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Introduction to Noncooperative Game
Theory: Games in Normal Form

Game theory is the mathematical study of interaction amoeng independent, self-
interested agents. It has been applied to disciplines as diverse as economics
(historically, its main area of application), political science, biclogy, psychology,
linguistics—and computer science. In this chapter we will concentrate o what
has become the dominant branch of game theory, called nonceoperative game

e theory, and specifically on normal-form games, a canonical representation in this
discipline.

As an aside, the name “noncooperative game theory” could be misleading,
since it may suggest that the theory applies exclusively to situations in which. the
interests of different agenis conflict. This is not the case, although it is fair to
say that the theory is most inferesting in such situations. By the same token, in

coalitional game  Chapter 12 we will see that coalitional game theory (also known as cooperative

theory  eame theory) does not apply only in situations in which the interests of the agents
align with each other. The essential difference between the two branches is that in
noncooperative game theory the basic modeling unit is the individual (including
his beliefs, preferences, and possible actions) while in coalitional game theory
the basic modeling unit is the group. We will return 1o that later in Chapter 12,
but for now let us proceed with the individualistic approach.

3.1 Self-interested agents

What does it mean to say that agents are self-interested? It does not necessarily
mean that they want to cause harm to each other, or even that they care only about
therusetves. Instead, it means that each agent has his own description of which
states of the world he likes—which can include good things happening to other
agents—and that he acts in an attempt to bring about these states of the world. In
this section we will consider how to model such interests.

. utility theory The dominant approach to modeling an agent’s interests is utifity theory. This
e theoretical approach aims to quantify an agent’s degree of preference across a set
of available alternatives. The theory also aims to understand how these preferen-
ces change when an agent faces uncertainty about which alternative he will re-
ity function ~ ceive. When we refer to an agent’s utility function, as we will do throughout
much of this book, we will be making an implicit assumption that the agent has
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desires about how to act that are consistent with utility—theoretié‘?*ﬁssumptions.
Thus, before we discuss game theory (and thus interactions between multiple
utility-theoretic agents), we should examine some key properties of utility func-
tions and explain why they are believed to form a solid basis for a theory of
preference and rational action.

A utility function is a mapping from states of the world to real numbers. These
numbers are interpreted as measures of an agent’s level of happiness in the given
states. When the agent is uncertain about which state of the world he faces, his
utility is defined as the expected value of his utility function with respect to the
appropriate probability distribution over states.

Example: friends and enemies

We begin with a simple example of how utility fanctions can be vsed as a basis
for making decisions. Consider an agent Alice, who bas three options: going to
the club (¢), going to a movie (m), or watching a video at home (k). If she is on
her own, Alice has a utility of 100 for ¢, 50 for 2, and 50 for A. However, Alice is
also interested in the activities of two other agents, Bob and Carol, who frequent
both the club and the movie theater, Bob is Alice’s nemesis; he is downright
painful to be around. If Alice runs into Bob at the movies, she can #ry to ignore
him and only suffers a disutility of 40; however, if she sees him at the club he will
pester her endlessly, yielding her a disutility of 90. Unfortunately, Bob prefers
the club: he is there 60% of the time, spending the rest of his time at the movie
theater, Carol, on the other hand, is Alice’s friend. She makes everything more
fun. Specifically, Carol increases Alice’s utility for either activity by a factor of
1.5 (after taking into account the possible disutility of running into Bob). Carol
can be found at the club 25% of the time, and the movie theater 75% of the
time.

It will be easier to determine Alice’s best course of action if we list Alice’s
utility for each possible state of the world. There are 12 outcomes that €an OCCur:
Bob and Carol can each be in either the club or the movie theater, and Alice can
be in the club, the movie theater, or at home. Alice has a baseline level of utility
for each of her three actions, and this baseline is adjusted if either Bob, Carol, or
both are present. Following the description of our example, we see that Alice’s
utility is always 50 when she stays home, and for her other two activities #t is
given by Figure 3.1. ,

So how should Alice choose among her three activities? To answer this ques-
tion we need to combine her wtility function with her knowledge of Bob and
Carol’s randomized entertainment habits. Alice’s expected utility for going to
the clab can be calculated as 0.25(0.6- 15 + 0.4 - 150} 4+ 0.75(0.6 - 10 +0.4 -
100) = 51.75. In the same way, we can calculate her expected utility for going
to the movies as 0.25(0.6 - 50 4 0.4 - 10) + 0.75(0.6(75) + 0.4(15)) = 46.75.Of
course, Alice gets an expected utility of 50 for staying home. Thus, Alice prefers
10 go to the club (even though Bob is often there and Carol rarely is) and prefers

staying home to going to the movies (even though Bob is usually not at the movies
and Carol almost always is).
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B=c¢ B=m B=c B=m
C=c 15 150 C=c¢ 50 10
C=m 10 100 C=m 735 15
A=c A=m

Figure 3.1 Alice’s utility for the actions ¢ and m.

Preferences and utility

Because the idea of utility is so pervasive, it may be hard to see why anyone would
argue with the claim that it provides a sensible formal model for reasoning about
an agent’s happiness in different situations. However, when considered more
carefully this claim turns out to be substantive, and hence requires justification.
For example, why should a single-dimensional function be enough to explain
preferences over an arbitrarily complicated set of alternatives (rather than, say,
a function that maps to a point in a three-dimensional space, or to a point
in a space whose dimensionality depends on the number of alternatives being
considered)? And why shounld an agent’s response to uncertainty be captured
purely by the expected value of his utility function, rather than also depending
on other properties of the distribution such as its standard deviation or number of
modes?

Utility theorists respond to such questions by showing that the idea of utility
can be grounded in a more basic concept of preferences. The most influential such
theory is due to von Neumann and Morgenstern, and thus the utility functions
are sometimes called von Neumann-Morgenstern utility functions to distingnish
them from other varieties. We present that theory here.

Let O denote a finite set of outcomes. For any pair 01,0, € O, let o) > 0y
denote the proposition that the agent weakly prefers o, to 0,5. Let o1 ~ o, denote
the proposition that the agent is indifferent between o, and 0. Finally, by o; > 03,
denote the proposition that the agent strictly prefers o; to 0,. Note that while the
second two relations are notationally convenient, the first relation > is the only
one we actually need. This is because we can define 0; > o, as “o; > ¢, and not
02 = 01, and 0] ~ 03 a5 “0| > gy and 03 > 0.7

We need a way to talk about how preferences interact with uncertainty about
which outcome will be selected. In utility theory this is achieved through the
concept of lotteries. A lottery is the random selection of one of a set of outcomes
according to specified probabilities. Formally, a lottery is a probability distri-
bution over outcomes wiiiten [py : 01, ..., px : 0], where each o; € O, each
p: = 0 and Z:;l pi = 1. We will extend the > relation to apply to lotteries as
well as to the elements of G, effectively considering lotteries over outcomes to
be outcomes themselves.

N
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We are now able to begin stating the axioms of utility theory. These are con-
straints on the > relation which, we will argue, make 1Lconsxstent with our ideas
of how preferences should behave.

Axiom 3.1.1 (Completeness) Yoy, 02, 01 = 03 0r 07 > 01 0r 01 ~ 03.

The completeness axiom states that the > relation induces an ordering over
the outcomes, allowing ties. For every pair of outcomes, either the agent prefers
one to the other or he is indifferent between them.

Axiom 3.1.2 (Transitivity) If 01 > 02 and 03 > 03, ther o, > o3,

There is good reason to feel thatevery agent should have transitive preferences.
If an agent’s preferences were nontransitive, then there wonld exist some triple of
outcomes 01, 02, and o3 for which 0; > 03, 02 > 03, and 03 > 01. We can show
that such an agent would be willing to engage in behavior that is hard to call
rational. Consider a world in which oy, 02, and o4 correspond to owning three
different items, and an agent who currently owns the item os. Since o, > 03,
there must be some nonnegative amount of money that the agent would be
willing to pay in order to exchange o3 for 0;. (if 02 > 05 then this amount
would be strictly positive; if 0, ~ 03, then it would be zero.) Similarly, the agent
would pay a nonnegative amount of money to exchange o, for o;. However, from
non-transitivity (o3 > oy) the agent would also pay a strictly positive amount of
money to exchange 01 for 03. The agent would thus be willing to pay a strictly
positive sum te exchange o3 for o3 in three steps. Such an agent could quickly be
separated from any amount of money, which is why such a scheme is known as
d money pump. '

Axiom 3.1.3 (Substitutability) Ifo; ~ 04, then for all sequences of one or more

outcomes 03, ..., 0y and sets of probabilities p, ps, ..., pr for which p+
k
Zi=3 =1 :
(Pron.psion,c...miopl ~[pios, psios, ..., pntogl

Let Pgo;) denote the probability that outcome o; is selected by lottery £.
For example, if £ = [0.3:01;0.7: [0.8 : 02;0.2 : 041}, then Prlo)) = 0.44 and
Pe(03) = 0.

Axiom 3.1.4 (Decomposability) IfVo; € O, Py (0:) = Py,0r) then £y ~ B,

These axioms describe the way preferences change when lotteries are intro-
duced. Substitutability states that if an agent is indifferent between two outcomes,
he js also indifferent between two lotteries that differ only in which of these out-
comes is offered. Decomposability states that an agent is always indifferent
between lotieries that induce the same probabilities over outcomes, no matter
whether these probabilities are expressed through 2 single lottery or nested in
a lottery over lotteries. For example, [p: 01,1 - p: [g:00,1—q:03]l~[p:
o (1 = p)g 102, (1 — pX(1 — g) : 03]. Decomposability is sometimes called the
“no fun in gambling” axiom because it implies that, all else being equal, the
number of times an agent “rolls dice” has no affect on his preferences.
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#p) » oz
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Figure 3.2 Relationship between oz and £{p).

Axiom 3.1.5 (Monotonicity) fo; > o and p>gthen[p: o, 1 —p:02] >
lg:01,1—q 0]

The monotonicity axiom says that agents prefer more of a good thing. When
an agent prefers oy to 0y and considers two lotteries over these outcomes, he
prefers the lottery that assigns the larger probability to oy. This property is
called monotonicity because it does not depend on the numerical values of the
probabilities—the more weight o) receives, the happier the agent will be.

Lemma 3.1.6 If a preference relation > satisfies the axioms completeness, tran-
sitivity, decomposability, and monotonicity, and if o1 > o2 and oy > 03, then there
exists some probability p such that for all p' < p, 02> [p' 1 01:{(1 — p'} : 03],
andforall p” > p,1p" :o1;(1 — p*) 1 03] > 0a. o

Proof. Denote the lottery [p:01;{1 — p): 03] as £(p). Consider some
Plow Tor which 0s > #{p1s,,). Such a py,, must exist since oy > o3; for
example, by decomposability pre, = O satisfies this condition. By mono-
tonicity, £(piow) > £(p") for any 0 < p’ < Pisw, and so by transitivity
Yo' < Prow. 02 > £(p’). Consider some ppgp for which €(ppz,r) > 02. By
monetonicity, £(p") > €{ppigs) forany 1 > p' > ppign, and 50 by transitivity
VD' = Puigh, €(p) > 02, We thus know the relationship between £(p) and o,
for all values of p except those on the interval (piow, Phign). This is illustrated
in Figure 3.2 (left).

Consider p* = (Piow + Paigi)/2, the midpoint of our interval. By com-
pleteness, op > £(p*) or £(p*) > 0y or 07 ~ €(p*)- First consider the case
a3 ~ £(p*). It cannot be that there is also another point p’ # p* for which
03 ~ £(p’): this would entail £(p*) ~ £(p) by transitivity, and since 01 > 03,
this would violate monotonicity. Bor all p’ 3 p*, then, it must be that cither
oy > Lp") or &(p’) = o,. By the arguments eatlier, if there was a point
p > p* for which o; > £(p), then Vp” < p’, 02 > £(p”), contradicting
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E 0y ~ £(p*). Similasly there cannot be a point p' < p* for which £(p") > 0;.
fj The relationship that must therefore hold between o, and £(p) s illustrated
f@ in Figure 3.2 (right). Thus, in the case 9, ~ £(p*), we have our result.

¢ Otherwise, if o, > £(p™), then by the argument given eatlier o, > £(p") for
%é all p* < p*. Thus we can redefine p,,—the lower bound of the interval of
% -values for which we do not know the relationship between o; and £{p)—to be
% p*. Likewise, if £(p*) > 0y then we can redefine pigr = p*. Bither way, our
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interval (Prow, Prign)is halved. We can continue to itergte the above argument,
examining the midpoint of the updated interval (prow, Puign)- Either we will
encounter a p* for which o3 ~ £(p*), or in the limit py,,, will approach’some
p from below, and py;gs will approach that p from above. ]
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Something our axioms do not tell us is what preference relation holds between
0, and the lottery [p = 01; (1 — p) : 03]. It could be that the agent strictly prefers
0, in this case, that the agent strictly prefers the lottery, or that the agent is
indifferent. Our final axiom says that the third alternative—depicted in Figure 3.2
(right)}—always holds.

Axiom 3.1.7 (Continuity) If o) > 02 and 03 > 03, then Ap € [0, 1] such that
op~[p:ro,1—piosl

If we accept Axioms 3.1.1, 3.1.2, 3.1.4, 3.1.5, and 3.1.7, it turns out that we
have no choice but to accept the existence of single-dimensional utility functions
whose expected values agents want to maximize. (And if we do not want to reach
this conclusion, we must therefore give up at least one of the axioms.) This fact
is stated as the following theorem.

Theorem 3.1.8 (von Neumann and Morgenstern, 1944) If a preference rela-
tion > satisfies the axioms completeness, transitivity, substitutability, decompos-
ability, monotonicity, and continuity, then there exists a function u : O 10,1]
with the properties that:

1. u(o1) = ulox) iff o1 = 02; and
2. uE[Pl 01 e Pt O = 3 iy PiUl0:).

Proof. If the agent is indifferent among all outcomes, then for all o; € O set
u(o;) = 0. In this case Part 1 follows trivially (both sides of the implication
are always trae), and Part 2 is immediate from decomposability.

