied to a real world identity (for example by
a credit card), it is effectively impossible to prevent a single agent from having
multiple identities [Douceur 2002]. Nevertheless, there are a number of techniques
that can make it relatively costly for an agent to do so. For example, Credence uses
cryptographic puzzles to impose a cost each time a new identity wishes to join the
system [Walsh and Sirer 2006]. Given that a designer can impose moderate costs
to sybilling, how much more need she worry about the problem? In this section,
we show that the gains from creating sybils when others do not diminish rapidly,
so modest costs may well be sufficient to deter sybilling by typical users. However,
sybilling is a self-reinforcing phenomenon. As the number of agents with sybils gets
larger, the cost to being a non-sybilling agent increases, so the incentive to create
sybils becomes stronger. Therefore, measures to discourage or prevent sybilling
should be taken early before this reinforcing trend can start. Finally, we examine
the behavior of systems where only a small fraction of agents have sybils. We show
that under these circumstances a wide variety of outcomes are possible (even when
all agents are of a single type), ranging from a crash (where no service is provided)
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Fig. 8. The effect of pu on utility

to an increase in social welfare. This analysis provides insight into the tradeoffs
between efficiency and stability that occur when controlling the money supply of
the system’s economy.

When an agent of type t creates sybils, the only parameter of his type that may
change as a result is χt, if we redefine the likelihood of an agent being chosen to
be the likelihood of the agent or any of his sybils being chosen. For simplicity, we
assume that each sybil is as likely to be chosen as the original agent, so creating s
sybils increases χt by sχt. (Sybils may have other impacts on the system, such as
increased search costs, but we expect these to be minor.)

Increasing χt benefits an agent by increasing his value of ωt and thus pu, his
probability of earning a dollar (see Equation (9) in Appendix B). When pu <
pd, the agent has more opportunities to spend money than to earn money, so
he will regularly have requests go unsatisfied due to a lack of money. In this
case, the fraction of requests he has satisfied is roughly pu/pd, so increasing pu by
creating sybils results in a roughly linear increase in utility. As Theorem 8.3 shows,
when pu is close to pd, the increase in satisfied requests is no longer linear, so the
benefit of increasing pu begins to diminish. Finally, when pu > pd, most of the
agent’s requests are being satisfied, so the benefit from increasing pu is very small.
Figure 8 illustrates an agent’s utility as pu varies for pd = .0001.3 We formalize the
relationship between pu, pd, and the agent’s utility in the following theorem, whose
proof is deferred to Appendix C.

Theorem 8.3. Fix a game G and vector of thresholds "k. Let R"k,t = p
"k,t
u /pt

d.
In the limit as the number of rounds goes to infinity, the fraction of the agent’s
requests that have an agent willing and able to satisfy them that get satisfied is
(R"k,t − Rkt+1

"k,t
)/(1 − Rkt+1

"k,t
) if R"k,t #= 1 and kt/(kt + 1) if R"k,t = 1.

3Except where otherwise noted, the remaining figures in this section assume that m = 4, n = 10000
and that there is a single type of rational agent with α = .08, β = .01, γ = 1, δ = .97, ρ = 1, and
χ = 1. These values are chosen solely for illustration, and are representative of a broad range of
parameter values. The figures are based on calculations of the equilibrium behavior.
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Fig. 9. The effect of sybils on utility

Theorem 8.3 gives insight into the equilibrium behavior with sybils. Clearly,
if sybils have no cost, then creating as many as possible is a dominant strategy.
However, in practice, we expect there is some modest overhead involved in creating
and maintaining a sybil, and that a designer can take steps to increase this cost
without unduly burdening agents. With such a cost, adding a sybil might be
valuable if pu is much less than pd, and a net loss otherwise. This makes sybils a
self-reinforcing phenomenon. When a large number of agents create sybils, agents
with no sybils have their pu significantly decreased. This makes them much worse
off and makes sybils much more attractive to them. Figure 9 shows an example of
this effect. This self-reinforcing quality means that it is important to take steps to
discourage the use of sybils before they become a problem. Luckily, Theorem 8.3
also suggests that a modest cost to create sybils will often be enough to prevent
agents from creating them because with a well chosen value of m, few agents should
have low values of pu.

We have interpreted Figures 8 and 9 as being about changes in χ due to sybils,
but the results hold regardless of what caused differences in χ. For example, agents
may choose a volunteer based on characteristics such as connection speed or latency.
If these characteristics are difficult to verify and do impact decisions, our results
show that agents have a strong incentive to lie about them. This also suggests
that the decision about what sort of information the system should enable agents
to share involves tradeoffs. If advertising legitimately allows agents to find better
service or more services they may be interested in, then advertising can increase
social welfare. But if these characteristics impact decisions but have little impact
on the actual service, then allowing agents to advertise them can lead to a situation
like that in Figure 9, where some agents have a significantly worse experience.

We have seen that when a large fraction of agents have sybils, those agents
without sybils tend to be starved of opportunities to work (i.e. they have a low
value of pu). However, as Figure 9 shows, when a small fraction of agents have
sybils this effect (and its corresponding cost) is small. Surprisingly, if there are few
agents with sybils, an increase in the number of sybils these agents have can actually
Journal of the ACM, Vol. V, No. N, Month 20YY.
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Fig. 10. Sybils can improve utility
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Fig. 11. Sybils can cause a crash

result in a decrease of their effect on the other agents. Because agents with sybils
are more likely to be chosen to satisfy any particular request, they are able to use
lower thresholds and reach those thresholds faster than they would without sybils,
so fewer are competing to satisfy any given request. Furthermore, since agents with
sybils can almost always pay to make a request, they can provide more opportunities
for other agents to satisfy requests and earn money. Social welfare is essentially
proportional to the number of satisfied requests (and is exactly proportional to it
if everyone shares the same values of α and γ), so a small number of agents with
a large number of sybils can improve social welfare, as Figure 10 shows. Note
that, although social welfare increases, some agents may be worse off. For example,
for the choice of parameters in this example, social welfare increases when twenty
percent of agents create at least two sybils, but agents without sybils are worse
off unless the twenty percent of agents with sybils create at least eight sybils. As
the number of agents with sybils increases, they start competing with each other
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for opportunities to earn money and so adopt higher thresholds, and this benefit
disappears. This is what causes the discontinuity in Figure 9 when approximately
a third of the agents have sybils.

This observation about the discontinuity also suggests another way to mitigate
the negative effects of sybils: increase the amount of money in the system. This
effect can be seen in Figure 11, where for m = 2 social welfare is very low with
sybils but by m = 4 it is higher than it would be without sybils.

Unfortunately, increasing the average amount of money has its own problems.
Recall from Section 7 that, if the average amount of money per agent is too high,
the system will crash. It turns out than just a small number of agents creating sybils
can have the same effect, as Figure 11 shows. With no sybils, the point at which
social welfare stops increasing and the system crashes is between m = 10.25 and
m = 10.5. If one-fifth of the agents each create a single sybil, the system crashes
if m = 9.5, a point where, without sybils, the social welfare was near optimal.
Thus, if the system designer tries to induce optimal behavior without taking sybils
into account, the system will crash. Moreover, because of the possibility of a crash,
raising m to tolerate more sybils is effective only if m was already set conservatively.

This discussions shows that the presence of sybils can have a significant impact
on the tradeoff between efficiency and stability. Setting the money supply high can
increase social welfare, but at the price of making the system less stable. Moreover,
as the following theorem shows, whatever efficiencies can be achieved with sybils
can be achieved without them, at least if there is only one type of agent. In the
theorem, we consider a system where all agents have the same type t. Suppose that
some subset of the agents have created sybils, and all the agents in the subset have
created the same number of sybils. We can model this by simply taking the agents
in the subsets to have a new type s, which is identical to t except that the value
of χ increases. Thus, we state our results in terms of systems with two types of
agents, t and s.

Theorem 8.4. Suppose that t and s are two types that agree except for the value of
χ, and that χt < χs. If "k = (kt, ks) is an ε-Nash equilibrium for G = ({t, s}, "f, h, m, n)
with social welfare w, then there exist h′, m′, and n′ such that "k′ = (ks) is an ε-Nash
equilibrium for G′

h′,m′,n′ = ({t}, {1}, h′, m′, n′) with social welfare greater than w.

We defer proof of Theorem 8.4 to Appendix C.
The analogous result for systems with more than one type of agent is not true.

Figure 9 shows a game with a single type of agent, some of whom have created
two sybils. However, we can reinterpret it as a game with two types of agents,
one of whom has a larger value of χ. With this reinterpretation, Figure 9 shows
that social welfare is higher when all the agents are of the type th with the higher
value of χ than when only 40% are. Moreover, if only 40% of the agents have type
th, social welfare would increase if the remaining agents created two sybils each
(resulting in all agents having the higher value of χ). Note that this situation,
where there are two types of agents, of which one has a higher value of χ, is exactly
the situation considered by Theorem 8.4. Thus, the theorem shows that for any
equilibrium with two such types of agents, there is a better equilibrium where one
of those types creates sybils so as to effectively create only one type of agent.

While situations like this show that it is theoretically possible for sybils to increase
Journal of the ACM, Vol. V, No. N, Month 20YY.



