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ABSTRACT
A significant challenge in distributed work systems is to address the
moral hazard problem wherein users may seek to free-ride on the
work contributed by others. We formalize the problem of designing
incentive-compatible accounting mechanisms, that measure the net
contributions of users despite relying on voluntary reports of work
performed and work received. A new mechanism is introduced
that removes any incentive for a user to manipulate via misreports,
about either work contributed or work consumed. The mechanism
is demonstrated in simulation to provide good system efficiency
compared to an existing, manipulable mechanism. In closing, we
illustrate that sybil attacks are, however, powerful in accounting
mechanisms which leaves an open research challenge.

1. INTRODUCTION
The Internet connects millions of people and leads to novel ways

of interaction and collaboration. Distributed work systems arise in
many places where individual users perform work for other users,
often called peer production [3]. For example, users of a peer-to-
peer (P2P) file-sharing network share videos, music or software
with each other. The users of a P2P backup system provide their
hardware space to each other to backup each other’s data. Amazon
Mechanical Turk and other so-called “crowd sourcing" applications
suggest an explosion of interest in new paradigms for economic
production.

Of course, the total work performed by a user population must
equal the total work consumed. Moreover, while some degree of
free-riding may be acceptable (e.g., if some users are altruistic
while work is extremely costly for others), it is generally accepted
that the long-term viability of work systems that operate without the
use of monetary transfer must rely on roughly balanced work con-
tributions by the great majority of users. Often time this is achieved
by seeking to enforce temporally-local balance, such as via a fair
exchange protocol such as BitTorrent [6]. Yet, this “local balance"
clearly introduces a large inefficiency– users are limited to consum-
ing work at a rate at which they can themselves produce work, must
be able to simultaneously consume and produce work, and cannot
perform work and store credits for future work consumption [11].1

1Pouwelse et al. [12] have found that more than 80% of BitTorrent
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The problem of accounting mechanisms is motivated by this es-
tablished need to tally work contributed and work consumed, so
as to be able to improve system efficiency by temporally decou-
pling these two activities. But the challenge in designing a useful
accounting mechanism is that it must work despite relying on vol-
untary reports by the same users that may seek to free-ride. For this
reason, it needs to be robust to manipulations; e.g., to improve my
standing in the system I might seek to overstate my amount of work
contributed, or understate my amount of work consumed.

1.1 Reputation vs. Accounting Mechanisms
The problem of designing an incentive-compatible accounting

mechanism shares some features with work on transitive reputa-
tion mechanisms [8, 1, 4, 5, 14, 2], in that if A trusts B enough
to perform some work for B and B trusts C enough to perform
some work for C then A should also have some level of trust in
C. Yet, there are some significant differences. First, and somewhat
informally, the essence of accurate accounting is the operation of
addition whereas the essence of accurate reputation aggregation is
the operation of averaging. Second, in distributed work systems,
every positive report by A about his interaction with B, i.e., B
performed work for A, is simultaneously a negative report about
A, i.e., A received work from B. This fundamental tension is not
present in reputation mechanisms where a good report by A about
B does not reflect badly on A.

Third, sybil attacks in which a user creates multiple fake identi-
ties are more powerful in distributed work systems. In PageRank
for example, the only concern about a sybil attack is that a user can
increase the reputation (i.e. rank) of his website by creating a set
of sybils that are linking to his original website. A user does not
directly benefit from a sybil website with a high reputation. Var-
ious reputation mechanisms (e.g., maxflow, hitting-time, shortest-
path [4, 14, 1] are sybil-proof in this sense. The situation is drasti-
cally different in distributed work systems. For example, in a P2P
file-sharing network, if I can create sybils with some positive repu-
tation, then I can use these sybils to receive work from other users
without having the negative effect of having that “received work”
be associated with my real account. Standard sybil-proof mecha-
nisms do not protect against these kinds of sybil attacks and thus a
new approach is required.