Otherwise, there must be a set of one or more most-preferred outcomes and
a disjoint set of one or more least-preferred ontcomes. {There may of course
be other outcomes belonging to neither set.) Label one of the most-preferred
outcomes as B and one of the least-preferred cutcomes as ¢. For any outcome
o;, define #(0;) to be the number p; such that o; ~ (p; : 3, (1 - pi} : o]. By
continuity such a number exists; by Lemma 3.1.6 it is unique.
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ff: Part 1: u(o;) > u{o,) iff 0 = os. :

i; Let £; be the lottery such that oy ~ £; = [u(01) : G; 1 — u(op) : ol; sim-
% ilary, let & be the lottery such that o ~ & = [u(02) : 331 = u(ay) : ol
3 First, we show that u(0}) = w{o2) = 01 Z 02. If u{oy) = u{oy) then, since
3‘: 7 > ¢ we can conclude that £; > £ by. monotonicity. Thus, we have
5 o ~ £y > £y ~ og; by transitivity, substitutability, and decomposability, this
i gives 01 > 0. Xf (o) = u(0o), the ¢; and £, are identical lotteries; thus,
L o) ~ £y = £ ~ 0y, and transitivity gives oy ~ 02.

3 Now we must show that 0 > 02 = uo1) = u(oz). It suffices to prove
g; the contrapositive of this statement, u(o1) # u(02) = 01 ¥ 02, which can be

rewritten as u{o;) > u(01) = 02 > o1 by completeness. This statement was
already proved earlier (with the labels 0, and 0> swapped).
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Part 2: u((p1 2 01, - -, P okl = ):f-;, piu(0;).
Let u* = u([p1 : 01, .- -+ Pi * 0x]). From the construction of ¥ we know
¢ that o ~ [u(oq) : 3, (1 —u(0)) : o} By substitutability, we can replace
each ¢; in the definition of u* by the lottery [u(o;): 0, (1 ~uloi)) ol,
i giving us «* =u(lp, : [#(o) 13, (1 - wor)) 1 @ly .o prt lulog) 10, (1~
5 ulog)) ol This nested lottery only selects between the two ountcomes
£ o and o. This means that we can use decomposability to conclude u* =

:, u ([(Ef:l p,—u(o;)) 10, 1- (2f51 piu(a,-)) : g]). By our definition of v,

Ewr = Tory pal0r): =

One might wonder why we do not use money to express the real-valued quan-
tity that rational agents want to maximize, rather than inventing the new concepl
of utility. The reason is that while it is reasonable to assume that all agents get
happier the more money they have, itis often not reasonable to assume that agents
care only about the expected values of their bank balances. For example, consider
a situation in which an agent is offered a gamble between a payoff of two million

" and a payoff of zero, with even odds. When the outcomes are measured in units of

utility (“utils”) then Theorem 3.1.8 tells us that the agent would prefer this gamble
to 2 sure payoff of 999,999 utils. However, if the outcomes were measured in
money, few of us would prefer to gamble—most people would prefera guaranteed
payment of nearly a million dollars toa double-or-nothing bet. This is not to say
that utility-theoretic reasoning goes out the window when money is involved. It
simply points out that utility and money are often not linearly related. This issue
is discussed in more detail in Section 10.3.1.

What if we want a utility function that is not confined to the range [0, 1}, such
as the one we had in our friends and enemies example? Luckily, Theorem 3.1.8
does not require that every utility function maps to this range; it simply shows
that one such utility function must exist for every set of preferences that satisfy
the required axioms. Indeed, von Neumann and Morgenstern also showed that
the absolute magnitudes of the utility function evaluated at different outcomes
are unimportant. Instead, every positive affine transformation of a utility function
yields another utility function for the same agent {in the sense that it will also
satisfy both properties of Theorem 3.1.8). In other words, if u(0) is 2 utility
function for a given agent then u'(0) = au(o) + b is also autility function for the
same agent, as long as a and b are constants and a is positive.

Games in normal form

We have seen that under reasonable assumptions about preferences, agents will
always have utility functions whose expecled values they want to maximize.
This suggests that acting optimally in an uncertain environment is conceptually
siraightforward—at least as long as the outcomes and their probabilities are
known to the agent and can be succinctly represented. Agents simply need to
choose the course of action that maximizes expected utility. However, things can
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C D %,

D} 0,4 -3,-3

Figure 3.3 The TCP user’s (aka the Prisoner’s) Dilemma.

get considerably more complicated when the world contains two or more utility-
maximizing agents whose actions can affect each other’s utilities. (To augment
our example from Section 3.1.1, what if Bob hates Alice and wants to avoid her
too, while Carol is indifferent to seeing Alice and has a crush on Bob? In this
case, we might want to revisit our previous assumption that Bob and Carol will
act randomly without caring about what the other two agents do.) To study such
settings, we tarn to game theory.

Example: the TCP user’s game

Let us begin with a simpler example to provide some intuition about the type
of phenomena we would like to study. Imagine that you and another colleague
are the only people using the internet. Internet traffic is governed by the TCP
protocol. One feature of TCP is the backoff mechanism; if the rates at which you
and your colleague send information packets into the network causes congestion,
you each back oif and reduce the rate for a while until the congestion subsides.
This is how a cormrect implementation works. A defective one, however, will not
back off when congestion occurs. You have two possible strategies: C (for using
a correct implementation) and D (for using a defective one). If both you and your
colleague adopt C then your average packet delay is 1 ms. If you both adopt D
the delay is 3 ms, because of additional overhead at the network router. Finally, if
one of you adopts D and the other adopts C then the I> adopter will experience
no delay at all, but the C adopter will experience a delay of 4 ms.

These consequences are shiown in Figure 3.3. Your options are the two rows,
and your colleague’s options are the columns. In each eell, the first number
represents your payoff (or, the negative of your delay) and the second number
represents your colleague’s payoff,'!

Given these options what should you adopt, C or D? Does it depend on what
you think your colleague will do? Furthermore, from the perspective of the
network operator, what kind of behavior can he expect from the two nsers? Will
any two users bebave the same when presented with this scenario? Will the
behavior change if the network operator allows the users to communicate with
each other before making a decision? Under what changes to the delays would
the users’ decisions still be the same? How would the users behave if they have

1. A more standard mame for this game is the Prisoner's Dilemma; we retum to this in Section 3.2.3.
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the opportunity to face this same decision with the same counterpart maultiple
times? Do answers to these questions depend on how rational the agents are and
how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any
rational user, when presented with this scenario once, will adopt D—regardiess
of what the other user does. It tells us that allowing the users to commusnicate
beforehand will not change the outcome. It tells us that for perfectly rational
agents, the decision will remain the same even if they play multiple times;
however, if the number of times that the agents will play is infinite, or even
uncertain, we may see them adopt C.

Definition of games in normal form

The normal form, aiso known as the strategic form, is the most familiar rep-
resentation of strategic interactions in game theory. A game written in this
way amounts 1o a representation of every player’s utility for every state of
the world, in the special case where states of the world depend only on the
players’ combined actions. Consideration of this special case may seem unin-
teresting. However, it turns out that settings in which the state of the world
also depends on randomness in the environment—called Bayesian games and
introduced in Section 6.3—can be reduced to (mmuch larger) normal-form games.
Indeed, there also exist normal-form reductions for other game representations,
such as games that involve an element of time (extensive-form games, introduced

~ in Chapter 5). Because most other representations of interest can be reduced

to it, the normal-form representation is arguably the most fundamental in game
theory. '

Definition 3.2.1 (Normal-form game) A (finite, n-person) normal-form game
isatuple (N, A, u}, where:

e N is a finite set of n players, indexed byi;

o A= Ay X --- X Ag, where Ay is a finite set of actions available to player
i. Each vector a = (a1, ..., a,) € A is called an action profile;

o u={iy,...,u), where u; : Av> R is g real-valued utility (or payoif)
function for player i,

Note that we previously argued that utility functions should map from the set
of outcomes, not the set of actions. Here we make the implicit assumption that
O =A.

A natural way fo represent games is via an n-dimensional matrix. We already
saw a two-dimensional example in Figure 3.3. In general, each row corresponds
to a possible action for player 1, each column corresponds to a possibie action
for player 2, and each cell corresponds to one possible outcome. Each player’s
utility for an outcome is writien in the cell corresponding to that outcome, with
player 1’s utility listed first.

#
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c D

C a,a b,c &

D c, b d,d

Fipure 3.4 Anyc¢ > a » d > b define an instance of Prisoner’s Dilemma.

More examples of normal-form games
Prisoner’s Dilemma

Previously, we saw an example of a game in normal form, namely, the Pri-
soner’s (or the TCP user’s) Dilemoma. However, as discussed in Section 3.1.2,
the precise payoff numbers play a limited role. The essence of the Prisoner’s
Dilemma example would not change if the —4 was replaced by -5, or if 100
was added to each of the numbers. In its most general form, the Prisoner’s
Dilemma is any normal-form game shown in Figure 3.4, inwhich¢ > a > d >
b2

Incidentally, the name “Prisoner’s Dilemma” for this famous game-theoretic
situation derives from the original story accompanying the numbers. The players
of the game are two prisoners suspected of a crime rather than two network users.
The prisoners are taken to separate interrogation rooms, and each can either
“confess” to the crime or “deny” it (or, alternatively, “cooperate” or “defect”).
If the payoff are all nonpositive, their absolute values can be interpreted as the
length of jail term each of prisoner gets in each scenario.

Cemmon-payoff games

There are some Testricted classes of normal-form games that deserve special
mention. The first is the class of common-payoff games. These are games in
which, for every action profile, all players have the same payoff.

Definition 3.2.2 {Common-payoff game) A common-payoff game is a game in
which for all action profiles a € Ay % --- X A, and any pair of agents i, j, it is
the case that u;{a) = u;(a).

Common-payoff games are also called pure coordination games or team
games. In such games the agents have no conflicting interests; their sole challenge
is to coordinate on an action that is maximally beneficial to all.

As an example, imagine two drivers driving towards each other in a country
having no traffic rules, and who must independently decide whether to drive on

2. Under some definitions, there is the further requirement that a > 22€, which guarantees that the
outcome (C, C) maximizes the sum of the agents® utilities.
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Left  Right

Left | 1,1 0,0

Right | 0,0 | L1

Figure 3.5 Coordination game.

the left or on the right. If the drivers choose the same side (left or right) they
have some high utility, and otherwise they have a low utility. The game matrix is
shown in Figure 3.5. '

Zero-sum games

At the other end of the spacti‘um from pure coordination games lie zero-sum
games, which (bearing in mind the comment we made earlier about positive
affine transformations) are more propetly called constant-sum.games. Unlike
common-payoff games, constant-sum games are meaningful primarily in the
context of two-player (though not necessarily two-strategy) games.

Definition 3.2.3 (Constant-sum game) A two-player normal-form game is
constant-sum if there exists a constant ¢ such that for each strategy profile
a € Ay x Ay itis the case that ui{a) + uz(a) = c.

For convenience, when we talk of constant-sum games going forward we will
always assume that ¢ = 0, that is, that we have a zero-sum game. If common-
payoff games represent situations of pure coordination, Zero-sum. games represent
situations of pure competition; one player’s gain must come at the expense of the
other player. This property requires that there be exactly two agents. Indeed, if
you allow more agents, any game can be turned into a zero-sum game by adding
a dummy player whose actions do not impact the payoffs to the other agents,
and whose own payoffs are chosen to make the payoffs in each outcome sum to
Zer10.

A classical example of a zero-sum game is the game of Matching Pennies.
In this game, each of the two players has a penny and independently chooses to
display either heads or tails. The two players then compare their pennies. If they
are the same then player 1 pockets both, and otherwise player 2 pockets them.
The payoff matrix is shown in Figure 3.6,

The popular children’s game of Rock, Paper, Scissors, also knowr as Rocham-
beau, provides a three-sirategy generalization of the matching-pennies game. The
payoff matrix of this zero-sum game is shown in Figure 3.7. In this game, cach
of the two players can choose either rock, paper, or scissors. If both players
choose the same action, there is no winner and the utilities are zero. Otherwise,
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Heads Tails

Heads 1, -1 | -1,1

Tails | —1,1 1, -1

Figure 3.6 Matching Pennies game.

Rock Paper  Scissors
Rock 0,0 -1,1 1, -1
Paper 1,-1 0,0 —1,1
Scissors -1,1 1, -1 0,0

Figure 3.7 Rock, Paper, Scissors game.

each of the actions wins over one of the other actions and loses to the other
remaining action.

Battle of the Sexes :

In general, games can include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another
well-known game that includes both elements. In this game, called Battle of the
Sexes, a husband and wife wish t© go to the movies, and they can sefect among
two movies: “Lethal Weapon (LW)” and “Wondrous Love (WL).” They much
prefer to go together rather than to separate movies, but while the wife (player 1)
prefers LW, the husband (player 2) prefers WL. The payoff matrix is shown in
Figure 3.8. We will return to this game shortly.

Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet
his set of strategies or his available choices. Certainly one kind of strategy is to
select a single action and play it. We call such a strategy a pure strategy, and we
will use the notation we have already developed for actions to represent it. We
call a choice of pure strategy for each agent a pure-strategy profile.
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: Husband
iw WL
LW 2,1 0,0
Wife
WL 0,0 1,2

Figure 3.8 Battle of the Sexes game.

Players could also follow another, less obvious type of strategy: randomizing
over the set of available actions according to some probability distribution. Such
a strategy is called a mixed strategy. Although it may not be immediately obvious
why 2 player should introduce randomness into his choice of action, in fact in
a multiagent setting the role of mixed strategies is critical. We define a mixed
strategy for a normal-form game as follows.

¥

Definition 3.2.4 (Mixed strategy) Let (N, A, u) be a normal-form game, and
for any set X let TI(X) be the set of all probability distributions over X. Then the
mixed strategy  Sef of ixed strategies for player i is §; = TI(A;)).

mixed-strategy  Definition 3.2.5 (Mixed-strategy profile) The set of mixed-strategy profiles is
profile  simply the Cartesian product of the individual mixed-strategy sets, Sy X +-+ X S,.

By 5:{a;) we denote the probability that an action g; will be played under
mixed strategy s;. The subset of actions that are assigned positive probability by
the mixed strategy s; is called the support of s;.

supportof a  Definition 3.2.6 (Support) The support of a mixed strategy s; for a player i is
mixed stwaiegy  the set of pure strategies {a;|s:{a;) > O}

Note that a pure strategy is a special case of a mixed strategy, in which the

fully mixed  SUpport is a single action. At the other end of the spectrum we have fully mixed

stalegy  strategies. A strategy is fully mixed if it has full support (i.e., if it assigns every
action a nonzero probability).

