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Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the predictive distribution and on the
event or value that materializes. A scoring rule is proper if the forecaster maximizes the expected score for an observation drawn from the
distribution F if he or she issues the probabilistic forecast F, rather than G �= F. It is strictly proper if the maximum is unique. In prediction
problems, proper scoring rules encourage the forecaster to make careful assessments and to be honest. In estimation problems, strictly proper
scoring rules provide attractive loss and utility functions that can be tailored to the problem at hand. This article reviews and develops the
theory of proper scoring rules on general probability spaces, and proposes and discusses examples thereof. Proper scoring rules derive from
convex functions and relate to information measures, entropy functions, and Bregman divergences. In the case of categorical variables, we
prove a rigorous version of the Savage representation. Examples of scoring rules for probabilistic forecasts in the form of predictive densities
include the logarithmic, spherical, pseudospherical, and quadratic scores. The continuous ranked probability score applies to probabilistic
forecasts that take the form of predictive cumulative distribution functions. It generalizes the absolute error and forms a special case of
a new and very general type of score, the energy score. Like many other scoring rules, the energy score admits a kernel representation
in terms of negative definite functions, with links to inequalities of Hoeffding type, in both univariate and multivariate settings. Proper
scoring rules for quantile and interval forecasts are also discussed. We relate proper scoring rules to Bayes factors and to cross-validation,
and propose a novel form of cross-validation known as random-fold cross-validation. A case study on probabilistic weather forecasts in
the North American Pacific Northwest illustrates the importance of propriety. We note optimum score approaches to point and quantile
estimation, and propose the intuitively appealing interval score as a utility function in interval estimation that addresses width as well as
coverage.
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1. INTRODUCTION

One major purpose of statistical analysis is to make fore-
casts for the future and provide suitable measures of the un-
certainty associated with them. Consequently, forecasts should
be probabilistic in nature, taking the form of probability distri-
butions over future quantities or events (Dawid 1984). Indeed,
over the past two decades, probabilistic forecasting has become
routine in such applications as weather and climate prediction
(Palmer 2002; Gneiting and Raftery 2005), computational fi-
nance (Duffie and Pan 1997), and macroeconomic forecasting
(Garratt, Lee, Pesaran, and Shin 2003; Granger 2006). In the
statistical literature, advances in Markov chain Monte Carlo
methodology (see, e.g., Besag, Green, Higdon, and Mengersen
1995) have led to explosive growth in the use of predictive dis-
tributions, mostly in the form of Monte Carlo samples from pos-
terior predictive distributions of quantities of interest. In ear-
lier work (Gneiting, Raftery, Balabdaoui, and Westveld 2003;
Gneiting, Balabdaoui, and Raftery 2006), we contended that the
goal of probabilistic forecasting is to maximize the sharpness
of the predictive distributions subject to calibration. Calibration
refers to the statistical consistency between the distributional
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forecasts and the observations, and is a joint property of the
forecasts and the events or values that materialize. Sharpness
refers to the concentration of the predictive distributions and is
a property of the forecasts only.

Scoring rules provide summary measures for the evaluation
of probabilistic forecasts, by assigning a numerical score based
on the predictive distribution and on the event or value that ma-
terializes. In terms of elicitation, the role of scoring rules is
to encourage the assessor to make careful assessments and to
be honest (Garthwaite, Kadane, and O’Hagan 2005). In terms
of evaluation, scoring rules measure the quality of the proba-
bilistic forecasts, reward probability assessors for forecasting
jobs, and rank competing forecast procedures. Meteorologists
refer to this broad task as forecast verification, and much of the
underlying methodology has been developed by atmospheric
scientists (Jolliffe and Stephenson 2003). In a Bayesian con-
text, scores are frequently referred to as utilities, emphasizing
the Bayesian principle of maximizing the expected utility of
a predictive distribution (Bernardo and Smith 1994). We take
scoring rules to be positively oriented rewards that a forecaster
wishes to maximize. Specifically, if the forecaster quotes the
predictive distribution P and the event x materializes, then his
or her reward is S(P, x). The function S(P, · ) takes values in
the real line R or in the extended real line R = [−∞,∞], and
we write S(P,Q) for the expected value of S(P, · ) under Q.
Suppose, then, that the forecaster’s best judgment is the distri-
butional forecast Q. The forecaster has no incentive to predict
any P �= Q and is encouraged to quote his or her true belief,
P = Q, if S(Q,Q) ≥ S(P,Q) with equality if and only if P = Q.
A scoring rule with this property is said to be strictly proper. If
S(Q,Q) ≥ S(P,Q) for all P and Q, then the scoring rule is said
to be proper. Propriety is essential in scientific and operational
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forecast evaluation; and we present a case study that provides a
striking example of the potential issues that result from the use
of intuitively appealing but improper scoring rules.

