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Abstract

We study the problem of selling identical goods ton unit-demand bidders in a setting in which the
total supplyof goods is unknown to the mechanism. Items arrive dynamically, and the seller must make
the allocation and payment decisions online with the goal ofmaximizing social welfare. We consider
two models of unknown supply: the adversarial supply model,in which the mechanism must produce a
welfare guarantee for any arbitrary supply, and the stochastic supply model, in which supply is drawn
from a distribution known to the mechanism, and the mechanism need only provide a welfare guarantee
in expectation.

Our main result is a separation between these two models. We show that alltruthful mechanisms,
even randomized, achieve a diminishing fraction of the optimal social welfare (namely, no better than a
Ω(log log n) approximation) in the adversarial setting. In sharp contrast, in the stochastic model, under
a standardmonotone hazard-ratecondition, we present a truthful mechanism that achieves a constant
approximation. We show that the monotone hazard rate condition is necessary, and also characterize
a natural subclass of truthful mechanisms in our setting, the set ofonline-envy-freemechanisms. All
of the mechanisms we present fall into this class, and we prove almost optimal lower bounds for such
mechanisms. Since auctions with unknown supply are regularly run in many online-advertising settings,
our main results emphasize the importance of considering distributional information in the design of
auctions in such environments.

http://arxiv.org/abs/0905.3429v1


1 Introduction

Auctions have recently received attention in computer science because they crystalize many of the incentive
issues in algorithmic game theory, and have direct application to the fast-growing market for online adver-
tising. This paper belongs to a line of research that studiesonline mechanism design, which focuses on
markets in which decisions are made dynamically before information regarding the state of the world has
been fully revealed. Previous work in online mechanism design mainly concerned settings wherecustomers
that arrive dynamically compete for buying a known set of items (see a recent survey [25]). However, in
many real-world settings thesupplyarrives dynamically and the exact number of items for sale isuncertain.
This, for example, is the case in the sale of clicks on banner ads, where the number of clicks is not known in
advance to the seller; Such a seller must decide which advertisement to show in a fraction of a second after
the item arrives, while the future supply is uncertain.1

In this work, we investigate a natural online setting, in which a mechanism must allocate items to a fixed
set of bidders when the supply of items is unknown, and arrives online. We require that the mechanism
allocates items and extracts payment for them as they arrive. The restriction that the mechanism extract
payment at the time of sale is a natural practical constraint, and is satisfied by most real-world markets.
Even in markets in which customers are able to defer their payments (such as auctions for search ads),
the seller typically calculates payments immediately, which allows customers to better keep track of their
spending. We introduce a stochastic model where the seller knows how the supply is distributed, but we do
not assume any prior distribution on the bidders’ valuations, nor do we require that the bidders know how
the supply is distributed. One of the conceptual contributions of our paper is thishybrid stochastic model, in
which the supply is drawn from some prior distribution, but no distributional assumptions are made on the
preferences of the bidders. This captures scenarios such asonline advertising, in which sellers can easily
collect statistics on the supply (e.g., number of ad impressions per day) but obtaining statistics on the actual
valuations of the bidders is harder and may requires modeling, for example, their equilibrium behavior.
Most of the recent work in computer science on online mechanism design has been in the fully adversarial
setting, when in actuality, mechanism designers have a wealth of distributional information at their disposal.
In economics, at the other extreme, dynamic mechanism design has been recently studied in a full Bayesian
setting that assumes the existence of prior distributions on the bidders’ preferences.

We wish to maximize social welfare, which is a desirable goaleven from the perspective of a for-profit
seller that does not have the luxury of operating under monopoly conditions. An economically efficient
market (one that maximizes thecombinedwelfare of the customersand the seller) will be more attractive to
customers, and avoids harming the seller in the long term at the expense of short-term profits. In fact, the
generalized second price auction currently used to sell search advertisements has social welfare, rather than
revenue guarantees [10].

We explore the cost of ignoring distributional information. We produce a strong separation: Our main
results arelower boundsin the adversarial setting, andtruthful approximation mechanismsin the stochastic
setting.

Notably, the algorithmic problem that we face is simple. If bidder valuations were known, then the
greedy algorithm which simply allocated each arriving itemto the unsatisfied bidder with the highest value
would achieve optimal social welfare even in the adversarial supply setting. The difficulty of the problem
stems from the fact that bidders may misrepresent their valuations for personal gain. Any allocation rule that
we design must be associated with a corresponding payment rule which incentivizes bidders to truthfully
report their valuations. As we shall show, the incentive constraint proves to be an insurmountable barrier to
developing mechanisms guaranteeing a constant approximation to social welfare in the adversarial supply
setting, but can be overcome in the stochastic supply setting.

1.1 Our Results

We first consider the adversarial supply setting in which welfare guarantees are required to hold for any
realization of supply. Our first main result are lower boundson the approximation obtainable by truthful

1 Uncertainty on the supply appears in various environments.More examples include markets for computing resources and also
traditional markets, like agricultural markets, where produce and fish continue to arrive after markets has been opened.
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mechanisms:

Theorem: Every truthful mechanism achieves a diminishing fraction (in the number of bidders) of the
optimal social welfare. Specifically, no deterministic truthful mechanism achieves better thann-approximation
and no randomized truthful mechanism achieves better thanΩ(log log n)-approximation.

The linear lower bound is simple, and is in the spirit of the lower bound given by Lavi and Nisan
[19] for a model in which bidders that arrive online bid for a fixed set of expiring items. We note that
an n-approximation to social welfare can be achieved by the trivial mechanism which simply allocates
the first item to the highest bidder at the second highest price, and does not allocate any additional items.
The randomized lower bound is more technically challenging. To prove it we give a characterization of
truthful mechanisms in our setting, and a distribution overbidder values. From this, we derive a system
of equations that can be simultaneously satisfied only if there exists a mechanism which achieves a strong
welfare guarantee when given this distribution over bidders. We show that no such satisfying assignment
exists, which gives the lower bound.

If we further require that our mechanisms beonline envy-free(a desirable fairness property that we define
in section 5), we can strengthen the above lower bound to showthat no randomized truthful mechanism can
achieve better than anΩ(log n/ log log n) approximation to social welfare. We show that this last result is
almost tight by giving a truthful, online-envy-free mechanism which achieves alog n approximation to social
welfare. We leave open the problem of closing the gap betweenour upper and lower bounds for non-envy-
free randomized mechanisms, which seems to require different techniques. All our lower bounds hold even
for algorithms that are not computationally restricted, while our upper bounds follow from computationally
efficient mechanisms.

Given the impossibility in the adversarial model, we then consider the stochastic supply setting in which
supply is drawn from a distributionD known to the mechanism, and welfare guarantees are requiredto hold
in expectation overD. We make the assumption (standard in mechanism design in other contexts) thatD
has a non-decreasing hazard rate2. Our second main result is a positive one:

Theorem: There exists a truthful mechanism that achieves a constant approximation to social welfare
when supply is drawn from a known distribution with non-decreasing hazard rate.

This mechanism is simple, deterministic, computationallyefficient, and easy to implement, but it’s
analysis is surprisingly subtle. We stress that the incentive properties of the mechanisms we give do not rely
on any distributional information. In particular, truthful bidding is a dominant strategy for every set of bids,
for every supply, and for any realization of the coin flips of the mechanism (truthful ”in the universal sense”,
see [24, 9]), not only in expectation. Truthfulness in expectation over supply realization would require that
all the bidders and the seller share the same beliefs on how the supply is distributed. This is unlikely either
because bidders do not have the resources needed for estimating these priors, or, because they may have
private information that creates heterogeneity in their beliefs (see, e.g., [2]).3

We also show that the non-decreasing hazard rate assumptionis necessary: no deterministic mechanism
can achieve a constant approximation (or, in particular, better than anΩ(

√

log n/ log log n) approximation)
to social welfare over arbitrary distributions. As mentioned, our mechanism is deterministic, and does
not involve randomization techniques used in previous papers for obtaining truthful approximations (like
random sampling, see [14, 9]).