We have not yet defined the payoffs of players given a particular strategy
profile, since the payoff matrix defines those directly only for the special case
of pure-strategy profiles. But the generalization to mixed strategies is straight-

expected utility  forward, and relies on the basic notion of decision theory—expected utility.
Intuitively, we first calculate the probability of reaching each outcome given the
strategy profile, and then we calculate the average of the payoffs of the outcomes,
weighted by the probabilities of each outcome. Formally, we define the expected
utility as follows (overloading notation, we use u; for both utility and expected

uttity).
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Definition 3.2.7 (Expected utility of a mixed strategy}g- Given a normal-form
game (N, A, u), the expected utility u; for player i of ‘the mixed-strategy pro-
files = (s1,....8,) is defined as

uils) =Y _u(@) ] [ sitap).

a2cA j=1

Analyzing games: from optimality to equilibrium

Now that we have defined what games in normal form are and what strategies
are available to players in them, the question is how to reason about such games.
In single-agent decision theory the key notion is that of an optimal sirategy, that
is, a strategy that maximizes the agent’s expected payoff for a given environment .
in which the agent operates. The situation in the single-agent case can be fraught
with uncertainty, since the environment might be stochastic, partially observable,
and spring all kinds of surprises on the agent. However, the situation is even more
complex in a multiagent setiing. In this case the environment includes—or, in
many cases we discuss, consists entirely of —other agents, all of whom are also
hoping to maximize their payoffs. Thus the notion of an optimal strategy for a
given agent is not meaningful; the best strategy depends on the choices of others.

Game theorists deal with this problem by identifying certain subsets of oui-
comes, called solution concepts, that are interesting in one sense or another. In
this section we describe two of the most fundamental solution concepts: Pareto
optimality and Nash equilibrium.

‘Pareto optimality

First, let us investigate the extent to which a notion of optimality can be meaning-~
ful in games. From the point of view of an outside observer, can some outcomes
of a game be said to be better than others?

This question is complicated because we have no way of saying that one
agent’s interests are more important than another’s. For example, it might be
tempting to say that we should prefer outcomes in which the sum of agents’
utilities is higher. However, recall from Section 3.1.2 that we can apply any
positive affine transformation to an agent’s utility function and obtain another
valid utility function. For example, we could multiply all of player 1°s payoffs by
1,000, which could clearly change which outcome maximized the sum of agents’
utilities.

Thus, our problem is to find a way of saying that some outcomes are better
than others, even when we only know agents’ utility functions up to a positive
affine transformation. Imagine that each agent’s utility is a monetary payment
that you will receive, but that each payment comes in & different currency, and
you do not know anything about the exchange rates. Which outcomes should you
prefer? Obsesve that, while it is not usually possible to identify the best outcome,
there are situations in which you can be sure that one outcome is betier than
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another. For example, it is better to get 10 units of currency A and 3 units of
cugrency B than to get 9 units of currency A and 3 units of currency B, regardless
of the exchange rate. We formalize this intvition in the following definition.

Definition 3.3.1 (Pareto domination) Strategy profile s Pareto dominates strat-
egy profile s' if for all i € N, u;(s) > u;(s"), and there exists some j € N for
which u;(s) > u;(s").

In other words, in a Pareto-dominated strategy profile some player can be made
better off without making any other player worse off. Observe that we define
Pareto domination over sirategy profiles, not just action profiles. Thus, here we
treat strategy profiles as outcomes, just as we treated lotteries as outcomes in
Section 3.1.2.

Pareto domination gives us a partial ordering over strategy profiles. Thus,
in answer to our question before, we cannot generally identify a single “best”
outcome; instead, we may have a set of noncomparable optima.

Definition 3.3.2 (Pareto optimality) Strategy profile s is Pareto optimal, or
strictly Pareto efficient, if there does not exist another strategy profile s € §
that Pareto dominates s.

We can easily draw several conclusions about Pareto optimal strategy profiles.
First, every game must have at least one such optimum, and there must always
exist at [east one such optimum in which all players adopt pure strategies. Second,
some games will have multiple optima. For example, in zero-sum games, all
strategy profiles are strictly Pareto efficient. Finally, in common-payoff games,
all Pareto optimal strategy profiles have the same payoffs.

Defining best response and Nash equilibrium

Now we will look at games from an individual agent’s point of view, rather than
from the vantage point of an outside observer. This will lead us to the most
influential solution concept in game theory, the Nash equilibrivm.

Our first observation is that if an agent knew how the others were going to play,
his strategic problem would become simple. Specifically, he would be left with the
single-agent problem of choosing a utility-maximizing action that we discussed in
Section 3.1. Formally, define s_; = (1, ..., Si—1, Si41, - - - » 5x), & strategy profile
s without agent i’s strategy. Thus we can write 5 = (5;, 5-;). If the agents other
than i (whom we denote —i) were to commit to play s—;, a ufilify-maximizing
agent i would face the problem of determining his best response.

Definition 3.3.3 (Best response) Player i's best response 2o the strategy profile
s_; Is a mixed strategy s € §; such that u; (s¥, s_;) > ui(s:, s;) for all strategies
5 € 8;.

The best response is not necessarily unique, Indeed, except in the extreme case
in which there is a unique best response that is a pure strategy, the number of best
responses is always infinite. When the support of a best response s* includes two
or moz:%gctions, the agent must be indifferent among them—otherwise, the agent
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Lw WL e
LW 2,1 0,0
WL 0,0 11,2

Figare 3.9 Pure-strategy Nash equilibria in the Batile of the Sexes game.

would prefer to reduce the probability of playing at least oné of the actions to
zero. But thus any mixture of these actions must also be a best response, not only
the particular mixture in s*. Similarly, if these are two pure sirategies that are indi-
vidually best responses, any mixtore of the two is necessarily also a bestresponse.

Of conrse, in general an agent will not know what strategies the other players
plan to adopt. Thus, the notion of best response is not a solution concept-—1t does
not identify an interesting set of outcomes in this general case. However, we can
leverage the idea of best response to defing what is arguably the most central
notion in noncooperative game theory, the Nash equilibrium.
Definition 3.3.4 (Nash equilibrium) A strategy profile 5= (51,--+» Sn) IS @
Nash equilibriom if, for all agenis i, 5; is a best response 10 5—t-

Intuitively, a Nash equilibrium is a stable strategy profile: no agent would want
to change his strategy if he knew what strategies the other agents were following.

We can divide Nash equilibria into two categories, strict and weak, depending
on whether or not every agent’s strategy constitutes a ynique best response to the
other agents’ strategies. '

Definition 3.3.5 (Strict Nash) A strategy profile s = (s1, - --»Sn)} 158 strict Nash
equilibrium #, for all agents i and for all strategies Si # Sis wilSi $-i) >
u; (57, ;).

Definition 3.3.6 (Weak Nash) A strategy profiles = (51, - --»5n) 158 weak Nash
equilibrium if, for all agents i and for all strategies s| # Si» #i(si> $-i) Z
ui(s!, s_;), and s is not a strict Nash eguilibrium.

Intuitively, weak Nash equilibria are less stable than strict Nash equilibria,
because in the former case at least one player has a best response (o the Othf’:f
players’ strategies that is not his equilibrium strategy. Mixed-strategy Nash cqu-
libria are necessarily weak, while pure-strategy Nash equilibria can be either
strict or weak, depending on the game.

Finding Nash equilibria

Consider again the Battle of the Sexes game. We immediately see that it has two
pure-strategy Nash equilibria, depicted in Figure 3.9.

We can check that these are Nash equilibria by confisming that whenever one
of the players plays the given (pure) strategy, the other player would only lose by
deviating.




N R

3.3 Analyzing games: from optimality to equilibrium 63

Heads Tails

Heads | I,~1 -1,1

Tatls | —1,1 l,—1

¥ R IT T ar £ e

Figure 3,10 The Matching Pennies game,

Are these the only Nash equilibria? The answer is no; although they are
indeed the only pure-strategy equilibria, there is also another mixed-strategy
equilibrium. In general, itis tricky to compute a game’s mixed-strategy equilibria;
we consider this problem in detail in Chapter 4. However, we will show here that
this computational problem is easy when we know (or can guess) the support of
the equilibrium strategies, particularly so in this small game. Let us now guess
that both players randomize, and let us assume that husband’s strategy is to play
LW with probability p and WL wiih probability 1 — p. Then if the wife, the
row player, also mixes between her two actions, she must be indifferent between
them, given the husband’s strategy. (Otherwise, she would be better off switching
to a pure strategy according to which she oaly played the better of her actions.)
Then we can write the following equations.

Uwifc(LW} = Uyige(WL)
2¥p+0x(l—p)=0xp+1%(1~p)
1

. 3
We get the result that in order to make the wife indifferent between her actions,
the husband must choose LW with probability 1/3 and WL with probability 2/3.
Of course, since the husband plays a mixed strategy he must also be indifferent
between his actions, By a similar calculation it can be shown that to make the -
husband indifferent, the wife must choose LW with prebability 2/3 and WL with
probability 1/3. Now we can confirm that we have indeed found an equilibrium:
since both players play in a way that makes the other indifferent, they are both best
responding to each other. Like all mixed-strategy equilibria, this is 2 weak Nash
equilibrium. The expected payoff of both agents is 2/3 in this equilibrium, which
means that each of the pure-sirategy equilibria Pareto-dominates the mixed-
strategy eguilibrium.

Earlier, we mentioned briefly that mixed strategies play an important role.
The previous example may not make it obvious, but now consider again the
Matching Pennies game, reproduced in Figure 3.10. It is not hard to see that no
pure strategy could be part of an equilibrium in this game of pure competition.
Therefore, likewise there can be no strict Nash equilibrium in this game. But
using the aforementioned procedure, the reader can verify that again there exisis
a mixed-strategy equilibrium,; in this case, each player chooses one of the two
aviilable actions with probability 1/2.
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What does it mean to say that an agent plays a mixed-strategy Nash equilib-
rivm? Do players really sample probability dzsmbutlogs in their heads? Some
people have argued that they really do. One weli- known fnotivating example for
mixed strategies involves soccer: specifically, a kicker and a goalie getting ready
for a penalty kick. The kicker can kick to the left or the right, and the goalie can
jump to the left or the right. The kicker scores if and only if he kicks to one side
and the goalie jumps to the other; this is thus best modeled as Matching Pennies. -
Any pure strategy on the part of either player invites a winning best response on
the part of the other player. It is only by kicking or jumping in either direction
with equal probability, goes the argument, that the opponent cannot exploit your
strategy.

Of cousse, this argument is not uncontroversial. In particular, it can be ar-
gued that the strategies of each player are deterministic, but each player has
uncertainty regarding the other player’s strategy. This is indeed a second possible
interpretation of mixed strategies: the mixed strategy of player i is everyone else’s
assessment of how likely 7 is to play each pure strategy. In equilibrium, i’s mixed
strategy has the further property that every action in its support is a best response
to player i's beliefs about the other agents’ sirategies.

Finally, there are two interpretations that are related to learning in multiagent
systems. In one interpretation, the game is actually played many times repeatedly,
and the probability of a pure strategy is the fraction of the time it is played in
the limit (its so-called empirical frequency). In the other interpretation, not only
is the game played repeatedly, but each time it involves two different agents
selected at random from a large population. In this interpretation, each agent
in the population plays a pure strategy, and the probability of a pure strategy
represents the fraction of agents playing that strategy. We return to these learning
interpretations in Chapter 7.

Nash’s theorem: proving the existence of Nash equilibria

We have now seen iwo examples in which we managed to find Nash equilibria
(three equilibria for Battle of the Sexes, one equilibrium for Matching Pennies).
Did we just luck out? Here there is some good news—it was not just luck. In this
section we prove that every game has at least one Nash equilibrium.

First, a disclaimer: this section is more technical than the rest of the chapter.
A reader who is prepared to take the existence of Nash equilibria on faith can
safely skip to the beginning of Section 3.4 on p. 71. For the bold of heart who
remain, we begin with some preliminary definitions. '

Definition 3.3.7 (Convexity) A set C C R™ is convex if for every x,y € C and
A €[0,1}, Ax + {1 — Ay € C. For vectors x°, ..., x™ and nonnegative scalars
Aoy eny hn satmﬁ;mg oA = 1, thevector ) ;_ }. x! is called a convex com-
bmatxon of x° L. x

For example, a cube is a convex set in R?; a bowl is not.
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Definition 3.3.8 (Affine independence) A finite set of vectors (x% ..., %" ina
Euclidean space is affinely independent if 3 °_o Aix* = Oand Y ;. o A = Qimply
thatdg=--+=r, = 0. .

0

An equivalent condition is that {x! — x® %2 —x%, ..., x" — x%} are linearly in-
dependent. Intuitively, a set of poiats is affinely independent if no three points
from the set lie on the same line, no four points from the set lie on the same plane,
and so on. For example, the set consisting of the origin 0 and the unit vectors
el,...,e" is affinely independent.

Next we define a simplex, which is an r-dimensional generalization of a
triangle.

Definition 3.3.9 (n-simplex) An n-simplex, denoted x%---x", is the set of all
convex combinations of the affinely independent set of vectors {x°, ..., x"}, that
is,

.1t = {E}L,—x" Yiel0,...,rl, i =G andzl,- =1}.

i=0 i=0
Each x! is called a vertex of the simplex x° - - - x™ and each k-simplex x% . . . x'
is called a k-face of x®-..x", where iy, ..., i €{0,...,n}. For example, a
triangle (i.e., a 2-simplex) has one 2-face (itseif), three 1-faces (its sides) and
three O-faces (its vertices).

Definition 3.3.10 (Standard n-simplex) The standard n-simplex A, is

n
{y e R*H . Zy,-: LVYi=0,...,n, % 20}.
=0 ‘

In other words, the standard z-simplex is the set of all convex combinations
of the n + 1 unit vectors &%, .. ., &".

Definition 3.3.11 (Simplicial subdivision) A simplicial subdivision of an n-
simplex T is a finite set of simplexes {T;} for which Uper Ii =T, and for
any T;, Ty € T, T; N T} is either empty or equal to a common face.

Intuitively, this means that 2 simplex is divided up into a set of smaller sim-
plexes that together occupy exactly the same region of space and that overlap
only on their boundaries. Furthermore, when two of them overlap, the intersection
must be an entire face of both subsimplexes. Figure 3.11 (left) shows a 2-simplex
subdivided into 16 subsimplexes.

Let y € x%---x" denote an arbitrary point in a simplex. This point can be
written as a convex combination of the vertices: y = ¥; A;x!. Now define a

_ funciion that gives the set of vertices “involved” in this point: x(y) = {i : A; > 0}.

We use this function to define a proper labeling.

Definition 3.3.12 (Proper labeling} Let T = x°-.-x" be simplicially subdi-
vided, and let V denote the set of all distinct vertices of all the subsimplexes. A
Junction £ : V > {0, ..., n}isaproper labeling of a subdivision if L(v) € x(v).

