Computer Science

- is the study and the science of the theoretical foundations of information and computation and their implementation and application in computer systems. [Wikipedia]

 - Building systems
 - $F(x) =$?
 - How fast can we get the answer?
 - Focus on computational and informational constricts.
Economics

- is the social science that studies the production, distribution, and consumption of goods and services. [Wikipedia]
 - Economies (systems)
 - Many self-interested agents
 - Agents’ preferences/utilities over outcomes
 - Agents’ information and beliefs
 - Agents’ decision making
 - Game-theoretic interactions of agents

The Interface

- Computer systems are increasingly being developed and used by multiple parties with different preferences
 - Predict system outcomes
 - Design systems to achieve desired outcomes
- Economic problems sometimes are (hard) computational problems
 - Resource allocation
 - Price discovery

Theories, algorithms, and systems that satisfy both economic and computational constraints.
Lots of Compelling Applications

• Internet Monetization:
 Google, Yahoo!, Microsoft are using auctions to sell ads

• Markets are used for information aggregation
 – Google, Yahoo!, Microsoft, GE, etc. have internal prediction markets

• Social network and Social Tagging:
 Facebook, MySpace, LinkedIn, Flickr, LibraryThing

This Course

• Rotating topic course
• Previous
 – Fall 2009. Assignment, Matching, and Dynamics
 – Fall 2008. Social Computing
 – Spring 2008. Computational Finance
 – Spring 2007. Computational Mechanism Design
 – Spring 2006. Multi-agent Learning and Implementation

• Seminar style
Course Goals

• Provide an introduction to an emerging, interdisciplinary literature
• Develop a level of comfort with both economic and computational thinking
• Develop general skills related to reading papers, identifying research questions
• Provide a basis for continued research.

Fall 2010

• Information, Prediction, and Collective Intelligence
• Algorithmic, game theoretic, and conceptual questions related to obtaining information, making predictions, and getting tasks done by the crowds.
• Focus on eliciting and aggregating probabilistic information, bridging from economic theory to theory of online learning.
Crowds Are Smarter...

• Who wants to be a millionaire?
 – Fifty-Fifty
 Correct 50% of the time
 – Phone-A-Friend
 Correct 65% of the time
 – Ask the Audience
 Correct 91% of the time

Crowds Are Smarter...

• Jelly-Beans-in-the-Jar Experiment
 – Professor Jack Treynor ran the experiment in his class
 – with a jar that held 850 beans
 – the group estimate was 871
 – only one of the 56 people in the class made a better guess
Are Crowds Smarter?

- No always
 - Bad committee decisions
 - Endless group meetings

- In this course, we focus on mechanisms that intend to make crowds smarter.

Structure of the Course

- Introductory lectures (5 lectures)
 - This one, information theory and Kelly criterion, and game theory
- Research Papers
 - Incentivizing experts
 - Peer prediction
 - Prediction markets
 - Online learning
 - Analysis of existing collective intelligence systems
Enrollment & Prerequisites

- Enrollment is limited to about 20 students. Complete Survey at end of class!
- Prerequisites
 - Math background is important! At least a basic course in linear algebra (such as M 21b, AM 21b, or equivalent)
 - A course on probabilities and statistics (STAT 110 or equivalent)
 - An algorithm course (CS 124, or equivalent)
 - Familiarity with the concept of rationality. An AI course or an economics/game theory course.

Advanced course in algorithms, microeconomics, game theory, or linear programming are helpful but not required.

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem sets</td>
<td>25%</td>
<td>2-3 homework problem sets</td>
</tr>
<tr>
<td>Participation</td>
<td>25%</td>
<td>Reading papers, submitting short summaries and questions before class, and participation in class discussion. (Note: Absent students rarely contribute to discussions.)</td>
</tr>
<tr>
<td>Presentation of one or two research papers</td>
<td>15%</td>
<td>A short survey and critique of the papers. Lead class discussion.</td>
</tr>
<tr>
<td>Project</td>
<td>35%</td>
<td>Project proposal, class presentation, and final report.</td>
</tr>
</tbody>
</table>
Project

• **Goal:** develop a deep understanding of a specific research area and to the extend possible to work on an open research problem.
• Can be theoretical, computational, experimental, or empirical.
• Can write an exposition paper, but needs novelty!
• A list of high-level project topics will be provided. **You are encouraged to propose your own topic for approval!**
• Tentative project due dates:
 – Wednesday 11/3: project proposal due
 – Monday 12/6: brief project presentation
 – Friday 12/10: project report due