In estimation problems, strictly proper scoring rules provide
attractive loss and utility functions that can be tailored to a sci-
entific problem. To fix the idea, suppose that we wish to fit
a parametric model Pθ based on a sample X1, . . . ,Xn. To es-
timate θ , we might measure the goodness-of-fit by the mean
score

Sn(θ) = 1

n

n∑

i=1

S(Pθ ,Xi),

where S is a strictly proper scoring rule. If θ0 denotes the
true parameter value, then asymptotic arguments indicate that
arg maxθ Sn(θ) → θ0 as n → ∞. This suggests a general ap-
proach to estimation: Choose a strictly proper scoring rule that
is tailored to the problem at hand and use θ̂n = arg maxθ Sn(θ)

as the optimum score estimator based on the scoring rule. Pfan-
zagl (1969) and Birgé and Massart (1993) studied this approach
under the heading of minimum contrast estimation. Maximum
likelihood estimation forms a special case of optimum score es-
timation, and optimum score estimation forms a special case of
M-estimation (Huber 1964), in that the function to be optimized
derives from a strictly proper scoring rule.

This article reviews and develops the theory of proper scor-
ing rules on general probability spaces, proposes and discusses
examples thereof, and presents case studies. The remainder of
the article is organized as follows. In Section 2 we state a fun-
damental characterization theorem, review the links between
proper scoring rules, information measures, entropy functions,
and Bregman divergences, and introduce skill scores. In Sec-
tion 3 we turn to scoring rules for categorical variables. We
prove a rigorous version of the representation of Savage (1971)
and relate to a more recent characterization of Schervish (1989)
that applies to probability forecasts of a dichotomous event.
Bremnes (2004, p. 346) noted that the literature on scoring rules
for probabilistic forecasts of continuous variables is sparse. We
address this issue in Section 4, where we discuss the spherical,
pseudospherical, logarithmic, and quadratic scores. The contin-
uous ranked probability score, which lately has attracted much
attention, enjoys appealing properties and might serve as a stan-
dard score in evaluating probabilistic forecasts of real-valued
variables. It forms a special case of a novel and very general
type of scoring rule, the energy score. In Section 5 we introduce
an even more general construction, giving rise to kernel scores
based on negative definite functions and inequalities of Hoeffd-
ing type, with side results on expectation inequalities and pos-
itive definite functions. In Section 6 we study scoring rules for
quantile and interval forecasts. We show that the class of proper
scoring rules for quantile forecasts is larger than conjectured
by Cervera and Muñoz (1996) and discuss the interval score,
a scoring rule for prediction intervals that is proper and has in-
tuitive appeal. In Section 7 we relate proper scoring rules to
Bayes factors and to cross-validation, and propose a novel form
of cross-validation known as random-fold cross-validation. In
Section 8 we present a case study on the use of scoring rules in
the evaluation of probabilistic weather forecasts. In Section 9
we turn to optimum score estimation. We discuss point, quan-
tile, and interval estimation and propose using the interval score

as a utility function that addresses width as well as coverage.
We close the article with a discussion of avenues for future
work in Section 10. Scoring rules show a superficial analogy
to statistical depth functions, which we hint at in an Appendix.