Finally, we also consider the setting in which the bidders preferences may exhibit complementarities
for multiple items (increasingmarginal utilities). We study the the extreme case ofknapsack valuations(or
single-minded bidders) and show strong lower bounds (even in the stochastic supply setting) on the compet-
itive ratio that any algorithm can achieve, even without incentive constraints. We provide an algorithm with
an exactly matching competitive ratio to prove that our lower bound is tight.

2A cumulative distributionF with densityf hasnon-decreasing hazard rate(sometimes calledmonotone hazard rate) if f(x)
1−F (x)

is non-decreasing withx.
3We note that in the stochastic setting, we can achieve optimal welfare using expected VCG prices if we were to require only

truthfulnessin expectationover the supplyℓ. However, this seems to be a weak solution concept, since bidders may be motivated
to misrepresent their valuations if their understanding ofthe supply distributionD differs from the mechanism’s, or if they are not
risk-neutral. In this paper, we show that positive results can be achieved even with this stronger solution concept.
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1.2 Related Work

The works most related to ours are Mahdian and Saberi [20], Cole, Dobzinski, and Fleischer [7] and Lavi
and Nisan [19]. Mahdian and Saberi [20] is the only other workthat we are aware of to study mechanisms
in which the supply is unknown and arrives online. They studythe sale of multiple types of goods to bidders
who desire only a single item, and wish to design mechanisms to maximize revenue. They consider only the
adversarial supply setting, and allow extracting all payments when the entire supply has been exhausted . In
this model, they give a truthful mechanism that is constant competitive with respect to the optimal auction
that is restricted to selling all items at a single price, andshow a lower bound of(e+1)/e. Their mechanism
is randomized, and is based on random-sampling techniques to achieve truthfulness.

Cole, Dobzinski, and Fleischer [7] introduce the concept ofprompt mechanisms, which impose the
natural condition that bidders learn their payment immediately upon winning an item. They observe that
mechanisms which are not prompt are often unusable, because, e.g., they tie up bidders to the auction for
too long, they make debt collection difficult, and they require a high level of trust in the auctioneer. They
study prompt mechanisms for a problem in which the supply ofm expiring items is fixed and known to
the mechanism, but the bidders arrive and depart online. They wish to maximize social welfare, and give
a truthful log m competitive mechanism, and show a lower bound of2 even for randomized mechanisms.
Similar models of online auctions with expiring goods were studied earlier by Lavi and Nisan [19] and by
Hajiaghayi et al. [13]. These models relate to ours since theallocation decisions for items with expiration
date (airline tickets, for instance) must be made online. Inthese papers, however, there is no uncertainty on
the supply and bidders arrive and depart over time. More on online auctions, which were first discussed by
Lavi and Nisan [18], can be found in the survey [25].

A recent line of papers studies online mechanism design in a Bayesian setting ([5, 3, 4]), where welfare-
maximizing, and even budget balanced, generalizations of VCG mechanisms are presented for online set-
tings. Our paper does not assume a Bayesian preference modeland, as our lower bounds show, socially-
efficient outcomes cannot be truthfully implemented. In theeconomics literature, stochastic supply has not
been studied in many papers. Most of this work (see, for example, [16, 23]) studied a Bayesian model,
and focused on the characterization of equilibrium prices.Uncertain supply models can be viewed as more
complicated versions of the classic sequential auctions model, which is technically hard to analyze even
without uncertainty on the supply (see, e.g., [21, 26]).

While our paper focuses on auctions for identical goods withbidders that are interested in a single item,
we briefly discuss a more general domain in which single minded bidders are interested in multiple items
in Section 6. Knapsack auctions (or auctions for single-minded bidders) were studied by [1, 8] for static
settings with known supply.

We proceed as follows. After presenting our formal model in the next section, we present our main
results in Sections 3 (adversarial supply) and 4 (stochastic supply). We then discuss online-envy-free mech-
anisms in Section 5 and strengthen our lower bounds, and consider Knapsack valuations in Section 6.

2 Model and Definitions

We consider a set ofn bidders{1, . . . , n}, each desires a single item from a set of identical items (except
in Section 6 in which we expand our model to agents interestedin multiple items.) Each bidder has a
non-negative valuationvi for an item. AmechanismM is a (possibly randomized) allocation rule paired
with a payment rule. Bidders report their valuations to the mechanism before any item arrives, and the
mechanism assigns items as they arrive to bidders, and simultaneously charges each bidderi some pricepi.
Whenℓ items arrive and bidders have submitted bidsv′1, . . . , v

′
n, we denote the outcome of the mechanism

by Mℓ((v
′
1, . . . , v

′
n), r) wherer is a random bitstring which may be used by randomized mechanisms. We

note that the mechanism is unaware ofℓ, as it only encounters the items one at a time as they arrive. We
will leave out ther when it is clear from context. We adopt standard notation andwrite v′−i to denote the
set of valuations reported by all bidders other than bidderi. A bidderi who receives an item obtains utility
ui(vi;Mℓ(v

′
1, . . . , v

′
n)) = vi − pi. Bidders who do not receive an item obtain utility 0. Bidderswish to

maximize their own utility, and may misrepresent their valuations to the mechanism in order to do so.
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We require that our mechanisms betruthful: that bidders should be incentivized to report their true
valuations, regardless of the bids of others or the realizations of the supply. Following the literature (e.g.
Goldberg et al. [11], Guruswami et al. [12]) we define a randomized truthful mechanism to be a probability
distribution over deterministic truthful mechanisms.

Definition 2.1. A mechanismM is (ex-post) truthfulif for every bidderi with valuevi, for every set of bids
v′−i, for every alternative bidv′i and for everyr andℓ: ui(vi;Mℓ((vi, v

′
−i), r)) ≥ ui(vi;Mℓ((v

′
i, v

′
−i), r))

We will assume that bidders submit their true valuations to truthful mechanisms, since it is a dominant
strategy for them to do so.

Without loss of generality, we imagine thatv1, . . . , vn are written in non-increasing order. The social
welfare achieved by a mechanism is the sum of the values of thebidders to whom it has allocated items,
which we denote byW (Mℓ((v1, . . . , vn), r)). When ℓ items arrive, we will denote the optimal social
welfare byOPTℓ =

∑ℓ
i=1 vi. Whenℓ is drawn from a distributionD over the support (w.l.o.g.){1, ..., n},

we defineOPT = Eℓ[OPTℓ] =
∑n

i=1 OPTi · Pr[l = i].
We will be concerned with approximation guarantees to social welfare in both theadversarial supply

setting and thestochastic supplysetting.

Definition 2.2. A mechanismM achieves anα-approximation to social welfare in theadversarial supply
setting if foreverysupplyℓ: OPTℓ

Er[W (Mℓ((v1,...,vn),r))] ≤ α

Whenℓ is drawn from a distributionD, a mechanismM achieves anα-approximation to social welfare
in thestochastic supplysetting if: Eℓ[OPTℓ]

Eℓ,r [W (Mℓ((v1,...,vn),r))] ≤ α

In the stochastic setting, we will assume unless otherwise specified thatD satisfies thenon-decreasing
hazard ratecondition:

Definition 2.3. The hazard rate of a distributionD at i is: hi(D) = Pr[ℓ=i]
Pr[ℓ≥i] . We write simplyhi when the

distribution is clear from context.
D satisfies thenon-decreasing hazard ratecondition ifhi(D) is a non-decreasing sequence ini.

The non-decreasing hazard rate condition is standard in mechanism design (see, for example, [22, 17]
and recent computer-science work [6, 15]), and is satisfied by many natural distributions, including the
exponential, uniform, and binomial distributions.

One might also consider an intermediate model in which supply is drawn from a distribution satisfying
the non-decreasing hazard rate condition, but the distribution is unknown to the mechanism. However, we
note that since point distributions satisfy the hazard ratecondition, adversarial supply is a special case of
this model, and so our lower bounds apply.