Logistics

• **TF**
 – Alice Gao

• **Office Hours**
 – Yiling: Monday 2:30 – 3:30, MD 339
 – Later will add office hours likely on Thursdays to meet with students in advance of presenting papers
 – Today, 2:30 – 3:30
 – Alice: Tue 2:30-4, MD 242

Missed course materials from the TF
Information, Prediction, and Collective Intelligence

• Motivating examples
 – Disease surveillance
 – Business forecasting
 – Multi-agent systems
 – Almost any decision making under uncertainty
 – Netflix Prize
 – DARPA Red Balloon Challenge

Examples of Course Topics

• Incentivizing experts
• Peer prediction
• Prediction Markets
• Online learning

Incentivize Experts

• Suppose I’d like to get information about tomorrow’s weather (sunny or rainy?)
• How can I ensure that an expert will tell me his/her true probability assessment of the event?

What If We Won’t Know the Outcome?

• Eg. Conditional events, subjective information
• Surveys
 – Eg. How many hours per week you spent on assignments?
 • Less than 5 hours
 • 5-10 hours
 • 10-20 hours
 • Above 20 hours

Peer Prediction and Bayesian Truth Serum
Combining information is hard!

• If we have multiple experts, how can we combine their information?
• Some impossibility results on combining probability distributions.
 – T(f1, f2, f3, ..., fn)
 – External Bayesianity
 – Independent of irrelevant alternatives
 => dictatorship

Bet = Credible Opinion

• Q: Will Obama win the Presidential election?

• Betting intermediaries
 – Las Vegas, Wall Street, Betfair, Intrade,...
Prediction Markets

• A prediction market is a futures market (betting intermediary) that is designed for information aggregation and prediction.
• Payoffs of the traded item is associated with outcomes of future events.

$\text{f}(x)$

Example: Iowa Electronic Market
A Combinatorial Betting Example

• 2^{51} outcomes, $2^{2^{51}}$ combinations
• Allow participants to bet on logical formulas
 – Create contracts on the fly:
 1 if Ohio AND Florida OR New York, 0 otherwise
 – Specify buy price and quantity
• Computationally hard!
Learning from Expert Advice

• The algorithm maintains weights over N experts

Slide Source: J.W. Vaughan

Learning from Expert Advice

• The algorithm maintains weights over N experts

• At each time step t, the algorithm…
 • Observes the instantaneous loss $l_{i,t}$ of each expert i

Slide Source: J.W. Vaughan
Learning from Expert Advice

- The algorithm maintains weights over N experts

\[l_{i,t} = 0 \quad w_{1,t} \quad l_{2,t} = 1 \quad \ldots \quad l_{N,t} = 0.5 \quad w_{N,t} \]

- At each time step t, the algorithm…
 - Observes the instantaneous loss $l_{i,t}$ of each expert i
 - Receives its own instantaneous loss $l_{A,t} = \sum_i w_{i,t} l_{i,t}$

Slide Source: J.W. Vaughan
Learning from Expert Advice

• The algorithm maintains weights over N experts

$$l_{1,t} = 0 \quad w_{1,t}$$
$$l_{2,t} = 1 \quad w_{2,t}$$
$$\ldots$$
$$l_{N,t} = 0.5 \quad w_{N,t}$$

• At each time step t, the algorithm…
 • Observes the instantaneous loss $l_{i,t}$ of each expert i
 • Receives its own instantaneous loss $l_{A,t} = \sum_i w_{i,t} l_{i,t}$
 • Selects new weights $w_{i,t+1}$

Slide Source: J.W. Vaughan
Learning from Expert Advice

- **Classic result:** There exist algorithms such that on any (bounded) sequence of losses,

 \[
 \text{algorithm's cumulative loss} - \text{loss of the best performing expert} < O\left(\frac{T}{\log N}\right)^{1/2}
 \]

- Holds even in a **fully adversarial** setting with **no statistical assumptions** about the sequence of losses

Slide Source: J.W. Vaughan
Learning from Expert Advice

• **Classic result:** There exist algorithms such that on any (bounded) sequence of losses,

\[
\text{algorithm’s cumulative loss} - \text{loss of the best performing expert} < O((T \log N)^{1/2})
\]

• Holds even in a fully adversarial setting with no statistical assumptions about the sequence of losses

Algorithm is said to have “no regret” since the average regret per trial approaches 0 as \(T \) grows

Slide Source: J.W. Vaughan
For Wed. 9/8

• Submit comments on Chapter 2 (2.1 – 2.8) of Elements of Information Theory
• Reading is posted on the class schedule.
• Check course website later this week on how to submit your comments
• What is unclear? What would you like to hear about in class? What did you enjoy?

• Please hand in the survey now.