We are interested also in decentralized accounting mechanisms
in which there is no central infrastructure to collect reports about
work performed and consumed and run information-aggregation al-
gorithms. Rather, in systems such as P2P file sharing-networks it is
interesting to strive for fully distributed architectures.

users go offline immediately once they have finished download-
ing. Long-term accounting mechanisms would solve this problem
by giving users an incentive to share even after they have finished
downloading.
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Figure 1: A sample work graph. All edges have one weight.

1.2 Overview of Results
In this paper, we present the first formal model of the problem

of incentive-compatible accounting mechanisms and introduce the
Drop-Edge Mechanism, a new mechanism that is robust to mis-
reports. Along the way, we suggest a simple attack of Barter-
Cast [10], an existing accounting mechanism. The simulation re-
sults suggest that the effect of misreports in BarterCast can be sig-
nificant, allowing users to successfully free-ride and reduce the ef-
ficiency of the system for cooperating users. Our new mechanism,
in comparison achieves much better system efficiency. Finally, we
consider the question of sybil attacks and show multiple ways in
which BarterCast as well as our mechanism can be manipulated
via sybils. This leaves to an interesting open research challenge.

1.3 Related Work
The mechanism that we present is motivated by BarterCast [10],

a max-flow based decentralized accounting mechanism for P2P file-
sharing networks. BarterCast was introduced by Meulpolder et
al. to successfully distinguish between cooperative peers and free-
riders, and to improve the efficiency for cooperative peers over
time. However they do not analyze the attacks presented here in
detail. Piatek et al. [11] also study the problem of decentralized
accounting in P2P file-sharing, and find empirically that most users
of a P2P network are connected via a one hop link in the connection
graph. Based on this, they propose to use well-connected interme-
diaries to broker information on contributions by users. The main
drawback of this approach is the special role that the intermediaries
play because they become bottlenecks for the system and further-
more there is no incentive for them to behave truthfully in serving
as intermediaries. A different approach to accounting in P2P sys-
tem is taken by the literature on virtual currency (scrip) systems [7].
Our work is very different from this because we do not require a
trusted currency, and work is not intermediated by a trusted center.

2. FORMAL MODEL

2.1 Distributed Work Systems
Consider a distributed work system of n agents each capable of

doing work for each other. For example, this could be P2P file
sharing in which work is done by uploading a file from one peer to
another. All work is assumed to be quantifiable in the same units.
The work performed by all agents in the system is captured by a
work graph (see Figure 1):

Definition 1. (Work Graph) A work graph G = (V, E, w) has
vertices V = {1, . . . , n}, one for each agent, and directed edges
(i, j) ∈ E, i, j ∈ V corresponding to work performed by i for j,
with weight w(i, j) ∈ R≥0 denoting the number of units of work.

In general, the work graph is unknown to individual agents be-
cause it represents the true work performed by all agents. Instead,
every agent only has direct information about its own participation:

Definition 2. (Agent Information) Each agent i ∈ V keeps
a private history (wi(i, j), wi(j, i)) of its direct interactions with
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Figure 2: A subjective work graph from agent i’s perspective.
Edges where i has direct information have only one weight.
Other edges can have two weights, corresponding to the reports
of the two agents involved.

other agents j ∈ V , where wi(i, j) and wi(j, i) are the work per-
formed for j and received from j respectively.

Whereas the work system itself is always distributed and is not
intermediated, we consider both centralized and decentralized ac-
counting mechanisms. In both cases, agents are able to make volun-
tary (and possible untruthful) reports about their local information.
Based on its own experiences and known reports from other agents,
agent i can construct a subjective work graph (see Figure 2):

Definition 3. (Subjective Work Graph) A subjective work graph
(from agent i’s perspective), Gi = (Vi, Ei, wi), is a set of ver-
tices Vi ⊆ V and directed edges Ei. Each edge (j, k) ∈ Ei

for which i /∈ {j, k}, is labeled with one, or both, of weights
wj

i (j, k), wk
i (j, k) ∈ R≥0, denoting the edge weight as reported

by agent j and agent k respectively. For edges (i, j) and (j, i) the
associated weight is wi

i(i, j) = w(i, j) and wi
i(j, i) = w(j, i) re-

spectively.