Optimizing Scrip Systems · 33

social welfare beyond what is possible to achieve by simply adjusting the average
amount of money, this outcome seems unlikely in practice. It relies on agents
creating just the right number of sybils. For situations where such a precise use
of sybils would lead to a significant increase in social welfare, a designer could
instead improve social welfare by biasing the algorithm agents use for selecting
which volunteer will satisfy the request.

Thus far, we have assumed that when agents create sybils the amount of money in
the system does not change. However, the presence of sybils increases the number of
apparent agents in the system. Since social welfare depends on the average amount
of money per agent, if the system designer mistakes these sybils for an influx of
new users and increases the money supply accordingly, she will actually end up
increasing the average amount of money in the system, and may cause a crash.
This emphasizes the need for continual monitoring of the system rather that just
using simple heuristics to set the average amount of money, an issue we discuss
more in Section 9.

8.4 Collusion

Agents that collude gain two major benefits. The primary benefit is that they can
share money, which makes them less likely to run out of money (and hence unable to
make a request), and allows them to pursue a joint strategy for determining when to
work. A secondary benefit, but important in particular for larger collusive groups,
is that they can satisfy each other’s requests. The effects of collusion on the rest
of the system depend crucially on whether agents are able to volunteer to satisfy
requests when they personally cannot satisfy the request but one of their colluding
partners can. In a system where a request is for computation, it seems relatively
straightforward for an agent to pass the computation to a partner to perform and
then pass the answer back to the requester. On the other hand, if a request is a
piece of a file it seems less plausible that an agent would accept a download from
an unexpected source, and it seems wasteful to have the chosen volunteer download
it for the sole purpose of immediately uploading it. If it is possible for colluders to
pass off requests in this fashion, they are able to effectively act as sybils for each
other, with all the consequences discussed in Section 8.3. However, if agents can
volunteer only for requests they can personally satisfy, the effects of collusion are
almost entirely positive.

Since we have already discussed the consequences of sybils, we will assume that
agents are able to volunteer only to satisfy requests that they personally can satisfy.
Furthermore, we make the simplifying assumption that agents that collude are of
the same type, because if agents of different types collude their strategic decisions
become more complicated. For example, once the colluding group has accumulated
a certain amount of money, it may wish to have only members with small values of
α volunteer to satisfy requests; or when it is low on money, it may wish to deny use
of money to members with low values of γ. This results in strategies that involve
sets of thresholds rather than a single threshold. While there seems to be nothing
fundamentally different about the situation, it makes calculations significantly more
difficult.

With these assumptions, we now examine how colluding agents will behave. Be-
cause colluding agents share money and types, it is irrelevant which members actu-
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ally perform work and have money. All that matters is the total amount of money
the group has. This means that when the group needs money, everyone in the
group volunteers for a job; otherwise, no one does. Thus, the group essentially acts
like a single agent, using a threshold that is somewhat less than the sum of the
thresholds that the individual agents would have used, because it is less likely that
c agents will make ck requests in rapid succession than a single agent making k.
Furthermore, some requests will not require scrip at all because they can potentially
be satisfied by other members of the colluding group. When deciding whether the
group should satisfy a member’s request or ask for an outside volunteer to fulfill it,
the group must decide whether it should pay a cost of α to avoid spending a dollar.
Since not spending a dollar is effectively the same as earning a dollar, the decision
is already optimized by the threshold strategy; the group should always attempt to
satisfy a request internally unless it is in a temporary situation where the group is
above its threshold.
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Fig. 12. The effect of collusion on utility

Figure 12 shows an example of the effects of collusion on agents’ utilities as the
size of collusive groups increases. As this figure suggests, the effects typically go
through three phases. Initially, the fraction of requests colluders satisfy for each
other is small. This means that each collusive group must work for others to pay
for almost every request its members make. However, since they share money, the
colluders do not have to work as often as individuals would. Thus, other agents
have more opportunity to work, and every agent’s pu increases, making all agents
better off.

As the number of colluders increases, the fraction of requests they satisfy in-
ternally grows significant. We can think of pd as decreasing in this case, and view
these requests as being satisfied “outside” the scrip system because no scrip changes
hands. This is good for colluders, but is bad for other agents whose pu is lower,
since fewer requests are being made. Even in this range, non-colluding agents still
tend to be better off than if there were no colluders, because the overall competition
for opportunities to work is still lower. Finally, once the collusive group is large
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enough, it will have a low pd relative to pu. This means the collusive group can use
a very low threshold, which again begins improving utility for all agents. The anal-
ogous situation with sybils is transitory, and disappears when more agents create
sybils. However, with collusion, this low threshold is an inherent consequence of
colluders satisfying each other’s requests, and so persists and even increases as the
amount of collusion in the system increases. Since collusion is difficult to maintain
(the problem of incentivizing agents to contribute is the whole point of using scrip),
we would expect the size of collusive groups seen in practice to be relatively small.
Therefore, we expect that for most systems collusion will make no agent worse off,
and some better off. Note that, as with sybils, the decreased in competition that
results from collusion can also lead to a crash. However, if the system designer is
monitoring the system, and encouraging and expecting collusion, she can reduce m
appropriately and prevent a crash.

These results also suggest that creating the ability to take out loans (with an
appropriate interest rate) is likely to be beneficial. Loans gain the benefits of
reduced competition without the accompanying cost of fewer requests being made
in the system. However, implementing a loan mechanism requires addressing a
number of other incentive problems. For example, whitewashing, where agents take
on a new identity (in this case to escape debts) needs to be prevented [Friedman
and Resnick 2001].

9. IDENTIFYING USER STRATEGIES

In Section 4, we used relative entropy to derive an explicit formula for the distri-
bution of money d∗ given a game (T, "f, h, n, m) and vector of strategies "k. In this
section, we want to go in the opposite direction: given the distribution of money,
we want to infer the strategies "k, the set of types present T , and the fraction of each
type "f . For those interested in studying the agents of a scrip system, knowing the
fraction of agents using each strategy can provide a window into the preferences of
those agents. For system designers, this knowledge is useful because, as we show
in Section 7, how much money the system can handle without crashing depends on
the fraction of agents of each type.

In equilibrium, the distribution of money has the form described in Lemma 4.1.
Note that, in general, we do not expect to see exactly this distribution at any given
time, but it follows from Theorem 4.1 that, after sufficient time, the distribution is
unlikely to be very far from it. Does this distribution help us identify the strategies
and types of agents?

As a first step to answering this question, given a distribution of money d (where
d(i) is the fraction of agents with i dollars) such that d(i) is rational for all i (this
constraint is necessary of d(i) is to represent the fraction of agents with i dollars
in a real system), suppose that the maximum amount of money to which d gives
positive probability is K. A vector "f of length K + 1 whose components are all
rational numbers, where fi is intuitively the fraction of agents playing the threshold
strategy si, is an explanation of d if there exists a λ such that

d(j) =
∑

i

dλ(i, j),
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where

dλ(i, j) = fiλ
j/(

i∑

l=0

λl) (7)

if j ≤ i and 0 otherwise. Note that Equation (7) is very similar to Equation (2)
from Lemma 4.1. In the following lemma, we show why we call "f an explanation:
given a distribution d and an explanation "f we can find a game G where "f is the
fraction of agents of each type and d is the equilibrium distribution of money (by
which we mean that the value of d∗ in Lemma 4.1 is such that d(i) =

∑
t d∗(t, i)).

Lemma 9.1. If "f is an explanation for d, then there exists a game G = (T, "f, h, m, n)
and vector "k of thresholds such that "k is an ε-Nash equilibrium for G and the equi-
librium distribution of money is d.

Proof. Let T = {0, . . . , K}, h be the minimum integer such that hd(i) is an
integer for all i, m =

∑
i id(i), and "k be such that ki = i. For each type i, choose

βi, χi, and ρi arbitrarily, subject to the constraint that βχ/ρ = 1 (so that, by
definition, ωi = 1 for all types i). Finally, choose an arbitrary n.

By Lemma 5.1, for any n, an optimal threshold policy in the MDP PG,"S("k),i for
an agent of type i is sκ, where κ is the maximum value such that

αt ≤ E[(1 − (1 − δt)/n)J(κ,pu,pd)]γt. (4)

Fix δi and γi, and let g(κ) be the sequence of values of the right hand side of
Equation (4) for natural numbers κ. Recall that the random variable J(κ, pu, pd)
represents the round at which an agent starting with k dollars runs out of money.
Since J(0, pu, pd) = 0 for all histories, g(0) = γt. The time at which an agent runs
out of money is increasing in his initial amount of money. Thus, J(κ, pu, pd) is a
strictly decreasing function of κ, so g(κ) is also strictly decreasing. Choose αi such
that g(i + 1) < αi < g(i).

Thus, we have established parameters (αi, βi, γi, δi, χi, ρi) for each type i so that
si an optimal policy for agents of type i in the MDP PG,"S("k),i. By Theorem 5.1,
taking n and the δi sufficiently large makes "k a ε-Nash equilibrium for G. By
Lemma 4.1, the equilibrium distribution of money is d.

In general, there is not a unique explanation of a distribution d. Say that a
distribution of money d is fully-supported if there do not exist i and j such that
i < j, d(j) > 0, and d(i) = 0. For any game G, if all agents play threshold strategies
then the resulting distribution will be fully-supported because it has the form given
in Lemma 4.1. As the following lemma shows, a fully-supported distribution can
be explained in an infinite number of different ways.