3 Adversarial Supply

In this section we consider the adversarial model in which wedo not have a distribution over supply and
we require a good approximation to social welfare for any number of items that arrive. We first show that
deterministic truthful mechanisms cannot achieve any approximation better than the trivialn-approximation.
We then consider randomized mechanisms, and give a lower bound of Ω(log log n), proving in particular
that no constant approximation is possible.

3.1 Deterministic Mechanisms

We begin by proving that deterministic mechanisms can only achieve a trivial approximation. We present
a sketch of the proof and defer the details to Appendix A.1. First, we characterize deterministic truthful
mechanisms by two useful observations:

Lemma 3.1. For every truthful mechanism and for any realization of items, the pricepb that bidderb is
charged upon winning (any) item is independent of his bid.

4



Lemma 3.2. For every truthful mechanism and for any realization of items, if bidderb wins an item, which
item bidderb wins is independent of his bid wheneverpb < vb.

Theorem 3.3. No deterministic truthful mechanism can achieve better than ann approximation to social
welfare.

Proof. (Sketch) We show that if the mechanism achieves any finite approximation to social welfare, every
bidder has a bid such that he is allocated the first item. Applying lemmas 3.1 and 3.2, we conclude that any
deterministic truthful mechanism that achieves a finite approximation to social welfare can only sell a single
item, which implies that it cannot achieve better than ann approximation when all bidders have the same
value for an item. See the appendix for further details.

3.2 Randomized Mechanisms

3.2.1 AnΩ(log log n) lower bound

We next present our first main result, a lower bound for randomized truthful mechanisms.

Theorem 3.4. No truthful randomized mechanism can achieve ano(log log n) approximation to social
welfare when faced with adversarial supply.

Proof. A truthful randomized mechanism is simply a probability distribution over deterministic truthful
mechanisms. To prove our randomized lower bound, we will exhibit a distribution over bidder values such
that no deterministic truthful mechanism achieves a good approximation to welfare in expectation over this
random instance. By Yao’s min-max principle, this is sufficient to prove a lower bound on randomized
mechanisms.

We define a distributionV with support over values1/2i for 0 ≤ i ≤ log n − 1. For each realization
v ∈ V , we let: Pr[v = 1/2i] = 2i/(n − 1). Therefore, we havePr[v ≥ 1/2i] = (2i+1 − 1)/(n − 1) and
E[v|v ≥ 1/2i] = (i + 1)/(2i+1 − 1).

Lemma 3.5. Consider a set ofn valuations drawn fromV and letOPTk denote the sum of thek highest
valuations from the set. Then:E[OPTk] ≥ Hk+1 − 1 whereHk+1 denotes thek + 1st harmonic number.
In particular, E[OPTk] > (log k)/2.

Proof. We defer this proof to Appendix A.2.

By Lemma 3.1 and Lemma 3.2, we may characterize deterministic truthful mechanisms as follows: The
mechanism assigns to each bidderb a bin ib and a thresholdtb. ib andtb are independent ofb’s bid vb, but
are assigned such that at most one bidder in each bin can have abid above his threshold.4 If vb > tb, b wins
item i (if it arrives) at pricetb. Equivalently, we may imagine the mechanism operating by ordering bidders
in some permutationπ such that for alli, every bidder in bucketi is ordered before every bidder in bucket
j > i. When the first item arrives, the mechanism offers it to each bidder at their threshold price, in order of
π until some bidderb accepts. We continue in this manner, offering the next item to bidders starting atb + 1
until one accepts, etc.

We construct a distribution over instances by drawing each bidder’s valuation independently from the
distributionV described above. Since bidder’s thresholds and buckets areindependent of their own bids,
each value encountered by the mechanism when making offers in order ofπ is distributed randomly accord-
ing toV (note that although the values are distributed randomly, they need not be independent of each other).
We may assume without loss of generality that each thresholdtb = 1/2cb for somecb ∈ 0, . . . , log n − 1.

When all n items arrive, the expected welfare achieved by a mechanism is:
∑n

b=1 Pr[vb ≥ 1
2cb

] ·

E[vb|vb ≥
1

2cb
] = 1

n−1

∑n
b=1(cb +1). LetNb denote the number of items sold by a mechanism after making

offers tob bidders. Then we have more generally, whenk items arrive, the expected welfare achieved by a
mechanism is:

∑n
b=1 Pr[vb ≥

1
2cb

] · E[vb|vb ≥
1

2cb
] · Pr[Nb−1 < k] = 1

n−1

∑n
b=1(cb + 1)Pr[Nb−1 < k]. If

4An example of such a function is for each bidder’s threshold to be the highest bid of any other bidder in his bin. This results
in exactly one bidder (the highest) having a bid above his threshold, while maintaining the property that each bidders threshold is
independent of his bid.
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our mechanism achieves anα approximation to social welfare, we therefore have the followingn constraints
on the values ofcb chosen by the mechanism. For all1 ≤ k ≤ n:

n
∑

b=1

(cb + 1)Pr[Nb−1 < k] ≥
(n − 1)OPTk

α
≥

(n − 1) log k

2α
(1)

where the last inequality follows from Lemma 3.5. After offering the item tob bidders, the expected number
of sales isE[Nb] = 1/(n − 1) ·

∑b
i=1(2

cb+1 − 1).

By a Chernoff bound:Pr[Nb−1 < k] ≤ exp(−(
E[Nb−1]

2 − k + 1)) ≤ exp(−
Pb−1

i=1 2ci

n−1 + k). Let bk be the

first index such that
∑bk

i=1 2ci ≥ (n − 1) · k. Then by plugging our bound into constraint 1, we have for all
k:

bk
∑

i=1

(ci + 1) +
n
∑

i=bk+1

(ci + 1)

exp(

Pi−1
j=bk+1 2cj

n−1 )

≥
(n − 1) log k

2α

Lemma 3.6. For ci ∈ [0, log n − 1]:

n
∑

i=bk+1

(ci + 1)

exp(

Pi−1
j=bk+1 2cj

n−1 )

< 2.5 · n

Proof. We defer the proof of this technical lemma to Appendix A.2.

So, for allk, there must exist an integerbk such that simultaneously the two equations hold:
∑bk

i=1 ci ≥
(n−1) log k

2α − (2.5 · n + bk), and
∑bk−1

i=1 2ci < (n − 1) · k. In particular, ifk ≥ 215α andn ≥ 30, then
n log k

4α ≤ (n−1) log k
2α − 3.5n. Therefore, there must exist integersbk to satisfy the equations:

bk
∑

i=1

ci ≥
n log k

4α
(2)

bk−1
∑

i=1

2ci < n · k (3)

We will consider the smallest such set ofbk: For all k, we will have that
∑bk

i=1 ci ≥ n log k
4α , but

∑bk−1
i=1 ci < n log k

4α . Note that if we reduce a largerbk in this manner, inequality 3 continues to hold,
and so this is without loss of generality.

We letk = 215α and consider the sequence of integersk, 2k, 4k, . . . , 2tk such thatn ≥ 2tk > n/2. For
j ≥ 1 we write∆j

k = (b2jk − b2j−1k), and∆0
k = bk. We note that from inequality 2 and our assumption on

thebk, we have:
∑b

2jk

i=b
2j−1k

ci ≥
n(log k+j)

4α −
∑b

(k·2j−1)−1

i=1 ci ≥
n
4α .