One consequence of this definition is that the vertices of a simplex must
all receive different labels. (Do you see why?) As an example, the subdivided
smiplex in Figure 3.11 (left) is properly labeled.
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the face T,—;; call this subsimplex b, There exists a unique n-subsimplex

labels (say j) is repeated, and the Iabel » is missing. In this case there exists

Figure 3,11 A properly labeled simplex (eft), and the same simplex with completely labeled subsimplexes
shaded and three walks indicated (right).

Definition 3.3.13 (Complete labeling) A subsimplex is completely labeled if £
assumes all the values 0, . .., n on its set of vertices.

For example in the subdivided triangle in Figure 3.11 (left), the subtriangle at the
very top is completely labeled.

Lemma 3.3.14 (Sperner’s lemma) Let T, =x®...x" pe simplicially subdi-
vided and let L be a proper labeling of the subdivision. Then there are an odd
number of completely labeled subsimplexes in the subdivision.

Proof. 'We prove this by induction on n. The case n = 0is trivial. The simplex
consists of a single point x°. The only possible simplicial subdivision is {x%}.
There is only one possible labeling function, £(x%) = 0. Note that this is a
proper labeling. So there is one completely labeled subsimplex, x? jtseif,

We now assume the statement to be true for n — 1 and prove it for n.
The simplicial subdivision of T, induces a simplicial subdivision on its face
x%-..x"1, This face is an (# — 1)-simplex; denote it as T,_;. The label-
ing function £ restricted to T,..; is a proper labeling of 7,_,. Therefore by
the duction hypothesis there exist an odd number of (n ~ 1)-subsimplexes
in T,y that bear the labels (0, ..., n — 1). (To provide graphical intvition,
we will illustrate the induction argument on a subdivided 2-simplex. In Fig-
ure 3.11 (left), observe that the bottom face x%x! is a subdivided I-simplex—a
line segment—containing four subsimplexes, three of which are completely
labeled.)

We now define rules for “walking” across our subdivided, Iabeled simplex
T,. The walk begins at an (n — 1)-subsimplex with labels (0,...,n — Don

d that has b a3 a face; d’s vertices consist of the veriices of b and ancther
vertex z. If z is labeled n, then we have a completely labeled subsimplex and
the walk ends. Otherwise, d has the labels (0, ..., n — 1), where one of the

exactly one other (n — I)-subsimplex that is a face of d and bears the labels
(0,...,n — 1). This is because each (n — 1)-face of d is defined by all but
one of d’s vertices; since only the label j is repeated, an (n — I)-face of 4 has
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Iabels (0, . .., n — 1) if and only if ane of the two vertices with label j is left
out. We know & is one such face, so there is exactly one other, which we call
e. (For example, you can confirm in Figure 3.11 (left) that if a subtriangle
has an edge with labels (0, 1), then it is either completely labeled, or it has
exactly one other edge with labels (0, 1).) We continue the walk from e. We
make use of the following property: ar (n — 1)-face of an #-subsimplex ina
simplicially subdivided simplex T, is either on an (1 — 1)-face of T,,, or the
intersection of two #-subsimplexes. If e is on an (n — 1)-face of T,, we stop
the walk. Otherwise we walk into the unique other n-subsimplex having e
as a face. This subsimplex is either completely labeled or has one repeated
label, and we continue the walk in the same way we did with subsimplex d
earlier.

Note that the walk is completely determined by the starting (r — 1)~
subsimplex. The walk ends either at a completely labeled n-subsimplex,
or at a (n — 1)-subsimplex with labels (0,...,n — 1) on the face T, ;. (It
cannot end on any ather face because L is a proper labeling.) Note also that
every walk can be followed backward: beginning from the end of the walk
and following the same rule as earlier, we end up at the starting point. This
implies that if a walk starts at ¢ on T,—; and ends at ¢ on 7., ¢ and ¢" must
be different, because otherwise we could reverse the walk and get a different
path with the same starting point, contradicting the uniqueness of the walk.
(Figure 3.11 (right) illustrates one walk of each of the kinds we have dis-
cussed so far: one that starts and ends at different subsimplexes on the face
x%x!, and one that starts on the face x"x! and ends at a completely labeled
subtriangle.} Since by the induction hypothesis there are an odd number of
(z — 1}-subsimplexes with labels (0, ..., n — 1) at the face T,,—,, there must
be at least one walk that does not end on this face. Since walks that start and
end on the face “pair up,” there are thus an odd number of walks starting
from the face that end at completely labeled subsimplexes. All such walks
end at different completely labeled subsimplexes, because there is exactly
one (n — 1)-simplex face labeled (0, . .., n — 1) for a walk to enter from in a
completely labeled subsimplex.

Not ali completely labeled subsimplexes are led to by such walks. To see
why, consider reverse walks starting from completely labeled subsimplexes.
Some of these reverse walks end at (n — 1)-simplexes on 7, but some end
at other completely labeled rn-subsimplexes. (Figure 3.11 (right) iflustrates
one walk of this kind.) However, these walks just pair up completely labeled
subsimplexes. There are thus an even number of completely labeled subsim-
plexes that pair up with each other, and an odd number of completely labeled
subsimplexes that are led to by walks from the face T,,_;. Therefore the total
number of completely labeled subsimplexes is odd. |

Definition 3.3.15 (Compactness) A subset of R™ is compact If the set is closed
and bounded.

It is straightforward to verify that A, is compact. A compact set has the property
thgg_‘_every] sequence in the set has a convergent subsequence.
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Definition 3.3.16 (Centroid) The centroid of @ simplex x0- - - x™ is the “aver-

»” . . 1 m i
age” of its vertices, 72z 3 o xF.

A
¥

We are now ready touse Sperner’s lemma to prove Brouwer’s fixed-point theorem.

Theorem 3.3.17 (Brouwer’s fixed-point theorem) Ler f: A, > A, be con-
tinuous. Then I has a fixed point—that is, there exists some 7 € Ay such that

fD==z

’g Proof. We prove this by first constructing a proper labeling of A,,, then
g showing that as we make finer and finer subdivisions, there exists a subse-
Es quence of completely labeled subsimplexes that converges to a fixed point
¢ of f.

g Part 1: £ is a proper labeling. Let ¢ > 0. We simplicially subdivide® A,
&
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3. Here, we implicitly assume that simplices can always be subdivided regardless of dimension. This is
true, but surprisingly difficult to show,

such that the Euclidean distance between any two points in the same m-
subsimplex is at most €, We define a labeling function £: V - {0,..., m}
as follows. For each v we choose a label satisfying

L) e xW)N{i: fitv) <), (3.1)
where v; is the i™ component of v and £,(v) is the i® component of f(v). In
other words, £(v) can be any label i such that v; > Oand f weakly decreases
the i™ component of v. To ensure that £ is well defined, we must show
that the interscction on the right side of Equation (3.1) is always nonempty.
(Intuitively, since v and f(v) are both on the standard simiplex A,,, and on
Ay, each point’s components sum to 1, there must exist a component of v that
is weakly decreased by f. This intuition holds even though we restrict to the
components in x (v) because these are exactly all the positive components of
v.) We now show this formally. For contradiction, assume otherwise. This
assumption implies that fi(v) > v; foralli % (v). Recall from the definition

;i)

of a standard simplex that ) 7, v; == 1. Since by the definition of X v >0

]

if and only if j € x(v), we have

> uj=iv,-=l. (3.2)
....0

Jextv) ==
Since fi(v) > v; forall j € x(v),

D H@> Y =1 (3.3)

jex(®) jex()
But since f(v) is also on the standard simplex A,
4 I
D WY fiwy=1 (3.4)
Jex(v) i=0

Equations (3.3) and (3.4) Iead to a contyadiction. Therefore, £ is well defined;
it is a proper labeling by construction.




3.3 Analyzing games: from optimality to equilibrium 69

Part 2: As - 0, completely labeled subsimplexes converge to fixed
points of f. Since £ is a proper labeling, by Sperner’s lemma (3.3.14) there
is at least one completely labeled subsimplex p® - . . p™ such that f;(p') < Pig-
for each {. Let € — 0 and consider the sequence of centroids of completely
labeled subsimplexes. Since A,, is compact, there is a convergent subse-
quence. Let z be its limit; then foralli =0, ..., m, p* — zgas € — 0. Since
[ is continuous we must have fi(z) < z; for all {. This implies f(z) ==z,
because otherwise (by an argument similar to the one in Part 1) we would
have 1 =}, fi(z) < 3~; z = 1, a contradiction. =
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Theorem 3.3.17 cannot be used directly to prove the existence of Nash equi-

libria. This is because a Nash equilibrium is a point in the set of mixed-strategy

simplotope  profiles S. This set is not a simplex but rather a simplotope: a Cartesian product

of simplexes. (Observe that each individual agent’s mixed strategy can be un-

derstood as a point in a simplex.) However, it turns out that Brouwer’s theorem

can be extended beyond simplexes to simplotopes.* In essence, this is because

every simplotope is topologically the same as a simplex (formally, they are
homeomorphic).

i
_ti.
4
R
H

Definition 3.3.18 (Bijective function) A function f is injective (or one-to-one)
if f(a) = f(b) implies a = b. & function f : X — Y is onto if for everyy € ¥

bijective  there exists x € X such that f(x) = y. A function is bijective if it is both infective
and onto.

: ~ Definition 3.3.19 (Homeoinorphism) A set A is homeomorphic {0 a set B if
homeomorphism  ghere exists a continuous, bijective function h 1 A v B such that k™! is also
' continuous. Such a function k is called a homeomorphism.

Definition 3.3.20 (Inferior) A point x is an interior point of 2 set A C B™ if
there is an open m-dimensional ball B C R™ centered at x such that B < A. The
interior  Interior of a set A is the set of all its interior points.

Corollary 3.3.21 (Brouwer’s fixed-point theorem, simplotopes) Ler K = -
]_[1_1 Op; be a simplotope and let f : K — K be continuous. Then f has a

Jixed point.
% Proof. Letm = Z?:l m . First we show that if X is homeomorphic to A,
£  then a continuous function f : K + K has a fixed point. Let & : A, — K

be & homeomorphism. Then k™' o f ok : Ap > Ay is cont‘muous, where o
denotes function composition By Theorem 3.3.17 there exists a z’ such that
hlo foh(z) =17 Let z = h(z), then A o f(D) =7 -—h Y(z). Since
A~Lis injective, f(z) = z.
We must stilf show that & = ]_[ 7=t Om; 1s homeomorphic to A,,. K is
convex and compact because cach Ay, is convex and compact, and a product B
of convex and compact sets is also convex and compact. Let the dimension o
of a subset of an Buclidean space be the number of independent parameters i

el oAt VAT R ot R RO e P

; 4. An argument similar to our proof below can be used to prove a generalization of Theorem 3.3.17 to
y arbitrary convex and compact sets.
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Figure 3.12 A product of two standard 1-simplexes is a square (a simplotope; left). The square is scaled
and put inside a triangle (a 2-simplex), and an example of radial projection # is shown (right).
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required 10 describe each point in the set. For example, an n-simplex has
dimension . Since each A, has dimension m j» X has dimension m. Since
K C R™* and A, < R”*} both have dimension , they can be embedded
in R™ as K’ and A, respectively. Furthermore, whereas K C R™** and
A C R™+ have no interior points, both K’ and A, have nonempty interior.
For example, a standard 2-simplex is defined in R, but we can embed the
triangle in R2. As illustrated in Figure 3.12 (left), the product of two standaird
1-simplexes is a square, which can also be embedded in R?. We scale and
translate X' into K” such that K" is strictly inside A/,. Since scaling and

transjation are homeomorphisms, and a chain of homeomorphisms is still a

homeomorphism, we just need fo find 2 homeomorphism # : K7 +> Al Fix
a point 2 in the interior of K. Define  to be the “radial projection” with
respect t0 a, where k(@) = g and forx € X"\ {a},

x'—all

h{x)==a -+ m(x ay,

where x' is the intersection point of the boundary of A7, with the ray that starts
at ¢ and passes through x, and x” is the intersection point of the boundary of
K" with the same ray. Because X" and A}, are convex and compact, x” and x’
exist and are unigue. Since 4 is an interior point of K and A, ||x” — alf and
[ix” — al} are both positive. Intuitively, / scales x along the ray by a factor
of I‘T[:—,',—}f;% Figure 3.12 (right) illustrates an example of this radial projection
from a square simplotope to a triangle.

Finally, it remains to show that 4 is a homeomorphism. It is relatively
straightforward to verify that & is continuous. Since we know that A(x) lies
on the ray that starts at a and passes through x, given A(x) we can reconstruct
the same ray by drawing a ray from a that passes through 2(x). We can then
recover x’ and x”, and find x by scaling 2(x) along the ray by a factor of
,lllfc':'——:l'll . Thus £ is injective. & is onto because given any point y € A, , we can
construct the ray and find x such that 2(x) = y. So, 2~! has the same form
as h except that the scaling factor is inverted, thus 2™} is also continuous.
Therefore, & is @ homeomorphism. |
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We are now ready to prove the existence of Nash equilibrium. Indeed, now
that we have Corollary 3.3.21 and notation for discussing mixed strategies (Sec-
tion 3.2.4), it is surprisingly easy. The proof proceeds by constructing a continuous
£+ 8 +> S such that each fixed point of f is a Nash equilibrium. Then we use
Corollary 3.3.21 to argue that F has at least one fixed point, and thus that Nash
equilibria always exist.

Theorem 3.3.22 (Nash, 1951) Every game with a finite number of players and
action profiles has at least one Nash equilibrium.

# Proof. Given a strategy profiles € §, foralli € N and ; € A; we define

@i 0,(5) = m&x{(}, uila;, 5-¢) — us ()}

R T R T o

i We then define the function f : § > S by f(s)} = s/, where
g si(a) + 01,0, (8)
& si(a) = :
Eb;em%f(bf) + ‘Pi.b;(s)'k
sila;) + Di.q (8)
= . 3.5
Lk Dy e, 96 (5) (3-5)

_ Intuitively, this function maps a strategy profile s to a new stratcgy profile s’
in which each agent’s actions that are better responses (0 5 receive increased
probability mass.

The function f is contimuous since each ¢;,, is continuous. Since § is
eonvez—andcompact and f: S+ S, by Corollary 3.3.21 f must have at
least one fixed point. We must now show that the fixed points of f are the
Nash equilibria.

[ First, if s is a Nash equilibrium then all ¢'s are 0, making s a fixed point]
of f.