2. CHARACTERIZATIONS OF PROPER
SCORING RULES

In this section we introduce notation, provide characteriza-
tions of proper scoring rules, and relate them to convex func-
tions, information measures, and Bregman divergences. The
discussion here is more technical than that in the remainder of
the article, and readers with more applied interests might skip
ahead to Section 2.3, in which we discuss skill scores, without
significant loss of continuity.

2.1 Proper Scoring Rules and Convex Functions

We consider probabilistic forecasts on a general sample
space �. Let A be a σ -algebra of subsets of �, and let P
be a convex class of probability measures on (�,A). A func-
tion defined on � and taking values in the extended real line,
R = [−∞,∞], is P-quasi-integrable if it is measurable with
respect to A and is quasi-integrable with respect to all P ∈ P
(Bauer 2001, p. 64). A probabilistic forecast is any probabil-
ity measure P ∈ P . A scoring rule is any extended real-valued
function S :P × � → R such that S(P, ·) is P-quasi-integrable
for all P ∈ P . Thus if the forecast is P and ω materializes, the
forecaster’s reward is S(P,ω). We permit algebraic operations
on the extended real line and deal with the respective integrals
and expectations as described in section 2.1 of Mattner (1997)
and section 3.1 of Grünwald and Dawid (2004). The scoring
rules used in practice are mostly real-valued, but there are ex-
ceptions, such as the logarithmic rule (Good 1952), that allow
for infinite scores.

We write

S(P,Q) =
∫

S(P,ω)dQ(ω)

for the expected score under Q when the probabilistic forecast
is P. The scoring rule S is proper relative to P if

S(Q,Q) ≥ S(P,Q) for all P,Q ∈ P . (1)

It is strictly proper relative to P if (1) holds with equality if
and only if P = Q, thereby encouraging honest quotes by the
forecaster. If S is a proper scoring rule, c > 0 is a constant,
and h is a P-integrable function, then

S∗(P,ω) = cS(P,ω) + h(ω) (2)

is also a proper scoring rule. Similarly, if S is strictly proper,
then S∗ is strictly proper as well. Following Dawid (1998), we
say that S and S∗ are equivalent, and strongly equivalent if
c = 1. The term proper was apparently coined by Winkler and
Murphy (1968, p. 754), whereas the general idea dates back at
least to Brier (1950) and Good (1952, p. 112). In a parametric
context, and with respect to estimators, Lehmann and Casella
(1998, p. 157) refer to the defining property in (1) as risk unbi-
asedness.

A function G :P → R is convex if

G((1 − λ)P0 + λP1) ≤ (1 − λ)G(P0) + λG(P1)

for all λ ∈ (0,1), P0,P1 ∈P . (3)
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It is strictly convex if (3) holds with equality if and only if P0 =
P1. A function G∗(P, ·) :� → R is a subtangent of G at the
point P ∈P if it is integrable with respect to P, quasi-integrable
with respect to all Q ∈P , and

G(Q) ≥ G(P) +
∫

G∗(P,ω)d(Q − P)(ω) (4)

for all Q ∈ P . The following characterization theorem is more
general and considerably simpler than previous results of Mc-
Carthy (1956) and Hendrickson and Buehler (1971).

Definition 1. A scoring rule S :P × � → R is regular rel-
ative to the class P if S(P,Q) is real-valued for all P,Q ∈ P ,
except possibly that S(P,Q) = −∞ if P �= Q.

Theorem 1. A regular scoring rule S :P × � → R is proper
relative to the class P if and only if there exists a convex, real-
valued function G on P such that

S(P,ω) = G(P) −
∫

G∗(P,ω)dP(ω) + G∗(P,ω) (5)

for P ∈ P and ω ∈ �, where G∗(P, ·) :� → R is a subtangent
of G at the point P ∈ P . The statement holds with proper re-
placed by strictly proper, and convex replaced by strictly con-
vex.