Exponentiating both sides and applying the AM-GM inequality we have:

2n/(4α∆j
k
) ≤





b
2jk
∏

i=b
2j−1k

2ci





1/∆j
k

≤

∑b
2jk

i=b
2j−1k

2ci

∆j
k

≤
n(2jk + 1)

∆j
k

where the last inequality follows from inequality 3. This gives us:∆j
k ≥ n

4α(log n+log(2j+1k)−log ∆j
k
)
. We can

expand the above recursive bound to isolate∆j
k and find∆j

k = Ω(n/(α(j + α))).
We recall thatn > b2tk =

∑t
i=0 ∆i

k. Using the above bound, we see thatn is at least
∑t

i=0 Ω(n/(α(i+

α))) = Ω(n log(t/α)
α ). Therefore, we haveα ≥ Θ(log(t/α)) and soα ≥ Θ(log t). We recall thatk = 215α

and2tk = 215α+t ≤ n. t is therefore constrained such that:log n ≥ 15α + t ≥ Θ(t). And so we may take
t to be as large asΘ(log n), giving us a lower bound ofα ≥ Θ(log log n).
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3.2.2 A truthful log n-approximation mechanism

Here we show a simple randomized mechanism that achieves alog n approximation to social welfare. In
Section 5 we show that this is nearly optimal for the natural class of ”online envy-free” mechanisms.

Let RandomGuessbe the mechanism that selects a supplyg ∈ {2, 4, 8, . . . , 2i, . . . , n} uniformly at
random, and considers only the highestg bidders according to permutation order. When an item arrives the
mechanism sells it to the first of the remaining such bidders and charges himvg+1.5

Proposition 3.7. RandomGuess is truthful and achieves alog n approximation to social welfare.

Proof. We defer this proof to Section A.2 in the Appendix.

We leave open the problem of closing the gap between thelog n factor achieved by RandomGuess and
theΩ(log log n) lower bound of Theorem 3.4. In section 5 we strengthen this lower bound toΩ(log n/ log log n)
for the class ofonline-envy-freemechanisms, also defined in section 5. We conjecture that RandomGuess is
optimal.

4 Stochastic Supply

Given the strong lower bounds we have shown in the adversarial setting, we now consider the stochastic
setting in which supply is drawn from some distributionD known to the mechanism. In this section, we
give our second main result, a deterministic truthful mechanism that achieves anO(1)-approximation to
social welfare for any distribution with non-decreasing hazard rate. At the end of this section we show that
the monotone hazard rate condition is actually necessary toachieve constant approximation.

We consider the following mechanism that takes as input a distribution D. The mechanism is determin-
istic, so all probabilities are over the distributionD. We note that the mechanism decides on a maximal
number of items it is going to sellwithout looking at the bids. Although it seems somewhat surprising it still
achieves good approximation when the non-decreasing hazard rate condition holds.

HazardGuess(D):
1. Fix an arbitrary permutationπ on the bidders.
2. Solicit bids, and denote themv1, . . . , vn in non-increasing order.

3. Lets∗ be the smallest integer such thats∗ ≥ Pr[ℓ≥s∗]
Pr[ℓ=s∗] . If s∗ > 3 let g = s∗. Otherwise letg = 1. a

4. Consider only the highestg bidders ordered according toπ.
When an item arrives sell it to the first of the remaining such bidders and charge himvg+1 (or 0
if g = n).

aAlternatively, we can pickg = s∗ always, but then we must pick a random permutation in step 1 ofHazardGuess.
We choose to present a deterministic mechanism.

Theorem 4.1. HazardGuess(D) is truthful, and achieves a167
8 -approximation to social welfare in expec-

tation overD, for any distributionD such that the hazard ratehi(D) is non-decreasing.

Truthfulness is immediate: Every bidder with bid higher than vg+1 faces a single take-it-or-leave-it offer
at the same price (vg+1). The offer and the order in which they receive the offer is independent of their own
bids. To prove the approximation guarantee, we will need a series of lemmas.

The following lemmas, 4.2, 4.4 and 4.5 will show that for any distribution with non-decreasing hazard
rate,maxi OPTi · Pr[ℓ ≥ i] ≥ OPT/5. To complete the proof, we will then prove that HazardGuess
achieves welfare at least(8/27) ·maxi OPTi ·Pr[ℓ ≥ i], and thus achieves a167

8 approximation toOPT.

5The authors thank Andrew Goldberg for suggesting this mechanism, which is a significant simplification of our original mech-
anism.
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Lemma 4.2. Letα be the smallest value such that for any set of bids,OPT/(maxi OPTi ·Pr[ℓ ≥ i]) ≤ α.
Then for each integer0 ≤ s ≤ n − 1 we have the following bound onα in terms ofD, which we denote
Bound(s):

α ≤
s
∑

i=1

Pr[ℓ = i]

Pr[ℓ ≥ i]
+

∑n
i=s+1 Pr[ℓ = i] · i

(s + 1) · Pr[ℓ ≥ s + 1]

Proof. Supposeα > β. That is, there exists a set of bids such that for alli we haveOPTi · Pr[ℓ ≥ i] <
OPT/β, or equivalently:

OPTi <
OPT

β · Pr[ℓ ≥ i]
(4)

Recall that by definition, we haveOPT =
∑n

i=1 OPTi · Pr[ℓ = i]. Observe that for all1 ≤ i ≤ n − 1:
OPTi+1 ≤ i+1

i OPTi sincev1, . . . , vn is a non-increasing sequence. By repeated application of this
observation, we get the followingn upper-bounds onOPT indexed by0 ≤ s ≤ n − 1:

OPT ≤

s
∑

i=1

OPTi · Pr[ℓ = i] + OPTs+1 ·

(

n
∑

i=s+1

i

s + 1
Pr[ℓ = i]

)

Applying inequality 4 and multiplying both sides byβ/OPT we obtain:

β <

(

s
∑

i=1

Pr[ℓ = i]

Pr[ℓ ≥ i]
+

∑n
i=s+1 Pr[ℓ = i] · i

(s + 1) · Pr[ℓ ≥ s + 1]

)

.

If α is the optimal approximation factor, there is some input such that for everyǫ > 0,maxi OPTi ·Pr[ℓ ≥ i]
achieves anα approximation but does not achieve aβ = α − ǫ approximation, and the above bound onβ
holds. Sinceα = β + ǫ, letting ǫ tend to zero, we obtain the lemma.

Remark4.3. We must now show that for every distributionD, there exists ans such that Bound(s) gives
α ≤ 5. Note that the order of quantifiers is important! It is not thecase that there exists ans such that for
every distribution, Bound(s) givesα ≤ O(1).

Lemma 4.4. For anys ≥ 1 andhi ∈ [1/s, 1]:
∑n

i=s+1

(

i · hi ·
∏i−1

j=s+1(1 − hj)
)

≤ 3s + 1.

Proof. We defer the proof of this technical lemma to Appendix A.3.

Lemma 4.5. For any set of bids, and for any distributionD with non-decreasing hazard rate,
OPT

maxi OPTi·Pr[ℓ≥i] ≤ 5.

Proof. Given a distributionD, we wish to find the value ofs such that Bound(s) gives the sharpest bound
on α (the approximation factor from lemma 4.2). We chooses∗ ≤ n to be the smallest integer such that
s∗ ≥ Pr[ℓ ≥ s∗]/Pr[ℓ = s∗]. If no suchs∗ exists, we chooses∗ = n. We now show that Bound(s∗) gives
α ≤ 5. We bound the two terms of Bound(s∗) separately. Consider the first term:

s∗
∑

i=1

Pr[ℓ = i]

Pr[ℓ ≥ i]
≤ (s∗ − 1) ·

Pr[ℓ = s∗ − 1]

Pr[ℓ ≥ s∗ − 1]
+

Pr[ℓ = s∗]

Pr[ℓ ≥ s∗]
≤ 1 +

Pr[ℓ = s∗]

Pr[ℓ ≥ s∗]
≤ 2

since the hazard rate is non-decreasing and by definition ofs. We now consider the second term:
Pn

i=s∗+1 Pr[ℓ=i]·i

(s∗+1)·Pr[ℓ≥s∗+1]

SinceD has a non-decreasing hazard rate, we know that for alli ≥ s∗, hi ≡ Pr[ℓ = i]/Pr[ℓ ≥ i] ≥ 1/s∗.
Therefore, we have:

n
∑

i=s∗+1

Pr[ℓ = i] · i =

n
∑

i=s∗+1

Pr[ℓ = i]

Pr[ℓ ≥ i]
· Pr[ℓ ≥ i] · i

=
n
∑

i=s∗+1



i · hi · Pr[ℓ ≥ s∗ + 1] ·
i−1
∏

j=s∗+1

(1 − hj)





≤ Pr[ℓ ≥ s∗ + 1](3s∗ + 1)
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where the inequality follows from Lemma 4.4. Therefore, finally we have for alls∗:
∑n

i=s∗+1 Pr[ℓ = i] · i

(s∗ + 1) · Pr[ℓ ≥ s∗ + 1]
≤

Pr[ℓ ≥ s∗ + 1](3s∗ + 1)

(s∗ + 1) · Pr[ℓ ≥ s∗ + 1]
≤ 3

Combining these two bounds, we finally get that Bound(s∗) givesα ≤ 5.