A DA SRR
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Conversely, consider an arbitrary fixed point of f, 5. By the linearity of
expectation there must exist at least one action in the support of s, say &,
for which u; #{s) < u;(s). From the definition of @, ¢; 4(s} = 0. Since s is
ed point of £, sj(a}) = si(a]). Consider Equation (3.5), the expression
defining s/(a}). The numerator simplifies to 5;(a;), and is positive since a; is
in i’s support. Hence the denominator must be 1. Thus for any i and b; € A;,
@15,(s) must equal 0. From the definition of ¢, this can occur only when
no player can improve his expected payolf by moving to a pure sirategy.
Therefore, s is a Nash equilibrium. . |
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3.4 Further solution concepts for normal-form games

As described earlier at the beginning of Section 3.3, we reason about multiplayer

solution coneept  gAINES using solution concepts, principles according to which we identify inter-
esting subsets of the outcomes of a game. While the most important solution

&oncept is the Nash equilibrium, there are also a large number of others, only

‘$Bme of which we will discuss here. Some of these concepis are more restrictive
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than the Nash equilibrium, some less so, and some noncomparable. In Chapters 5
and 6 we will introduce some additional solution concepts mgg_gre only applicable
to game representations other than the normal form, e

Maxmin and minmax strategies

The maxmin strategy of player i in an n-player, general-sum game is a (not
necessarily unique, and in general mixed) strategy that maximizes i’s worst-case
payoff, in the situation where all the other players happen to play the strategics
which cause the greatest harm to . The maxmin value (or security level) of the

game for player i is that minimum amount of payoff guaranteed by a maxmin
strategy.

Definition 3.4.1 (Maxmin) The maxmin strategy for player i is argmaic,r
ming_, #;(s;, 5.-;), and the maxmin value Jor player i is max,, min,_, u;(s;, s_;).

Although the maxmin strategy is a concept that makes sense in simultneous-
move games, it can be understood through the following temporal intuition. The
maximin strategy is i’s best choice when first i must committo a {(possibly mixed)
strategy, and then the remaining agents —i observe this strategy (but not i ’s action
choice) and choose their own strategies to minimize ’s expected payoff. In the
Battle of the Sexes game (Figure 3.8), the maxmin value for either playeris 2/3,
and requires the maximizing agent to play a mixed sirategy. (Do you see why?)

While it may not seem reasonable to assume that the other agents would be
solely interested in minimizing i’s utility, it is the case that if ; plays 2 maxmin
strategy and the other agents play arbitrarily, i will stifl receive an expected
payoff of at least his maxmin value. This means that the maxmin strategy is a
sensible choice for a conservative agent who wants to maximize his expected
atility without having to make any assumptions about the other agents, such as
that they will act rationally according to their own interests, or that they will draw
their action choices from known distributions.

The minmax strategy and minmax value play a dual role to their maxmin coun-
terparts. In two-player games the minmax strategy for player i against player —i
is a strategy that keeps the maximum payoff of —i ata minimum, and the minmax
value of player —i is that minimum. This is useful when we want to consider the
amount that one player can punish another without regard for his own payoff.

Such punishment can arise in repeated games, as we will see in Section 6.1, The
formal definitions follow.

Definition 3.4.2 (Minmaz, two-player) Ir a two-player game, the minmax
strategy for player i against player —i is argmin, maxs_, u_;(s;, 5_;), and player
—i’s minmax value is ming max,_, u_;(5;, s_;).

In n-player games with n > 2, defining player i’s minmax strategy against
player j is a bit more complicated. This is becanse 7 will not usually be able to
guarantee that j achieves minimal payoff by acting unilaterally. However, if we
assume that ali the players other than j choose to “gang up” on j—and that they
are able to coordinate appropriately when there is more than one strategy profile
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that would yield the same minimal payoff for j—then we can define minmax
strategies for the n-player case.

Definition 3.4.3 (Minmax, n-player) Inann-player game, the minmax strategy

Jor player i against player j & i is i’s component of the mixed-strategy profile
s—j in the expression argmin,_ , Maxs, u;(s;, 5 ;), where —j denotes the set of
players other than j. As before, the minmax value for player | is min,_ ; max;,
Uj (s iy 8 j).

As with the maxmin value, we can give temporal intuition for the minmax
value. Imagine that the agents —i must commit to a (possibly mixed) strategy
profile, to which i can then play a best response. Player i receives his minmax
value if players —i choose their strategies in order to minimize’s expected utility
after he plays his best response.

In two-player, ames‘:*i'player’s minmax value is always equal to his maxmin
value. For games with more than two players a weaker condition holds: a player’s
maxmin value is always less than or equal to his minmax value, (Can you explain
why this is7)

Since neither an agent’s maxmin strategy nor his minmax sirategy depend
on the strategies that the other agents actually choose, the maxmin and minmax
strafegies give rise fo solution concepts in a straightforward way. We will call a
mixed-strategy profile s = (51, 57, . . .) a maxmin strategy profile of a given game
if 5y is a maxmin strategy for player 1, 5, is a maxmin strategy for player 2 and so
on. In two-player games, we can also define minmax strategy profiles analogously,
In two-player, zero-sum games, there is a very tight connection between minmax
and maxmin strategy profiles. Furthermore, these solution concepts are also linked
to the Nash equilibrium.

Theorem 3.4.4 (Minimax theorem (von Neumann, 1928)) [n any finite, two-
player, zero-sum game, in any Nash equilibrium® each player receives a payoff
that is equal to both his maxmin value and his minmax value.

Proof. At least one Nash equilibrium must exist by Theorem 3.3.22. Let
(57, s_;) be an arbitrary Nash equilibrium, and denote i’s equilibrium payoff
as y;. Denote i's maxmuin value as 7; and i’s minmax value as ;.

First, show that §; = v;. Clearly we cannot have ; > v;, as if this were
true then i would profit by deviating from s/ to his maxmin strategy, and
hence (s}, s_;) would not be a Nash equilibrium. Thus it remains to show that
U; cannot be less than v;,

Assume that #; < v;. By definition, in equilibrium each player plays a best
response fo the other. Thus
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v_; = max u;(s, s_;).
S

5

5. Theattentive reader might wonder how a theorem from 1928 can use the term “Nash equilibrium,” when
Nash’s work was published in 1950. Von Neumann used different terminology and proved the theorern in
a different way; however, the given presentation is probably clearer in the context of modemn game theory.
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Equivalently, we can write that —i minimizes the negative of his payoff, given
i’s strategy,

af
e
B

—V_i = min ~u_;(s], 5._;).
fos

Since the game is zero sum, v; = —v_; and u; = —u._;. Thus,

v = minu(s, s_;).
~—f

We defined 4; as max,, min;_; u;(s;, s—;). By the definition of ntax, we must
have

max min u; (s, s—;) > minwu;(s], s_;).
LI Foi
Thus 9; > v;, contradicting our assumption.
We have shown that 5; = v;. The proof that y. =

is similar, and is left
as an exercise.

Why is the minmax theorem important? It demonstrates that maxmin strate-
gies, minmax strategies and Nash equilibria coincide in two
games. In particular, Theorem 3.4.4 allows us to conclude ¢
ZETO-SUM ‘games;

2

AR R I TR S S R R P S B R S i

-player, zero-snm
hat in two-player,

valweofza 1. Each player’s maxmin value is e

qual to his minmax value, By convention,
Zero-surm gama

the maxmin value for player 1 is called the valye of the game,

minmax strategies; and
3. Any maxmin strategy profile (or, equivalently, minmax strategy profile) is
L , & Nash equilibrinm. Furthermore, these are all the Nash equilibria. Conse-

quently, all Nash equilibria have the same payoff vector (namely, those in
which player 1 gets the value of the game),

For example, in the Matching Pennies game in Figure 3.6, the value of the
game is 0. The unigue Nash equilibrium consists of both players randomizing
between heads and tails with equal probability, which is both the maxmin strategy
and the minmax strategy for each player.
Nash equilibria in zero-sum games can be viewed graphically as a “saddle” in
a high-dimensional space. At a saddle point, any deviation of the agent lowers
* his utility and increases the utility of the other agent. Tt is easy to visualize in the

simple case in which each agent has two pure strategies. In this case the space
of mixed strategy profiles can be viewed as the points on the square between
(0,0) and (1,1). Adding a third dimension representing player 1’s expected utility,
the payoff to player 1 under these mixed strategy profiles (and thus the negative
of the payoff to player 2) is a saddle-shaped surface. Figure 3.13 (Ieft) gives a
pictorial example, illustrating player 1’s ¢xpected utility in Matching Pennies as a
function of both players’ probabilities of playing heads. Figure 3.13 (right) adds
a plane at z = 0 to make it casier to see that it is an equilibrium for both players

to play heads 50% of the time and that zero is both the maxmin value and the
minmax value for both players.

2. For both players, the set of maxmin strategies coincides with the set of
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Figure 3.13 The saddle point in Matching Pennies, with and without a plane atz = 0.

L R

T | 100,a | 1—¢,b

B 2, ¢ 1,4

Figure 3.14 A game for contrasting maxmin with minimax regret. The numbers refer only to player
1’s payoffs; ¢ is an arbitrarily small positive constant. Player 2's payoffs are the arbitrary (and possibly
unknown) constants a, &, ¢, and 4.

Minimax regret

We argued earlier that agents might play maxmin strategies in order to achieve
good payoffs in the worst case, even in a game that is not zero sum. However,
consider a setting in which the other agent is not believed to be malicious, but
is instead entirely unpredictable. (Crucially, in this section we do not approach
the problem as Bayesians, saying that agent i’s beliefs can be described by a
probability distribution; instead, we use a “pre-Bayesian™ model in which I does
not know such a distribution and indeed has no beliefs about it.) In such a setting,
it can make sense for agents to care about minimizing their worst-case losses,
rather than maximizing their worst-case payoffs.

Consider the game in Figure 3.14. Let € be an arbitrarily small positive con-
stant. For this example it does not matter what agent 2’s payoffs ¢, b, ¢, and d
are, and we can even imagine that agent 1 does not know these values. Indeed,
this could be one reason why player 1 would be unable to form beliefs about how
player 2 would play, even if he were to believe that player 2 was rational. Let
us imagine that agent 1 wants to deteriine a strategy to follow that makes sense
despite his uncertainty about player 2. First, agent 1 might play his maxmin,
or “safety level” strategy. In this game it is casy to see that player 1’s maxmin
strategy is to play B; this is because player 2’s minmax strategy is to play R, and

;rﬁgﬁB is a best response to K,
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s

If player 1 does not believe that player 2 is malicious, however, he might
instead reason as follows. If player 2 were to play R then it would not matter
very much how player 1 plays: the most he could lose by playing the wrong way
would be €. On the other hand, if player 2 were to play L then player 1’s action
would be very significant: if player 1 were to make the wrong choice here then
his utility would be decreased by 98, Thus player 1 might choose to play 7 in
order to minimize his worst-case loss. Observe that this is the opposite of what
he would choose if he followed his maxmin strategy.

Let us now formalize this idea. We begin with the notion of regret.

Definition 3.4.5 (Regret) Anagenti’s regretfor playing an action a; if the other
agents adopt action profile a_; is defined as

[nglax ui(aj, a_f)] ~ ui(a;, a_;).
a EA;

In words, this is the amount that i loses by playing a;, rather than playing his
best response to 4..;. Of course, I does not know what actions the other players
will take; however, he can consider those actions that would give him the highest
regret for playing a;.

Definition 3.4.6 (Max regret) An agent i’s maximum regret for playing an ac-
tion a; Is defined as '

max | | max ui{a, a_;) —ug(ai,a_i)).
a-i€A. \|aled;

This is the amount that ; loses by playing @; rather than playing his best
response 0 a—;, if the other agents chose the a_; that makes this loss as large
as possible. Finally, i can choose his action in order to minimize this worst-case
regret. :

Definition 3.4.7 (Minimax regret) Minimax regret actions for agent i are de-
fined as

arg min [ max ([max uial, a_,-)] — uilay, a_,-))] )
aied; aeA_; ﬂEEAf

Thus, an agent’s minimax regret action is an action that yields the smallest
maximum regret. Minimax regret can be extended to a solution concept in the
natural way, by identifying action profiles that consist of minimax regret actions
for each player. Note that we can safely restrict ourselves to actions rather than
mixed strategies in the definitions above (Le., maximizing over the sets 4; and
A_; instead of §; and $_;), because of the linearity of expectation. We leave the
proof of this fact as an exercise.
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Removal of dominated sivategies

We first define what it means for one strategy to dominate ancther. Intuitively,
one strategy dominates another for a player { if the first strategy yields { a

-greater payoff than the second strategy, for any strategy profile of the remaining

players.® There are, however, three gradations of dominance, which are captured
in the following definition.

Definition 3.4.8 (Domination) Let s; and 5] be two strategies of player i, and
S_; the set of all strategy profiles of the remaining players. Then:

1. s strictly dominates s} if for all s_; € §_;, it is the case that u(s;, s_,) >
ul(sis S—I) .

2. s; weakly dominates s if for all s_; € S_;, it is the case that u;(s;, 5—) >
wi(s;, 5-;), and for at least one s_; € S_;, it is the case that wi(s;, 5-i) >
u; (s, 5—;).

3. s very weakly dominates s if for all s_; € S_;, it is the case that
Uil 5i) = ui(5], 5-i).

If one strategy dominates all others, we say that it is (strongly, weakly or very
weakly) dominant.

Definition 3.4.9 (Dominant strategy) A strategy is strictly {resp., weakly; very
wealdy) dominant for arn agent if it strictly ( weakly, very weakly) dominates any
other strategy for that agent.

It is obvious that a strategy profile (sy, . .., s,) in which every s; is dominant
for player i (whether sirictly, weakly, or very weakly)} is a Nash equilibrium.
Such a strategy profile forms what is called an equiltibrium in dominant strategies
with the appropriate modifier (strictly, etc). An equilibrium in strictly dominant
strategies is mecessarily the unique Nash equilibrium. For example, consider
again the Prisoner’s Dilemma game. For each player, the strategy D is strictly
dominant, and indeed (D, D) is the unique Nash equilibrium. Indeed, we can
now explain the “dilemma” which is particularly troubling about the Prisoner’s
Dilemma game: the outcome reached in the unique equilibrium, which is an
equilibrivn in strictly dominant strategies, is also the only oufcone that is not
Pareto optimal.

Games with dominant strategies play an important role in game theory, espe-
cially in games handcrafted by experts. This is true in particular in mechanism
design, as we will see in Chapter 10. However, dominant strategies are rare in
naturafly-occwrring games. More common are dominated strategies.

Definition 3.4.10 (Dominated strategy) A strategy s; is sﬁictly {weakly; very
weakly} dominated for ar agent i if some other strategy 5] strictly (weakly; very
weakly) dominates s;.