Proof. If the scoring rule S is of the stated form, then the sub-
tangent inequality (4) implies the defining inequality (1), that is,
propriety. Conversely, suppose that S is a regular proper scoring
rule. Define G :P → R by G(P) = S(P,P) = supQ∈P S(Q,P),
which is the pointwise supremum over a class of convex func-
tions and thus is convex on P . Furthermore, the subtangent in-
equality (4) holds with G∗(P,ω) = S(P,ω). This implies the
representation (5) and proves the claim for propriety. By an ar-
gument of Hendrickson and Buehler (1971), strict inequality in
(1) is equivalent to no subtangent of G at P being a subtangent
of G at Q, for P,Q ∈ P and P �= Q, which is equivalent to G
being strictly convex on P .

Expressed slightly differently, a regular scoring rule S is
proper relative to the class P if and only if the expected score
function G(P) = S(P,P) is convex and S(P,ω) is a subtangent
of G at the point P, for all P ∈P .

2.2 Information Measures, Bregman Divergences,
and Decision Theory

Suppose that the scoring rule S is proper relative to the
class P . Following Grünwald and Dawid (2004) and Buja,
Stuetzle, and Shen (2005), we call the expected score function

G(P) = sup
Q∈P

S(Q,P), P ∈ P, (6)

the information measure or generalized entropy function asso-
ciated with the scoring rule S. This is the maximally achievable
utility; the term entropy function is used as well. If S is regular
and proper, then we call

d(P,Q) = S(Q,Q) − S(P,Q), P,Q ∈ P, (7)

the associated divergence function. Note the order of the ar-
guments, which differs from previous practice in that the true
distribution, Q, is preceded by an alternative probabilistic fore-
cast, P. The divergence function is nonnegative, and if S is

strictly proper, then d(P,Q) is strictly positive, unless P = Q.
If the sample space is finite and the entropy function is suffi-
ciently smooth, then the divergence function becomes the Breg-
man divergence (Bregman 1967), associated with the convex
function G. Bregman divergences play major roles in optimiza-
tion and have recently attracted the attention of the machine
learning community (Collins, Schapire, and Singer 2002). The
term Bregman distance is also used, even though d(P,Q) is not
necessarily the same as d(Q,P).

An interesting problem is to find conditions under which a
divergence function d is a score divergence, in the sense that
it admits the representation (7) for a proper scoring rule S, and
to describe principled ways of finding such a scoring rule. The
landmark work by Savage (1971) provides a necessary condi-
tion on a symmetric divergence function d to be a score di-
vergence: If P and Q are concentrated on the same two mutu-
ally exclusive events and identified with the respective proba-
bilities, p,q ∈ [0,1], then d(P,Q) reduces to a linear function
of (p − q)2. Dawid (1998) noted that if d is a score conver-
gence, then d(P,Q) − d(P′,Q) is an affine function of Q for all
P,P′ ∈ P , and proved a partial converse.

Friedman (1983) and Nau (1985) studied a looser type of re-
lationship between proper scoring rules and distance measures
on classes of probability distributions. They restricted attention
to metrics (i.e., distance measures that are symmetric and sat-
isfy the triangle inequality) and called a scoring rule S effective
with respect to a metric d if

S(P1,Q) ≥ S(P2,Q) ⇐⇒ d(P1,Q) ≤ d(P2,Q).

Nau (1985) called a metric co-effective if there is a proper scor-
ing rule that is effective with respect to it. His proposition 1
implies that the l1, l∞, and Hellinger distances on spaces of ab-
solutely continuous probability measures are not co-effective.

Sections 3–5 provide numerous examples of proper scoring
rules on general sample spaces, along with the associated en-
tropy and divergence functions. For example, the logarithmic
score is linked to Shannon entropy and Kullback–Leibler diver-
gence. Dawid (1998, 2006), Grünwald and Dawid (2004), and
Buja et al. (2005) have given further examples of proper scoring
rules, entropy, and divergence functions and have elaborated on
the connections to the Bregman divergence.

