FENN CHAPTER 14

INFORMATION THEORY
AND PORTFOLIO THEORY

The duality between the growth rate of wealth in the stock market and
the entropy rate of the market is striking. In particular, we shall find the
competitively optimal and growth rate optimal portfolio strategies. They

growth rate as the begt constant rebalanced portfolio i hindsight.

In Section 16.8 we provide a “sandwich” proof of the asymptotic
equipartition property for general ergodic processes that is motivated by
the notion of optimal portfolios for stationary ergodic stock markets.

16.1 THE STOCK MARKET: SOME DEFINITIONS

A stock market is represented as » vecior of stocks X ~— (X1, X5, ... X ),
Xi>0i=102 m, where m is the number of stocks and the price
relative X, is the ratio of the price at the end of the day to the price at the
beginning of the day. So typtcally, X; is near |. For example, X; = 1.03
means that the ith stock Went up 3 percent that day.

Let X ~ (x), where F (X} is the joint distribution of the vector of
Price relatives, A portfolio b = by, b, .. ., bn), b; > 0, > b =1, is an
allocation of wealth across the stocks. Here b; is the fraction of one’s
Wealth invested in stock i. If one uses a portfolio b and the stock vector
15 X, the wealth relative (ratio of the wealth at the end of the day to the
Wealth at the beginning of the day)is S =bh'X = >l b X

€ wish (0 maximize S in some sense. Byt § is a random variable,
the distribugion of which depends on portfolio b, so there is controversy
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L Mean sum of ©.i.d. versions of the random variable, But in the stock market,
e normally reinvests every day, so that the wealth at the end of n days
the product of factors, one for each day of the market. The behavior of

the product is determined not by the expected value but by the expected
Efficient ogarithm, This leads us to define the growth rate as follows:

frantier

Definition The growth rate of a stock market portfolio b with respect
o 2 stock distribution F(X) is defined as
Risk-free asset

W (b, F) mflogb"x dF(x) = E (logh'X) . (16.1)

If the logarithm is to base 2, the growth rate is also called the doubling

Variance e.

FIGURE 16.1, Sharpe—Markowitz theory: set of achievable mean-variance pairs. Yefinition The optimal growth rate W*(F) is defined as

over the cheice of the best distribution for S. The standard theory ¢ WH(F) = max Wb, F), (16.2)
stock market investment is based on consideration of the first and second
moments of S, The objective is to maximize the expected value of |
subject to a constraint on the variance. Since it is easy to calculate these
moments, the theory is simpler than the theory that deals with the entire
distribution of §.

The mean-variance approach is the basis of the Sharpe—Markow
theory of investment in the stock market and is used by business ang-
lysts and others. It is illustrated in Figure 16.1. The figure illustrates the
set of achievable mean-variance pairs using various portfolios. The set
of porifolios on the boundary of this region corresponds to the undomi:
nated portfolios: These are the portfolios that have the highest mean for
a given variance. This boundary is called the efficient frontier, and if o
is interested only in mean and variance, one should operate along this
boundary.

Normally, the theory is simplified with the introduction of a risk- free
asset {¢.g., cash or Treasury bonds, which provide a fixed interest rat
with zero variance). This stock corresponds to a point on the ¥ axis
in the figure. By combining the risk-free asset with various stocks, one
obtains all points below the tangent from the risk-free asset to the efficie
frontier. This line now becomes part of the efficient frontier.

ere the maximum is over all possible portfolios &; = 0, }:i by =1.

Definition A portfolio b* that achieves the maximum of Wb, F) is
catied a log-optimal portfolio or growth optimal porifolio.

* The definition of growth rate is justified by the following theorem,
which shows that wealth grows as 2"%"

Theorem 16.1.1  Ler X, Xz, ..., X,, be ii.d. according to F(x). Let

n
= Hb*’X,- (16.3)

i=1

¢ the wealth after n days using the constant rebalanced portfolio b*. Then
l ]

—log §; — W* with probability 1. (16.4)
n

roof: By the strong law of large numbers,

I i i ‘ .
The concept of the efficient frontier also implies that there is a trus —log§, = — Zlog h*'X; (16.5)
price for a stock corresponding to its risk. This theory of stock price " "
cailed the capiral asset pricing model (CAPM), is used to decide wheth — W* with probability 1. (16.6)

the market price for a stock is too high or too low. Looking at the me: .
of a random variable gives information about the long-term behavior, ence, §* = 2", , O



616  INFORMATION THEORY AND PORTFOLIO THEORY 162 KUHN-TUCKER CHARACTERIZATION OF THE LOG-OPTIMAL PORTFOLIO 617
162 KUHN-TUCKER CHARACTERIZATION
OF THE LOG-OPTIMAL PORTFOLIO

Let B={be R™:b; = 0,3 /b =1} denote the set of allowed porr-
folivs. The determination of b* that achieves W*(F) is a problem of
maximization of a concave function Wb, F) over a convex set B. The
maximum may lie on the boundary. We can use the standard Kuhn—-Tucker
conditions to characterize the maximum, Instead, we derive these condi-
tions from first principles.

‘We now consider some of the properties of the growth rate.

Lemma 16.1.1  W(b, F) is concave in b and linear in F. W¥(F) is:
convex in F.

Proof: The growth rate is
Wib, F) =f10gb’xdF(x). (16.7)

Since the integral is linear in £, so is W(b. F). Since Theorem 16.2.1  The log-optimal portfolio b* for a stock market X ~ F
(ie., the portfolio that maximizes the growth rate W(b, F))) satisfies the

following necessary and sufficient conditions:

Xi o
E (b*,X) =1  ifb >0
[ rfb;k = (. (16.12)

log(Ab) + (1 — b} X = Xogb{X + (1 — 4) log b3 X, (16.8)-
by the concavity of the logarithm, it follows, by taking expectations, that:
Wb, F) is concave in b. Finally, to prove the convexity of W*(F) as a;
function of F, let Fy and F3 be two distributions on the stock market and!
let the corresponding optimal portfolios be b*(F)) and b*(Fy), respee-:
tively. Let the log-optimal portfolio corresponding to AF| + (1 — L) F; be:
b*(LFy + (1 — L) F3). Then by linearity of W(h, F} with respect to F,’
we have

IA

Proof: The growih rate W(b) = E(lnb'X} is concave in b, where b
ranges over the simplex of portfolios. Tt follows that b* is log-optimum
v iff the directional derivative of W(-) in the direction from b* to any
alternative portfolio b is nonpositive. Thus, letting by = (1 — A)b* + Ab
forG <2 < I, we have

d .
—W(bx)l =0, belb (16.13)
) di A=0+4 .

These conditions reduce to (16,12} since the one-sided derivative at A =

0+ of Wiby) is

WH (G F) 4 (1 = 1) Fy)
= WA + (1 = ME)LAF + (1 = ) F) (16.9)
= AW(D*O.F) + (1 = D Fy), ) '

+ (1 =W AE + (1 -2 F), F)
S AWB(FD, F) + (3~ DWHD™(F), F), (16.1

d
—E(ln(b;X))I
since b (F}) maximizes Wb, F\) and b*(F3) maximizes W (b, ). d A=0+

.1 (1—0b¥X +2b'X

Lemma 16.1.2  The ser of log-optimal portfolios with respect to a give = ];}B IE (ln ( : b X )) (16.14)
distribution is convex.

.1 b'X
Proof:  Supposethatb, andb; arelog-optimal (i.e., W(bhy, F).= W(hy, F) - =E (&T& X In (1 +A (wa - 1))) (16.15)
= W*(F)). By the concavity of W(b, F)in b, we have . —_—

)

W(kb; + (1 = )ba. F} 2 AW(hy. F) + (1 — Wby, F) = WH(F), =E(h*fx) -t (16.16)

(16.11 . o _ L ,
where the interchange of limit and expectation can be justified using the

dominated convergence theorem [39]. Thus, {16,13) reduces to

b'X : '
E (ﬁ) -1=0 (16.17)

Thus, Ab; 4+ (1 — A)bs is also log-optimal.

In the next section we use these properties to characterize the log
optimal portfolic. '



613 INFORMATION THEORY AND PORTFOLIO THEQRY

for all b € B. If the line segment from b to b* can be extended beyond b* 7

n the simplex, the two-sided derivative at A = 0 of W(b,) vanishes and
(16.17) holds with equality. If the line segment from b to b* cannot be
extended because of the inequality constraint on b, we have an inequality
in (16.17).