Lemma 9.2. If d is a fully-supported distribution of money with finite support,
there there exist an infinite number of explanations of d.

We defer the proof of Lemma 9.2 to Appendix D.
Lemma 9.2 shows that d has an infinite number of explanations. Lemma 9.1

shows that we can find an (approximate) equilibrium corresponding to each of
them. The explanations "f we construct in the proof of Lemma 9.2 seem unnatural;
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typically fi > 0 for all i. We are interested in a more parsimonious explanation,
one that has a small support (i.e., the number of thresholds i for which fi > 0 is
small), for reasons the following lemma makes clear.

Lemma 9.3. Let "f be an explanation for d. If s is the size of the support of "f ,
then any other explanation will have a support of size at least K − s.

Proof. Suppose that "f is an explanation for d. By Lemma 9.1, there is a game
G = (T, "f, h, m, n) and vector "k of thresholds such that "k is an ε-Nash equilibrium
for G and the equilibrium distribution of money is d. Moreover, the proof of
Lemma 9.1 shows that we can take T = {0, . . . , K}, ki = i, and ωi = 1 for each
type i ∈ T . By Equation (2) in Lemma 4.1, d∗(t, i) = ftλiq(t, i)/

∑kt

j=0 λ
jq(t, j),

where λ is the (unique) value that satisfies Equation (3). We first show that if
fi−1 = 0, then d(i)/d(i − 1) = λ. Since, for all i, ωi = 1, it is immediate from
Equation (8) in the appendix that q(i, j) = q(i, j′) for all j and j′. Thus, the q

terms cancel, so d∗(i, j) = fiλj/
∑ki

l=0 λ
l. Let bi = fi/

∑ki

l=0 λ
l; then d∗(i, j) = λjbi.

Only agents with a threshold of at least j can have j dollars, so

d(j) =
∑

j

d∗(i, j) =
∑

{tl:l≥j}

d∗(l, j) =
∑

{tl:l≥j}

blλ
j = Bjλ

j ,

where Bj =
∑

{tl:l≥i} bl. If fi−1 = 0, then Bi = Bi−1, so d(i)/d(i − 1) = λ.
Since s strategies get positive probability according to "f , at least k − s of the

ratios d(i)/d(i − 1) with 1 ≤ i ≤ K must have value λ. Any other explanation "f ′

will have different coefficients fi in Equation (7), so the value λ′ satisfying it will
also differ (The requirement that d(K) = dλ(K, K) uniquely defines a value of λ).
This means that the K − s ratios with value λ must correspond to strategies i such
that fi > 0. Thus, the support of any other explanation must be at least K − s.

If s , K, Lemma 9.3 gives us a strong reason for preferring the minimal expla-
nation (i.e., the one with the smallest support); any other explanation will involve
significantly more types of agents being present. For s = 3 and K = 50, the small-
est explanation has a support of three thresholds, and thus requires three types;
the next smallest explanation requires at least 47 types. Thus, if the number of
types of agents is relatively small, the minimal explanation will be the correct one.

The proof of Lemma 9.3 also gives us an algorithm for finding this minimal
explanation. Since d(i) = Biλi, taking logs of both sides, log d(i) = log Bi + i logλ.
Because Bi is constant in ranges of i where fti = 0, a plot of log d(i) will be a line
with slope λ in these ranges. Thus, the minimal explanation can be found by finding
the minimum number of lines of constant slope that fit the data. For a simple
example of how such a distribution might look, Figure 13 shows an equilibrium
distribution of money for the game

({(.05, 1, 1, .95, 1), (.15, 1, 1, .95, 1)}, (.3, .7), 10, 4, 100)

so the only difference between the types is that it costs the second type three times
as much to satisfy a request) and the equilibrium strategy profile (20, 13). Figure 14
has the same distribution plotted on a log scale. Note the two lines with the same
slope (λ) and the break at 13.
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Fig. 13. Distribution of money with two types of agents.
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Fig. 14. Log of the distribution of money with two types of agents.

Our notion of an explanation requires that "f satisify Equation 7, which, unlike
Equation 2, does not contain a q(t, i) term. Thus, it implicitly assumes that for all
types t, ωt = 1. When ωt is allowed to differ, we no longer have the simple form for
Bi used in Lemma 9.3. This is because the types do not share the same value of ωt

in Equation (8). However, for a single type t it is the case that d∗(t, i)/d∗(t, i−1) =
λωt. ωτ(j) can be estimated by observing the results of requests, so by observing
a sufficient number of agents the system designer should be able to estimate the
values d∗(t, i) and ωt for some type t and thus learn λ. If several, but not all, types
t have a common value of ωt, the procedure above can be used to determine ft and
kt for each type and the resulting value of λ.

This procedure allows us to infer a distribution of money the minimal explanation
of the number of types of agents: the fraction of the population composed of each
type, and the strategy each type is playing. (Note that we cannot distinguish
multiple types with a shared ωt playing the same strategy.) We would like to use
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this information to learn about the preferences of agents: their values of αt, γt, and
δt. Lemma 5.1 shows how we can do this. Once we find an explanation, the value
of λ determines pt

u and pt
d for each type t. Then Equation 4 puts constraints on

the values of αt, βt, and γt. Over time, if T , the set of types, remains constant,
but "f , n, and m all vary as agents join and leave the system, a later observation
with a slightly would give another equilibrium with new constraints on the types of
the agents. A number of such observations potentially reveal enough information
to allow strong inferences about agent types.

Thus far we have implicitly assumed that there are only a small number of types
of agents in a system. Given that a type is defined by six real numbers, it is perhaps
more reasonable to assume that each agent has a different type, but there is a small
number of “clusters” of agents with similar types. For example, we might believe
that generally agents either place a high value or a low value on receiving service.
While the exact value may vary, the types of two low-value agents or two high-value
agents will be quite similar. We have also assumed in our analysis that all agents
play their optimal threshold strategy. However, computing this optimum may be
too difficult for many agents. Even ignoring computational issues, agents may have
insufficient information about their exact type or the exact types of other agents
to compute the optimal threshold strategy. Both the assumption that there are
a few clusters of agents with similar, but not identical, types and the assumption
that agents do not necessarily play their optimal threshold strategy, but do play
a strategy close to optimal, lead to a similar picture of a system, which is one
that we expect to see in practice: we will get clusters of agents playing similar
strategies (that is, strategies with thresholds clustered around one value), rather
than all agents in a cluster playing exactly the same strategy. This change has
relatively little impact on our results. Rather than seeing straight lines representing
populations with a sharp gap between them, as in Figure 14, we expect slightly
curved lines representing a cluster of similar populations, with somewhat smoother
transitions.

10. DISCUSSION

We have given a formal analysis of a scrip system and have shown that approximate
equilibria exist in threshold strategies and that the distribution of money in these
equilibria is given by relative entropy. As part of our equilibrium argument, we
have shown that the best-reply function is monotone. This proves the existence
of equilibria in pure strategies and permits efficient algorithms to compute these
equilibria. We have also examined some of the practical implications of these the-
oretical results. For those interested in studying the agents of scrip systems, our
characterization of equilibrium distribution of money forms the basis for techniques
relevant to inferring characteristics of the agents of a scrip system from the distrib-
ution of money. For a system designer, our results on optimizing the money supply
provide a simple maxim: keep adding money until the system is about to experience
a monetary crash.

We have also seen that our model can be used to understand the effects of non-
standard agent behavior on a scrip system. It provides insight into the effects of
altruists and hoarders on a scrip system and guidance to system designers for deal-
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ing with them (less and more money respectively). Sybils are generally bad, but
can typically be discouraged by imposing a moderate cost and possibly biasing the
process for selecting a volunteer. On the other hand, collusion tends to be a net
benefit and should be encouraged. Indeed, the entire purpose of the system is to
allow users to collude and provide each other with service despite incentives to free
ride.

Our model makes a number of assumptions that are worthy of further discussion.
Some of the simplifying assumptions can be relaxed without significant changes to
our results (albeit at the cost of greater strategic and analytic complexity). At a
high level, our results show the system converges to a steady state when agents
follow simple threshold strategies and that there is in fact an equilibrium in these
strategies. If, for example, rather than all requests having the same value to agent
(γt), the value of a request is stochastic, agents might wish to have thresholds for
each type of request. This would allow an agent to forgo a low-valued request if he
is low on money. This makes the space of agent strategies larger and significantly
complicates the proofs in the appendix, but this high-level characterization still
holds.

The most significant assumption we make is that prices are fixed. However, our
results provide insight even if we relax this assumption. With variable prices, the
behavior of the system depends on the value of β, the probability that an agent can
satisfy a request. For large β, where are a large number of agents who can satisfy
each request, we expect the resulting competition to effectively produce a fixed
price, so our analysis applies directly. For small β, where there are few volunteers
for each request, variable prices can have a significant impact.