’Nrg)ie that here we consider steategy domination from one individual player’s point of view: thus, this
notion is uncelated to the concept of Pareto domination discussed earlier.
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Let us focus for the moment on strictly dominated strategies. Intuitively, all
strictly dominated pure strategies can be ignored, since they can never be best
responses to any moves by the other players. There are several subtleties, however.
First, once a pure strategy is eliminated, another strategy that was not dominated
can become dominated. And so this process of elimination can be continued.
Second, a pure strategy may be dominated by a mixture of other pure strategies
without being dominated by any of them ifdependently. To see this, consider the
game in Figure 3.15.

L C R

uij 3l 0,1 0.0

M| 11 1,1 50

D101 4,1 g,0

Figure 3.15 A game with dominated strategies.

Column R can be eliminated, since it is dominated by, for example, column
L. We are left with the reduced game in Figure 3.16.

L C

vt 31 0.1

Ml1,1 | 1t

D | 01 4,1

Figure 3.16 The game from Figure 3.15 after removing the dominated strategy R.

In this game M is dominated by neither U nor D, but it is dominated by the
mixed strategy that selects either U or D with equal probability. (Note, however,
that it was not dominated before the elimination of the R column.) And 50 we
are left with the maximally reduced game in Figure 3.17.

This yields us a solution concept: the set of all strategy profiles that as-
sign zero probability to playing any action that would be removed through iter-
ated removal of strictly dominated strategies. Note that this is a much weaker
solution concept than Nash equilibrium—the set of strategy profiles will in-
clude all the Nash equilibria, but it will include many other mixed strategies
as well. In some games, it will be equal to S, the set of all possible mixed
strategies.
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L c

Ut 31 0,1

D] Gl 4,1

Figure 3.17 The game from Figure 3.16 after removing the dominated strategy M.

Since iterated removal of stictly dominated strategies preserves Nash equi-
libria, we can use this technique to computational advantage. In the previous
example, rather than computing the Nash equilibria of the original 3 x 3 game,
we can now compute them for this 2 X 2 game, applying the technique described
earlier. In some cases, the procedure ends with a single cell; this is the case, for
example, with the Prisoner’s Dilemma game. In this case we say that the game is
solvable by iterated elimination.

Clearly, in any finite game, iterated elimination ends after a finite number of
iterations. One might worry that, in general, the order of elimination might affect
the final outcome. It turns out that this elimination order does not matter when we

Church-Rosser  remove strictly dominated strategies. (This is called a Church—Rosser property.)
. property  Fowever, the elimination order can make a difference to the final reduced game
if we remove weakly or very weakly dominated strategies.

Which flavor of domination should we concern ourselves with? In fact, each
flavor has advantages and disadvantages, which is why we present all of them
here. Strict domination leads to better-behaved iterated elimination: it yields a
reduced game that is indepéndent of the elimination order, and iterated elimina-
tion is more computationally manageable. (This and other computational issues
regarding domination are discussed in Section 4.5.3.) There is also a further re-
lated advantage that we will defer to Section 3.4.4. Weak domination can yield
smaller reduced games, but under iterated elimination the reduced game can
depend on the elimination order. Very weak domination can yield even smaller
reduced games, but again these reduced games depend on elimination order.
Fusthermore, very weak domination does not impose a strict order on strate-
gies: when two strategies are equivalent, each very weakly dominates the other.
For this reason, this last form of domination is generally considered the least
important.

344 Rationalizability

mtionalizable A strategy is rationalizable if a perfectly rational player could justifiably play it
stategy  against one or more perfectly rational opponents. Infogmally, a strategy profile

for player i is rationalizable if it is a best response 10 some beliefs that i could

have about the strategics that the other players will take. The wrinkle, however, is

that { cannot have arbitrary beliefs about the other players’ actions—his beliefs

must take into account his knowledge of their rationality, which incorporates

i
e
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their knowledge of his rationality, their knowledge of his knowledge of their
rationality, and so on in an infinite regress. A rationalizatile strategy profile is a
strategy profile that consists only of rationalizable strategies.

For example, in the Matching Pennies game given in Figure 3.6, the pure
strategy heads is rationalizable for the row player. First, the strategy heads is a
best response to the pure strategy heads by the column player. Second, believing
that the column player would also play heads is consistent’ with the column
player’s rationality: the column player could believe that the row player would
play tails, to which the column player’s best response is heads. It would be
rational for the column player to believe that the row player would play zails
because the column player could believe that the row player believed that the
column player would play tails, to which sails is a best response. Arguing in the
samé way, we can make our way up the chain of beliefs. '

However, not every strategy can be justified in this way. For example, con-
sidering the Prisoner’s Dilemma game given in Figure 3.3, the strategy C is not
rationalizable for the row player, because C is not a best response to any strategy
that the column player could play. Similarly, consider the game from Figure 3.15.
M is not a rationalizable strategy for the row player: although it is a best response
to a strategy of the column player’s (R), there do not exist any beliefs that the
column player could hold about the row player’s strategy to which R would be a
best response, '

Because of the infinite regress, the formal definition of rationalizability is
somewhat involved; however, it turns out that there are some intuitive things
that we can say about rationalizable strategies. First, Nash equilibrium strategies
are always rationalizable: thus, the set of rationalizable strategies (and strategy
profiles) is always nonempty. Second, in two-player games rationalizable strate-
gies have a simple characterization: they are those strategies that survive the
iterated elimination of strictly dominated strategies. In n-player games there exist
strategies that survive iterated removal of dominated strategies but are not ratio-
nalizable. In this more general case, rationalizable strategies are those strategies
that survive terative removal of strategies that are never a best response to any
strategy profile by the other players.

We now define rationalizability more formally. First we will define an in-
finite sequence of (possibly mixed) strategies S°, S}, 87, ... for each player .
Let S = §;; thus, for each agent i, the first element in the sequence is the set
of all i’s mixed strategies. Let CH(S) denote the convex hull of a set S the
smallest convex set containing all the elements of S. Now we define S as the
set of all strategies s; & Sf " for which there exists some s_; € [],.,; CH(S¥™)
such that for all 5] € Sf‘l, u; (s, 5_;) = w;(s{, s_;). That is, a strategy belongs
to S¥ if there is some strategy s_; for the other players in response to which
s; is at least as good as any other strategy from SF . The convex hull opera-
tion allows i to best respond to unceriain beliefs about which strategies from
41 player j will adopt. CH(S5™") is used instead of TI(S%™"), the set of all
probability distributions over Sf,f =1, because the latter would allow consideration
of mixed strategies that are dominated by some pure strategies for j. Player i
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LW WL
LW 2,1 0.0
WL 0,0 1,2

Figure 3.18 Battle of the Sexes game,

could not believe that j would play such a strategy because such a belief would
be inconsistent with i’s knowledge of j’s rationality.

Now we define the set of rationalizable strategies for player i as the intersection
of the sets 82, S}, §7,....

rationalizable  Definition 3.4.11 (Rafionalizable strategies) The rationalizable strategies for
swategy  player i are {\roq SK.

34.5 Correlated equilibrium

:
E -

The correlated equilibrium js a solution concept that generalizes the Nash equi-
librium. Some people feel that this is the most fundamental solution concept of
au_'?

In a standard game, each player mixes his pure strategies independently. For

example, consider again the Battle of the Sexes game (reproduced here as Fig-
ure 3.18) and its mixed-strategy equilibriuvm. -
- As we saw in Section 3.3.3, this game’s unique mixed-strategy equilibrium
yields each player an expected payoff of 2/3. But now imagine that the two players
can observe the result of a fair coin flip and can condition their strategies based on
that outcome. They can now adopt strategies from a richer set; for example, they
could choose “WL if heads, LW if tails.” Indeed, this pair forms an equilibriam
in this richer strategy space; given that one player plays the strategy, the other
player only loses by adopting another. Furthermore, the expected payoff to each
player in this so-called correlated equilibrium is .5 % 2 4 .5 % 1 = 1.5, Thus both
agents receive higher utility than they do under the mixed-strategy equilibrium in
the uncorrelated case (which had expected payoff of 2/3 for both agents), and the
outcome is fairer than either of the pure-strategy equilibria in the sense that the
worst-off player achieves higher expected utility. Correlating devices can thus be
quite useful.

The aforementioned example had both players observe the exact outcome of
the coin flip, but the general setting does not require this. Generally, the setfing
includes some random variable (the “external event™) with a commonly-known
probability distribution, and a private signal to each player about the instantiation

7. A Nobel-prize-winning game theorist, R. Myerson, has gone so far a8 to say that “if there is intelligent
life on other planets, in a majority of them, they would have discovered comelated equilibrium before Nash
efitibriom.”
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of the sandom variable. A player’s signal can be correlated with the random
variable’s value and with the signals received by other players, without uniquely
identifying any of them. Standard games can he viewed as the degenerate case in
which the signals of the different agents are probabilisticaily independent.

To model this formally, consider » random variables, with a joint distribution
over these variables. Imagine that nature chooses according to this distribution,
but reveals to each agent only the realized value of his variable, and that the agent
can condition his action on this value.?

Definition 3.4.12 (Correlated equilibrium) Given an n- gent game G = (N,
comelated A, u), a correlated equilibrium is o tuple (B, 7, &), where @ is a tuple of random
equiibriom  ygriobles o = (ds, ..., &) with respective domains D ={(Dy,... D)), w is a
Jjoint distribution over®, o = (e, . . ., ay) is a vector of mappings o; . D; v A,

and for each agent i and every mapping of : Dy = A; it is the case that

D7 (@D (), ..., 0id:), -, onldy)

deD

2 ) 7D (o), ..., 0/, . ouldy)) .

deD

Note that the mapping is to an action—that is, to a pure strategy rather than a
mixed one. One could allow a mapping to mixed strategies, but that would add
no greater generality. (Do you see why?)

For every Nash equilibrium, we can construct an equivalent correlated equi-
librium, in the sense that they induce the same distribution on outcomes,

Theorem 3.4.13 For every Nash equilibrium o* there exists a corresponding
correlated equilibrium o . '

The proof js straightforward. Roughly, we can construct a comelated equi-
Librium from a given Nash equilibrium by letting each D; = A; and letting the
joint probability distribution be 7(d) = Tlicw 67 (d). Then we choose o; as the
mapping from each 4; to the corresponding a;. When the agents play the strategy
profile o, the distribution over outcomes is identical to that under o*. Because
the v;’s are uncorrelated and no agent can benefit by deviating from ¢*, o is a
correlated equilibrium.

On the other hand, not every correlated equilibrium is equivalent to a Nash
equilibrium; the Battle-of-the-Sexes example given earlier provides a counter-
example. Thus, correlated equilibrium is a strictly weaker notion than Nash
equilibrium. ,

Finally, we note that correlated equilibria can be combined together to form
new correlated equilibria, Thus, if fhe set of correlated equilibria of a game G
does not contain a single element, it is infinite. Indeed, any convex combination of
correlated equilibrium payoffs can itself be realized as the payoff profile of some
correlated equilibrium. The easiest way to understand this claim is to imagine

8. This construction is closely related to two other constructions later in the baok, one in connection with

Bayesian Games in Chapter 6, and one in connection with knowledge and probability (KP) structures in
Chapter 13.
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a public random device that selects which of the correlated equilibria will be
played; next, another random number is chosen in order to allow the chosen
equilibrium to be played. Overall, each agent’s expected payoff is the weighted
sum of the payoffs from the comelated equilibria that were combined. Since no
agent kas an incentive to deviate regardless of the probabilities governing the first
random device, we can achieve any convex combination of correlated equilibrium
payoffs. Finally, observe that having two stages of random number generation is
not necessary: we can simply derive new domains I and a new joint probability
distribution 7 from the D’s and 7 ’s of the original correlated equilibria, and so
perform the random nwmber generation in one step.

Trembling-hand perfect equilibrium

Another important solution concept is the trembling-hand perfect equilibrium, or
stmply perfect equilibrium. While rationalizability is a weaker notion than that
of a Nash equilibrium, perfection is a stronger one. Several equivalent definitions
of the concept exist. In the following definition, recall that a fully mixed strategy
is one that assigns every action 2 strictly positive probability.

Definition 3.4.14 (Trembling-hand perfect equilibrium) A mixedstrategy S is
a (trembling-hand) perfect equilibrium of a normal-form game G if there exists
a sequence S°, 81, ... of fully mixed-strategy profiles such that lim, ., 8" = §,
and such that for each S* in the sequence and each player i, the strategy s; is a

best response to the strategies s* ;.

Perfect equilibra are relevant 1o one aspect of multiagent learning (see Chap-
ter 7), which is why we mention them here. However, we do not discuss them in
any detail; they are an involved topic, and relate to other subtle refinements of
the Nash equilibrium such as the proper equilibrium. The notes at the end of the
chapter point the reader to further readings on this topic. We should, however, at
Ieast explain the term “irembling hand.” One way to think about the concept is as
requiring that the equilibrium be robust against slight errors—"trembles™—on the
part of players. In other words, one’s action ought to be the besi response not only
against the opponents’ equilibrium strategies, but also against small perturbation
of those. However, since the mathematical definition speaks about arbitrarily
small perturbations, whether these trembies in fact model player fallibility or are
merely a mathematical device is open to debate.

€-Nash equilibrium

Qur final solution concept reflects the idea that players might not cage about
changing their strategies to a best response when the amount of utility that they
could gain by doing so is very small. This leads us to the idea of an e-Nash
equilibrium.

Definition 3.4.15 (¢-Nash) Fix € > 0. A strategy profile s = (51, ....8) is an

‘eﬁ;!_‘yash equilibrium if, for all agents i and for all strategies 5] # 5i, #i(Ssi, 5-i) =

wi(s], 5—i) — €.
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This concept has various attractive properties. ¢-Nash éiiﬁilibxia always exist;
indeed, every Nash equilibrium is surrounded by a region of ¢-Nash equilibria
forany € > Q. The argument that agents are indifferent to sufficiently small gains
is convincing to many. Further, the concept can be computationalty useful: al-
gorithms that aim fo identify ¢-Nash equilibria need to consider only a finite set
of mixed-strategy profiles rather than the whole continuous space. (Of course,
the size of this finite set depends on both ¢ and on the game’s payoffs.) Since
computers genesally represent real numbers using a floating-point approxima-

tion, it is usually the case that even methods for the “exact” computation of Nash '

equilibria (see e.g., Section 4,2) actually find only e-equilibria where ¢ is roughly
the “machine precision” {on the osder of 10716 or less for most modem comput-
ers). €-Nash equilibria are also important to multiagent learning algorithms; we
discuss them in that context in Section 7.3.