The Kuhn-Tucker conditions will held for all portfolios b € B if they

hold for all extreme points of the simplex B since E(b'X/b*X) is linear

in b. Furthermore, the line segment from the jth extreme point (b : b; =
I, b; =0, # j)tob* can be extended beyond b* in the simplex iff b*

0. Thus, the Kuhn—Tucker conditjons that characterize the log- opumum :

b* are equivalent to the following necessary and sufficient conditions:

X;
E = if b*
(wa) [ ifB] >0,

<1  ifbr=0 0 (16.18)

This theorem has a few immediate consequences. One useful equiva-
lence is expressed in the following theorem.

Theorem 16.2.2  Let §* = b™'X be the random wealth resulting from
the log-optimal porifolio b*. Let § = WX be the wealth resulting from any
other partfolio b. Then

§ S
Eln <0 forall§ & Eox <1 foralls. (16.19)

Proof: From Theorem 16.2.1 it follows that for a log-optimal portfolio

b*
15 ( ‘ < l

for all /. Multiplying this equation by & and summing over i, we have

ZbE( ) Zb_l (16.21)

i=1 i=1

which is equivalent to
b'X S

The converse follows from Jensen’s inequality, since

S S
‘Elog§ < log EE*- <logl=0 10 (16.23)
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Maximizing the expected logarithm was motivated by the asymptotic

. growth rate. But we have just shown that the log-optimal portfolio, in

addition to maximizing the asymptotic growth rate, also “maximizes” the
expected wealth relative E(S/S*) for one day. We shall say more about
the short-term optimality of the log-optimal portfolio when we consider
the game-theoretic optimality of this portfolio,

Another consequence of the Kuhn—Tucker characterization of the log-
optimal portfolio is- the fact that the expected proportion of wealth in

each stock under the log-optimal portfolio is unchanged from day to day.
~ Consider the stocks at the end of the first day. The initial alocation of

wealth is b*. The proportion of the wealth in stock i at the end of the day

s bb,f;, and the expected value of this proportion is
brX; e N N
Eb*’X =biEb*’X = b (16.24)

Hence, the proportion of wealth in stock { expected at the end of the
day is the same as the proportion invested in stock / at the beginning of
the day. This is a counterpart to Kelly proportional gambling, where one
invests in proportions that remain unchanged in expected value after the
investment period.

16.3 ASYMPTOTIC OPTIMALITY OF THE LOG-OPTIMAL
PORTFOLIO

In Section 16.2 we introduced the log-optimal portfolio and explained its
motivation in terms of the long-term behavior of a sequence of investments
n a repeated independent versions of the stock market, In this section we
expand on this idea and prove that with probability I, the conditionally
log-optimal investor will not do any worse than any other investor who
uses 4 causal investment strategy.

We first consider an 1.1.d. stock market (i.e., X1, X2, ...
according to F(x)). Let

. X, are i.id-

n
S, = [piXi (16.25)

 be the wealth after n days for an investor who uses portfolio b; on day .
- Let

W = max Wb, F)y = max Elogh'X - (16.26)
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be the maximal growth rate, and let b* be a portfolio that achieves the
maximum growth rate. We only allow alternative portfolios b, that depend
causally on the past and are independent of the future values of the stock
market.

Definition A nonanticipating or causal portfolio strategy is a sequence
of mappings &; : R"U~1 > B, with the interpretation that portfolio &;(x;,
.X;_) is used on day i.

From the definition of W¥, it follows immediately that the log-optimal

portfolio maximizes the expected log of the final wealth. This is stated in
the following lemma,

Lemma 16.3.1  Ler S be the wealth after n days using the log-optimal
strategy b* on Li.d. stocks, and let S, be the wealth using a causal portfolio
strategy b;. Then

ElogS; =nW" > Elog$,. (16.27)
Proof
N
ik, Eloz S =, £ loghfX 1629
-—Z max Eloghi (X, Xa, ... Xi— )X,
bi(X. X2 Xioy
(16.29)
=Y Elogb*X; (16.30)
i=1
=nW?¥, (16.31)
and the maximum is achieved by a constant porifolio strategy b*. d

So far, we have proved two simple consequences of the definition of
log-optimal portfolios: that b* (satisfying (16.12)) maximizes the expected
log wealth, and that the resulting wealth S is equal to 2% 1o first order
in the exponent, with high probability.

Now we prove a much stronger result, which shows that S exceeds
the wealth (io first order in the exponent) of any other investor for almost
every sequence of outcomes from the stock market.

Theorem 16.3.1  (Asyvmptotic optimality of the log-optimal portfolio)
Let X\. X2, ..., X, be a sequence of L !d stock vectors drawn according

16.4 SIDE INFORMATION AND THE GROWTH RATE 621

to F(x). Let S = [1i_; b¥X,, where b* is the log-optimal porifolio, and

let S, = [17_, i X; be the wealth resulting from any other causal portfolio.
Then
. 1 Sy . .
limsup—log — <0 with probability 1. (16.32)
n—oco S”

Proof: From the Kuhn-Tucker conditions and the log optimality of 5,
we have
Sli‘
E— <1 (16.33)
Sp

Hence by Markov’s inequality, we have

S, o
Pr(S, > t,57) = (§I > z,,) < —. (16.34)
n
Hence,
1 S 1 1
Pr{-log==> ~logt, | < —. 16.35

Setting ¢, = n? and summing over n, we have

,, 2!ogn =] bid
- — = —, 16.36
ZPr( log ; )EZHZ 3 (16.36)

ni=1 n=1

Then, by the Borel-Cantelli lemma,

LS 2
Pr{=log 2t > 22" infinitely often) = 0. (16.37)
n S“ i b

This implies that for almost every sequence from the stock market, there
exists an N such that for all n > N, %log g’,’, < 210[" =. Thus,

Sy
lim sup 10 <0 with probability 1. O (16.38)
g o S

The theorem proves that the log-optimal portfolio will perform as well
as or better than any other portfolio to first order in the expenent.
16.4 SIDE INFORMATION AND THE GROWTH RATE

We showed in Chapter 6 that side information ¥ for the horse race X can
be used to increase the growth rate by the mutual information f(X; Y).
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We now extend this result to the stock market. Here, I (X; Y) is an upper
bound on the increase in the growth rate, with equality if X is a horse
race. We first consider the decrease in growth rate incurred by believing
in the wrong distribution.

Theorem 16.4.1  Let X ~ F{x). Let by be a log-optimal portfolio cor-
responding to f(x). and let by be a log- optimal portfolio corresponding
to some other density g (X}, Then the increase in growth rate AW by using
b instead of b is bounded by

AW = W(bs. F) — W(b,, F) < D(fllg). (16.39)

Proof: We have

AW = ff(x) iogb_;x—f_f(x}logb;x (16.40)
b’x i
fix) loog,— (16.41)
bix g(x) f(x)
16.42
]f( x) log cb,x 700 300 (16.42)
X g(x)
0-*——— + {16.43)
ff( Vlog =2+ DUFI)
g( X)
D{ (16.44)
<loff<> S 4 (1
bfx
= iogfg(x)-f + D(fllg) (16.45)
ng
(I ’
< logl-+ D(fllg) {16.46)
= D(filg). (16.47)

where (a) follows from Jensen's inequality and (b) follows from the
Kuhn—Tucker conditions and the fact that by is log-optimal for g. U

Theorem 16.4.2  The increase AW in growth rate due to side informa-
tion Y is bounded by

AW = I (X; ¥). | (16.4%)

16.5 INVESTMENT IN STATIONARY MARKETS 623

Proof: Let (X, Y) ~ f(x,y), where X is the market vector and Y is the
related side information, Given side information ¥ = y, the log-optimal

_ investor uses the conditional log-optimal portfolio for the conditional

distribution  f(x|¥ = v). Hence, conditional on ¥ = y, we have, from
Theorem [6.4.1,

Y =y

AWy, < DOFRIY = DIIf () = [ FIKIY = y) log %ﬁ dx.
” ' (16.49)

Averaging this over possible values of ¥, we have
AW < f f(y)ff(le —1og LHY =D e (1650)

¥ % Ix)

FY =y f(»)
- Y = )1 dxdy (16,51
[/f(y)f(x P08 ey Fy X4y (16D
Fx

| dxd 16.52
//f("y”gf()fm” (1652)
= 1(X; ¥). (16.53)