However, allowing prices to be set endogenously, by bidding, has a number of
negative consequences. For one thing, it removes the ability of the system designer
to optimize the system using monetary policy. In addition, for small β, it is possible
for colluding agents to form a cartel to fix prices on a resource they control. It also
greatly increases the strategic complexity of using the system: rather than choosing
a single threshold, agents need an entire pricing scheme. Finally, the search costs
and costs of executing a transaction are likely to be higher with variable prices.
Thus, we believe that adopting a fixed price or a small set of fixed prices is often a
reasonable design decision.

We believe there is often a happy medium between a single, permanent fixed
price and prices that change freely from round to round; indeed, our advice to
system designers points naturally toward it. In particular, our advice about how
to optimize the amount of money relies on experimentation and observation to
determine what agents are doing and what their utilities are. This information
then tells the designer how much money she should provide. Since adjusting the
amount of money is equivalent to adjusting prices, the designer could incorporate
this process into a price setting rule. Depending on the nature of the system, this
could either be done manually over time (if the information is difficult to gather and
analyze) or automatically (if the information gathering and analysis can itself be
automated). From this perspective, a monetary crash, though real, is not something
to be feared. Instead, it is just a strong signal that the current price, while probably
not too far off from a very good price, requires adjustment. Naturally, this relies
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on a process that proceeds slow enough that agents myopically ignore the effects of
future price changes in determining their current action.

Our model provides only the beginning of a full understanding of scrip systems.
Many interesting open questions remain for future work. To name a few:

—Our model makes a number of strong predictions about the agent strategies,
distribution of money, and effects of variations in the money supply. It also
provides techniques to help analyze characteristics of agents of a scrip system. It
would be interesting to test these predictions on a real functioning scrip system to
either validate the model or gain insight from where its predictions are incorrect.

—In many systems there are overlapping communities of various sizes that are sig-
nificantly more likely to be able to satisfy each other’s requests. For example, in
a P2P filesharing system, people are more likely to be able to satisfy the requests
of others who share the same interests. It would be interesting to investigate the
effect of such communities on the equilibrium of our system.

—It seems unlikely that altruism and hoarding are the only two types of “irrational”
behavior we will find in real systems. Are there other major types that our model
can provide insight into? Furthermore, it seems natural that the behavior of a
very small group of agents should not be able to change the overall behavior
of the system. Can we prove results about equilibria and utility when a small
group follows an arbitrary strategy? This is particularly relevant when modeling
attackers. See [Abraham et al. 2006] for general results in this setting.
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A. PROOF OF THEOREM 4.1

Given a Markov chain M over a state space X and state s ∈ S, let Ir
"x,"y be the

random variable that is 1 if M is in state "y at time r and the chain started in state
"x and 0 otherwise. Then limr→∞ Pr(Ir

"x,"y = 1) is the limit probability of being in
state "y given that the Markov chain starts in state "x. In general, this limit does
not exist. However, there are well-known conditions under which the limit exists,
and is independent of the initial state "x. A Markov chain is said to be irreducible
if every state is reachable from every other state; it is aperiodic if, for every state
"x, there exist two cycles from "x to itself such that the gcd of their lengths is 1.
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Theorem A.1. [Resnick 1992] If M is a finite, irreducible, and aperiodic Markov
chain over state space X, then there exists a d such that, for all "x and "y ∈ X,
limr→∞ Pr(Ir

"x,"y = 1) = d.

Thus, if we can show that M is finite, irreducible, and aperiodic, then the limit
distribution exists and is independent of the start state "x. This is shown in the
following lemma.

Lemma A.1. If there are at least three agents, then M is finite, irreducible, and
aperiodic and therefore has a limit distribution π.

Proof. M is clearly finite since X is finite. We prove that it is irreducible
by showing that state "y is reachable from state "x by induction on the distance
w =

∑n
i=1 |xi−yi| (i.e., the sum of the absolute differences in the amount of money

each person has in states "x and "y). If z = 0, then "x = "y so we are done. Suppose
that w > 0 and all pairs of states that are less that w apart are reachable from each
other. Consider a pair of states "x and "y such that the distance from "x to "y is w.
Since w > 0 and the total amount of money is the same in all states, there must
exist i1 and i2 such that xi1 > yi1 and xi2 < yi2 . Thus, in state "y, i1 is willing to
work (since he has strictly less than the threshold amount of money) and i2 has
money to pay him (since i2 has a strictly positive amount of money). The state "z
that results from i1 doing work for i2 in state "y is of distance w− 2 from "x. By the
induction hypothesis, "z is reachable from "x. Since "y is clearly reachable from "z, "y
is reachable from "x.

Finally, we must show that M is aperiodic. Suppose "x is a state such that there
exist three agents i1, i2, and i3 where i1 has more than 0 dollars and i2 and i3
have less than their threshold amount of money. There must be such a state by
our assumption that m is “interesting.” Clearly there is a cycle of length 2 from "x
to itself: i2 does work for i1 and then i2 does work for i1. There is also a cycle of
length 3: i2 does work for i1, i3 does work for i2, then i1 does work for i3.

We next give an explicit formula for the limit distribution. Recall that in the
special case discussed in the main text, βt, χt, and ρt were the same for all types,
so the transition probabilities were symmetric and the limit distribution was uni-
form. While with more general values they are no longer symmetric, they still
have significant structure that allows us to give a concise description of the limit
distribution.

Lemma A.2. For all states "x of M, let w"x =
∏

i(βτ(i)χτ(i)/ρτ(i))xi , and let Z =∑
"y w"y. Then the limit distribution of M is π("x) = w"x/Z.

Proof. Define π by taking π("x) = w"x/Z, where w"x and Z are as in the state-
ment of the lemma. If T"x"y is the probability of transitioning from state "x to state
"y, it is well known that it suffices to show that π satisfies the detailed balance con-
dition [Resnick 1992], i.e., π("x)T"x"y = π("y)T"y"x for all states "x and "y and π is a
probability measure. The fact that π is a probability measure is immediate from
its definition. To check the first condition, let "x and "y be adjacent states such that
"y is reached from "x by i spending a dollar and j earning a dollar. This means that
for the transition from "x to "y to happen, i must be chosen to spend a dollar and
j must be able to work and chosen to earn the dollar. Similarly for the reverse
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transition to happen, j must be chosen to spend a dollar and i must be able to
work and chosen to earn the dollar. All other agents have the same amount of
money in each state, and so will make the same decision in each state. Thus the
probabilities associated with each transition differ only in the relative likelihoods of
i and j being chosen at each point. These may differ for three reasons: one might
be more likely to be able to satisfy requests (β), to want to make requests (ρ), or
to be chosen to satisfy requests (χ). Thus, for some p, which captures the effect of
other agents volunteering on the likelihood of i and j being chosen, we can write the
transition probabilities as T"x"y = ρτ(i)βτ(j)χτ(j)p and T"y"x = ρτ(j)βτ(i)χτ(i)p. From
the definition of π, we have that

π("x)
π("y)

=
βτ(i)χτ(i)ρτ(j)

ρτ(i)βτ(j)χτ(j)
=

T"y"x

T"x"y
.

Thus, π("x)T"x"y = π("y)T"y"x, as desired.

Note that for the special case considered in the main text, Lemma A.2 shows
that the limit distribution is the uniform distribution.

The limit distribution tells us the long run probability of being in a given state.
Theorem 4.1 does not mention states directly, but rather the distributions of money
associated with a state. In order to prove the theorem, we need to know the
probability of being in some state associated with a given distribution. This is
established in the following lemma.

Lemma A.3. Let π be the limit distribution from Lemma A.2, and let V (d) =
H(d) − H("f) − log Z +

∑
t

∑kt

i=0 id(t, i) logωt (where H is the standard entropy
function; that is, H(d) =

∑
t,i d(t, i) log d(t, i)). For all d ∈ ∆"f,m,"k, either π({"x |

d"x = d}) = 0 or F (hn)ehnV (d) ≤ π({"x | d"x = d}) ≤ G(hn)ehnV (d), where F and G
are polynomials.

Proof. Before computing the probability of being in such a state, we first com-
pute the number of states. It is possible that there is no state "x such that d = d"x

(e.g., if hn is odd and d has half the agents with 0 dollars). If there is such a state
"x, each such state has hnd(t, i) agents of type t with i dollars. Thus, the number
of states "x with d = d"x is the number of ways to divide the agents into groups of
these sizes. Since there are hnft agents of type t, the number of such states is

∏

t

(
hnft

hnd(t, 0), . . . , hnd(t, kt)

)
.

To complete the proof, we use the fact (shown in the proof of Lemma 3.11 of [Grove
et al. 1994]) that

1
F (hn)

ehnftH(dt) ≤
(

hnft

hnd(t, 0), . . . , hnd(t, kt)

)
≤ G(hn)ehnftH(dt),

where F and G are polynomial in hn, and dt is the distribution restricted to a single
type t (i.e., dt(i) = d(t, i)/

∑
i d(t, i)). The (generalized) grouping property [Cover

and Thomas 1991] of entropy allows us to express H(d) in terms of the entropy of
the distributions for each fixed t, or the H(dt). Because ft =

∑
i d(t, i), this has
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the particularly simple form H(d) = H("f)+
∑

t ftH(dt). Thus, up to a polynomial
factor, the number of such states is

∏

t

ehnftH(dt)ehn( t ftH(dt)) = ehn(H(d)−H("f).