Note that wj
i (j, k) and wk

i (j, k) need not be truthful reports
about w(j, k). In a centralized accounting mechanism, agents can
make claims about work to the center, which then shares these re-
ports with all other agents. In a decentralized mechanism, these
reports are “gossiped" over the system from agent to agent. The
suggested exchange protocol that an agent follows, potentially sub-
ject to alteration by a manipulating agent, is:

Definition 4. (Information Exchange Protocol) Whenever agent
i is contacted by agent j via the gossip protocol, the agents ex-
change information about work performed and received in the Nr

most recent transactions and also about the Nh agents from which
the most work has been received.

2.2 Accounting Mechanisms
In distributed work systems, every agent i who is willing to per-

form work might receive a work request by a set of agents that he
has rarely or never interacted with before. This induces a choice
set:

Definition 5. (Choice Set) We let Ct
i ⊆ V \ {i} denote the

choice set for agent i at time t, i.e., the set of agents that are inter-
ested in receiving some work from i at time t.

We assume that an agent has no a priori bias towards assisting
one agent over another. Furthermore, it is not useful for an agent to
receive work from or perform work for one of its own sybil nodes.
The role of an accounting mechanism is to provide an estimate of
the net work contributed by each agent j ∈ Ct

i to the system.

Definition 6. (Accounting Mechanism) An accounting mecha-
nism takes as input a subjective work graph Gi, a choice set Ct

i ,
and determines the reputation Rj(Gi, C

t
i ), for any agent j ∈ Ct

i ,
as viewed by agent i.



Based on the results of the accounting mechanism, the agent then
decides which actions to take, i.e., how much work to perform for
which agent.2 We will use the following allocation method in this
paper:

Definition 7. (Winner-takes-all Allocation) Given subjective work
graph Gi and choice set Ct

i , agent i performs one unit of work for
agent j ∈ arg maxk∈Ct

i
Rk(Gi, C

t
i ), breaking ties at random.

In general, other allocation rules can be used, e.g., proportional
allocation, or threshold rules, and we will consider those rules for
future research. However, in this paper we focus on the winner-
takes-all allocation rule.

2.3 Strategic Manipulations
The basic concern in distributed work is to prevent users from

free riding on the contributions of others. For this purpose, we
adopt the model of Meulpolder at al. [10] considering a popula-
tion that consists of a mixture of cooperative agents, who always
offer one unit of work in every time step, and malicious agents
(or so-called “lazy free-riders" [10]) who try to intermittently shirk
work. The role of an accounting mechanism is to make it difficult
to benefit by being a malicious agent. But given the presence of
an accounting mechanism, we also model a subset of the malicious
agents as strategic agents that will try to manipulate the mechanism
in various ways while also trying to free ride.3

Manipulations of the accounting mechanism can occur by mis-
reports of work, both performed and consumed, and also by in-
troducing sybil nodes that may perform and consume work while
also misreporting information. We suggest the following ranking
of possible kinds of manipulations (in order of decreasing impor-
tance): (1) misreports to increase your own reputation; (2) mis-
reports to decrease someone else’s reputation; (3) sybil attack to
increase your own or your sybil’s reputation; (4) sybil attack to de-
crease someone else’s reputation.