Hence, the increase in growth rate is bounded above by the mutual infor-
mation between the side information ¥ and the stock market X, 0

16.5 INVESTMENT IN STATIONARY MARKETS

We now extend some of the results of Section 16.4 from ii.d. markets
to time-dependent market processes. Let X;. Xz, ..., X, ... be a vector-
valued stochastic process with X; > 0. We consider investment strategies
that depend on the past values of the market in a causal fashion (i.e., b;
may depend on X, X, ..., X;_1). Let

Su= [ [PICX1 Xz Xin X (16.54)

i=1

Our objective is to maximize £ log S, over all such causal portfolio strate-
gies {b;(-}}. Now

1

1 = "loe bi X, )
1’1-{2?-?-(.% Elog Sy ; bf(xl‘;gaa-?(-xxi—l) ElogbiX; (16.55)

=Y Elogh!'X;, (16.56)
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where b} is the log-optimal portfolio for the conditional distribution of X;
given the past values of the stock market; that is, bY(X), X2, ..., X} s
the portfolio that achieves the conditional maximum, which is denoted by

max Ellogh'X;[(X), Xa.. ... Xic) = (X, %, ..., X1
= W*(XHX], X2, .0, X,'_]). (]657)
Taking the expectation over the past, we write

WEKiIX G X X)) = Emax E[log b XX XKoL K]
}

(16.58)
as the conditionai optimal growth rate, where the maximum is over all
portfolio-valued functions b defined on X, ..., X;_;. Thus, the high-
est expected log return is achieved by using the conditional log-optimal
portfolio at each stage. Let

WX, X5, .... X)) = max Elog S, (16.59)

where the maximum is over all causal portfolio strategies. Then since
log Sy =37 logh!'X;, we have the following chain rule for W*;

WAX Xa o X)) = ) WAKIX L X LX) (1660)

i=l

‘This chain rule is formally the same as the chain rule for H. In some
ways, W is the dual of H. In particular, conditioning reduces H but
increases W. We now define the counterpart of the entropy rate for time-
dependent stochastic processes.

Definition The growih rate WY, is defined as

, WX, Xa. ..., X,
WL = fim oKX X (16.61)

H—00 n

if the limit exists,

Theorem 16.5.1  For a stationary marker, the growth rate exists and is
equal 1o

W;c :nl-—ii]:}o W*(X”FXI!XZ!'-'aXH"-l)' (1662)
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Proof: By stationarity, W*(X, Xy, X2, ..., X,,—1) is nondecreasing in n.
Hence, it must have a limit, possibly infinity. Since

[

W*(Xl; XZe cees Xp) — E z :W*(X;‘XI, X2a o, Xf—1}1 (1663)
i
i=I

it follows by the theorem of the Cesdro mean (Theorem 4.2.3? that the
left-hand side has the same limit as the limit of the terms on the right-hand

side. Hence, W2, exists and

W% = lim LUALSSIR STRTTED.%) lim WX, X. X2, ... X O

> 00 i) =00 (16.64)

We can now extend the asymptotic optimality property ta stationary
markets. We have the following theorem.

Theorem 16.5.2  Consider an arbitrary stochastic process {X;}, X; €
R7, conditionally log-optimal portfolios, l)f(Xi_}) and wealth S Lgif,,
be the wealth generated by any other causal portfolio strategy b (X' ™).
Then S,/S¥ is a positive supermartingale with respect to the sequence of
o-fields generated by the past X1, Xa, ..., X, Consequently, there exists
a random variable V such that

% — V. with probability 1 (16.65)
n
EV <1 (16.66)
and < |
: N (16.67)
P[{Sipsﬁzf}_t _

Proof: S,/S; is a positive supermartingale because

|:S;:+I(Xn+]_} Xn}:E[(b;*‘x”“)s’?(}(”)‘X”} (16.68)

S (X7 by X)) SHX
7 r X”
_ Sl )E[b';jf' +] X”] (16.69)
S,T(X”). ,!+]Xn+l
< 5, (X7) (16.70)

¥

= Spxm



626 INFORMATION THEORY AND PORTFOLIO THEQORY

by the Kuhn-Tucker condition on the conditionally tog-optimal portfolio.

Thus, by the martingale convergence theorem, S,/SF has a limit, call it

V,and EV < E(So/S;) = 1. Finally, the result for sup(S,/Sy) follows
from Kolmogorov's inequality for positive martingales. C

We remark that (16.70) shows how strong the competitive optimality
of §7 is. Apparently, the probabiiity is less than 1/10 that S, (X™ will

ever be 10 times as large as S;{X"). For a stationary ergodic market, we

can extend the asymptotic equipartition property to prove the following -

theorem.

Theorem 16.5.3 (AEP for the stock markety Let X, Xy, ..., X, bea
stationary ergodic vector-valued stochastic process. Let S be the wealih
at Hme n for the conditionally log-optimal strategy, where

H

Sr=[]p X X X 0X (16.71)

i=]

. Then
]' ke * ' i
~log S, -~ WZ,  with probability 1. . (16.72)
I

Proof: The proof involves a generalization of the sandwich argument
[20] used to prove the AEP in Section [6.8. The details of the proof (in
Algoet and Cover [21]) are omitted, ad

Finally, we consider the exampie of the horse race once again, The
horse race is a special case of the stock market in which there are m
stocks corresponding to the m horses in the race. At the end of the race,
the value of the stock for horse 7 is either 0 or o;, the value of the odds
for horse 7. Thus, X is nonzero only in the component corresponding to
the winning horse,

In this case, the log-optimal portfolio is proportional betting, known as
Kelly gambling (i.e., b} = p;), and in the case of uniform fair odds (ie,
o; = m, for all 1},

W* =logm — H(X). (16.73)

When we have a sequence of correlated horse races, the optimal portfelio
is conditional proportional betting and the asymptotic growth rate is

Wi =logm — H(AX), (16.74)
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where H(X) = lim 1 H (X1, X, ..., X,;) if the limit exists. Then Theo-

rem 16.5.3 asserts that .
St == W (16.75)

in agreement with the results in chapter 6,

16.6 COMPETITIVE OPTIMALITY OF THE LOG-OPTIMAL
PORTFOLIO

We now ask whether the log-optimal portfolio outperforms alternative
portfolios at a given finite time n. As a direct consequence of the
Kuhn-Tucker conditions, we have -

S

ES—Z <1, (16.76)
il

and hence by Markov’s inequality,
‘ 1
Pr(S, > t§,) < o (16.77)

This result is similar to the result derived in Chapter 5 for the competitive
aptimality of Shannon codes,

By considering examples, it can be seen that it is not possible (o get
a better bound on the probability that S, > §;;. Consider a stock market
with two stocks and two possible outcomes,

I : .
(X[, X9) = (l, :) with probability 1 — €. (16.78)
(1.0 with probability €.

In this markel the log-optimal portfolio invests afl the wealth in the first
stock. [It is easy to verify that b = (1, 0) satisfies the Kuhn—Tucker con-
ditions.] However, an investor who puts all his wealth in the second stock
earns more money with probability 1 — €. Hence, it is not true that with
high probability the log-optimal investor will do better than any other
investor.

The problem with trying to prove that the fog-optimal investor does
best with a probability of at [east % is that there exist examples like the
one above, where it is possible to beat the log-optimal investor by a
small amount most of the time. We can get around this by allowing each
investor an additional fair randomization, which has the effect of reducing
the effect of small differences in the wealth.
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Theorem 16.6.1 (Competitive optimality) Letr S* be the wealth at the
end of one period of investment in a stock market X with the log-optimal
portfolio, and let S be the wealth induced by any other portfolio. Let U* be
a random variable independent of X uniformly distributed on [0, 2], and
let V be any other random variable independent of X and U* with V > 0
and EV = 1. Then '

¢ o I
Pr(VS=U"S") = 2 (16.79)

Remark Here U* and V correspond to initial “fair” randomizations of
the initial weaith. This exchange of initial wealth Sp = 1 for “fair” wealth
UJ* can be achieved in practice by placing a fair bet. The effect of the
fair randomization is to randomize small differences, so that only the
significant deviations of the ratio $/S* affect the probability of winning.