By Lemma A.2, each of theses states has the same probability π("x). Thus,
dropping the superscript "x on d"x for brevity, the probability of being in such a
state is:

ehn(H(d)−H("f))π("x) = ehn(H(d)−H("f))
∏

i

(βiχt/ρi)xi/Z

= ehn(H(d)−H("f))Z−hn
∏

i

(ωti)
xi

= ehn(H(d)−H("f))Z−hn
∏

t

kt∏

i=0

(ωt)hnid(t,i)

= ehn(H(d)−H("f))Z−hn
∏

t

kt∏

i=0

ehnid(t,i) logωt

= ehn(H(d)−H("f)−log Z+ t
kt
i=0 id(t,i) logωt)

= ehnV (d)

Theorem 4.1 says that there exists a q ∈ ∆"f,m,"k (i.e., a probability distribution
on agent types t and amounts of money i) with certain properties. We now define
the appropriate q. Let

q(t, i) = (ωt)i /




∑

t

kt∑

j=0

(ωt)j



 . (8)

It is not immediately clear why this is the right choice of q. As the following
lemma shows, this definition allows us to characterize the distribution that max-
imizes the probability of being in a state corresponding to that distribution (as
given by Lemma A.3) in terms of relative entropy.

Lemma A.4. The unique maximum of V (d) = H(d)−H("f)−log Z+
∑

t

∑kt

i=0 idt
i logωt

on ∆"f,m,"k occurs at d∗q.

Proof. For brevity, we drop the superscript "x on d and let Y =
∑

t

∑
i(ωt)i.
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argmaxdV (d) = argmaxd(H(d) − H("f) − log Z +
∑

t

kt∑

i=0

id(t, i) logωt)

= argmaxd(H(d) +
∑

t

kt∑

i=0

id(t, i) logωt)

= argmaxd

∑

t

kt∑

i=0

[−d(t, i) log d(t, i) + id(t, i) logωt]

= argmaxd

∑

t

kt∑

i=0

[−d(t, i) log d(t, i) + d(t, i) log(q(t, i)Y )]

= argmaxd

∑

t

kt∑

i=0

[−d(t, i) log d(t, i) + d(t, i) log q(t, i) + d(t, i) log Y ]

= argmaxd log Y +
∑

t

kt∑

i=0

[−d(t, i) log d(t, i) + d(t, i) log q(t, i)]

= argmind

∑

t

kt∑

i=0

[d(t, i) log d(t, i) − d(t, i) log q(t, i)]

= argmind

∑

t

kt∑

i=0

d(t, i) log
d(t, i)
q(t, i)

= argmindH(d||q).

By definition, d∗q minimizes H(d||q). It is unique because H (and thus V ) is a
strictly concave function on a closed convex set.

Lemma A.4 tells us that the most likely distributions of money to be observed
are those with low relative entropy to q. Among all distributions in ∆"f,m,k, relative
entropy is minimized by d∗q . However, given n, it is quite possible that d∗q is not
d"x for any "x. For example, if d∗q(t, i) = 1/3 for some t and i, but fthn = 16, then
d"x(t, i) = d∗q(t, i) only if exactly 16/3 agents of type t to have i dollars, which cannot
be the case. However, as the following lemma shows, for sufficiently large n, we can
always find a d"x that is arbitrarily close to d∗q . For convenience, we use the 1-norm
as our notion of distance.

Lemma A.5. For all ε, there exists nε such that, if n > nε, then for some state "x,
||d"x − d∗q || < ε.

Proof. Given n, we construct d ∈ ∆"f,m,k that is of the form d"x and is close
to d∗q in a number of steps. As a first step, for all t and i, let d1(t, i) be the
result of rounding d∗q(t, i) to the nearest 1/hn (where ties are broken arbitrarily).
The function d1 may not be in ∆"f,m,k; we make minor adjustments to it to get
a function in ∆"f,m,k. First, note that we may not have as is d1(t, i) for all t and
i, we

∑
i d1(t, i) #= ft. Since ft is a multiple of 1/hn, can get a function d2 that
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satisfies these constraints by modifying each term d1(t, i) by either adding 1/hn to
it, subtracting 1/hn from it, or leaving it alone. Such a function d2 may still violate
the final constraint that

∑
t,i id2(t, i) = m. We construct a function d3 that satisfies

this constraint (while continuing to satisfy the constraint that
∑

i d3(t, i) = ft) as
follows. Note that if we increase d2(t, i) by 1/hn and decrease d2(t, j) by 1/hn,
then we keep the keep

∑
i d2(t, i) = ft, and change

∑
i id2(t, i) by (i− j)/hn. Since

each term d2(t, i) is a multiple of 1/hn and m is a multiple of 1/h, we can perform
these adjustments until all the constraints are satisfied.

The rounding to create d1 changed each d1(t, i) by at most 1/hn, so ||d∗q −d1||1 ≤
(
∑

t kt + 1)/hn. Since, each term d1(t, i) was changed by at most 1/hn to obtain
d2(t, i), we have ||d1−d2||1 ≤ (

∑
t kt +1)/hn. Let c = maxt(max(kt−m, m)). Each

movement of up to 1/hn in the creation of d1 and d2 altered m by at most c/hn.
Thus at most 2c movements are needed in the creation of d3 for each pair (t, i).
Therefore, ||d2 − d3||1 ≤ (

∑
t kt + 1)2c/hn. By the triangle inequality, ||d∗q − d3|| ≤

(
∑

t kt+1)(2c+2)/hn, which is O(1/n). Hence, for nε sufficiently large, the resulting
d3 will always be within distance ε of d∗q .

Finally, we need to show that d3 = d"x for some "x. Each d3(t, i) is a multiple
of 1/hn. There are hn agents in total, so we can find such an "x by taking any
allocation of money such that d3(t, i)hn agents of type t have i dollars.

We are now ready to prove Theorem 4.1. We repeat the statement here for the
reader’s convenience.

Theorem 4.1. For all games (T, "f, h, m, 1), all vectors "k of thresholds, and all
ε > 0, there exist q ∈ ∆"f,m,"k and nε such that, for all n > nε, there exists a round
r∗ such that, for all r > r∗, we have Pr(Ir

q,n,ε = 1) > 1 − ε.

Proof. From Lemma A.2, we know that, after a sufficient amount of time, the
probability of being in state "x will be close to π"x = w"x/Z. Since M converges to
a limit distribution, it is sufficient to show that the theorem holds in the limit as
r → ∞. If the theorem holds in the limit for some ε′ < ε, then we can take r
large enough that the L1 distance between the distribution of the chain at time r
and the limit distribution (i.e. treating the distributions as vectors and computing
the sum of the absolute values of their differences) is at most ε− ε′.

The remainder of the proof is essentially that of Theorem 3.13 in [Grove et al.
1994] (applied in a very different setting). Let V (d) = H(d) − H("f) − log Z +∑

t

∑kt

i=0 id(t, i) logωt. We show there exists a value vL such that, for all states
"x such that d"x is not within ε of d∗q , we have V (d"x) ≤ vL, and a value vH > vL

such that vH = V (d"x) for some point "y such that d"y is within distance ε of d∗q .
Lemma A.3 then shows that it is exponentially more likely that d"x

r
= d"y than any

distribution d such that V (d) ≤ vL. If "xr = "y then Ir
q,n,ε = 1, and if Ir

q,n,ε = 0 then
V (d"x

r
) ≤ vL, so this suffices to establish the theorem.

By Lemma A.4, the unique maximum of V on ∆"f,m,"k occurs at d∗q . The set
{d ∈ ∆"f,m,"k | ||d∗q − d||2 ≥ ε} is closed. V is a continuous function, so it takes
some maximum vL on this set. Pick some vH such that vL < vH < V (d∗q). By the
continuity of V , there exists an ε such that if ||d∗q − d||1 < ε then V (d) ≥ vH . By
Lemma A.5, for sufficiently large n, there is always some "x such that ||d∗q−d"x||1 < ε.
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Thus, for some "x ∈ Xε,q, V (d"x) ≥ vH .
Pr(Ir

qn,,ε = 1) ≥ Pr("xr ∈ {"y | d"y = d"x}). By Lemma A.3, Pr(Ir
q,n,ε = 1) is at least

1/F (hn)ehnV (d"x) ≥ 1/F (hn)ehnvH . Now consider a "y such that Iq,n,ε("y) = 0. By
Lemma A.3, the probability that d"x

r
= d"y is at most G(hn)ehnV (d"y) ≤ G(hn)ehnvL .

There are at most (hn + 1) t(kt+1) such points, a number which is polynomial in
hn. Thus, for G′(hn) = G(hn)(hn + 1) t(kt+1), the probability that Ir

q,n,ε = 0 is
at most G′(hn)ehnvL . The ratio of these probabilities is at most

G′(hn)ehnvL

1
F (hn)e

hnvH
=

G′(hn)F (hn)
ehn(vH−vL)

.

This is the ratio of a polynomial to an exponential, so the probability of seeing a
distribution of distance greater than ε from d∗q goes to zero as n goes to infinity.