Misreports are easier to execute than sybil attacks because a user
must simply modify the information reporting protocol of a client
(to either the center, or via gossiping, depending on whether the
mechanism is centralized or decentralized.) On the other hand,
successful sybil attacks require adopting multiple IP addresses and
therefore using anyonymizing networks such as Tor, preventing
an additional level of complication. Moreover, if work were per-
formed or received under one of these sybils then this would need
to be coordinated with the “main" user application. In addition,
attacks that boost yourself are more useful than attacks to hurt an-
other user because the former provides a user with an increased
reputation in every interaction, whereas decreasing another user’s
reputation only benefits the user in the event that the other user is
in the same choice set (which will occur with low probability as
the network size increases).4 We believe that this priorization pro-
vides useful guidance in developing an accounting mechanism that
2In adopting the term “reputation" for the output of the accounting
mechanism we are consistent with prior work [10], but not because
we intend to convey any additional similarity between accounting
and reputation mechanisms.
3Note that this simple model, in which cooperative agents con-
tribute work every period is designed as a simple test of the ef-
fectiveness of an accounting mechanism and is not meant to imply
that cooperative behavior requires that an agent contributes in each
and every period!
4Note that we assume that the way agents make it into one another’s
choice set is not subject to manipulation. Thus, sybil attacks where
sybils are used to increase the number of interaction parters are not
explicitly considered [9]. Furthermore we don’t consider attacks
on the amount of information gossiped (via the suggested informa-
tion exchange protocol) because less information is not useful when
attacking, and we assume that other agents will simply ignore ad-
ditional information. Last, we do not consider manipulations that
increase the frequency with wich information is spread.

strikes a good balance between informativeness and robustness to
manipulation. For the most part, we will focus in what follows on
misreport manipulations:

Definition 8. (Misreport Manipulation) A misreport manipu-
lation is one in which agent i reports untruthful information about
its work in the system, either to the center in a centralized account-
ing mechanism or via an information exchange protocol in a decen-
tralized accounting mechanism.

Given this, we define an accounting mechanism that is robust to
manipulation as follows:

Definition 9. (Misreportproof) An accounting mechanism is mis-
reportproof if, for any agent i ∈ V , any subjective work graph Gi,
any work graph G, and any choice set Ct

i in period t, no agent
j ∈ Ct

i has a misreport manipulation for which:

• Rj(G
′
i, C

t
i ) > Rj(Gi, C

t
i ),

• or Rk(G′i, C
t
i ) < Rk(G′i, C

t
i ) for some k ∈ Ct

i \ {j},

where G′i is the subjective work graph of agent i induced by the
misreports.

This condition is valid to preclude a useful misreport manipula-
tion by any agent that has non-negative utility for consuming work
of others, non-positive utility for performing work, and when cou-
pled with an allocation rule that allocates (weakly-) monotonically
less work to agent i as its reputation decreases and the reputation
of other agents increases. Given an accounting mechanism that is
misreportproof, we assume that users who consider only misreport
attacks will then choose to faithfully follow the intended protocol
and be truthful (because reporting truthful information cannot be
harmful to themselves).

3. THE BARTERCAST MECHANISM
To the best of our knowledge, the BarterCast mechanism [10]

was the first decentralized accounting mechanism to use a decen-
tralized message exchange protocol to build up a subjective band-
width graph. The mechanism is already implemented in the BitTor-
rent client Tribler [13] and can be downloaded for free.

Definition 10. (BarterCast Mechanism) Given subjective work
graph Gi and choice set Ct

i , construct the modified graph G′i =
(Vi, Ei, w

′
i) with weights defined as (where missing reports are set

equal to ∞):

∀(j, k)|i ∈ {j, k} : w′i(j, k) = wi
i(j, k) (1)

∀(j, k)|i /∈ {j, k} : w′i(j, k) = min{wj
i (j, k), wk

i (j, k)} (2)

Let MF (i, j) denote the maximum flow from i to j in G′i. Define
the reputation of agent j as Rj(Gi, C