Proof: We have

1% .
Pr(VS = U*S") =Pr (E’g > U*) (16.80) -

=Pr(W = U"), (1681}

where W = %;3 is a non-negative-valued random variable with mean

EW = E(V)E_(%) <1 (16.82)

by the independence of V from X and the Kuhn-Tucker conditions. Let
F be the distribution function of W, Then since U* is uniform on {0, 2],

2
Pr(W = U™ =/ Pr(W = w)fu-(wydw {16.83)
0
2 1
;:f Pr(W = w)=dw (16.84)
o 2
2 =
_ ] 1=rw (16.85)
0 2 ,
< fml“—ﬂw)dw C(16.86)
0 2 .

EW (16.87)

IS N S

, ' (16.88)

=
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using the easily proved fact (by integrating by parts) that
o0
EW = / (I — Flw))dw - (16.89)
Jo

for a positive random variable W. Hence, we have

‘ . [
Pr(VS > U"S") =Pr(W = U") = 7 ] (160.90)

Theorem 16.6.1 provides a short-term justification for the use of the
log-optimal portfolio. If the investor’s only objective is to be ahead of his
oppenent at the end of the day in the stock market, and if fair randomiza-
tion is allowed, Theorem 16.6.1 says that the investor should exchange his
wealth for a uniform [0, 2] wealth and then invest using the log-optimal
portfolio. This is the game-theoretic solution to the problem of gambling
competitively in the stock marker,

16.7 UNIVERSAL PORTFOLIOS

The development of the log-optimal portfolio strategy in Section 16.1
relies on the assumption that we know the distribution of the stock vectors
and can therefore calculate the optimal portfolio b*. In practice, though,
we often do not know the distribution, In this section we describe a causal
portfolio that performs well on individual sequences, Thus, we make no
statistical assumptions about the market sequence, We assume that the
stock market can be represented by a sequence of vectors Xi, Xz, ... € RY,
where x;; is the price relative for stock j on day i and x; is the vector
of price relatives for all stocks on day i. We begin with a finite-horizon
problem, where we have n vectors X|, ..., X,. We later extend the results
to the infinite-horizon case.

Given this sequence of stock market outcomes, what is the best we
can do? A realistic target is the growth achieved by the best constant
rebalanced portfolio strategy in hindsight (i.e., the best constant rebal-
anced portfolio on the known sequence of stock market vectors), Note
that constant rebalanced portfolios are optimal against i.i.d. stock mar-
ket sequences with known distribution, so that this set of portfolios is
reasonably natural,

Let us assume that we have a number of mutual funds, each of which
follows a constant rebalanced portfolio strategy chosen in advance. Qur
objective is to perform as well as the best of these funds. In this section
we show that we can do almost as well as the best constant rebalanced
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portfolic without advance knowledge of the distribution of the stock
market vectors.

One approach is to distribute the wealth among a continuum of fund
managers, each of which follows a different constantly rebaianced portfo-
lio strategy. Since one of the managers will do exponentially better than
the others, the total wealth after n days will be dominated by the largest
term. We will show that we can achieve a performance of the best fund

manager within & factor of » 77 . This is the essence of the argument for

the infinite-horizon universal portfolio strategy.
A second approach to this problem is as a game against a malicious
opponent or nature who is allowed to choose the sequence of stock

market vectors. We define a causal {nonanticipating) portfolio strategy

bi{x;y....,x;) that depends only on the past values of the stock market
sequence. Then nature, with knowledge of the strategy b; (x'~1), chooses a
sequence of vectors x; to make the strategy perform as poorly as possible
relative to the best constantly rebalanced portfolio for that stock sequence.
Let b*(x") be the best constantly rebalanced portfolio for a stock market
sequence x”. Note that b¥*(x") depends only on the empirical distribution
of the sequence, not on the order in which the vectors occur. At the end
of n days, a constantly rebalanced portfolio b achieves wealth:

Sub, x) = [ [b'x;, (16.91)
i=i
and the best constant portfolio b*(x") achieves a wealth
N
.mﬂ=qynw& (16.92)
=

whereas the nonanticipating portfolio b, (x'~!) strategy achieves

8,x") = [ Bix'Hxi. (16,93)

i=1

Our objective is to find a nonanticipating portfolio strategy b(-) = (b,

b Qfl). ..., b (x'~1)) that does well in the worst case in terms of the ratio
of 5, to §;. We will find the optimal universal strategy and show that this
strategy for each stock sequence achieves wealth §, that is within a factor

m—1
Vi = n 2 of the wealth 5 achieved by the best constantly rebalanced
portfolio on that sequence. This strategy depends on n, the horizon of
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the game. Later we describe some horizon-free results that have the same
worst-case asymptotic performance as that of the finite-horizon game.

16.7.1 Finite-Horizon Universal Portfolios

We begin by analyzing a stock market of n periods, where n is known
in advance, and attempt to find a portfolio strategy that does well against
all possible sequences of n stock market vectors. The main result can be
stated in the following theorem.

Theorem 16.7.1  For a stock market sequence X" =Xj, ..., Xy, X €
RY of length n with m assets, let S, (x") be the wealth achieved by the
optimal constantly rebalanced porifolio on 3(”. and let S,(x") be the wealth
achieved by any causal porifolio strategy b; () on X" then

Sv} X"
max min (X7) = V,, (16,94)
1‘,{,(_\} ). SR Xy S;‘; (X”) .
where
n _ A hm
V, = p LA (16.95)
! Z (nl, N2y vees n,,,)

"yt =h

Using Stirling’s approximation, we can show that V, is on the order

of n"m_;i, and therefore the growth rate for the universal portfolio on
the worst sequence ditfers from the growth rate of the best constantly
rebalanced portfolio on that sequence by at most a polynomial factor.
The logarithm of the ratio of growth of wealth of the universal portiolio
b to the growth of weaith of the best constant portfolio behaves like
the redundancy of a universal source code. (See Shtarkov [496], where

‘log V, appears as the minimax individual sequence redundancy in data

compression.)

We first illustrate the main resuits by means of an example for n = 1,
Consider the case of two stocks and a single day. Let the stock vector for
the day be x = (x1, x2). If x| > xa, the best portfolio is one that puis ali
its money on stock 1, and if x > x;, the best portfolio puts all its money
on stock 2. (If x; = x,, all portfolios are equivalent.)

Now assume that we must choose a portfolio in advance and our oppo-
nent can choose the stock market sequence after we have chosen our
partfolio to make us do as badly as possible relative to the best portfolio.
Given our portfolio, the opponent can ensure that we do as badly as pos-
sible by making the stock on which we have put more weight equal to 0
and the other stock equal to 1. Our best strategy is therefore to put equal
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weight on both stocks, and with this, we will achieve a growth factor at
least equal to half the growth factor of the best stock, and hence we will
achieve at least half the gain of the best constantly rebalanced portfolio.
It is not hard to calculate that V, = 2 when n = 1 and m = 2 in equation
(16.94).

However, this resuit seems misleading, since it appears to suggest that
for n days, we would use a constant uniform portfolio, putting half our
money on each stock every day. If our opponent then chose the stock
sequence so that only the first stock was 1 {(and the other was 0) every
day, this uniform strategy would achieve a wealth of 1/27, and we would
achieve a wealth only within a factor of 2" of the best constant portfolio,
which puts al} the money on the first stock for all time.

The result of the theorem shows that we can do significantly better.

The main part of the argument is to reduce a sequence of stock vectors to -

the extreme cases where only one of the stocks is nonzero for each day.
If we can ensure that we do well on such sequences, we can guarantee
that we do well on any sequence of stock vectors, and achieve the bounds
of the theorem.

Before we prove the theorem, we need the following lemma.

Lemma 16.7.1  For pi.pa.....pn 2 0and g g2, ..., gm = 0,

Lizt P o P (16.96)

> min —.
Yimia TG
Proof: Let [ denote the index / that minimizes the right-hand side in
(16.96). Assume that p; > 0 (if p; = 0, the lemma is trivially true). Also,
if ¢; = 0. both sides of (16.96) are infinite (all the other ¢;’s must also
be zero), and again the inequality holds. Therefme we can also assume
that ¢; > (. Then

S pi_ pr it L pilen) ps

v = > (16.97
Zi;1 di gr 14 Z,';_L,r(q'i/‘]i) qr
because
- (16.98)
qi 41 Pi g1
for all i. O

First consider the case when n = 1, The wealth at the end of the first
day is

Si(x) = b'x, : (16.99)
S, (x) = b'x (16.100)
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and

S[(x) S byx; s
5% szfmm{m}' (16.101)

We wish to find maxg ming x b, . Nature should choose x = ¢, _whele e is
the ith basis vector with 1 in the component § that minimizes f*, and the

mvestor should choose b to maximize this minimum. This is achieved by
= L
choosmg b (m e rn)' . ,
The important pomt to realize is that

S‘u(xn) _ 1—[,_1 b"X,

= 16.102
S” (Xn) ]_[’71 bJX] . ( )
can also be rewritten in the form of a ratio of terims
S.x  b'x
= —, 16.103
S.xh)  bix . (16.105)

where b, b, x' € R""". Here the m" components of the constantly rebal-
anced portfolios b are all of the product form b)'by% - bl One wishes
to find a universal b that is uniformly close to the b’s corresponding to
constantly rebalanced portfolios.