B. PROOFS FROM SECTION 5

In this appendix, we provide the omitted proofs from Section 5.
The proof of Theorem 5.1 relies on modeling the game from the perspective of

a single agent. Consider a vector "k of thresholds and the corresponding strategy
profile "S("k). Fix an agent i of type t. Assume that all the agents other than i
continue play their part of "S("k). What is i’s best response? Since the set of agents
is large, i’s choice of strategy will have (essentially) no impact on the distribution
of money. By Theorem 4.1, the distribution of money will almost always be close
to a distribution d∗. Suppose, the distribution were exactly d∗. Since we know
the exact distribution of money and the thresholds used by the other agents, we
can calculate the number of each type of agent that wish to volunteer and thus the
probabilities that our single agent will be able to earn or spend a dollar. Thus, by
assuming the distribution of money is always exactly d∗, we can model the game
from the perspective of agent i as a Markov Decision Process (MDP). We show in
Lemma B.2 that this MDP has an optimal threshold policy. (Threshold policies
are known as monotone policies in the more general setting where there are more
than two actions.) We then prove that any optimal policy for the MDP is an ε-best
reply to the strategies of the other agents in the actual game.

Taking notation from Puterman [1994], we formally define the MDP PG,"S("k),t =
(S, A, p(· | s, a), r(s, a)) that describes the game where all the agents other than i
are playing "S("k)−i and i has type t.

—S = {0, . . . , mhn} is the set of possible states for the MDP (i.e., the possible
amounts of money compatible with the distribution d∗).

—A = {0, 1} is the set of possible actions for the agent, where 0 denotes not
volunteering and 1 denotes volunteering iff another agent who has at least one
dollar makes a request.

—pu is the probability of earning a dollar, assuming the agent volunteers (given that
all other agents have fixed their thresholds according to "k and the distribution
of money is exactly d∗. Each agent of type t′ who wishes to volunteer can do so
with probability βt′ . Assuming exactly the expected number of agents are able
to volunteer, υt′ = βt′(ft′ − d∗(t′, kt′))n agents of type t′ volunteer. Note that
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we are disregarding the effect of i in computing the υt′ , since this will have a
negligible effect for large n. Using the υts, we can express pu as the product of
two probabilities: that some agent other than i who has a dollar is chosen to
make a request and that i is the agent chosen to satisfy it. Thus,

pu =

(
∑

t′

ρt′(ft′ − d∗(t′, 0))

)(
χtβt∑
t′ χt′υt′

)
. (9)

—pd is the probability of agent i having a request satisfied, given that agent i has a
dollar. Given that all agents are playing a threshold strategy, if the total number
n of agents is sufficiently large, then it is almost certainly the case that some
agent will always be willing and able to volunteer. Thus, we can take pd to be
the probability that agent i will be chosen to make a request; that is,

pd =
ρt

n
(10)

—r(s, a) is the (immediate) expected reward for performing action a in state s.
Thus, r(s, 0) = γtpd if s > 0; r(0, 0) = 0; r(s, 1) = γtpd − αtpu if s > 0; and
r(0, 1) = −αtpu.

—p(s′ | s, a) is the probability of being in state s′ after performing action a in
state s; p(s′ | s, a) is determined by pu and pd; specifically, p(s + 1 | s, 1) = pu,
p(s − 1 | s, a) = pd if s > 0, and the remainder of the probability is on p(s | s, a)
(i.e., p(s | s, a) = 1 − (p(s + 1 | s, 1) + p(s − 1 | s, a)).

—u∗(s) is the expected utility of being in state s if agent i uses the optimal policy
for the MDP PG,"S("k),t

—u(s, a) is the expected utility for performing action a in state s, given that the
optimal strategy is followed after this action;

u(s, a) = r(s, a) + δ
mhn∑

s′=0

p(s′ | s, a)u∗(s′).

To prove Theorem 5.1, we need two preliminary lemmas about the MDP PG,"S("k),t.

Lemma B.1. For the MDP PG,"S("k),t, u∗(s + 2) + u∗(s) ≤ 2u∗(s + 1).

Proof. The MDP PG,"S("k),t has an optimal stationary policy [Puterman 1994,
Theorem 6.2.10] (a policy where the chosen action depends only on the current
state). Let π be such a policy. Consider the policy π′ starting in state s + 1
that “pretends” it actually started in state s and is following π. More precisely,
if s0 = s + 1 and sj > 0 for j = 0, . . . , k, define π′(s0, s1, . . . , sk) = π(sk − 1);
otherwise, if j ≤ k is the least index such that sj = 0, define π′(s0, . . . , sk) = π(sk).
Given a history (s0, . . . , sk), j is the random variable whose value is the minimum
i such that si = 0 or ∞ if no such value exists. The definition of π′ from π
creates a bijection between histories that start in state s + 1 and histories that
start in state s, such that if h′ corresponds to h, the probability of history h′

with policy π′ is the same as the probability of h with policy π. Technically,
making the mapping a bijection requires the introduction of a new state 0′, which
intuitively represents the state where the agent has zero dollars and missed an
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opportunity to have a request satisfied last round because of it. More formally, we
let p(0′ | 0, a) = pd and p(s | 0′, a) = p(s | 0, a). With this change, the probabilities
of corresponding histories are the same because the probability of transitioning from
a state to the one “immediately below” it (where s − 1 is immediately below s, 0′
is immediately below 0, and 0′ is immediately below itself) is always pd, and the
probability of transitioning from a state to the one “immediately above” it (where
s + 1 is immediately above s, and 1 is immediately above 0′) is always pu.4

This argument shows that an agent starting with s + 1 dollars “pretending” to
start with s will have the same expected reward each round as an agent who actually
started with s dollars, except during the first round j in a history such that sj = 0.
Thus (treating j as a random variable), we have

u∗(s + 1) ≥ u∗(s) + E[δjγt].

Similarly, we can use π starting from state s + 2 to define a policy π′′ starting
from state s + 1, where i “pretends” he has one more dollar and is using π, up to
the first round j′ that he is chosen to make a request with π in a state where he
has no money (in which case he can make the request with π started from s + 2,
but cannot make it with π′′ started from s + 1); from that point on, he uses π.
For corresponding histories, the utilities of an agent starting with s + 1 dollars and
following π′′ and an agent starting with s + 2 dollars and following π will be the
same, except during round j′ the agent following π will have a request satisfied but
the agent following π′′ will not. Thus,

u∗(s + 1) ≥ u∗(s + 2) − E[δj′γt].

Since, if i uses π, he will run out of money sooner if he starts with s dollars than
if he starts with s + 2 dollars,

E[δjγt] > E[δj
′
γt].

Thus, u∗(s + 2) + u∗(s) ≤ 2u∗(s + 1).

Lemma B.2. PG,"S("k),t has an optimal threshold policy.

Proof. As shown by Puterman [1994, Lemma 4.7.1], it suffices to prove that
u(s, a) is subadditive. That is, we need to prove that, for all states s,

u(s + 1, 1) + u(s, 0) ≤ u(s + 1, 0) + u(s, 1). (11)

We consider here only the case that s > 0 (the argument is essentially the same if
s = 0). Because s > 0, r(s + 1, a) = r(s, a), so (11) is equivalent to

puu∗(s + 2) + pdu∗(s) + (1 − pu − pd)u∗(s + 1) + pdu∗(s − 1) + (1 − pd)u∗(s)
≤ pdu∗(s) + (1 − pd)u∗(s + 1) + puu∗(s + 1) + pdu∗(s − 1) + (1 − pu − pd)u∗(s).

This simplifies to

u∗(s + 2) + u∗(s) ≤ 2u∗(s + 1),

4Note that this means that 0′ is immediately below 0 but 1 is immediately above 0′. This is
intended, because 0′ intuitively represents the state where the agent has 0 dollars and had a
request go unsatisfied due to a lack of money in the previous round, so if he then earns a dollar
he will have 1 dollar regardless of whether or not his request of two rounds previous was satisfied.
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which follows from Lemma B.1.

We can now prove Lemma 5.1 and Theorem 5.1.

Lemma 5.1. Consider the games Gn = (T, "f, h, m, n) (where T , "f , h, and m
are fixed, but n may vary). There exists a k such that for all n, sk is an optimal
policy for PGn,"S("k),t. The threshold k is the maximum value of κ such that

αt ≤ E[(1 − (1 − δt)/n)J(κ,pu,pd)]γt, (4)

where J(κ, pu, pd) is a random variable whose value is the first round in which an
agent starting with κ dollars, using strategy sκ, and with probabilities pu and pd of
earning a dollar and of being chosen given that he volunteers, respectively, runs out
of money.

Proof. Fix n. Suppose that an agent is choosing between a threshold of κ and
a threshold of κ + 1. These policies only differ when the agent has κ dollars: he
will volunteer with the latter but not with the former. If he volunteers when he
has κ dollars and is chosen, he will pay a cost of αt and he will have κ+ 1 dollars.
As in the proof of Lemma B.1, we can define a bijection on histories such that, in
corresponding histories of equal probability, an agent who started with κ dollars
and is using sκ will always have one less dollar than an agent who started with
κ + 1 dollars and is using sκ+1, until the first round r in which the agent using
sκ+1 has zero dollars. This means that in round r − 1 the agent using sκ+1 had a
request satisfied but the agent using sk was unable to because he had no money.
Thus, if the agent volunteers when he has κ dollars and pays a cost of αt in the
current round, the expected value of being able to spend that dollar in the future
is E[(1 − (1 − δt)/n)J(κ+1,pu,pd)]γt. Since this expectation is strictly increasing in
κ (an agent with more money takes longer to spend it all), the maximum κ such
that Equation (4) holds is an optimal threshold policy.