However, e-Nash equilibria also have several drawbacks. First, although Nash
equilibria are always surrounded by e-Nash equilibria, the reverse is not true.
Thus, a given €-Nash equilibrium is not necessarily close to any Nash equilibrium.
This undermines the sense in which ¢-Nash equilibria can be understood as
approximations of Nash equilibria. Consider the game in Figure 3.19.

L R

u L1 | 00

D |1+4,1 | 500,500

Figure 3.19 A game with an interesting €-Nash equilibrium.

This game has a unique Nash equilibrium of (D, R), which can be identified
through the iterated removal of dominated strategies. (D dominates U for player
1; on the removal of U, R dominates L for player 2.) (D, R) is also an e-Nash
equilibrium, of course. Flowever, there is also another €-Nash equilibrivm: (U, L).
This game illustrates two things.

First, neither player’s payoff under the ¢-Nash equilibrium is within € of his
payoff in a Nash equilibrium; indeed, in general both players’ payoffs under
an ¢-Nash equilibrium can be arbitrarily less than in any Nash equilibrium. The
problem is that the requirement that player 1 cannot gain more than € by deviating
from the €-Nash equilibrium strategy profile of (U, L} does not imply that player
2 would not be able to gain more than ¢ by best responding to player 1’s deviation.

Second, some e-Nash equilibria might be very unlikely to arise in play. Al-
though player 1 might not care about a gain of £, he might reason that the fact
that D dominates U/ would lead player 2 to expect him to play D, and that player
2 would thus play R in response. Player 1 might thus play D because it is his best
response to R. Overall, the idea of e-approximation is much messier when applied
to the identification of a fixed point than when it is applied to a (single-objective)
oplimization problem.

i
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3.5 History and references

There exist several excellent technical introductory textbooks for game theory,
inclading Osborne and Rubinstein [1994], Fudenberg and Tirole {1991], and
Myerson [1991]). The reader interested in gaining deeper insight into game theory
should consult not only these, but also the most relevant strands of the the vast
literature on game theory which has evolved over the years.

The origins of the material covered in the chapter are as follows. In 1928, John
von Neumann derived the “maximin” solution concept to solve zero-sum normal-
form games [von Neumann, 1928]. Our proof of his minimax theorem is similar
to the one in Luce and Raiffa [1957b]. In 1944, von Neumann together with Oskar
Morgenstern authored what was to become the founding document of game theory
[von Neumann and Morgenstern, 1944Y; 2 second edition quickly followed in
1947. Among the many contributions of this work are the axiomatic founda-
tions for “objective probabilities” and what became known as von Neumann—
Morgenstesn utility theory. The classical foundation of “subjective probabilities”
is Savage [1954], but we do not cover those since they do not play a role in
the book. A comprehensive overview of these foundational topics is provided by
Kreps {1988], among others. Our own treatment of utility theory draws on Poole
et al. [1997]; see also Russell and Norvig [2003].

But von Neunann and Morgenstem [1944] did much more; they introduced
the normal-form game, the extensive form (to be discussed in Chapter 3), the
concepts of pure and mixed sirategies, as well as other notions central to game
theory. Schelling [1960] was one of the first to show that interesting social
interactions could usefully be modeled using game theory, for which he was
recognized in 2005 with a Nobel Prize.

Shortly afterward John Nash introduced the concept of what would become
known as the “Nash equilibrium” [Nash, 1950, 1951], without a doubt the most

.influential concept in game theory to this date. Indeed, Nash received a Nobel

Prize in 1994 because of this work.? The proof in Nash [1950] uses Kaku- |
tani’s fixed-point theorem; our proof of Theorem 3.3.22 follows Nash [{1951]. '
Lemma 3.3.14 is due to Spemer [1928] and Theorem 3.3.17 is due to Brouwer
[1912]; our proof of the latter follows Border [1985].

This work opened the floodgates to a series of refinements and alternative so-
lution concepts which continues to this day. We covered several of these solution
concepts. The literature on Pareto optimality and social optimization dates back
to the early twentieth century, including seminal work by Pareto and Pigou, but
perhaps was best established by Arrow in his seminal work oa social choice [Ar-
row, 1970]. The minimax regret decision criterion was first proposed by Savage
[1954], and further developed in Loomes and Sugden [1982] and Bell {19821,
Recent work from a computer science perspective includes Hyafil and Boutilier
[2004], which also applies this criterion to the Bayesian games setting we in-
troduce in Section 6.3. Irerated removal of dominated strategies, and the closely

%
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9. Johin Nash was also the topic of the Oscar-winning 2001 movie A Beautiful Mind; however, the movie
. had Little to do with his scientific contributions and indeed got the definition of Nash equilibrium wrong. .‘
& .
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telated rationalizability, enjoy a long history, though {cxagﬂ_odem discussion of them
is most firmly anchored in two independent and concutient publications: Pearce
[1984] and Bernheim [1984]. Correlated equilibria were introduced in Anmann
[1974); Myerson’s quote is taken from Solan and Vohra [2002]. Trembling-
hangd perfection was introduced in Selten [1975). An even stronger notion than
(trembling-hand) perfect equilibrium is that of proper equilibrinm [Myerson,
1978]. In Chapter 7 we discuss the concept of evolutionarily stable strategies
{Maynard Smith and Price, 1973} and their connection to Nash equilibria, In
addition to such single-equilibrium concepts, there are concepts that apply to
sets of equilibria, not single ones. OF note are the notions of stable equilibria
as originally defined in Kohlberg and Mertens [1986), and various later refine-
ments such as kyperstable sets defined in Govindan and Wilson [2005a]. Good
surveys of many of these concepts can be found in Hillag and Kohiberg [2002]
and Govindan and Wilson [2005b].
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5.1.1

5

Games with Sequential Actions: Reasoning
and Computing with the Extensive Form

In Chapter 3 we assumed that a game is represented in normal form: effectively,
as a big table. In some sense, this is reasonable. The normal form is conceptually
straightforward, and most see it as fundamental. While many other representa-
tions exist to describe finite games, we will see in this chapter and in Chapter 6
that each of them has an “induced normal form™: a corresponding normal-form
representation that preserves game-theoretic properties such as Nash equilibria.
Thus the results given in Chapter 3 hold for all finite games, no matter how they
are represented; in that sense the normal-form representation is universat,

In this chapter we will look at extensive-form games, a finite representation that
does not always assume that players act simultaneously. This representation is in

. general exponentially smaller than its induced normal form, and furthermore can

be much more natural to reason about. While the Nash equilibria of an extensive-
form game can be found through its induced normal form, computational benefit
can be had by working with the extensive form directly. Furthermore, there are
other solution concepts, such as subgame-perfect equilibrium (see Section 5.1.3),
which explicitly refer to the sequence in which players act and which are therefore
not meaningful when applied to normal-form games.

Perfect-information extensive-form games

~ The normal-form game representation does not incorporate any notion of se-

quence, or time, of the actions of the players. The extensive (or tree} form is an
alternative representation that makes the temporal structure explicit. We start by
discussing the speciat case of perfect information extensive-form games, and then
move on to discuss the more general class of imperfect-information extensive-
form games in Section 5.2. In both cases we will restrict the discussion to finite
games, that is, to games represented as finite trees.

Definition

Informally speaking, a perfect-information game in extensive form (or, more
simply, a perfect-information game) is a tree in the sense of graph theory, in

i
e
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which each node represents the choice of one of the players, each edge repre-
sents a possible action, and the leaves represent final outcomes over which each
player has a utility function. Indeed, in certain circles (in particular, in artificial
intelligence), these are known simply as game trees. Formally, we define them as
follows.

Definition 5.1.1 (Perfect-information game) A (finite}) perfect-information
game (in extensive form) isatuple G = (N, A, H, Z, X, p, 0, u), where:

N is a set of n players;
A is a (single) set of actions;
H is a set of nonterminal choice nodes;
Z is a set of terminal nodes, disjoint from H;
-y ¢ H v 28 isthe action function, which assigns to each choice node a set
of possible actions; :
p : H +> N is the player function, which assigns to each nonterminal node
a player i € N who chooses an action at that node;
o+ H x A HU Z is the successor function, which maps a choice node
and an action to a new choice node or terminal node such that for all
ki he € Handay,as € A, ifo(hy, a1) = o(hy, ap) thenhy = hyand ay =
ap; and
o u=1{(ui,...,H4,), where u; : Z +— R is a real-valued utility function for
player i on the terminal nodes Z.

Since the choice nodes form a tree, we can unambiguously identify a node
with its history, that is, the sequence of choices leading from the root node to
it. We can also define the descendants of a node h, namely all the choice and
terminal nodes in the subtree rooted at A.

An example of such a game is the Sharing game. Imagine a brother and sister
following the following protocol for sharing two indivisible and identical presents
from their parents. First the brother suggests a split, which can be one of three——
he keeps both, she keeps both, or they each keep one. Then the sister chooses
whether to accept or reject the split. If she accepts they each get their allocated
present(s), and otherwise neither gets any gift. Assuming both siblings value the
two presents equaily and additively, the tree representation of this game is shown
in Figure 5.1,

.0 2,0 0,5 L ©.0 ©.2)
Figore 5.1 The Sharing game.
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) ..5;1‘-___‘,#;,.&” .

\(2. 10} 1,0
Figure 5.2 A perfect-information game in extensive form.

5.1.2  Strategies and equilibria

A pure strategy for a player in a perfect-information game is a complete spec-
ification of which deterministic action to take at every node belonging to that
player. A more formal definition follows.

Definition 5.1.2 (Pure strategies) Let G =(N,A, H, Z, X.0.008) bhe a
perfect-information extensive-form game. Then the pure Strategies of player i
consist of the Cartesian product [Tyeg s X ().

Notice that the definition contains a subtlety. An agent’s strategy requires a
decision at each choice node, regardless of whether or not it is possible to reach
that node given the other choice nodes. In the Sharing game above the situation

is straightforward—player 1 has three pure strategies, and player 2 has eight, as
follows.

81 ={2-0,1-1,0-2}

83 = {(yes, yes, yes), (yes, yes, no), (yes, no, yes), (yes, no, no), (no, yes,
yes}, (no, yes, no}, (no, no, ves), (no, no, no)}

But now consider the game shown in Figure 5.2.
In order to define a complete strategy for this game, each of the players must
choose an action at each of his two choice nodes. Thus we can enumerate the
» pure strategies of the players as follows.

S1={(A, G). (4, H), (B, G), (B, H)}

$2={(C, E), (C, F),(D, E), (D, F)}

AIneim Y

It is important to note that we have to include the strategies (A, G) and (4, H),

even though once player 1 has chosen A then his own G-versus-H choice is
- AN00L.
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(C.E)y (€, F) (D,E) (D F)

A,
o

a6 | 38 | 3,8 | 83 | 83

(4, Hy | 3,8 3,8 8.3 83

(B, G) 5,35 2,10 535 2,10

(B, H) 55 1,0 5,5 1,0

Figure 5.3 The game {rom Figure 5.2 in normal fonn.

The definition of best response and Nash equilibria in this game are exactly
as they are for normal-form games. Indeed, this example illustrates how every
perfect-information game can be converted to an equivalent normal-form game.
For example, the perfect-information game of Figure 5.2 can be converted into
the normal-form image of the game, shown in Figure 5.3. Clearly, the strategy
spaces of the two games are the same, as ave the pure-strategy Nash equilibria.
(Indeed, both the mixed strategies and the mixed-strategy Nash equilibria of the
two games are also the same; however, we defer further discussion of mixed
strategies until we consider imperfect-information games in Section 3.2.)

In this way, for every perfect-information game there exists a corresponding
normal-form game, Note, however, that the temporal structure of the extensive-
form representation can result in a certain redundancy within the normal form.
For example, in Figure 5.3 there are 16 different outcomes, while in Figure 5.2
there are only 5 (the payoff (3, 8) occurs only once in Figure 5.2 but four times in
Figure 5.3 efc.). One general lesson is that while this transformation can always
be performed, it can resuit in an exponential blowup of the game representation.
This is an important lesson, since the didactic examples of normal-form games
are very small, wrongly suggesting that this form is more compact.

‘The normal form gets its revenge, however, since the reverse transformation—
from the normal form to the perfect-information extensive form—does not always
exist. Consider, for example, the Prisoner’s Dilemma game from Figure 3.3. A
little experimentation will convince the reader that there does not exist a perfect-
information game that is equivalent in the sense of having the same strategy
profiles and the same payoffs. Intuitively, the problem is that perfect-information
extensive-form games cannot model simultaneity. The general charactesization
of the class of normal-form games for which there exist corresponding pesfect-
information games in extensive form is somewhat complex.

The reader will have noticed that we have so far concentrated on pure strate-
gies and pure Nash equilibria in extensive-form games. There are two reasons
for this, or perhaps one reason and one excuse. The reason is that mixed strate-
gies introduce a new subilety, and it is convenient 1o postpone discussion of
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(C,EY (C,F)y (D,E) (D,F}

(4, G) 3,8 3,8 8,3 8,3

A, m | 38 |33 8,3 | 83

(B,G) 335 2,10 5,5 2,10

(B, H) 55 1,0 55 1,0

Figure 5.4 Equilibria of the game from Figure 5.2.

it. The excuse (which also allows the postponement, though not for long} is the
following theorem.

Theorem 5.1.3 Every (finite) perfect-information game in extensive form has a
pure-strategy Nash equilibrium.

This is perhaps the earliest result in game theory, due to Zermelo in 1913 (see
the historical notes at the end of the chapter). The intuition bere should be clear;
since players take turns, and everyone gets to see everything that happened thus
far before making a move, it is never necessary to introduce randomness into
action selection in order to find an equilibrium, We will see this plainly when
we discuss backward induction below. Both this intuition and the theorem will
cease to hold when we discuss more general classes of games such as imperfect-
information games in extensive form. First, however, we discuss an important
refinement of the concept of Nash equilibriura.

Subgame-perfect equilibrium

As we have discussed, the notion of Nash equilibrium is as well defined in perfect-
information games in extensive form as it is in the normal form. However, as the
following example shows, the Nash equilibrium can be too weak a notion for
the extensive form. Consider again the perfect-information extensive-form game
shown in Figure 5.2. There are three pure-strategy Nash equilibria in this game:
{4, @), (C, F)}, {(A, H), (C, F)},and {(B, H), {C, E)}. This canbe determined
by examining the normal form image of the game, as indicated in Figure 5.4.
However, examining the normal form image of an extensive-form game ob-
scures the game’s temporal nature. To ilustrate a problem that can arise in
certain equilibria of extensive-form games, in Figure 5.5 we contrast the equilib-
ria {(A, G, (C, F)}and {(B, H), (C, E)} by drawing them on the extensive-form
game tree.
First consider the equilibrinm {(4, G), (C, F)}. If player 1 chooses A then
player 2 receives a higher payoff by choosing C than by choosing D. If player 2
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Figure 55 Two out of the three equilibra of the pame from Figure 5.2: {(4, G).(C, F)] and
{(B, H), (C, E}). Bold edges indicate players’ choices at each node.

played the strategy (C, E) rather than (C, F) then player 1 would prefer to play
B at the first node in the tree; as it is, player 1 gets a payoff of 3 by playing A
rather than a payoff of 2 by playing B. Hence we have an equilibrium.