t
i ) = MF (j, i)−MF (i, j).5

In BarterCast, an agent takes its own information over reports
from others and given two reports takes the minimum of the two.
By taking the minimum, one agent cannot grossly inflate the work
that it has performed for another agent when that other agent also
submits a report. On the other hand, one agent can grossly reduce
the work that it has consumed (or equivalently, that another agent
has contributed.) The motivation for running a max-flow algorithm
on the resulting subjective work graph comes from the literature
on sybil-proof reputation mechanisms (see, e.g., Cheng and Fried-
man [4]). The max-flow algorithm bounds the influence of any
report that agent j can make by the edges between agents i and j.
5This specification of BarterCast differs from Meulpolder et
al. [10] only in that they take the arctan of the difference between
the flows. Because arctan is a monotonic function this does not
change the ranking of the agents and thus it doesn’t make a differ-
ence for the experiments in this paper.
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Figure 3: (a) Work graph 1 based on true reports. (b) Subjective work graph as viewed by i, including a misreport attack by j to
boost his reputation in BarterCast. (c) Sample work graph 2 based on true reports. (d) Subjective work graph 2 as viewed by i,
including a misreport attack by j to decrease agents’ k1, k2, and k3 reputations. Dotted edges indicate misreports.

The BarterCast mechanism can be manipulated in two simple
ways via misreports. In fact, it is a dominant strategy in BarterCast
for a strategic agent to always report ∞ work performed for all
other agents while having received 0 work. The informativeness of
the mechanism must therefore rely on cooperative, or malicious but
non-strategic agents.

See Figure 3. In all cases we are showing the subjective work
graph from i’s perspective and the manipulating agent is j. Graph
(a) is showing a work graph based on true reports only. Graph (b)
is showing the same graph but now including a misreport by agent
j to boost its own reputation. Agent j has simply reported that it
has done a lot of work for the agents k1, k2, and k3. The Barter-
Cast mechanism does not catch this, because there are no reports
from these other agents. The max-flow algorithm determines that
the maximum flow from j to i is now 30, while the maximum flow
from i to j is 0. Thus, using this misreport attack, agent j has in-
creased his reputation from agent i’s perspective from 0 to 30. A
second misreport attack is displayed in Figure 3 (c) and (d). Graph
(c) shows a new work graph based on true reports only. Graph (d)
shows a misreport manipulation by agent j where he simply re-
ported that he did a lot of work for agents k1, k2, and k3. This does
not affect the reputation of agent j, but it decreases the reputation of
agents k1, k2, and k3 from 0 to -10. Thus, without the manipulation
all agents had a reputation of 0 and after the manipulation, agent j
has influenced the reputation of the other agents to be negative.

4. THE DROP-EDGE MECHANISM
While the authors of BarterCast [10] argue that only few agents

are actually behaving strategically in P2P file-sharing networks, we
should expect that this will only be the case if agents can only ben-
efit little from manipulations. Using an accounting mechanism as
easily manipulable as BarterCast may open up a large opportunity
for successful free-riding (coupled with an ineffectual accounting
mechanism.) The experience with Kazaa Lite has shown that a ma-
jority of users might adopt a hacked client (and thereby become a
strategic agent) if the expected benefit from doing so is high.

It turns out that the solution to the misreport manipulations of
BarterCast is amazingly simple yet powerful. We use the main
paradigm in mechanism design, namely that an agent’s own report
shall not affect his own “opportunity set”, i.e., the set of possible
outcomes it can achieve.

Definition 11. (Drop-Edge Mechanism) Given subjective work
graph Gi and choice set Ct

i , construct the modified graph G′i =
(Vi, E

′
i, w

′
i) with E′

i initialized to Ei and the weights defined as
(where missing reports equal 0):

∀(j, k)|i ∈ {j, k} : w′i(j, k) = wi
i(j, k) (3)

∀(j, k)|j, k ∈ Ct
i : w′i(j, k) = 0 (4)

∀(j, k)|j ∈ Ct
i , k 6∈ Ct

i : w′i(j, k) = wk
i (j, k) (5)

∀(j, k)|k ∈ Ct
i , j 6∈ Ct

i : w′i(j, k) = wj
i (j, k) (6)

∀(j, k)|j, k /∈ Ct
i , i /∈{j, k} :w′i(j, k)=min{wj

i (j, k), wk
i (j, k)}

(7)

Let MF (i, j) denote the maximum flow from i to j in G′i. The
mechanism sets the reputation of agent j as follows: Ri(j) =
MF (j, i)−MF (i, j).