Proper scoring rules occur naturally in statistical decision
problems (Dawid 1998). Given an outcome space and an action
space, let U(ω,a) be the utility for outcome ω and action a, and
let P be a convex class of probability measures on the outcome
space. Let aP denote the Bayes act for P ∈ P . Then the scoring
rule

S(P,ω) = U(ω,aP)

is proper relative to the class P . Indeed,

S(Q,Q) =
∫

U(ω,aQ)dQ(ω)

≥
∫

U(ω,aP)dQ(ω) = S(P,Q),

by the fact that the optimal Bayesian decision maximizes ex-
pected utility. Dawid (2006) has given details and discussed the
generality of the construction.
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2.3 Skill Scores

In practice, scores are aggregated, and competing forecast
procedures are ranked by the average score,

Sn = 1

n

n∑

i=1

S(Pi, xi),

over a fixed set of forecast situations. We give examples of
this in case studies in Sections 6 and 8. Recommendations for
choosing a scoring rule have been given by Winkler (1994,
1996), by Buja et al. (2005), and throughout this article.

Scores for competing forecast procedures are directly com-
parable if they refer to exactly the same set of forecast situ-
ations. If scores for distinct sets of situations are compared,
then considerable care must be exercised to separate the con-
founding effects of intrinsic predictability and predictive per-
formance. For instance, there is substantial spatial and tempo-
ral variability in the predictability of weather and climate el-
ements (Langland et al. 1999; Campbell and Diebold 2005).
Thus a score that is superior for a given location or season might
be inferior for another, or vice versa. To address this issue, at-
mospheric scientists have put forth skill scores of the form

Sskill
n = Sfcst

n − Sref
n

Sopt
n − Sref

n

, (8)

where Sfcst
n is the forecaster’s score, Sopt

n refers to a hypotheti-
cal ideal or optimal forecast, and Sref

n is the score for a reference
strategy (Murphy 1973; Potts 2003, p. 27; Briggs and Ruppert
2005; Wilks 2006, p. 259). Skill scores are standardized in that
(8) takes the value 1 for an optimal forecast, which is typically
understood as a point measure in the event or value that materi-
alizes, and the value 0 for the reference forecast. Negative val-
ues of a skill score indicate forecasts that are of lesser quality
than the reference. The reference forecast is typically a clima-
tological forecast, that is, an estimate of the marginal distribu-
tion of the predictand. For example, a climatological probabilis-
tic forecast for maximum temperature on Independence Day in
Seattle, Washington might be a smoothed version of the local
historic record of July 4 maximum temperatures. Climatologi-
cal forecasts are independent of the forecast horizon; they are
calibrated by construction, but often lack sharpness.

Unfortunately, skill scores of the form (8) are generally im-
proper, even if the underlying scoring rule S is proper. Mur-
phy (1973) studied hedging strategies in the case of the Brier
skill score for probability forecasts of a dichotomous event. He
showed that the Brier skill score is asymptotically proper, in
the sense that the benefits of hedging become negligible as the
number of independent forecasts grows. Similar arguments may
apply to skill scores based on other proper scoring rules. Ma-
son’s (2004) claim of the propriety of the Brier skill score rests
on unjustified approximations and generally is incorrect.

3. SCORING RULES FOR CATEGORICAL VARIABLES

We now review the representations of Savage (1971) and
Schervish (1989) that characterize scoring rules for probabilis-
tic forecasts of categorical and binary variables, and give exam-
ples of proper scoring rules.

3.1 Savage Representation

We consider probabilistic forecasts of a categorical variable.
Thus, the sample space � = {1, . . . ,m} consists of a finite num-
ber m of mutually exclusive events, and a probabilistic forecast
is a probability vector (p1, . . . ,pm). Using the notation of Sec-
tion 2, we consider the convex class P = Pm, where

Pm = {
p = (p1, . . . ,pm) : p1, . . . ,pm ≥ 0,p1 + · · · + pm = 1

}
.

A scoring rule S can then be identified with a collection of m
functions,

S(·, i) :Pm → R, i = 1, . . . ,m.