We can now prove the main theorem (Theorem 160.7.1).

Proof of Theorem 16.7.1: We will prove the theorem for m = 2. The
preof extends in a straightforward fashion to the case m > 2, Denote the
stocks by [ and 2. The key idea is to express the wealth at time n,

S = [ T bixs, (16.104)

i=l

which is a product of sums, into a sum of products. Each term in the sum
corresponds to a sequence of stock price relatives for stock 1 or stock
2 times the proportion b;; or bjy that the strategy places on stock 1 or
stock 2 at time {. We can therefore view the wealth S, as a sum over
i1 2" possible n-sequences of 1's and 2's of the product of the portfolio
proportions times the stock price relatives: '

1) '
SN = [ b= Y ﬂb,,ﬁﬂx,,, (16.105)

Jreft 2y i=l Jreli.zir i=l i=1
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If we et w(j") denote the product []i_, bi;;, the total fraction of wealt
invested in the sequence j”, and let

find by differentiating with respect to & that the maximum value

” w(j") = max BE(1 — by F (16.111)
-’C(_j”) = H Xij; (16.106) k k n—k n—k .
i=1 == - . (16.112)

be the corresponding return for this sequence, we can write A )
P g 4 - which is achieved by

Sex) = Y w(ME(": (16.107)

refl.2p

. k n—k
b” = (—,” ) (16.113)

n 1

Note that ¥ w*(j™ > 1, reflecting the fact that the amount “bet” on
j* is chosen in hindsight, thus relieving the hindsight investor of the
responsibility of allocating his investments w*(j") to sum to 1. The causal
investor has no such Iuxury. How can the causal investor choose initial
investments W (j™), > w(j") = 1, to protect himself from all possible j”
and hindsight-determined w*(j”)? The answer will be to choose W{j")
- proportional to w*(j"). Then the worst-case ratic of ®(j™)/w*(j") will
' be maximized. To proceed, we define V, by

1 k(™) kU™ g e k(™) n=k(j")
= > (T ) (_—” ) (16.114)
i :

3 (’1) (K)k(”‘k)”k (16.115)
— kj\n n ’ '

o k(™ KM fon k(" n—k(j™
BT = Vu( ) (EWJ_)) . (16.116)

Similar expressions apply to both the best constantly rebalanced porifolio
and the universal portfolio strategy. Thus, we'have

S-”(Xn) N Zj"e{],z}" wjiMx")

= —, 16.108
SEx") 20 ey wH(GMA() ( }

where " is the amount of wealth placed on the sequence J" by the
universal nonanticipating strategy. and w*(j") is the amount placed by the
best constant rebalanced portfolio strategy. Now applying Lemma 16.7],
we have :

$a(x™) o wMxGM W™
= —_— = NI

_ > min ' — =1 —. (16.109)
S:;(xll) jrr IU*(JR)X(J’”) .',‘n u)*(‘]”)

Thus, the problem of maximizing the performance ratio S,/S? is reduced
to ensuring that the proportion of money bet on a sequence of stocks by
the universal portfolio is uniformly close to the proportion bet by b*. As
might be obvious by now, this formulation of §, reduces the n-petiod
stock market to a special case of a single-period stock market—there are
2" stocks, one invests w( ") in stock ;" and receives a return x(j") for
stock 7, and the total wealth §, is 3w ()

We first calculate the weight w*(j") associated with the best constant
rebalanced portfolio b*. We observe that a constantly rebalanced portfolio
b results in

 and let

l i

_it is clear that i (j*) is a legitimate distribution of wealth over the 2%

stock sequences (1.e.. w{j") = 0 and Zi” (/") = 1). Here V, is the
normalization factor that makes (") a probability mass function. Also,
from (16.109) and (16.113), for all sequences X",

S'” n PPRYT]

m(x ) > min i)

SEY) Mowr ()
AL G
= mkm (L pry R (16.118)

2 V. (16.119)

w(j") = [ =50 =00, (16.110) (16.117)

i=1
where k is the number of times 1 appears in the sequence j". Thus, w(j")
depends only on k, the number of 1I's in j*. Fixing attention on j*, we
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where (16.117) foliows from (16.109) and (16.119) follows from (16.112).
Consequently, we have

V. (16.120)

Sy (x)
max min - >
Boox SE(xM)

We have thus demonstrated a portfolio on the 27 possible sequences of
length n that achieves wealth §,(x") within a factor V, of the wealth
Si(x") achieved by the best constant rebalanced portfolio in hindsight. To
compiete the proof of the theorem, we show that this is the best possible,
that is. that any nonanticipating portfolio b;(x' ™'} cannot do better than
a factor V, in the worst case (i.e., for the worst choice of x"). To prove
this, we construct a set of extremal stock market sequences and show that
the performance of any nonanticipating portfolie strategy is bounded by
V, for at least one of these sequences, proving the worst-case bound.

For each j" € {I.2}", we define the corresponding extremal stock mar-
ket vector x"(j") as

ooy if =,
“UJ"{mJy it 2 (16.121)
Let e = (1,0, e = (0, 1)' be standard basis vectors. Let

= {x(j")  j" e {1, 2)", %, = e} (16.122)

be the set of extremal sequences. There are 2" such extremal sequences,
and for each sequence at each time, there is only one stock that yields
a nonzero return, The wealth invested in the other stock is lost. There-
fore, the wealth at the end of »n periods for extremal sequence x*(j")
is the product of the amounts invested in the stocks ji, j2..... ji [ie.,
Sy (x" (" =11, b; = w(j™]. Again, we can view this as an investment
on sequences of length n, and given the 0-1 nature of the return, it is
easy to see for x" € K that

Y S = L (16.123)

For any extremnal sequence x7(j") € K, the best constant rebalanced port-
folio is

b (x" (j) = (mgij”)! fzz(j”))r, (16.124)

n
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where ny(j") is the number of occurrences of 1'in the sequence j*. The
corresponding wealth at the end of n periods is

(! ny (") ey 2l wij"
S:(Xn(jn)) _ (?’HE;’ )) (nZE?—])) — ‘;I )' , (]6125)

from (16.116) and it therefore follows that

Y S = = Zw(j") =7 (16.126)

ekl ” in

"

We then have the following inequality for any portfolio sequence {b;}7_,,
with S, (x") defined as in (16.104):

i S, (x* ) < Sy Sn(’f ) (16.127)
x"ekl S*(X”) ek Zx“e.’(ﬁ S;i;(x”) S;:{XH}
— _Sj§_>_” (16.128)
ek ZX"EK (x )
1
_ - (16,129)
Y rex SH(x?)
—v, (16.130)

where the inequality follows from the fact that the minimum is less than
the average. Thus,

Su (x")
max min

<V, O (16.131)
h x'eck S*(xﬂ)

The strategy described in the theorem puts mass on all sequences of
fength » and is clearly dependent on n. We can recast the strategy in
incremental terms (i.e., in terms of the amount bet on stock I and stock
2 at time 1), then, conditional on the outcome at time 1, the amount bet
on each of the two stocks at time 2, and so on. Consider the weight
b1 assigned by the algorithm to stock 1 at time i given the previous
sequence of stock vectors x'~!'. We can calculate this by summing over
all sequences j" that have a | in-position i, giving

> si-teari-t WD

S e WODAGTD (16.132)

b(xh =
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where “Let

f
S.(b,x") = H b'x; (16.139)

i=1

(= Y wi" (16,133
j":_,l"; < )
be the wealth generated by a constant rebalanced portfolio b on the stock

is the weight put on all sequences j* that start with j', and ‘sequence x". Recall that

i-1

: *(x") = max Sy (b, X" 16.140
(Y = [ o (16.1% Sy (x7) = max 5, (b, x") ( )
.=.]