In the Drop-Edge Mechanism, the behavior is the same as Barter-
Cast when agent i has private information about an edge. Other-
wise, lines (4)-(6) implement the “edge-dropping” idea. Any re-
port from an agent in the choice set is dropped and an edge (j, k)
is dropped completely if both j and k are in the choice set. Finally,
when two reports are available the information is combined via a
min operator just as for BarterCast. Note that we could use max
without compromising the incentive properties of our mechanism,
however we use min to simplify the comparison with BarterCast
for now. In general, using max would promote improved infor-
mativeness by taking the more recent report (since reports of work
only increase.)

PROPOSITION 1. The Drop-Edge Mechanism is misreportproof.

PROOF. No report of an agent i is used in making a decision
whenever agent i is in the choice set of any other agent j.

Note that we do not need the use of maxflow for the mechanism
to be misreportproof. On the other hand, this is retained to allow
for a direct comparison with BarterCast and because it seems to
have an essential role in protecting against sybil attacks while still
providing some degree of informativeness.6

5. EXPERIMENTAL EVALUATION
We have shown in the last section that the Drop-Edge mechanism

is misreportproof, and thus has better robustness against manipula-
tion than BarterCast. However, this does not tell us about its useful-
ness in practice. We are dropping edges to achieve this additional
robustness which implies that some information will be lost. In
this section, we evaluate the two mechanisms empirically via sim-
ulation to better understand the trade-off between informativeness
and incentive compatibility that the mechanisms are making.

5.1 Experimental Set-up
We simulate a P2P file-sharing environment with 100 agents and

discrete time steps. Downloading a file is consuming work and up-
loading a file is performing work. In every time step, every agent
decides whether to upload one unit of work to the other agents in
the network or not. Agents are divided into cooperative and mali-
cious agents– cooperative agents always upload one unit of work,
while malicious agents only upload in every other round. A frac-
tion β of the agents are malicious. Furthermore, we also have a
fraction γ of all agents that are strategic: these agents are mali-
cious but in addition seek to manipulate the accounting mechanism
6Without this concern, though, one could in fact define a variation
of the mechanism that simply computes the “perfect" net contribu-
tion of agent j ∈ Ct

i given modified, subjective work graph G′i,
as Ri(j) =

∑
k|(j,k)∈E′i w′i(j, k) − ∑

k|(k,j)∈E′i
w′i(k, j). This

would remain misreportproof.
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Figure 4: Bandwidth achieved by different groups of agents under the different accounting mechanisms.

through misreports when this it is advantageous (i.e. when they can
increase their reputation or work consumed).

In every round, when an agent decides to do work for the sys-
tem, he gets a random choice set of 5 agents. With probability 0.1
he uploads 1 unit to a random agent (simulating optimistic unchok-
ing), and with probability 0.9, he uses his accounting mechanism
and the allocation rule to determine whom to upload to. After every
round, every agent contacts one other agent at random to exchange
messages about their direct experiences in the network. All agents
send a report about the last 5 agents they have interacted with and
about the 5 agents that have uploaded the most to them. Both coop-
erative and malicious, non-strategic agents will make these reports
truthfully. Strategic agents perform misreport manipulations.

For both the Bartercast and Drop-Edges mechanisms we run a
centralized and decentralized version for the experiment. The cen-
tralized version proceeds like the decentralized version, except no
message passing takes place. Reports are made directly to a central
entity, and every agent has access to those reports. Thus, agents can
still misreport their true values to the mechanism, while maintain-
ing true information in their local graphs. Note that the centralized
Drop-Edge mechanism also drops the edges from the choice sets.
Also considering the centralized versions of the mechanisms helps
isolate the effect of the message passing algorithm.

We run each simulation for 100 time steps, recording the amount
each agent has uploaded and downloaded. This allows us to deter-
mine absolute and relative efficiency statistics about the different
agent groups. We measure the average amount of bandwidth re-
ceived by each type of agent per time step. Each experiment is
averaged over 20 trial runs.