Now we are ready to complete the proof of our theorem:

Proof of Theorem 4.1.We show that HazardGuess achieves welfare at least(8/27) · (maxi OPTi · Pr[ℓ ≥
i]). Together with lemma 4.5, this proves that HazardGuess achieves at least a167

8 approximation to social
welfare.

Let s∗ be the smallest integer such thats∗ ≥ Pr[ℓ≥s∗]
Pr[ℓ=s∗] . Whenevers∗ > 3, HazardGuess(D) achieves

welfare at leastOPTs∗ · Pr[ℓ ≥ s∗]. Whens∗ ≤ 3, HazardGuess(D) achieves welfare at leastOPTs∗/3
(since it sells a single item to the highest bidder, andOPT1 ≥ OPT3/3). First consider the case in which
i > s∗ ≥ 1. In this case, we knowPr[ℓ ≥ i] ≤ Pr[ℓ ≥ s∗] · (1 − 1

s∗ )i−s∗ , since the hazard ratehi is
non-decreasing, andhs∗ ≥ 1/s∗. Therefore, we have:

OPTi · Pr[ℓ ≥ i] ≤
i

s∗
· OPTs∗ · Pr[ℓ ≥ i]

≤
i

s∗
· OPTs∗ · Pr[ℓ ≥ s∗] · (1 −

1

s∗
)i−s∗

≤ (OPTs∗ · Pr[ℓ ≥ s∗]) ·

(

i

s∗
·

1

ei/s∗−1

)

≤ (OPTs∗ · Pr[ℓ ≥ s∗])

Therefore, in this case, HazardGuess(D) achieves welfare at leastOPTi · Pr[ℓ ≥ i]/3. Now consider the
case in which1 ≤ i < s∗: By definition ofs∗: Pr[ℓ≥s∗−1]

Pr[ℓ=s∗−1] > s∗ − 1. Alternatively, we may write the hazard
rate ats∗ − 1: hs∗−1 < 1/(s∗ − 1). Since the hazard rate is non-decreasing, we have that for alli ≤ s∗ − 1,
hi < 1/(s∗ − 1). Therefore we have:

Pr[ℓ ≥ s∗] =
s∗−1
∏

i=1

(1 − hi) >
s∗−1
∏

i=1

(1 −
1

s∗ − 1
) =

(

s∗ − 2

s∗ − 1

)s∗−1

If s∗ ≥ 4, then this givesPr[ℓ ≥ s∗] ≥ 8/27. Therefore:

OPTs∗ · Pr[ℓ ≥ s∗] ≥ OPTi · Pr[ℓ ≥ 4] ≥
8

27
OPTi

which is a bound on the performance of HazardGuess(D), sinces∗ > 3. Finally we consider the special
case ofs∗ ∈ {2, 3}. If s∗ = 2, theni ∈ {1, 2} achieves welfareOPTi/2·Pr[ℓ ≥ i] since HazardGuess sells
one item. Similarly, ifs∗ = 3 HazardGuess achieves welfare at leastOPTi/3 · Pr[ℓ ≥ i]. This concludes
the proof.

We note that our analysis is worst-case, and that this mechanism can be shown to achieve a better
constant approximation for specific distributions of interest. For example:

Theorem 4.6. HazardGuess(D) achieves a35 -approximation to social welfare in expectation overD when
D is the uniform distribution over{1, . . . , n}. Moreover, there are values for which HazardGuess(D)
cannot get better than a34 -approximation whenD is the uniform distribution.

The proof is deferred to the appendix.
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4.1 The Necessity of the Monotone Hazard Rate Condition

We next show that the monotone hazard rate condition is necessary: for arbitrary distributionsno determin-
istic mechanism can achieve constant approximation to social welfare.

Theorem 4.7. No deterministic truthful mechanism can achieve ano(
√

log n/ log log n) approximation to
social welfare when faced with arbitrary stochastic supply(without the non-decreasing hazard rate condi-
tion).

We prove this theorem in Appendix A.3. The proof proceeds in two stages. First, we consider a class
of truthful mechanisms that fix -independently of the bids- an orderingπ on the bidders, and a supplyg.
Such a mechanism sells the firstg items that arrive at the(g + 1)-st highest price to theg highest bidders ,
ordered according toπ. We note that HazardGuess is such a mechanism, and all such mechanisms satisfy a
notion of envy-freeness which we define in the next section. We show that such mechanisms cannot achieve
ano(log n/ log log n) approximation to social welfare when faced with arbitrary stochastic supply. We then
complete the proof by showing that we can restrict our attention to such mechanisms almost without loss of
generality: foranydeterministic mechanism, there exists a mechanism that chooses its supply independently
of the bids that loses only a quadratic factor in its approximation to social welfare.

5 Envy-Free Mechanisms

All our mechanisms satisfy a notion of fairness which is our adaptation of envy-freeness to the online setting.
An offline mechanism is envy-free if no agent prefers anotheragent’s allocation and payment to his own (see,
for example, [11, 12]). In the case of unit demand bidders andidentical goods this means that there is a price
p such that any winner pays the same pricep and has value at leastp, and any loser has value at mostp.
This is clearly not possible to achieve for online supply, except by trivial mechanisms (for example, the
mechanism that only sells a single item to the highest bidderat the second highest price). Informally, in an
online envy-free mechanism, the only source of envy is a shortage of supply, not price discrimination on the
part of the mechanism.

Definition 5.1. A deterministic mechanism isonline-envy-freeif it is envy-free (in the offline sense) when
the supply is enough to satisfy the demand of all of the bidders (that is, whenl = n). A randomized
mechanism isonline-envy freeif it is a distribution over deterministic online-envy-free mechanisms.

Note that this definition ensures that all sold items are soldfor the same price, even when the supply
is smaller thann. Also note that both our mechanisms RandomGuess and HazardGuess are online-envy-free.

In Theorem 3.4 we showed that no truthful randomized mechanism can achieve ano(log log n) approx-
imation to social welfare when faced with adversarial supply. Here, we present an improved lower bound
for truthful online-envy free mechanisms.

Proposition 5.2. No truthful online-envy-free mechanism (even randomized)can achieve ano(log n/ log log n)
approximation to social welfare when faced with adversarial supply.

We defer the proof to appendix Section A.4. Note that proposition 5.2 is nearly tight, since Ran-
domGuess achieves alog n approximation factor.

6 Valuations with complementarities: Knapsack Valuations

So far we have discussed bidders that are interested in a single item out of a set of identical items. It is natural
to consider the case of bidders with increasing-marginal utility valuations, corresponding tocomplements
valuations. In the extreme case, we getknapsack valuations.

We say that a bidderi has aknapsack valuationif he has a valueci and a desired quantityki: For all
k < ki, vi(k) = 0, and for allk ≥ ki, vi(k) = ci. That is, bidderi desires at leastki units of the good, is
not satisfied with fewer, and has no value for more thanki units.
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Knapsack valuations can be seen as modeling advertising campaigns: a buyer wishes to build brand
name recognition through banner-advertisements, and so has little value for a small number of advertise-
ments; A campaign is worthci to the advertiser, but additional advertising saturation has little added benefit.