is the wealth of the best constant rebalanced portfolio in hindsight.

is the return on those sequences as defined in (16.106). We investigate the causal portfolio defined by

Investigation of the asymptotics of V, reveals [401, 496] that _
S5 bSi(b,x") dpu(b)

ni—| . B (xi) = - . (]6!41)
) P+ <. ]
v, ~ (‘ﬂ) Cm/2) /7 (16.135 S5 S (b, x1) dia(B)
n
. We note that
for m assets. In particular, for m = 2 assets, e [ D% i (b, x') du(b) 16,142
. XK = : :
) : i+l ! Si{b, x) dj(b)
T (16,136 Ji i (b o
TN . i+ b
_ fB Siv1(b, X. } dib) (16.143)
and S Si(h, x7) dpe(b)
1 - 2 R N
—_— =V, < 16.137) “Thus, th duct [Th'x; telescopes and we see that the wealth S, (x*)
Wi ' a ( : us, the product [ bix; P .

resulting from this portfolio is given by
for all n [400]. Consequently, for m = 2 stocks, the causal portfolio stra

- ! v 2
egy b; (x'=1) given in (16.132) achieves wealth S, (x"") such that $,(x") = I—[ {,; x' " Hx; (16.144)
'Af " 1 ; i=1
;{l Yoy s L (16.138)°
S (x) 24/n+1 = f S, (b, Xy dp(b). (16.145)
beBB .

for all market sequences x”. ,
There is another way to interpret (16.145). The amount given to port-

“folio manager b is du(b), the resulting growth factor for the manager
rebalancing to b is S{b. x"), and the total wealth of this batch of invest-
ments is

16.7.2 Horizon-Free Universal Portfolios

We describe the horizon-free strategy in terms of a weighting of different-
portfolio strategies. As described earlier, each constantly rebalanced port-
folio b can be viewed as corresponding to a mutual fund that rebalances -
the m assets according to b, Initially, we distribute the wealth among
these funds according to a distribution (b}, where d(b) is the amoun
of wealth invested in portfalios in the neighborheod db of the constantl
rebalanced portfolio b, '

S (x") = [ S (b, X"y da(b). (16.146)
JB

Then -f),-H, defined in (16.141), is the performance-weighted total “buy
“order” of the individual porifolio manager b.
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So far, we have not specified what distribution u(b) we use to apportion’
the initial wealth. We now use a distribution g that puts mass on all:
possible portfolios, so that we approximate the performance of the best:
portfolio for the actual distribution of stock price vectors.
In the next lemma, we bound S, /S8y as a function of the initial wealth
distribution z(b).

We now apply this lemma when f.(b) is the Dirichlet(%) distribution.

Theorem 16.7.2 . For the causal universal portfolio b;(), i = 1,2, ...,
given in (16,141), with m = 2 stocks and d (b} the Dirichlet( l: % ) distri-
bution, we have ‘ :

S, (x™ - J

Se(x™) T 2n £

Jor all n and all stock sequences x".

Lemma 16.7.2  Let §;(x") in 16.140 be the wealth achieved by the best
constant rebalanced portfolio and let S, (x") in (16.144) be the wealth
achieved by the universal mixed portfolio b(-), given by ‘
_ /S, %) dp(d)

I Sib.x)du(by

b (x)

Proof: As in the. discussion preceding (16.112), we can show that the
weight put by the best constant portfolio »* on the sequence j" is

n k _ n—k
I—[b; _ (E) (n k) — p—nH /) (16.156)
! n n

Then
S, (x" T b dub
;(X”) > miﬂ fg I—L_,E Ji *,u,( )
Si(x") o [Tz &5
Proof: As before, we can write

SEx = 3wt G (, (16.149)
';” :

(16,148):

where k is the number of indices where j; = 1. We can also explicitly
calculate the integral in the numerator of (16.148) in Lemma 16.7.2 for
the Dirichlet(%) density, defined for m variables as

where w*(j") = [1;_, b’;i is the amount invested on the sequence j* and

x(j"y =TT, xij is the corresponding return. Similarly, we can write

l—-(ixzi) m ._._l.
dum)y = —=2_TT5s7? db, 16.157
s =y o157
Sa(x™ :[Hb’x,» du (b (16.150):

=l

= Zfﬁbj,-xfxn dju(b) (16.151)
=

i=]

where I'(x) = fooo e~'+*~! dr denotes the gamma function. For simplicity,
we consider the case of two stocks, in which case

du(b) == l—]——-— ab, d=b=l, (16.158)

7 /B —B)

where b is the fraction of wealth invested in stock 1. Now consider any
sequence j7 € {1, 2}", and consider the amount invested in that sequence,

= @, (16.152)°
J;"

- where w(j") = [ [T/_, b, di(b). Now applying Lemma 16.7.1, we have |
S.x"y 2 w(Mx(G)
S:(X") - Z,i" w(iMx ()
o w(")x(j")
2 M ———
j” w*(]n)x(‘]”)
Y b du(b
= min Js HI_,& i ).
" M= &},

b(j"y =[] by =b(1~0)"", (16.159)

i=1

(16.153) .
where ! is the number of indices where j; = 1. Then

i — li .'z—fi L
fb(.l )du(b)—fb(l b) ﬂ--—mcxb (16.160)

O (16.155
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= —f.’?f~_

I 1
—B{l+n—1+- .
HB(+2,n i+2), (16.162)

where B(Xx;, A2) is'the beta function, defined as

— BT g (16.161)

IID

1

B(A;,kg):/ AN - or gy (16.163)
¢
_Danrg)
=TT (16.164)
and o

INEY! :[ W lemv dx. (16.165)

0

Note that for any integeen, T(n + 1) = n!and '(n + %) 133 A2i- 3ot o

2”
We can calculate B(I+3,n—1+ £) by means of simple recursion

using integration by parts, Alternatively, using (16.164), we obtain

(211) (n)
1) T AnJ\NJ (16.166)

I
B(l+=n—1
( 2T ) T
2

Combining all the results with Lemma 16.7.2, we have

Sn (X”) }11'1 IB ,=1 b;, d(b)

— > - (16.167)
(X’) ]_[ii:I bi;,-
[ I 1
“Bl+z,0—14+3)
] 2 2
> m{ln ST {16.168)
1
e 16.169
2vn+1 ( )
using the results in [135, Theorem 2]. a
It follows for m = 2 stocks that
& > ! v, (16.170)
Sp " Ver " '
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for alt # and all market sequences x|, X3. ..., x,. Thus, good minimax per-
formance for all n costs at most an extra factor +/27 over the fixed horizon
minimax portfolio. The cost of universality is V,,, which is asymptotically
negligible in the growth rate in the sense that

0. 16.171)

l1nS (x") — 11n SHx"y > ! In —=
n " n n “n JIm

Thus, the universal causal portfolio achieves the same asymptotic growth
raie of wealth as the best hindsight portfolio.

Let’s now consider how this portfolio algorithm performs on two real
stecks, We consider a [4-year period (ending in 2004) and two stocks,
Hewlett-Packard and Altria (formerly, Phillip Morris), which are both
components of the Dow Jones Index. Over these 14 years, HP went up by
a factor of 11.8, while Altria went up by a factor of 11.5. The performance
of the different constantly rebalanced portfolios that contain HP and Altria
are shown in Figure 16.2. The best constantly rebalanced portfolio (which
¢an be computed only in hindsight) achieves a growth of a factor of 18.7

" using a mixture of about 51% HP and 49% Altria. The universal portfolio

strategy described in this section achieves a growth factor of 15,7 without
foreknowledge.