In other words, if the forecaster quotes the probability vector p
and the event i materializes, then his or her reward is S(p, i).
Theorem 2 is a special case of Theorem 1 and provides a rig-
orous version of the Savage (1971) representation of proper
scoring rules on finite sample spaces. Our contributions lie in
the notion of regularity, the rigorous treatment, and the intro-
duction of appropriate tools for convex analysis (Rockafellar
1970, sects. 23–25). Specifically, let G :Pm → R be a convex
function. A vector G′(p) = (G′

1(p), . . . ,G′
m(p)) is a subgradi-

ent of G at the point p ∈ Pm if

G(q) ≥ G(p) + 〈G′(p),q − p〉 (9)

for all q ∈ Pm, where 〈·, ·〉 denotes the standard scalar product.
If G is differentiable at an interior point p ∈ Pm, then G′(p)

is unique and equals the gradient of G at p. We assume that
the components of G′(p) are real-valued, except that we permit
G′

i(p) = −∞ if pi = 0.

Definition 2. A scoring rule S for categorical forecasts is reg-
ular if S(·, i) is real-valued for i = 1, . . . ,m, except possibly that
S(p, i) = −∞ if pi = 0.

Regular scoring rules assign finite scores, except that a fore-
cast might receive a score of −∞ if an event claimed to be im-
possible is realized. The logarithmic scoring rule (Good 1952)
provides a prominent example of this.

Theorem 2 (McCarthy, Savage). A regular scoring rule S for
categorical forecasts is proper if and only if

S(p, i) = G(p) − 〈G′(p),p〉 + G′
i(p) for i = 1, . . . ,m, (10)

where G :Pm → R is a convex function and G′(p) is a subgra-
dient of G at the point p, for all p ∈ Pm. The statement holds
with proper replaced by strictly proper, and convex replaced by
strictly convex.

Phrased slightly differently, a regular scoring rule S is proper
if and only if the expected score function G(p) = S(p,p) is
convex on Pm, and the vector with components S(p, i) for
i = 1, . . . ,m is a subgradient of G at the point p, for all p ∈Pm.
In view of these results, every bounded convex function G on
Pm generates a regular proper scoring rule. This function G
becomes the expected score function, information measure, or
entropy function (6) associated with the score. The divergence
function (7) is the respective Bregman distance.

We now give a number of examples. The scoring rules in
Examples 1–3 are strictly proper. The score in Example 4 is
proper but not strictly proper.
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Example 1 (Quadratic or Brier score). If G(p) = ∑m
j=1 p2

j −
1, then (10) yields the quadratic score or Brier score,

S(p, i) = −
m∑

j=1

(δij − pj)
2 = 2pi −

m∑

j=1

p2
j − 1,

where δij = 1 if i = j and δij = 0 otherwise. The associ-
ated Bregman divergence is the squared Euclidean distance,
d(p,q) = ∑m

j=1(pj − qj)
2. This well-known scoring rule was

proposed by Brier (1950). Selten (1998) gave an axiomatic
characterization.

Example 2 (Spherical score). Let α > 1 and consider the
generalized entropy function G(p) = (

∑m
j=1 pα

j )1/α . This cor-
responds to the pseudospherical score

S(p, i) = pα−1
i

(
∑m

j=1 pα
j )(α−1)/α

,

which reduces to the traditional spherical score when α = 2.
The associated Bregman divergence is

d(p,q) =
(

m∑

j=1

qα
j

)1/α

−
m∑

j=1

pjq
α−1
j

/(
m∑

j=1

qα
j

)(α−1)/α

.

Example 3 (Logarithmic score). Negative Shannon entropy,
G(p) = ∑m

j=1 pj log pj, corresponds to the logarithmic score,
S(p, i) = log pi. The associated Bregman distance is the Kull-
back–Leibler divergence, d(p,q) = ∑m

j=1 qj log(qj/pj). [Note
the order of the arguments in the definition (7) of the divergence
function.] This scoring rule dates back at least to Good (1952).
Information-theoretic perspectives and interpretations in terms
of gambling returns have been given by Roulston and Smith
(2002) and Daley and Vere-Jones (2004). Despite its popularity,
the logarithmic score has been criticized for its unboundedness,
with Selten (1998, p. 51) arguing that it entails value judgments
that are unacceptable. Feuerverger and Rahman (1992) noted a
connection to Neyman–Pearson theory and an ensuing optimal-
ity property of the logarithmic score.