Unfortunately, the online nature of the problem makes knapsack valuations difficult to handle for any
algorithm, even without truthfulness (and computational)constraints. Here, we present an algorithm in the
stochastic setting, and show that its (poor) competitive ratio is optimal over the class of all (not necessarily
truthful) algorithms. Without loss of generality, we can assume thatD has finite support over[1,m] for
m =

∑n
i=1 ki.

Our lower bound for Knapsack valuations shows that with online supply, no algorithm can guarantee a
better approximation ratio than the cumulative hazard rate. This welfare guarantee is quite poor. For the
uniform distribution, this givesα=Θ(log m). For the binomial distribution,α = Θ(m). We also present a
matching upper bound showing that our lower bound is tight. Both proofs are in Appendix A.5.

Proposition 6.1. No algorithm can have better than a
∑m

i=1 hi approximation to optimal social welfare.

Proposition 6.2. For any distributionD with (arbitrary) hazard ratehi there exists an algorithm that
achieves at least a

∑m
i=1 hi approximation to optimal social welfare.
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A Proofs

A.1 Proof: Lower bound for deterministic mechanism with adversarial supply

In this section we prove Theorem 3.3.

Theorem A.1. No deterministic truthful mechanism can achieve better than ann approximation to social
welfare.

The theorem will follow from three simple lemmas.

Lemma A.2. For every truthful mechanism and for any realization of items, the pricepb that bidderb is
charged upon winning (any) item is independent of his bid.

Proof. This is a standard fact characterizing truthful auctions; If there is some realization of items for which
bidderb has two distinct bids which result in bidderb winning an item, but at a different price, then in the
case in which his valuation is equal to the bid that yields an item at the higher price, he will report falsely
that his valuation is equal to the bid that yields an item at the lower price.
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Lemma A.3. For every truthful mechanism and for any realization of items, if bidderb wins an item, which
item bidderb wins is independent of his bid wheneverpb < vb.

Proof. Suppose for some realization of items, and for some fixed set of bids of the other bidders, bidder
b can change his bid tovb or v′b, and win one of two items, itemi or item j, and that if he bids his true
valuationvb, he wins itemj > i. Now consider a realization in which onlyi items arrive; If bidderb bids
vb, he wins no item and receives utility0. If he bidsv′b, he wins itemi at his (bid independent) pricepb, and
achieves higher utilityvb − pb. Therefore, the mechanism is not truthful.

Lemma A.4. For any deterministic mechanism that achieves ann-approximation to social welfare, every
bidder has a bid such that they are allocated the first item.

Proof. Any bidder b can set his bid to more thann times the second highest bidder. If the mechanism
does not allocate the first item tob, then if there are no further items, the mechanism has not achieved an
n-approximation to social welfare.

Proof of Theorem.By Lemma A.4, any bidder can win the first item with an appropriately high bid. But
by Lemma 3.2, any bidder such thatpb < vb who has a bid for which he can win the first item cannot win
any other item with any bid. Therefore, for any set of biddersbi such that for allbi, pbi

6= vbi
, then any

deterministic truthful mechanism that achieves ann-approximation can only sell the first item. If all bidders
have value1 ≤ vbi

≤ 1 + ǫ, this achieves no better than ann-approximation when all items arrive. It
remains to demonstrate such a set of bidders: Consider an arbitrary set ofn + 1 distinct values between1
and1 + ǫ. For each bidder, choose a value from this set independentlyat random. Since each bidders price
pbi

is independent of his bid, by Lemma 3.1, the probability thatvbi
= pbi

is at most1/(n + 1), and by
the union bound, the probability thatany bidders bid equals its price threshold is at mostn/(n + 1) ≤ 1.
Therefore, there exists a set of bids sampled from this set with the desired property, which completes the
proof.

A.2 Proofs of Lemmas from Section 3

Lemma 3.5: Consider a set ofn valuations drawn fromV and letOPTk denote the sum of thek highest
valuations from the set. Then:

E[OPTk] ≥ Hk+1 − 1.

whereHk+1 denotes thek + 1st harmonic number. In particular,E[OPTk] > (log k)/2.

Proof. Let F (y) denote the cumulative distribution function ofV . We note thatF (y) is a step function
taking valuesF (y) = (n − 1/y)/(n − 1) for all y of the formy = 1/2i for i ∈ {0, 1, . . . , log n − 1}.
We consider the inverse CDF functionF−1(x) : [0, 1] → {1, 1/2, 1/4, . . . , 2/n}. It is simple to verify the
following pointwise lower bound onF−1(x):

F−1(x) ≥
1

n − x(n − 1)

which follows from inverting the discrete CDF. We denote thequantity in this boundA(x) = 1/(n−x(n−
1)), and observe thatA(x) is convex in the range[0, 1].

Let vi,n denote thei’th largest value out ofn draws fromV , and letXi,n denote thei’th largest value out
of n draws from the uniform distribution over[0, 1]. We consider the following method of drawing a value
v from V : we drawx uniformly from [0, 1] and letv = F−1(x). SinceF−1 is monotone, thei’th largest
draw from the uniform distribution corresponds to thei’th largest draw fromV : vi = F−1(xi).

Recall the expected value of thei’th largest of n draws from the uniform distribution over[0, 1]:
E[Xi,n] = 1 − i/(n + 1). This standard fact follows from a simple symmetry argument. We are now
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ready to complete the proof of the lemma:

E[OPTk] =
k
∑

i=1

E[vi,n]

=

k
∑

i=1

E[F−1(Xi,n)]

≥

k
∑

i=1

E[A(Xi,n)]

≥

k
∑

i=1

A(E[Xi,n])

=
k
∑

i=1

1

1 + i(n − 1)/(n + 1)

≥

k
∑

i=1

1

1 + i

= H(k + 1) − 1

where the second inequality is an application of Jensen’s inequality, which follows sinceA(x) is convex.

Lemma 3.6: Forci ∈ [0, log n − 1]:

n
∑

i=bk+1

(ci + 1)

exp(

Pi−1
j=bk+1 2cj

n−1 )

< 2.5 · n

Proof. Let f(cbk+1, . . . , cn)) ≡
∑n

i=bk+1
(ci+1)

exp(

Pi−1
j=bk+1

2
cj

n−1
)

. We consider the partial derivative at thei’th

offer price:

∂

∂ci
f(cbk+1, . . . , cn) =

1

e
Pi−1

j=bk+1 2cj /(n−1)
−

(

2ci ln 2

(n − 1)e2ci /(n−1)

)

·

n
∑

j=i+1

cj + 1

exp(
∑j−1

ℓ=bk+1 ℓ 6=i 2
cℓ/(n − 1))

≤ 1 −
ln 2

n − 1
·





n
∑

j=i+1

cj + 1

exp(
∑j−1

ℓ=bk+1 ℓ 6=i 2
cℓ/(n − 1))





But this is negative unless

Ri ≡

n
∑

j=i+1

cj + 1

exp(
∑j−1

ℓ=bk+1 ℓ 6=i 2
cℓ/(n − 1))

≤
n − 1

ln 2

Fixing any maximal assignment to theci variables, leti′ be the largest index for which the above con-
dition onRi′ fails to hold. We know that for alli ≤ i′, ci = 0, since the partial derivative ati is negative,
and so if we could reduceci further this would contradict the fact that we selected a maximal assignment.
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Therefore, we have:

f(cbk+1, . . . , cn) =

i′
∑

i=bk+1

ci + 1

exp(

Pi−1
j=bk+1 2cj

n−1 )

+

n
∑

i=i′+1

ci + 1

exp(

Pi−1
j=bk+1 2cj

n−1 )

≤ i′ +
1

e2ci/(n−1)
· Ri

≤ n +
n − 1

ln 2
< 2.5n

Proposition A.5 (Proposition 3.7). RandomGuess is truthful, online-envy-free, and achieves alog n approx-
imation to social welfare.