5.2 Informativeness & Efficiency Results
Informativeness: The first thing we want to check is the infor-
mativeness of the two mechanisms. We measure this indirectly by
considering the efficiency measurements when no strategic agents
are present. We look at the graphs in Figure 4 (a) with zero strategic
agents, i.e. where γ = 0 . We expect Drop-Edge to be slightly less
informative because we are dropping information that BarterCast
is using. And in fact we see that the efficiency is higher under both
the centralized and decentralized versions of the Bartercast mecha-
nism, but only minimally so (and only with zero strategic agents).
Thus, the solution to the misreport manipulations of BarterCast
make the Drop-Edge mechanism only slightly less informative in
the absence of strategic agents.

Efficiency: The more interesting experimental analysis concerns
the overall efficiency of the system with malicious and strategic
agents. It is our goal to maximize the efficiency of the cooper-
ative agents and to minimize the efficiency for malicious agents,
and for strategic agents in particular. In the P2P filesharing set-
ting, the efficiency is measured as the amount of bandwidth down-
loaded/consumed: we would like to reward peers who share more
with more download bandwidth.

By comparing Figures 4 (b) and (c), we see the relative efficiency
of the strategic agents compared to the malicious agents under the
Bartercast and Drop-Edges mechanisms. It is important to note
that strategic agents are able to sharply increase their average per-
formance by misreporting under the Bartercast mechanism. The
bandwidth received by strategic agents is significantly higher than
that of the good and malicious agents. This effect is particularly
high when only a few strategic agents are in the system. With 10%
strategic agents, the performance of a strategic agent is 3 times as
high as that of the other agents under the decentralized BarterCast
mechanism, and more than 5 times as high under the centralized
BarterCast mechanism. Thus, with BarterCast, agents have a very
large incentive to act strategically. The Drop-Edge mechanism in
contrast leads to the same constant efficiency for strategic as for
malicious agents, and the performance of cooperative agents is al-
most twice as high as that of malicious and strategic agents.

Efficiency over time: We also ran a longer experiment with β =
0.5, γ = 0.2 for 500 trials, measuring efficiency over the course of
the simulation. In Figure 5, we see that the performance improve-
ments that strategic agents gain from misreporting get even larger
over time. The misreport attack is effective at increasing their repu-
tations and increasing the amount of download bandwidth they re-
ceive. This occurs at the expense of the other agents in the system.
Compare this against Figure 6, which presents results for the same
simulation under the Drop-Edge mechanism. Strategic agents can-
not manipulate their reputations, and receive decreasing amounts of
bandwidth as the simulation proceeds. At the end of the run, good
agents receive more than twice as much bandwidth per round.
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Figure 7: (a) A sybil attack where agent j uses his sybil sj to decrease the reputation of the agents k1, k2, and k3. (b) A sybil attack
where agent j generates many sybils, then does a little bit of work for i and then provides its sybils with positive reputation. (c) A
collusion attack involving agents j and k which only works for the Drop-Edge mechanism. Dotted edges indicate false reports.

6. SYBIL ATTACKS AND COLLUSION
We begin this section addressing the well-known problem of

sybil attacks. However, as we have pointed out earlier, sybil at-
tacks in distributed work systems are much more powerful than in
the standard transitive trust scenarios. For example, the max-flow
reputation mechanism has been shown to be sybil-proof [4], but
this is only for the weaker notion that an agent cannot increase its
own reputation by using a sybil attack. In our environment, both
the BarterCast and the Drop-Edge mechanisms are susceptible to
sybil attacks despite using variants of the max-flow mechanism.

Consider graph (a) in Figure 7 where we illustrate the first sybil
attack. Here, agent j, instead of receiving directly 10 units from i,
generates sybil sj and lets the sybil receive 10 units from i. That
sybil can now claim that it has done 10 units of work for all other
agents k1, k2, and k3. Thus, after the attack, agent j has a reputa-
tion value of 0, while the agents k1, k2, and k3 all have a reputation
of -10. This attack was possible because sj had received 10 units
of work from i and now i allows sj to make arbitrary reports about
other agents up to 10 units of work. But why should agent i trust
agent j’s reports in the first place?