Example 4 (Zero–one score). The zero–one scoring rule re-
wards a probabilistic forecast if the mode of the predictive dis-
tribution materializes. In case of multiple modes, the reward is
reduced proportionally, that is,

S(p, i) =
{

1/#M(p) if i belongs to M(p)

0 otherwise,

where M(p) = {i : pi = maxj=1,...,m pj} denotes the set of modes
of p. This is also known as the misclassification loss, and the
meteorological literature uses the term success rate to denote
case-averaged zero–one scores (see, e.g., Toth, Zhu, and Mar-
chok 2001). The associated expected score or generalized en-
tropy function (6) is G(p) = maxj=1,...,m pj, and the divergence
function (7) becomes

d(p,q) = max
j=1,...,m

qj −
∑

j∈M(p) qj

#M(p)
.

This does not define a Bregman divergence, because the entropy
function is neither differentiable nor strictly convex.

The scoring rules in the foregoing examples are symmetric,
in the sense that

S((p1, . . . ,pm), i) = S
((

pπ1 , . . . ,pπm

)
,πi

)
(11)

for all p ∈Pm, for all permutations π on m elements and for all
events i = 1, . . . ,m. Winkler (1994, 1996) argued that symmet-
ric rules do not always appropriately reward forecasting skill
and called for asymmetric ones, particularly in situations in
which skills scores traditionally have been used. Asymmetric
proper scoring rules can be generated by applying Theorem 2
to convex functions G that are not invariant under coordinate
permutation.

3.2 Schervish Representation

The classical case of a probability forecast for a dichotomous
event suggests further discussion. We follow Dawid (1986) in
considering the sample space � = {1,0}. A probabilistic fore-
cast is a quoted probability p ∈ [0,1] for the event to occur.
A scoring rule S can be identified with a pair of functions
S(·,1) : [0,1] → R and S(·,0) : [0,1] → R. Thus, S(p,1) is the
forecaster’s reward if he or she quotes p and the event mate-
rializes, and S(p,0) is the reward if he or she quotes p and
the event does not materialize. Note the subtle change from
the previous section, where we used the convex class P2 =
{(p1,p2) ∈ R

2 : p1 ∈ [0,1],p2 = 1 − p1} in place of the unit in-
terval, P = [0,1], to represent probability measures on binary
sample spaces.

A scoring rule for binary variables is regular if S(·,1) and
S(·,0) are real-valued, except possibly that S(0,1) = −∞ or
S(1,0) = −∞. A variant of Theorem 2 shows that every regular
proper scoring rule is of the form

S(p,1) = G(p) + (1 − p)G′(p),
(12)

S(p,0) = G(p) − pG′(p),

where G : [0,1] → R is a convex function and G′(p) is a sub-
gradient of G at the point p ∈ [0,1], in the sense that

G(q) ≥ G(p) + G′(p)(q − p)

for all q ∈ [0,1]. The statement holds with proper replaced by
strictly proper, and convex replaced by strictly convex. The sub-
gradient G′(p) is real-valued, except that we permit G′(0) =
−∞ and G′(1) = ∞. The function G is the expected score func-
tion G(p) = pS(p,1) + (1 − p)S(p,0), and if G is differentiable
at an interior point p ∈ (0,1), then G′(p) is unique and equals
the derivative of G at p. Related but slightly less general results
were given by Shuford, Albert, and Massengil (1966). Figure 1
provides a geometric interpretation.

The Savage representation (12) implies various interesting
properties of regular proper scoring rules. For instance, we con-
clude from theorem 24.2 of Rockafellar (1970) that