Proof. Truthfulness and envy-freeness are immediate: every winning bidder faces a single take-it-or-leave-
it offer independent of their bid, in an order independent oftheir bid. All items are sold at the same price,
vg+1. Whenn items arrive, all bidders with valuations higher than the offer price have been allocated items.
We now prove the approximation guarantee.

Suppose thatI items arrive, andOPTI =
∑I

i=1 vi, the sum of theI highest bids. With probability
1/ log n, I < g ≤ 2I, and with probability1/ log n, I/2 < g ≤ I. In the first case, RandomGuess allocates
the I items to at least half of the topg bidders in random order, and so achieves welfare in expectation
at leastOPTg/2 ≥ OPTI/2. In the second case, RandomGuess allocates at least half of the I items to
all of the topg bidders, and achieves welfareOPTg =

∑g
i=1 vi. Sinceg > I/2, OPTg > OPTI/2

because{vi} is a non-increasing sequence. Our mechanism therefore achieves in expectation welfare at
least(1/ log n)(OPTI/2 + OPTI/2) = OPTI/ log n.

A.3 Proofs from Section 4

Lemma 4.4: For anys ≥ 1 andhi ∈ [1/s, 1]:

n
∑

i=s+1



i · hi ·

i−1
∏

j=s+1

(1 − hj)



 ≤ 3s + 1

Proof. Let f(hs+1, . . . , hn) ≡
∑n

i=s+1(i · hi ·
∏i−1

j=s+1(1 − hj)) and consider the partial derivative athk:

∂

∂hk
f(hs+1, . . . , hn) = k ·

k−1
∏

j=s+1

(1 − hj) −

n
∑

i=k+1



i · hi ·

i−1
∏

j=s+1,j 6=k

(1 − hj)





≤ k · (1 −
1

s
)k−s−1 −

n
∑

i=k+1



i · hi ·
i−1
∏

j=s+1,j 6=k

(1 − hj)





where the inequality follows fromhi ≥ 1/s for all i. But this is negative unless

Rk ≡

n
∑

i=k+1



i · hi ·

i−1
∏

j=s+1,j 6=k

(1 − hj)



 ≤ k · (1 −
1

s
)k−s−1
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Fix some assignment to thehi that maximizesf(hs+1, . . . , hn) and letk′ be the first index at which the
above condition holds. Then for alli < k′, hi = 1/s, since otherwise this would contradict the fact that the
assignment maximizesf . Therefore, we have:

n
∑

i=s+1



i · hi ·

i−1
∏

j=s+1

(1 − hj)



 =

k′−1
∑

i=s+1



i · hi ·

i−1
∏

j=s+1

(1 − hj)



+

n
∑

i=k′



i · hi ·

i−1
∏

j=s+1

(1 − hj)





≤
k′−1
∑

i=s+1

(

i

s
(1 −

1

s
)i−s−1

)

+
n
∑

i=k′



i · hi ·
i−1
∏

j=s+1

(1 − hj)





=
k′−1
∑

i=s+1

(

i

s
(1 −

1

s
)i−s−1

)

+ k′ · hk′ ·
k′−1
∏

j=s+1

(1 − hj) + (1 − hk′) · Rk′

≤

k′−1
∑

i=s+1

(

i

s
(1 −

1

s
)i−s−1

)

+ hk′(·k′ · (1 −
1

s
)k

′−s−1) + (1 − hk′)(k′ · (1 −
1

s
)k

′−s−1)

=
1

s

k′−1
∑

i=s+1

(

i(1 −
1

s
)i−s−1

)

+ k′ · (1 −
1

s
)k

′−s−1

≤
1

s

∞
∑

i=s+1

(

i(1 −
1

s
)i−s−1

)

+ (s + 1)

= 3s + 1

where the second inequality follows from the fact that for all i, hi ≥ 1/s, the third inequality follows from
the fact thatk ≥ s + 1 and sok′ · (1 − 1

s )k
′−s−1 is decreasing ink′, and the last equality follows from the

identity
∑∞

i=k i · ri−k = (k + r − kr)/(r − 1)2.

Theorem 4.6:HazardGuess(D) achieves a3
5 -approximation to social welfare in expectation overD

whenD is the uniform distribution over{1, . . . , n}. Moreover, there are values for which HazardGuess(D)
cannot get better than a34 -approximation whenD is the uniform distribution.

Proof. Consider the case that there aren agents and the supply is chosen uniformly at random from{1, n}
(we note that if the range starts from a number larger than1 the problem becomes easier and the algorithm
achieves better approximation.) We analyze the approximation achieved by picking the supplyk = n/2 and
selling at mostk items,6 in a random order over the topk values. We prove that the algorithm achieves at
least60% of the optimum.

Assume the values are sortedv1 ≥ v2 ≥ . . . ≥ vn. DefineOPTl =
∑l

i=1 vi. The expected welfare of
the optimal algorithms isOPT = 1/n ·

∑n
l=1 OPTl. Splitting the sum to two parts we get the following.

OPT =
1

n
·

n
2
∑

l=1

OPTl+
1

n
·

n
∑

l= n
2
+1

OPTl ≤
OPTn

2

2
+

1

n
·

n
∑

l= n
2
+1

l

n/2
OPTn

2
= OPTn

2





1

2
+

2

n2

n
∑

l= n
2
+1

l



 =

OPTn
2

(

1

2
+

2

n2

(

n(n + 1)

2
−

n
2 (n

2 + 1)

2

))

= OPTn
2

(

5

4
+

1

2n

)

Our algorithm achieves expected welfare of

ALG =
1

n
·

n
2
∑

l=1

l

n/2
OPTn

2
+

1

n
·

n
∑

l= n
2
+1

OPTn
2

= OPTn
2





2

n2

n
2
∑

l=1

l +
1

2



 =

6For simplicity we assume thatn is even. Essentially the same argument will work for the casethatn is odd.
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OPTn
2

(

2

n2

n
2 (n

2 + 1)

2
+

1

2

)

= OPTn
2

(

3

4
+

1

2n

)

≥
OPT
5
4 + 1

2n

·

(

3

4
+

1

2n

)

≥
3

5
OPT

Finally we observe that this algorithm gets at most75% of the optimum. Consider the input with one
value of1 and all the rest of the values are 0. The optimal algorithm will always get welfare of1. Our
algorithm will get the1 with probability

n/2
∑

l=1

1

n
·

l

n/2
+

1

2
=

n + 1

4n
+

1

2
< α

for any constantα > 3/4 whenn is large enough.

Theorem 4.7: No deterministic truthful mechanism can achieve ano(
√

log n/ log log n) approximation
to social welfare when faced with arbitrary stochastic supply (without the non-decreasing hazard rate con-
dition).
The theorem follows directly from two lemmas.

Definition A.6. A bid-independent supply mechanismchooses an ordering on the biddersπ and a supplyg
independently of the bids. It then sells items as they arriveto theg highest bidders, ordered according toπ,
at theg + 1st highest price.

Note that all mechanisms presented in this paper are bid-independent supply mechanisms.

Lemma A.7. No deterministic bid-independent supply mechanism can achieve ano(log n/ log log n) ap-
proximation to social welfare when faced with arbitrary stochastic supply (without the non-decreasing haz-
ard rate condition).

Proof. We give a distribution with a decreasing hazard rate such that no mechanism that determines a maxi-
mum supplyg independent of the bidsvi can achieve ano(log n/ log log n) approximation to social welfare.