The second equilibdum {(B, H), (C, E})} 1s less intuitive. First, note that
(B, G}, (C, E)} is not an equilibrium: player 2’s best response to (B,G) is
(C, F). Thus, the only reason that player 2 chooses to play the action E is that he
knows that player 1 would play H at his second decision node. This behavior by
player 1 is called a threat: by committing to choose an action that is harmful to
player 2 in his second decision node, player 1 can cause player 2 to avoid that part
of the tree. (Note that player 1 benefits from making this threat: he gets a payoff of
5 instead of 2 by playing (B, H) instead of (B, G).) So far so good. The problem,
however, is that player 2 may not consider player 1's threat to be credible: if
player 1 did reach his final decision node, actually choosing H over G would
also reduce player 1’s own utility. If player 2 played F, would player 1 really
follow through on his threat and play H, or would he relent and pick G instead?

To formally capture the reason why the {(B, H), (C, E} equilibrivm is un-
satisfying, and to define an equilibrium refinement concept that does not suffer
from this problem, we first define the notion of a subgame.
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Definition 5.1.4 (Subgame) Given a perfect-information extensive-form game
G, the subgame of G rooted at node h is the restriction of G to the descendants

of k. The set of subgames of G consists of all of subgames of G rooted at some
node in G.

Now we can define the notion of a subgame-perfect equilibrium, a refinement
of the Nash equilibrium in perfect-information games in extensive form, which
eliminates those unwanted Nash equifibria.!

Definition 5.1.5 (Subgame-perfect equilibrium) T#e subgame-perfect equi-
libria (SPE) of a game G are all strategy profiles s such that for any subgame G’
of G, the restriction of s to G' is a Nash equilibrium of G'.

Since G is its own subgame, every SPE is also a Nash equilibrium. Further-
more, although SPE is a stronger concept than Nash equilibrium (i.e., every SPE
is aNE, but notevery NE is a SPE) it is still the case that every perfect-information
extensive-form game has at least one subgame-perfect equilibrium.

This definition rules out “noncredible threats” of the sort illustrated in the
above example. In particular, note that the extensive-form garne in Figure 5.2
has only one subgame-perfect equilibrium, {{4, G), (C, F)}. Neither of the other
Nash equilibria is subgame perfect. Consider the subgame rooted at player 1’s
second choice node. The unique Nash equilibrium of this (trivial) game is for
player 1 to play G. Thus the action H, the restriction of the strategies (A, H) and
(B, H} to this subgame, is not optimal in this subgame, and cannot be part of a
subgame-perfect equilibrium of the larger game,

Computing equilibria: backward induction
n-player, general-sum games: the backward induction algorithm

Inherent in the concept of subgame-perfect equilibrium is the principle of back-
ward induction. One identifies the equilibria in the “bottom-most” subgame trees,
and assumes that those equilibria will be played as one backs up and considers
mcreasingly larger trees. We can use this procedure to compute a sample Nash
equilibrinm. This is good news: not only are we guaranteed to find a subgame-
perfect equilibrium (rather than possibly finding a Nash equilibrium that involves
noncredible threats), but also this procedure is computationally simple. In partic-
ular, it can be implemented as a single depth-first traversal of the game tree and
thus requires. time linear in the size of the game representation. Recall in con-
trast that the best known methods for finding Nash equilibria of general games
require timne exponential in the size of the normal form; remember as well that
the induced normal form of an extensive-form game is exponentially larger than
the original representation.

The algorithm BACKWARDINDUCTION is described in Figure 5.6. The variable
util.atchild is a vector denoting the wtility for each player at the child node;
util_at.child,yy denotes the element of this vector corresponding to the utility for

N 1:. Note that the word “perfect” is used in two different senses here.
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function BACKWARDINDUCTION (node k) returns (h)
if 4 € Z then '

| return u(h) JI h is a terminal node
best_util <— —oo

forall a € x(h) do
util at_child «—BacxkwarpINDUCTION(o (1, ))

if wtil at_child,gy > bestatilygy then
L bestutil « util_at_child
retorn best. util -

Figere 5.6 Procedure for finding the value of a sample (subgame-perfect) Nash equilibrium of a
perfect-information extensive-form game.

player p(h) (the player who gets to move at node h). Similarly, best util is a
vector giving utilitics for each player.

Observe that this procedure does not return an equilibrium strategy for each
of the n players, but rather describes how to label each node with a vecior
of n real numbers. This labeling can be seen as an extension of the game’s
utility function to the nonterminal nodes H. The players’ equilibrium strategies
follow straightforwardly from this extended utility function: every time a given
player i has the opportunity to act at a given node & € H (ie., p(h} =1), that
player will choose an action @; € x(h) that solves argmax, e, #i(o (@, h)).
These sirategies can also be returned by BACKWARDINDUCTION given some extra
bookkeeping.

While the procedure demonstrates that in principle a sample SPE is effectively
computable, in practice many game {rees are not emumerated in advance and
are hence unavailable for backward induction. For example, the extensive-form
representation of chess has around 10'% nodes, which is vastly too large to
represent explicitly. For such games it is more common 1o discuss the size of
the game tree in terms of the average branching factor b (the average number of
actions which are possible at each node) and a maximum depth m (the maximum
number of scquential actions). A procedure which requires time linear in the size
of the representation thus expands O{b™) nodes. Unfortunately, we can do no
better than this on arbitrary perfect-information games.

Two-player, zero-sum games: minimax and alpha-beta pruning

We can make some computational headway in the widely applicable case of two-
player, zero-sum games. We first note that BackwaRrbINDUCTION has another
name in the two-player, zero-sum context: the minimax algorithn. Recall that in
such games, only a single payoff number is required to characierize any oulcome.
Player 1 wants to maximize this pumber, while player 2 wants to minimize it.
In this context BACKWARDINDUCTION can be understood as propagating these
single payoff numbers from the root of the tree up to the root. Each decision
node for player 1 is labeled with the maximum of the labels of its child nodes
(representing the fact that player 1 would choose the corresponding action), and
each decision node for player 2 is labeled with the minimum of that node’s
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function ALPHABETAPRUNING (node 4, real «, real 8) returns u, (k)
if & € Z then

| return u (k)
best_util «— (2p(h) -~ 3) x 00
foralla € x(h) do
if p(h) = 1 then
best_util « max(best_util, ALPHABRTAPRUNING(0 (1, @), , 8))

if best_wtil > B then
L return best_util
o <« max(x, best_util)

/{ R is a terminal node

/f —oo for player 1; co for player 2

else :
-best_util < min(best_util, ALPHABETAPRUNING(a (1, @), &, B))
if best_util < o then
L return best_util
| B <« min(B, best_util)

return best_util

Figure 5.7 The alpha-beta pruning algorithm. It is invoked at the root node 4 as ALPHABETAPRUN-
ING(}2, —00, 00).

children’s {abeis. The label on the root node is the value of the game: player 1’s
payoft in equitibrium. :

How can we improve on the minimax algorithm? The fact that player 1 and -
player 2 always have strictly opposing interests means that we can prune away
some parts of the game tree: we can recognize that certain subtrees will never
be reached in equilibrium, even without examining the nodes in these subtrees.
This leads us to a new algorithm called ALpPHABETAPRUNING, which is given in
Figure 5.7.

There are several ways in which ALPHABETAPRUNING differs from BAck-
WARDINDUCTION. Some concern the fact that we have now restricted ourselves
to a setting where there are only two players, and one player’s utility is the neg-
ative of the other’s. We thus deal only with the utility for player 1. This is why
we treat the two players separately, maximizing for player 1 and minimizing for
player 2.

At each node % cither « or § is updated. These variables take the value of the
previously encouniered node that their corresponding player (player 1 for « and
player 2 for 8) would most prefer to choose instead of k. For example, consider
the variable 8 at some node . Now consider all the different choices that player
2 could make at ancestors of A that would prevent & from ever being reached,
and that would ultimately lead to previously encountered terminal nodes. B is
the best value that player 2 could obtain at any of these terminal nodes. Because
the players do not have any alternative to starting at the root of the tree, at the
beginning of the search @ = —o00 and § = co.

We can now concentrate on the important difference between BACKWARDIN-
DUCTION and ALPEABETAPRUNING: in the latter procedure, the search can back-
track at a node that is not terminal. Let us think about things from the point
of view of player 1, who is considering what action to play at node £. (As we
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Figure 5.8 An example of alpha-beta pruning. We can backtrack after expanding the first child o
right choice node for player 2.

encourage you to check for yourself, a similar argument holds when it is play

2’s turn to move at node £.) For player 1, this backtracking occurs on the line th
reads “if best_util > B then return best_util” What is going on here? We havé
Just explored some, but not all, of the children of player 1’s decision node
the highest value among these explored nodes is best_util. The value of node
is therefore lower bounded by best_usil (it is best_util if h has no children wi
larger values, and is some larger amount otherwise). Either way, if best unil > 8
then player 1 knows that player 2 prefers choosing his best alternative (at some
. ancestor node of /) rather than allowing player 1 to act at node £. Thus node h
cannot be on the equilibrium path? and so there is no need to continue exploring
the game tree below 4. :
A simple example of ALPHABETAPRUNING in action is given in Figure 5.8,
The search begins by heading down the Ieft branch and visiting both terminal
nodes, and eventually setting 8 = 8. (Do you see why?) It then returns the value 8
as the value of this subgame, which causes « to be set to 8 at the root node. In the
right subgame the search visits the first terminal node and so sets best_util = 6

at the shaded node, which we will call h. Now at # we have best_util < «, which 2
means that we can backirack. This is safe to do because we have just shown that
player 1 would never choose this subgame: he can guarantee himself a payoffof

8 by choosing the left subgame, whereas his utility in the right subgame would
be no more than 6.

The effectiveness of the alpha-beta pruning algorithm depends on the order
in which nodes are considered. For example, if player 1 considers nodes in in-
creasing order of their value, and player 2 considers nodes in decreasing order
of value, then no nodes will ever be pruned. In the best case (where nodes are
ordered in decreasing value for player 1 and in increasing order for player 2),
alpha-beta pruning has complexity of O(b%). We can rewrite this expression as
oW, making more explicit the fact that the game’s branching factor would
effectively be cut to the square root of its original value. If nodes are exam-
ined in random order then the analysis becomes somewhat more complicated;

2. Infact, in the case best_util = 8, it is possible that & could be reached on an equilibrium path; however,

in this case there is stilt always an equilibrivm in which player 2 plays his best altemative and f is not
reached.
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when b is fairly small, the complexity of alpha-beta pruning is O(b"aﬂ), which
is stili an exponential improvement. In practice, it is usually possible to achieve
performance somewhere between the best case and the random case. This tech-
nique thus offers substantial practical benefit over straightforward backward
induction in two-player, zero-sum games for which the game tree is represented
implicity.

Techniques like alpha-beta pruning are commonly used to build strong com-
puter players for two-player board games such as chess. (However, they perform
poorly on games with extremely large branching factors, such as go.} Of course,
building a good computer player involves a great deal of engineering, and re-
quires considerable attention to game-specific heuristics such as those used to
order actions. One general technique is required by many such systems, however,
and so is worth discussing here. The game tree in practical games can be so
large that it is infeasible to search all the way down to leaf nodes. Instead, the
search proceeds to some shallower depth (which is chosen either statically or
dynamicaliy). Where do we get the node values to propagate up using backward
mduction? The trick is to use an evaluation function to estimate the value of .
the deepest node reached (taking into account game-relevant features such as
board position, number of pieces for each player, who gets to move next, eic.,
and either built by hand or learned). When the search has reached an appropri-
ate depth, the node is treated as terminal with a call to the evaluation function
replacing the evaluation of the utility function at that node. This requires a small

change to the beginning of ALPHABETAPRUNING; otherwise, the algorithm works
unchanged.

Two-player, general-sum games: computing all sabgame-perfect eqﬁilibria

While the BACKWARDINDUCTION procedure identifies one subgame-perfect equi-
librium in linear time, it does not provide an efficient way of finding all of them.
One might wonder how there could even be more than one SPE in a perfect-
information game. Multiple subgame-perfect equilibria can exist when there
exist one or more decision nodes at which a player chooses between subgames in
which he receives the same utility. In such cases BACKWARDINDUCTION simply
chooses the first subgame it encountered. It could be useful to find the set of
all subgame-perfect equilibria if we wanted to find a specific SPE (as we did
with Nash equilibria of normal-form games in Section 4.2.4) such as the one that
maximizes social welfare,

Here let us restrict ourselves to two-player perfect-information extensive-form
games, but lift our previous restriction that the game be zero-sum. A somewhat

more complicated algorithm can find the set of @/l subgame-perfect equilibrivm
values in worst-case cubic time. '

Theorem 5.1.6 Given a two-player perfect-information extensive-form game
with £ leaves, the set of subgame-perfect equilibrium payoffs can be represented

as the union of O(£?) axis-aligned rectangles and can be computed in time
O3
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(Lo 0,2 (Y 2,4y (4.3)
Figure 5.9 The Centipede game,

can be obtained in subgame-perfect equilibria of the node’s children. This can
include mixed strategies if multiple children are simultaneg
More information about this algorithm can be found i the r
chapter notes.

usly best responses.
eference cited jn the

An example and criticisms of backward induction

turn choosing between going “down” and ending the game o going “across™ and
continuing it (except at the last node where going “acrogs” also ends the game),

always choose to g0 down. To see why, consider the last choice, Clearly at that
point the best choice for the Player is to go down. Since this is the case, going
down is also the best choice for the other player in the previous choice point. By
induction the same argument holds for all choice points. '

This would seem to be the end of this story, except for two pesky factors. The
first probiem is that the SPE prediction in this case flies in the face of intuition.
Indeed, in laboratory experiments subjects in fact continue to play “across” until

~close to the end of the game. The second problem is theoretical. Imagine that
you are the second player in the game, and in the first step of the game the
first player actually goes across. What should you do? The SPE suggests you
should go down, but the same analysis suggests that you would not have gotten
to this choice point in the first place. In other words, you have reached a state to
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