Taking the maximum value of κ that satisfies Equation (4) ensures that, for the
n we fixed, we chose the maximum optimal threshold. We now need to show that
this maximum optimal threshold is independent of n, which we do by showing
that the expecting utility of every threshold policy sk is independent of n. The
expected utility of a policy depends on the initial amount of money, but since an
agent’s current amount of money is a random walk whose transition probabilities
are determined by pu and pd, there is a well-defined limit probability

x∗
i = lim

r→∞
Pr(agent has i dollars in round r)

determined by the ratio pu/pd (this is because the limit distribution satisfies the
detailed balance condition: x∗

i pu = x∗
i+1pd). This distribution has the property

that if the agent starts with i dollars with probability x∗
i , then in every round

the probability he has i dollars is x∗
i . Thus, in each round his expected utility is

γpd(1− x∗
0)−αpu(1− x∗

k). We can factor out n to write pu = p′u/n and pd = p′d/n
where p′u and p′d are independent of n. Note that pu/pd = p′u/p′d, so the x∗

i ’s are
independent of n. Thus, we can rewrite the agent’s expected utility for each round
as c/n, where c = γp′d(1 − x∗

0) − αp′u(1 − x∗
k) is independent of n. Therefore, the
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expected utility of sk is
∞∑

r=0

(
1 − 1 − δt

n

)r c

n
=

c

1 − δt
,

which is independent of n.

Theorem 5.1. For all games G = (T, "f, h, m, n), all vectors "k of thresholds,
and all ε > 0, there exist n∗

ε and δ∗ε,n such that for all n > n∗
ε, types t ∈ T , and

δt > δ∗ε,n, an optimal threshold policy for PG,"S("k),t is an ε-best reply to the strategy

profile "S("k)−i for every agent i of type t.

Proof. By Lemma B.2, PG,"S("k),t has an optimal threshold policy. However,
this might not be a best reply for agent i in the actual game if the other agents
are playing "S("k). PG,"S("k),t assumes that the probabilities of earning or spending
a dollar in a given round are always exactly pu and pd respectively. Theorem 4.1
guarantees only that, in the game, the corresponding probabilities are close to pu

and pd with high probability after some amount of time that can depend on n. A
strategy S for player i in G defines a policy πS for PG,"S("k),t in the obvious way;
similarly, a policy for the MDP determines a strategy for player i in the game. The
expected utility of πS is close to Ui(S, "S("k)−i), but is, in general, not equal to it,
because, as we noted, pu and pd may differ from the corresponding probabilities in
the game. They differ for three reasons: (1) they are close, but not identical; (2)
they are only close with high probability, and (3) they are only close after some
amount of time. As we now show, given ε, the difference in the expected utility
due to each reason can be bounded by ε/6, so the expected utility of any strategy
is within ε/2 of the value the corresponding policy in PG,"S("k),t. Thus, an optimal
strategy for the MDP is an ε-best reply.

As we have seen, the probabilities pu and pd are determined by the number of
agents of each type that volunteer (i.e., the expressions υt′ for each type t′). The
distance between d"x

r

and d∗ bounds how much the actual number of agents of type
t′ that wish to volunteer in round r can differ from υt′/βt′ . Even if exactly υt′/βt′

agents wish to volunteer for each type t, there might not be exactly υt′ agents
who actually volunteer because of the stochastic decision by nature about who can
volunteer and because i cannot satisfy his own requests. However, for sufficiently
large n, the effect on pu and pd from these two factors is arbitrarily close to zero.
Applying Theorem 4.1, there exist n1 and r1 such that if there are at least n1

agents, for all round r > r1, d"x
r

and d∗ are sufficiently close that the difference
between the utility of policy πS′ in the MDP and Ui((S′, "S−i) in rounds r > r1

where d∗ is sufficiently close is at most ε/6.
Note that the maximum possible difference in utility between a round of the MDP

and a round of the game is γ+α (if agent i spends a dollar rather than earning one).
Applying Theorem 4.1 again, for e = ε/6(γ + α), there exist n2 and r2 such that
the probability of the distribution not being within e of d∗ is less than e. Thus, the
difference between the expected utility of policy πS′ in the MDP and Ui((S′, "S−i)
in rounds r > r2 where d∗ is not sufficiently close is at most e(γ + α) = ε/6.

Let n∗
ε = max(n1, n2) and r∗ = max(r1, r2). The values of n∗

ε and r∗ do not
depend on δ, so we can take δ∗ε,n to be sufficiently close to 1 that the total utility
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from the first r∗ rounds is at most ε/6, completing the proof of the theorem.

Recall that BRG maps a vector "k describing the threshold strategy for each type
to a vector "k′ of best replies.

Lemma 5.2. Consider the family of games Gm = (T, "f, h, m, n) and the strate-
gies "S("k), for mhn <

∑
t ftkthn. For this family of game, λm,"k is non-decreasing

in m and non-increasing in "k; pm,"k
u is non-decreasing in m and non-increasing in

"k; and the function BRG is non-decreasing in "k and non-increasing in m.

Proof. We first show that that λm,"k is monotone in m and "k. We then show

that pm,"k
u is a monotone function of λm,"k and that BRG is a monotone function of

pm,"k
u , completing the proof.
We now show that λm,"k is non-decreasing in m. Fix a vector of thresholds "k and

let

g"k(λ) =
∑

t,i

i
ftλiq"k(t, i)

∑kt

j=0 λ
jq"k(t, j)

, (12)

where q"k is the value of q from Equation (8) (we add the subscript "k to stress the
dependence on "k). The definition of λm,"k in Equations (2) and (3) in Lemma 4.1
ensures that, for all m, m = g"k(λm,"k). A relatively straightforward computation
shows that g′"k(λ) > 0 for all λ. Thus, if m′ > m, g"k(λ) = m, and g"k(λ′) = m′,
we must have λ′ > λ. It follows that λm,"k is increasing in m. (Note that λm,"k is
undefined for m ≥

∑
t ftkt, which is why monotonicity holds only for values of m

such that mhn <
∑

t ftkt.)
We next show that λm,"k is non-increasing in "k. Since we have a finite set of

types, it suffices to consider the case where a single type t∗ increases its threshold
by 1. Let "k denote the initial vector of thresholds, and let "k′ denote the vector of
thresholds after agents of type t∗ increase their threshold by 1; that is, kt = k′

t for
t #= t∗, and k′

t∗ = kt∗ + 1.
The first step in showing that λm,"k is non-increasing in "k is to show that

g"k′(λm,"k) > g"k(λm,"k) = m. We do this by breaking the sum in the definition
of g in Equation (12) into two pieces; those terms were t #= t∗, and those where
t = t∗.

It follows immediately from Equation (8) that there exists a constant c such that,
for all i and t #= t∗, we have q"k′(t, i) = cq"k(t, i). It follows from Equation (2) that
for all i and t #= t∗, since kt = k′

t, we have

i
ftλi

m,"k
q"k′(t, i)

∑k′
t

j=0 λ
j

m,"k
q"k′(t, j)

= i
ftλi

m,"k
cq"k(t, i)

∑k′
t

j=0 λ
j

m,"k
cq"k(t, j)

= i
ftλi

m,"k
q"k(t, i)

∑kt

j=0 λ
j

m,"k
q"k(t, j)

; (13)

that is, the corresponding terms in the sum for g"k′(λm,"k) and g"k(λm,"k) are the same
if t #= t∗.

Now consider the corresponding terms for type t∗. First observe that for all
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i < k′
t,

ft∗λi
m,"k

q"k′(t∗, i)
∑k′

t∗
j=0 λ

j

m,"k
q"k′(t∗, j)

<
ft∗λi

m,"k
q"k(t∗, i)

∑kt∗
j=0 λ

j

m,"k
q"k(t∗, j)

; (14)

the two terms have essentially the same numerator (the use of q"k′ instead of q"k
cancels out as in Equation (13)), but the first has a larger denominator because
k′

t∗ = kt∗ + 1, so there is one more term in the sum. Since ft∗ =
∑kt∗

i=0 d∗q"k
(t∗, i) =

∑k′
t∗

i=0 d∗q"k′
(t∗, i), by Equations (2) and (3),

kt∗∑

i=0

ft∗λi
m,"k

q"k(t∗, i)
∑kt∗

j=0 λ
j

m,"k
q"k(t∗, j)

=
k′

t∗∑

i=0

ft∗λi
m,"k

q"k′ (t∗, i)
∑k′

t∗
j=0 λ

j

m,"k
q"k′(t∗, j)

. (15)

It follows that

k′
t∗∑

i=0

i
ft∗λi

m,"k
q"k′ (t, i)

∑k′
t∗

j=0 λ
j

m,"k
q"k′(t, j)

>
kt∗∑

i=0

i
ftλi

m,"k
q"k(t, i)

∑kt∗
j=0 λ

j

m,"k
q"k(t, j)

. (16)

To see this, note that the two expressions above have the form
∑kt∗+1

i=0 ici and∑kt∗
i=0 idi, respectively. By Equation (15),

∑kt∗+1
i=0 ci =

∑kt∗
i=0 di = ft∗ ; by Equa-

tion (14), ci < di for i = 0, . . . , kt∗ . Thus, in going from the right side to the left
side, weight is being transferred from lower terms to kt∗ + 1.