We defineD such thatPr[ℓ = i] = 1/(i + i2). Note thatPr[ℓ ≥ i] = 1/i, and the hazard rate ati
is decreasing:hi(D) = 1/(1 + i). Consider the welfare achieved by a bid-independent mechanism that
chooses supplyg. If at leastg items arrive, it achieves welfare exactlyOPTg. Otherwise, ifj < g items
arrive, it achieves expected welfare at most(j/g)OPTg. Therefore, the welfare it achieves is at most:

OPTg · Pr[ℓ ≥ g] +
1

g
·

g−1
∑

j=1

j · Pr[ℓ = j] = OPTg · (
1

g
+

Hg − 1

g
)

= Θ

(

OPTg · (
log g

g
)

)

We consider two possible sets of bidder values: In the SingleBidder case, we havev1 = 1 andvj = 0
for all j > 1. In the All Bidder case, we havevj = 1 for all j. Note that in the Single Bidder case, we
haveOPT = 1 andOPTi = 1 for all i. In the All Bidder case we haveOPT = Hn+1 − 1 = Θ(log n)
andOPTi = i. Therefore, in the Single Bidder case, a mechanism that achieved ano(log n/ log log n)
approximation to social welfare would have(log g)/g = ω(log log n/ log n), and in the All Bidder case
would havelog g = ω(log log n). There is nog ∈ [1, n] that satisfies both of these equations simultaneously.
Sinceg is chosen independently of the bids, the two cases are indistinguishable, and any such mechanism
much achieve an approximation ratio no better thanΩ(log n/ log log n) in at least one of them.

Lemma A.8. For any distributionD and any deterministic truthful mechanismM that achieves anα ap-
proximation to social welfare overD, there is a truthful deterministic online-envy-free bid-independent
supply mechanismM ′ that achieves anα2 approximation to social welfare.
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Proof. Let gmax be the maximum number of itemsM sells when full supply is realized, where the maximum
is taken over all possible bid profiles. LetM ′ be the mechanism that always sells the firstgmax items to the
gmax highest bidders in some predetermined order at thegmax +1st highest price, and sells no further items.
Note thatM ′ is online-envy-free and has bid-independent sell sequence. First observe thatOPTgmax ≥
OPT/α. This follows because by definition,M can never achieve welfare beyondOPTgmax , but by
assumption,M achieves anα approximation to the optimal social welfare. Next, observethat PrD[ℓ ≥
gmax] ≥ 1/α. To see this, consider some bid profile which causesM to produce a supplygmax. Let bi be the
bidder who receives itemgmax, and consider raising his valuationvi until it constitutes all but a negligible
fraction of the total possible social welfare. By lemmas 3.1and 3.2, raisingbi’s bid does not affect either
the supply offered by the mechanism, or the order in whichbi receives an item: that is, it continues to be
the case thatbi receives an item if and only if at leastgmax items arrive. However, sincebi now constitutes
an arbitrarily large fraction of the total social welfare, andM is anα-approximation mechanism, it must be
thatPr[ℓ ≥ gmax] ≥ 1/α.

Finally, we observe that our mechanism achieves welfare at leastOPTgmax ·Pr[ℓ ≥ gmax] ≥ OPT/α2,
which completes the proof.

A.4 Proofs from Section 5

Proposition A.9(Proposition 5.2). No truthful online-envy-free mechanism can achieve ano(log n/ log log n)
approximation to social welfare when faced with adversarial supply.

Proof. For an envy-free mechanism, we may assume that all offered pricesc1, . . . , cn are equal: for alli,
ci = c. We apply inequality 1 to obtain constraints for the case in which n items arrive, and the case in
which1 item arrives. Whenn items arrive, we have for alli Pr[Ni−1 < n] = 1, and obtain the constraint:

n · c ≥
(n − 1) log n

2α
− n (5)

When a single item arrives, we havePr[Ni−1 < 1] = ((n − 2c+1)/(n − 1))i−1, since each bidder indepen-
dently accepts the offer price1/2c with probability(2c+1 − 1)/(n− 1). Also,OPT1 ≥ 1/2. We obtain the
constraint:

(c + 1) ·

n
∑

i=1

(

n − 2c+1

n − 1

)i−1

≥
n − 1

2α
(6)

Settingα = o(log n/ log log n), we see that constraint 5 requiresc = ω(log log n). It is simple to verify
that the left hand side of constraint 6 is decreasing inc in the range[log log n, log(n) − 1], and that setting
c = ω(log log n) fails to satisfy 6, which proves the claim.

A.5 Proofs from Section 6

We begin by presenting a lower bound for Knapsack utilities.

Proposition A.10 (Proposition 6.1). No algorithm can guarantee better than a
∑m

i=1 hi approximation to
optimal social welfare.

Proof. Consider any arbitrary distributionD and scale it so that it has positive support on[m + 1, 2m].
Alternately, imagine it has positive support on[1,m], and thatm items are guaranteed to arrive; the distri-
bution is on how many additional items will arrive. We construct a set ofn = m bidders1, . . . ,m. Bidder
i haski = m + i andci = 1/Pr[ℓ ≥ i]. By construction, at most one bidder can have his demand satisfied
by any knapsack size. Since bidder values are non-decreasing, we have

OPT =
m
∑

i=1

ci · Pr[ℓ = i] =
m
∑

i=1

Pr[ℓ = i]

Pr[ℓ ≥ i]
=

m
∑

i=1

hi

However, since at most one bidder can be satisfied by any knapsack size, no algorithm can do better than
picking some bidderi and assigning all items that arrive to bidderi. Such an algorithm achieves welfareci
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in the case thatki items arrive. By construction, this yields expected welfare (1/Pr[ℓ ≥ i]) · Pr[ℓ ≥ i] = 1,
which completes the proof.

KnapsackGuess(D):
1. Solicit bids. For each bidderi, create a knapsack instance with one item corresponding to each bidderi,

with sizeki and valueci. For eachs ∈ [1,m] let OPTs be the value of the optimal solution to
this knapsack instance when the knapsack has sizes.

2. Lets∗ = arg maxs Pr[ℓ ≥ s] · OPTs.

3. Assign items as they arrive to bidders corresponding to the optimal solution for a knapsack of sizes∗

in an arbitrary order, until each bidderi in the solution has received his demand,ki items.

RemarkA.11. Rather than solving the knapsack problem exactly to findOPTs, we can use the greedy-by-
density algorithm to find a 2-approximation.7 It is simple to see that the greedy knapsack algorithm can
only ever output at most2n distinct solutions, regardless of knapsack size. Therefore, at the cost of a factor
of 2, our algorithm only has to consider2n solutions, each of which can be computed in polynomial time.

Proposition A.12(Proposition 6.2). For any distributionD with (arbitrary) hazard ratehi KnapsackGuess(D)
achieves at least a

∑m
i=1 hi approximation to optimal social welfare.

Proof. KnapsackGuess(D) achieves welfareOPTs∗ whenevers∗ items arrive, which occurs with probabil-
ity Pr[ℓ ≥ s∗]. Therefore, KnapsackGuess achieves welfare at leastOPTs∗ ·Pr[ℓ ≥ s∗] ≥ OPTs′ ·Pr[ℓ ≥
s′] for all s′. Let OPT denote the expected optimal welfare when the number of itemsto be sold is drawn
from D. If KnapsackGuess achieves no better than anα approximation to social welfare, then for all
s′ ∈ [1,m]: OPTs′ · Pr[ℓ ≥ s′] ≤ OPT/α, or equivalently:

OPTs′ ≤
OPT

αPr[ℓ ≥ s′]
.

By definition:

OPT =
m
∑

i=1

OPTi · Pr[ℓ = i].

Using our above bound onOPTi:

OPT ≤

m
∑

i=1

OPT ·
Pr[ℓ = i]

αPr[ℓ ≥ i]
.

Therefore:

α ≤
m
∑

i=1

Pr[ℓ = i]

Pr[ℓ ≥ i]
=

m
∑

i=1

hi

which completes the proof.

7The greedy-by-density algorithm first discard all items of size larger than the knapsack size and then picks the best of the
following two allocations: the greedy-by-density allocation that picks requests in decreasing ratio of value to size until the next
element does not fit, and the allocation that gives all the items to the request of highest value.
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