It turns out that this is exactly the crux of the problem with these
two mechanisms in regard to sybil attacks. By using the max-flow
mechanism in this way, the semantics of transitive-trust mecha-
nisms unravels. The general idea of transitive trust is “I trust you
and your reports if I know you are good." However, in this sybil
attack, agent i trusted the reports of sj although sj never did any
work for i, i.e., never proved to be trustworthy. A solution that
would fix this sybil attack would be an asymmetric max-flow mech-
anism that only propagates flow from any node k (that makes a
report) to i along paths directed towards i, because all of the edges
on that path correspond to work and thus provide some evidence
about the trustworthiness of the corresponding agents. We are cur-
rently analyzing the resulting asymmetric accounting mechanisms
analytically and experimentally.

Now, consider graph (b) in Figure 7 where we illustrate the sec-
ond sybil attack. Here, agent j does a little bit of work for agent i
and then propagates the resulting trustworthiness to all of its sybils,
providing them with positive reputation. This sybil attack is partic-
ularly powerful because as a result of the manipulation, all of j’s
sybils can now receive work from i, and in general, j could just
keep producing new sybils ad infinitum. The problem with this at-
tack is that if agent j has earned some trustworthiness once, j can
benefit from that infinitely often. A solution to this problem seems
very challenging. One idea is to also track the total amount of flow
on an edge (i, j) that has been used by any agent in determining
the reputation assigned to some other agent k that is the selected to
receive work. The amount of flow that is tracked as having been
“utilized” is limited to be no more than the actual amount of work
performed by j and thus j’s influence (on its sybils or otherwise)
is bounded. In a decentralized system, correctly keeping track of
these utilizations would require an additional message protocol that
distributes this information. We are currently analyzing this ap-

proach analytically and experimentally. Ultimately, it is our goal
to design accounting mechanisms that are strongly sybil-proof, i.e.,
that are robust to all of these sybil manipulations.

Finally, we want to briefly point out an interesting collusion at-
tack that is only possible with the Edge-Drop mechanism. Consider
graph (c) in Figure 7 where agents j and k collude. Both agents
make two reports: first, they report that the other agent has done a
lot of work for them and second they report that they have not done
any work for the other agent. This collusion works because both
agents know that whenever they are in a choice set, their report will
be dropped anyways, and thus, they are not suffering from their
own negative report about themselves, but the other agent might
benefit from the positive report about him. However, this collusion
does not seem to be a problem in practice because it would be very
difficult to implement. Agent j only gains any benefit if agent k
adheres to the collusion contract, but this is hard to verify for agent
j. Thus, there is neither an incentive on k’s side nor on j’s side to
change/hack the protocol (assuming that changing the protocol has
some small ε cost) and the other agent will never find out. Thus,
if agents j and k are rational, then in equilibrium they both won’t
manipulate. This is a nice example where the traditional “tragedy
of the commons” actually leads to a positive overall outcome for
the rest of the community.

7. CONCLUSION AND FUTURE WORK
In this paper we have formalized the problem of designing incen-

tive-compatible accounting mechanisms for distributed work sys-
tems and modified BarterCast to create Drop-Edge, which is robust
to misreport attacks. In future work, we will continue the analysis
of sybil attacks on accounting mechanisms, with the ultimate goal
of a strong sybilproof accounting mechanism. Because a strong
sybilproof mechanism may turn out not to be very informative, we
will then make use of more simulation experiments to find a good
trade-off between sybilproofness and informativeness. We conjec-
ture that it is very hard to simultaneously prevent attacks of both
3rd and 4th order in the same accounting mechanism without los-
ing any meaningful informativeness, and expect that the next ad-
vance will come by preventing attacks of 3rd order and leveraging
a problem asymmetry in the willingness to prevent 3rd order while
allowing 4th order attacks.
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