Vatue S,(b) of initial investment

LTS« .
1
|

0 L L L l L ! i I L
0 01 02 03 04 05 G8 07 08 08 1

Proportion b of weaith in HPQ

FIGURE 16.2. Performance of different constant rebalanced portfolios b for HP and Altria.
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16.8 SHANNON-MCMILLAN-BREIMAN THEOREM We define the kth-order entropy H* as

(GENERAL AEP)

H* = E {—log p(Xi| Xiz1, Xe-2. ..., X0)} (16.174)

The AEP for ergodic processes has come to be known as the Shan- = E{—log p(Xo|X-1, X2, .. .. X-0)), (16.175)

non—McMillan —Breiman theorem. In Chapter 3 we proved the AEP fi

A . ) where the last equation follows from stationarity. Recall that the entro
i...d. processes. In this section we offer a proof of the theorem for 4 Y Py

rate is given by

general ergodic process. We prove the convergence of %k)g p(X") by’ = lim B \ (16.176)
sandwiching it hetween two ergodic sequences. : ko0 '

In a sense. an ergodic process is the most general dependent process for: el
which the strong law of large numbers holds. For finite alphabet processes, - = lim ! Z HE (16.177)
ergodicity is equivalent to the convergence of the kth-order empirical n=eo

distributions to their marginals for all &, ‘

The technical definition requires some ideas from probability theory. To :
be precise, an ergodic source is defined on a probability space (2, B, P),,
where B is a o-algebra of subsets of £2 and P is a probability measure..
A random variable X is defined as a function X (@), @ € €2, on the prob:
ability space. We also have a transformation T : 2 — £, which plays.
the role of a time shift. We will say that the transformation is stationa :
if P(TA) = P(A) for all A € B. The transformation is called ergodic
every set A such that TA = A, a.e., satisfies P(A) = Oor L. If T is station-:
ary and ergodic, we say that the process defined by X, (w) = X(T"w) is-
stationary and ergodic. For a stationary ergodic source, Birkhoff*s ergodic’
theorem states that

Of course, H¥ “ H by stationarity and the fact that conditioning does
not increase entropy, It will be crucial that H Ky H = H™, where

H® = E{—log p(Xo| X1, X2, .. )}, (16.178)

The proof that H® = H involves exchanging expectation and limit.

The main idea in the proof goes back to the idea of (conditional) propor-
tional gambling. A gambier receiving uniform odds with the knowledge of
the k past will have a growth rate of wealth log | ] — H*, while a gambler
with a knowledge of the infinite past will have a growth rate of wealth
of log|d] — H°. We don’t know the wealth growth rate of a gambler
with growing knowledge of the past X7, but it is certainly sandwiched
between log || — H* and log |X] — H*. But HY N\, H = H>. Thus, the
sandwich closes and the growth rate must be log|A] — H. '

We will prove the theorem based on lemmas that will follow the proof.

Theorem 16.8.1 (AEP. Shannon—-McMillan—Breiman Theorem)  If
H is the entropy rate of a finite-valued stationary ergodic process {X,},
then

= log p(Xo, ..., Xu—1} — H with probability 1. (16.179)

-~ :
- E Xilwy— EX = f X dP with probability 1. {16,172).
i

i=1 .

Thus, the law of large numbers holds for ergodic processes,
We wish to use the ergodic theorem to conclude that

n=1

1 il
——log p(Xo. X1... Xpet) = = 20 fog p(X;1Xy™)
i=

~ lim E[~log p(X,X0701 (16.173)
H—>7

Proof: We prove this for finite alphabet &7 this proof and the proof for
countable alphabets and densities is given in Algoet and Cover [20]. We
argue that the sequence of random variables —% log p(_X(')'_]) is asymptot-
ically sandwiched between the upper bound H* and the lower bound H®
for all &k > 0. The AEP will follow since H* — H™® and H® = H. The

) ST ) kth-order Markov approximation to the probability is defined for n = k a
But the stochastic sequence p(X:1X Y is not ergodic. However, the” pproximation 1o the proba “‘y is defined forn = & as
closely related quantities 1)(X,-|X§:,f,) and p(X;iX'7)) are ergodic and
have expectations easily identified as entropy rates. We plan to sandwich

plXi| X 6‘1) between these two more tractable processes.

i—1
PAxXgT = pgO [T pxilxi2h. (16.180)
i=k ’
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From Lemma 16.8.3 we have roof: Functions ¥, = f(X"_,) of ergodic processes {X;} are ergodic

rocesses. Thus, log p(X,,IXZ:,b and log p(X,|Xp—1. Xp—2, ..., Y arealso

keynr—1
X
Py ) 0 rgodic processes, and

— 1

1
lim sup — log

(16.181) .
n—snoo N p(Xg_I) .

-1

which we rewrite, taking the existence of the limit %log pH(XD) into _llogpk(xg‘l) = w-l_]()g /;{Xg") —lZIOg p(X,-IXff:;},) (16.189)
A e

account (Lemma 16.8.1), as n Tk

! I — 04+ H*  with probability 1, (16.190)

1 1
limsup = log ———— < lim —log ———— = H* (16.182
n-—axp no- p(XS_I) nsoon O [)A-(Xgﬁl) ) |
y the ergodic theorem. Similarly, by the ergodic theorem,
fork=1,2,.... Also, from Lemma 16.8.3, we have

=1

1 XH—I 1 n—1 — . : : N, T
limsup—log_’—"p( ¥ 31 =0, (16.183) p 08P X X ) = nZIogp(X,lX,_i,X1 2o
n—=oc 1 p(XS— 1X o) i=0

(l6.191)
which we rewrite as
] | | — H"™  with probability 1. C](16.192)
.. . } :
liminf - log ——— = lim - iog———l——ml-— =H*  (16.184) -
n p(X5™h n PXa T X o)

. &  and H = H.
from the definition of H™ in Lemma 16.8.1. lemma16.8.2 (No gap)  H™ N H™ an

Putting together (16.182) and (16.184), we have Proof: We know that for stationary processes, H* N\, H, so it remains

“to show that H* ~\ H®, thus yielding H = H™. Levy’s martingale

e 1 n— : [ n—
H* < liminf ——log p(Xj '} < limsup - log p(Xg™") onvergence theorem for conditional probabilities asserts that

< H* for all k. (16.185

p(xolXZ}) — plxolXZL)  with probability 1 (16.193)

But by Lemma 16.8.2, H* -~ H® = H. Consequently, . . . . : :
rall xg € . Since X is finite and plog p is bounded and continuous In

forall 0 < p <.1, the bounded convergence theorem allows interchange

. I ,
tim n log p(Xg) = H. [ (16.186) - of expectation and limit, yielding

We now prove the lemmas that were used in the main proof. The first

lemma uses the ergodic theorem, lim H* = lim E{ - Z p(_x(_,}X:,l)log p(on:A',)} (16.194)
koo koo xpet

Lemma 16.8.1 (Markov approximations) For a stationary ergodic

stochastic process {X,), — E{ _ Z p(me:;o) log pxolX . )} (16.193)

L kexrn-1 k ; . i ( sk
_;log PrX") = HY  with probability I, (16.187) = H>. {16.196)
1 a1 —i . 1 |
- log p(Xog "XZ) — H™  with probability 1, (16.188): hus, H* N\ H = H®. : ]
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Lemma 16.8.3 (Sandwich)

) I pk(Xn—l)

limsup — log ==~ 16.1
nsup g p(XSVI) = (16.197)
) 1 Xlt—i.

lim sup — log AT IR < Q. (16.198)

7 ;)(XE"IEX:JX,) -

Proof: Let A be the support set of p(X5~"). Then

}R(Xn—]) n=1
E{_] : }= S opeghE2e O (i009)

n—1 n—1
P(Xﬂ ) ‘;Ji IEA ( )
= Y Py (16.200)
x(’{“'eA
= p*(A) (16.201)
<1 (16.202)

Similarly, let B(X:;O) denote the support set of [J(-!X:;O). Then we have

])(XS_I) i P(szwl) ) .
E{M}:E E{W X4 (16.203)
=E| ) ﬂ‘lﬂ(x"[ﬁ’_l) (16.204)
eagrmly PTIX iy - '
|—.
=E| > p" (16.208)
\"EB(X"w)
=L (16.206)

By Markov's nequality and (16.202), we have

P :. 1l
]J(X.'i I) ity (16207)

SUMMARY 649

or

1T

1oprTh 1 1
Pf{“logw—l—) = —logrn} = f_ (16208)

oo

Letting r, =n®> and noting that ) ;2 <oo, we sec by the
Borel-Cantelli lemma that the event

| Xih 1
{llogﬂ—— > - log :,,} (16.209)
1

occurs only finitely often with probability 1. Thus,

u I)

—————[ x" ]) with probability 1. {16.210)

limsup - log
n

Applying the same arguments using Markov’s inequality to (16.206), we
obtain .

]J(X”-])

—”—_1';——3 <0 with probability 1, (16.211)
n oo

proving the lemma. 0

The arguments used in the proof can be extended to prove the AEP for
the stock market (Theorem 16.5.3).