Combining Equations (13) and (16) gives us g"k′(λm,"k) > g"k(λm,"k) = m, as
desired. Since g"k′(λm,"k′ ) = m, by definition, it follows that g"k′(λm,"k) > g"k′(λm,"k′).
Since, as shown above, g "k′′ is an increasing function, it follows that λm,"k > λm,"k′ .
Thus, λm,"k is decreasing in "k.

We now show that the monotonicity of λm,"k implies the monotonicity of pm,"k
u .

To do this, we show that, for all types t, pm,"k
u = pdλm,"kωt. Since ωt and pd are

independent of m and "k, it then follows that the monotonicity of λm,"k implies the

monotonicity of pm,"k
u . (Recall that ωt = βtχt/ρt was defined in Section 3.)

Fix a type t′. Then, dropping superscripts and subscripts on pu, d, and λ for
brevity, we have the following sequence of equalities (where the explanation for
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some of these lines is given following the equations):

pu =

(
∑

t

ρT (ft − d(t, 0)

) (
χt′βt′

n
∑

t χtβt(ft − d(t, kt))

)
(17)

=

( ∑
t

∑kt

i=1 ρtd(t, i)
∑

t

∑kt−1
i=0 χtβtd(t, i)

) (
χt′βt′

n

)
(18)

=

(∑
t

∑kt−1
i=0 ρtλωtd(t, i)

∑
t

∑kt−1
i=0 χtβtd(t, i)

) (
χt′βt′

n

)
(19)

= λ

(∑
t

∑kt−1
i=0 χtβtd(t, i)

∑
t

∑kt−1
i=0 χtβtd(t, i)

)
(ωt′pd) (20)

= λωt′pd

Equation (17) is just the definition of pu from Equation (9). Equation (18) follows
from the observation that, by Equation (2), ft =

∑
i d(t, i). Equation (19) follows

from the observation that, again by Equation (2), d(t, i) = ωtλd(t, i − 1). Equa-
tion (20) follows from the definitions of ωt and pd (see Equation (10)). Thus, as
required, pm,"k

u = pdλm,"kωt.

Finally, we show that the monotonicity of pm,"k
u implies the monotonicity of BRG.

Let "k′′ = BRG("k). By Lemma 5.1, k′′
t is the maximum value of κ such that

αt ≤ E[(1 − (1 − δt)/n)J(κ,pm,"k
u ,pd)]γt.

We (implicitly) defined the random variable J(κ, pu, pd) as a function on histories.
Instead, we can define J(κ, pu, pd) as a function on random bitstrings (which intu-
itively determine a history). With this redefinition, it is clear that, if pu < p′u, for
all bitstrings b, we have J(κ, pu, pd)(b) < J(κ, p′u, pd)(b). It easily follows that

E[(1 − (1 − δt)J(κ,p′
u,pd)] < E[(1 − (1 − δt)J(κ,pu,pd)]

for all κ. Thus, the monotonicity of BRG follows from the monotonicity of pm,"k
u .

Lemma 5.3. For all games G = (T, "f, h, m, n), there exists a δ∗ < 1 such that if
δt > δ∗ for all t, there is a vector "k of thresholds such that BRG("k) > "k.

Proof. Take "k to be such that kt = -m. + 1 for each type t. Then by Theo-
rem 5.1, there exists a "k′ such that BRG("k) = "k′. By Lemma 5.1, k′

t is the maximum
value of κ such that

αt ≤ E[(1 − (1 − δt)/n)J(κ,p
"k
u,pd)]γt. (4)

As δt approaches 1, E[(1−(1−δt)/n)J(κ,p
"k
u,pd)] approaches 1, and so the right hand

side of Equation (4) approaches γt. For any standard agent, αt < γt. Thus, there
exists a δt such that

αt ≤ E[(1 − (1 − δt)/n)J(kt,p
"k
u,pd)]γt.

For this choice of δt, we must have k′
t ≥ kt + 1 > kt. Take δ∗ = maxt δt.
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C. PROOFS FROM SECTION 8

Theorem 8.3. Fix a game G and vector of thresholds "k. Let R"k,t = p
"k,t
u /pt

d.
In the limit as the number of rounds goes to infinity, the fraction of the agent’s
requests that have an agent willing and able to satisfy them that get satisfied is
(R"k,t − Rkt+1

"k,t
)/(1 − Rkt+1

"k,t
) if R"k,t #= 1 and kt/(kt + 1) if R"k,t = 1.

Proof. Consider the Markov chain M that results from fixing the agent’s policy
to skt in PG,"S("k),t. M satisfies the requirements given in Theorem A.1 to have a
limit distribution. It can be easily verified that the distribution gives the agent
probability Ri(1 − R)/(1 − Rk+1) of having i dollars if R #= 1 and probability
1/(k + 1) if R = 1 satisfies the detailed balance condition and thus is the limit
distribution. This gives the probabilities given in the theorem.

Theorem 8.4. Suppose that t and s are two types that agree except for the
value of χ, and that χt < χs. If "k = (kt, ks) is an ε-Nash equilibrium for G =
({t, s}, "f, h, m, n) with social welfare w, then there exist m′, and n′ such that "k′ =
(ks) is an ε-Nash equilibrium for G′

m′,n′ = ({t}, {1}, h, m′, n′) with social welfare
greater than w.

Proof. We prove the theorem by finding m′, and n′ such that agents in G′
m′

that play some strategy k get essentially the same utility that an agent with sybils
would by playing that strategy in G. Since ks was the optimal strategy for agents
with sybils in G, it must be optimal in Gm′,n′ as well. Since agents with sybils have
utility at least as great as those without, social welfare will be at least as large in
G′

m′,n′ as in G.
Since an agent can earn a dollar only if he is able to satisfy the current request,

0 < pm,"k,s
u < βs. The constraint that hm′n′, the total amount of money, is a natural

number means that m′ must be a rational number. For the moment, we ignore
that constraint and allow m′ to take on any value in [0, k′

t]. From Equation (9),
pm′,"k′,t

u is continuous in d∗q"k′
, which, by Lemma 4.1, is continuous in λm′,"k′ and

thus m′. We use this continuity to show that we can find a value of m′ such that
pm,"k,s

u = pm′,"k′,t
u . By Equation (3), if m′ = 0 then d∗q"k′ ,m(t, 0) = 1, and if m′ = k′

t

then d∗q"k′ ,m(t, k′
t) = 1. Combining these with Equation (9) gives p0,"k′,t

u = 0 and

pm′,"k′,t
u = βt. Thus, by the Intermediate Value Theorem, there exists an m′ such

that pm,"k,s
u = pm′,"k′,t

u . For this choice of m′, observe that by Lemma 5.1, PG,"S("k),s

and PGm′ ,"S("κ′),t have the same optimal threshold policy.
If m′ is rational, say m′ = a/b, take n′ = bn; then hm′n′ is an integer and, by

the argument above, "k′ is an equilibrium for Gm′,n′ . Since pm′,"k′

u = p
"k,s
u > p

"k,t
u , we

must have ζGm′,n′ < ζG. Thus, social welfare has increased. If m′ is not rational, we
instead use a rational value m′′ sufficiently close to m′ that "k′ is still an equilibrium
for Gm′,n′ and ζGm′′,n′′ < ζG.

D. PROOF OF LEMMA 9.2

Lemma 9.2. If d is a fully-supported distribution of money with finite support,
there exist an infinite number of explanations of d.
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Proof. Fix λ. The distribution d and λ determine an explanation "f as follows.
By Equation (7), we need "f to satisfy d(j)

∑K
i=0 dλ(i, j).

Recall that K is the maximum value for which d(K) > 0. Start by considering
fK . By the definition of dλ, dλ(i, j) = 0 if j > i. Thus, the constraint becomes

d(K) = dλ(K, K) = fKλ
K/(

K∑

l=0

λl).

Take fK to be the unique value that satisfies this equation. Once we have defined
fK , again apply the constraint and take fK−1 to be the unique value that satisfies

d(K−1) = dλ(K, K−1)+dλ(K − 1, K−1) = fKλ
K−1/(

K∑

l=0

λl)+fK−1λ
K−1/(

K−1∑

l=0

λl).

Iterating this process uniquely defines "f as the unique value that satisfies

d(j) =
K∑

i=j

dλ(i, j) =
K∑

i=j

fiλ
j/(

i∑

l=0

λl),

or

fi = (
i∑

l=0

λl)/λi



d(i) −
K∑

j=i+1

fjλ
i/(

j∑

l=0

λl)



 .

However, "f may not be an explanation, since some fj may be negative. This
happens exactly when

d(i) <
K∑

j=i+1

fjλ
i/(

j∑

l=0

λl). (21)

As λ grows large, the right-hand side of (21) tends to 0. Since d is fully-supported,
we must have d(i) > 0. Thus, we can ensure that (21) does not hold for any i by
taking λ sufficiently large. Thus, for sufficiently large λ, "f provides an explanation
for d. Continuing to increase λ will give an infinite number of different explanations.
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