SUMMARY

Growth rate. The growth rate of a stock market portfolic b with
respect to a distribution F(x) is defined as

Wb, F) = flog b'x dF(x) = E (logh'x). (16.212)

Log-optimal portfolio. The optimal growth rate with respect to a dis-
tribution F(x) is

WH(F) = max Wb, F). (16.213)
N .
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The portfolio b* that achieves the maximum of W(b, F) is called the
log-optimal portfolio,

Concavity, W(b, F) is concave in b and linear in F. W*(F) is convéx
in F.

Optimality conditions. The portfolic b* is log-optimal if and only if

Xi -
E(wa):l it bf > 0,

<1 ify =0 (16.214)

Expected ratio optimality, If S¥ = [['_, b"X;, S, = [, b'X, then

SH . . S
EE <1 ifandoenlyif Eln E’:: < Q. {16.215)

H H

Growth rate (AEP)

1 _ .
~log S — W*(F) with probability 1. (16,216)
i
Asymptotic optimality
. 1 S.H' . ITE]
limsup —- log — <0 with probability 1. (16.217)
n—oc R S:

Wrong information, Believing ¢ when f is true loses
AW = W(b}, F) — Wby, F) = D(filg). (16.218)
Side information ¥
AW = I(X: Y). (16.219)
Chain rule

W*(X;'FXI.XZ,---,X;'_})E max

b (x1.%2,.. X1}

Elogh'X;  (16.220)

WX, X3,,.., X)) = Z WX X1, X, L X (16.221)

i=]

-
V*EEOgIJ(XI?Xés"'aXn)_) H(‘k’)

651

SUMMARY
Growth rate for a stationary market.
WE = lim W*(X,"an’ ALIE.0Y (16.222)
%Iog Sy — WL (16.223)
Competitive optimality of log-optimal portfolios.
Pr(VS > U*§" < % {16.224)
Universal portfolio.
1’[1;‘:1?))( 131%} %}ﬁ =V, (16.225)

) -1
Vo= Z f 2-;7H(n;/n ..... H /i)
! Ry T2, s A |

by =n

Form = 2.

Vi~ V2imn

The causal universal portfolio

[ bS:(b, x') d(b)
[ Si(b, x') dp(b)

by (x') =

achieves N
S, (x™) |
>

Sy T 2Jn T

for all # and all x".

AEP, If {X;} is stationary ergodic, then

(16.226)

(16.227)

{16.228)

(16.229)

with probability 1. (16.230)
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PROBLEMS

16.1 Growth rate. Let

16.2

16.3

. ]
(I,a) with probability —
X = ’ 73

([, 1/a)  with probability -21—

where a > 1. This vector X represents a stock market vector of
cash vs. a hot stock. Let

W(b, F) = Elogh'X
and

W* = ml.;—_ix Wb, F)

be the growth rate.

(a) Find the log optimal portfotio b*.
(b) Find the growth rate W*,

(c) Find the asymptotic behavior of

S.=[[b'X:
i=1

for all b.

Side information. Suppose, in Problem 16.1, that

Y"—"{l
0

Let the portfolio b depend on Y. Find the new growth rate W**
and verify that AW = W** — W* satisfies

(X1, X2) = (1, D),
if (X, Xo) = (1, 1).

AW < I(X; 7).
Stock dominance. Consider a stock market vector
X =(X X2

Suppose that X, = 2 with probability 1. Thus an investment in
the first stock is doubled at the end of the day.

16.4

16.5

16.6

16.7

PROBLEMS 653

(a) Find necessary and sufficient conditions on the distribution of
stock X, such that the log-optimal portfolio b* invests all the
wealth in stock X5 [i.e., b* = (0, D]

(b) Argue for any distribution on X3 that the growth rate satisfies
wW* =1, :

Including experts and mutual funds. Let X ~ F(X),x € RY, be

the vector of price relatives for a stock market. Suppose that an

“experl” suggests a portfolio h. This would result in a wealth

factor B'X. We add this to the stock alternatives to form X =

(X1, X2, ..., Xn, B'X). Show that the new growth rate,
W* = , max f In(b'%) d F (%), (16.231)
is equal to the old grow'th rate,
W* = bmzii"fln(b’x)d!’(x). (16.232)

Growth rate for symmetric distribution. Consider a stock vec-

tor X ~ F(x), X e&R", X=0, where the component stocks

are exchangeable. Thus, F(x1,x2,..., Xm) = FlXgoyn Xe@)s o os

Xo () for all permutations o.

(a) Find the portfolio b* optimizing the growth rate and establish
its optimality. Now assume that X has been normalized so
that 1 312, X; =1, and F is symmetric as before.

(b) Again assuming X to be normalized, show that all symmetric
distributions F have the same growth rate against b*.

(¢} Find this growth rate.

Convexity. We are interested in the set of stock market densities
that yield the same optimal porfolio. Let Py, be the set of all

probability densities on R for which by is optimal. Thus, Py, =

{p(x}: [ In(b’x)p(x) dx is maximized by b = bo). Show that Py,

is a convex set. It may be helpful to use Theorem 16.2.2.

Short selling. Let

_fwa, p
X—{(I,%), L~ p.

Let B = {(b1,b2) : by + by = 1}. Thus, this set of portfolios B
does not include the constraint #; = 0, (This allows short selling.)
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16.8

16.9

INFORMATION THEQRY AND PORTFOLIO THEOQRY

(a) Find the log optimal portfolio b* ().
(h) Relate the growth rate W*(p) to the entropy rate H(p).

Normalizing x. Suppose that we define the log-optimal portfolio
b* to be the portfolio maximizing the relative growth rate

!

In dF(xt, ...  Xp)-

| —m .
pm Doy K

The virtue of the normalization # >~ X;, which can be viewed as
the wealth associated with a uniform portfolio, ts that the relative
growth rate is finite even when the growth rate f Inb'xd F(x)
is not. This matters, for example, if X has a St. Petersburg-like
distribution. Thus, the log-optimal portfolio b* is defined for all
distributions F, even those with infinite growth rates W*(F),

(a) Show that if b maximizes f In(b’x} d F (x), it also maximizes

fln;t!’:—:dF(x), where u = (#! r_l?;,;:?)

(b) Find the log optimal portfolio b* for
¥+ 22, -+,
= (22k.22k+1). 2-(k+l)’

where k = 12

(¢) Find EX and W7, ,

(d) Argue that b* is competitively better than any portfolio b in
the sense that Pr{b’X > ¢b*X} < %

Universal portfolio. We examine the first n =2 steps of the
implementation of the universal portfolio in (16.7.2) for p(b) uni-
form for m = 2 stocks. Let the stock vectors for days 1 and 2 be
x; = (L, 1), and x = (1,2). Let b = (b, 1 ~ b) denote a portfo-
lio.

(a) Graph S;(b) =[], b'x;, 0=b=1.

(b) Calcutate S3 = maxy, Sz(b).

(c) Argue that log S2(b) is concave in b.

(d) Calculate the (universal) wealth §; = foi S>2(b)db.

(e) Calculate the universal portfolio at times n = | and n = 2:

1
b; :f bdb
0

16.10

16,11

16.12

HISTORICAL NOTES 655

i bSi(b) db

by(x)) = Y
fO S1(b) db
() Which of S2(b), §¥, S, 62 are unchanged if we permute the
order of appearance of the stock vector outcomes [i.e., if the
; 1
sequence is now (1, 2), (1, 5)]?

Growth optimal. et Xy, X5 = 0, be price relatives of two inde-
pendent stocks. Suppose that £X| > FX;z. Do you always want
some of X in a growth rate optimal porttolio S(b} = X, + hXy?
Prove or provide a counterexample. '

Cost of universality, In the discussion of finite-horizon universal

portfolios, it was shown that the loss factor due to universality is

(16.233)

AHIONCS I

Evaluate V,, forn =1, 2, 3.

Convex families. This problem generalizes Theorem 16.2.2. We
say that & is a convex family of random variables if §|, S € 8
implies that 57 + (1 — A)S; € &. Let S be a closed convex family
of random variables. Show that there is a random variable §* € §

such that
S
Fln (§> <0 (16.234)
forall § € Sif and only if
\Y
E (-5-;) <1 (16.235)

forall S € S.

HISTORICAL NOTES

There is an extensive literature on the mean—variance approach to invest-
ment in the stock market. A good introduction is the book by Sharpe
(491]. Log-optimal portfolios were introduced by Kelly [308] and Latané
[346], and generalized by Bretman [75]. The bound oa the increase in the
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