S(p,1) = lim
q→1

G(q) −
∫ 1

p
(G′(q) − G′(p))dq (13)

for p ∈ (0,1), and because G′(p) is increasing, S(p,1) is in-
creasing as well. Similarly, S(p,0) is decreasing, as would be
intuitively expected. The statements hold with proper, increas-
ing, and decreasing replaced by strictly proper, strictly increas-
ing, and strictly decreasing. Alternative proofs of these and
other results have been given by Schervish (1989, the app.).
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Figure 1. Schematic Illustration of the Relationships Between a Smooth Generalized Entropy Function G (solid convex curve) and the Associated
Scoring Functions and Bregman Divergence. For any probability forecast p ∈ [0, 1], the expected score S(p, q) = qS(p, 1)+ (1−q)S(p, 0) equals the
ordinate of the tangent to G at p [the solid line with slope G′(p)], when evaluated at q ∈ [0, 1]. In particular, the scores S(p, 0) = G(p) − pG′(p) and
S(p, 1) = G(p) + (1 − p)G′(p) can be read off the tangent when evaluated at q = 0 and q = 1. The Bregman divergence d(p, q) = S(q, q) − S(p, q)
equals the difference between G and its tangent at p when evaluated at q. (For a similar interpretation see fig. 8 in Buja et al. 2005.)

Schervish (1989, p. 1861) suggested that his theorem 4.2
generalizes the Savage representation. Given Savage’s (1971,
p. 793) assessment of his representation (9.15) as “figurative,”
the claim can well be justified. However, in its rigorous form
[eq. (12)], the Savage representation is perfectly general.

Hereinafter, we let 1{·} denote an indicator function that
takes value 1 if the event in brackets is true and 0 otherwise.

Theorem 3 (Schervish). Suppose that S is a regular scoring
rule. Then S is proper and such that S(0,1) = limp→0 S(p,1),
and S(0,0) = limp→0 S(p,0), and both S(p,1) and S(p,0) are
left continuous if and only if there exists a nonnegative mea-
sure ν on (0,1) such that

S(p,1) = S(1,1) −
∫

(1 − c)1{p ≤ c}ν(dc),

(14)

S(p,0) = S(0,0) −
∫

c1{p > c}ν(dc),

for all p ∈ [0,1]. The scoring rule is strictly proper if and only
if ν assigns positive measure to every open interval.

Sketch of Proof. Suppose that S satisfies the assumptions of
the theorem. To prove that S(p,1) is of the form (14), consider
the representation (13), identify the increasing function G′(p)

with the left-continuous distribution function of a nonnegative
measure ν on (0,1), and apply the partial integration formula.
The proof of the representation for S(p,0) is analogous. For the
proof of the converse, reverse the foregoing steps. The state-
ment for strict propriety follows from well-known properties of
convex functions.

A two-decision problem can be characterized by a cost–loss
ratio c ∈ (0,1) that reflects the relative costs of the two possible
types of inferior decision. The measure ν(dc) in Schervish’s
representation (14) assigns relevance to distinct cost–loss ratios.
This result also can be interpreted as a Choquet representation,
in that every left-continuous bounded scoring rule is equivalent
to a mixture of cost-weighted asymmetric zero–one scores,

Sc(p,1) = (1 − c)1{p > c}, Sc(p,0) = c1{p ≤ c}, (15)

with a nonnegative mixing measure ν(dc). Theorem 3 allows
for unbounded scores, requiring a slightly more elaborate state-
ment. Full equivalence to the Savage representation (12) can
be achieved if the regularity conditions are relaxed (Schervish
1989; Buja et al. 2005).

Table 1 shows the mixing measure ν(dc) for the quadratic
or Brier score, the spherical score, the logarithmic score, and
the asymmetric zero–one score. If the expected score func-
tion, G, is smooth, then ν(dc) has Lebesgue density G′′(c)
(Buja et al. 2005). For instance, the logarithmic score derives
from Shannon entropy, G(p) = p log p + (1 − p) log(1 − p),
and corresponds to the infinite measure with Lebesgue density
(c(1 − c))−1.

Buja et al. (2005) introduced the beta family, a continuous
two-parameter family of proper scoring rules that includes both
symmetric and asymmetric members and derives from mixing
measures of beta type.

Example 5 (Beta family). Let α,β > −1 and consider the
two-parameter family

S(p,1) = −
∫ 1

p
cα−1(1 − c)β dc,
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Table 1. Proper Scoring Rules for Probability Forecasts of a Dichotomous Event and the Respective Mixing Measure or Lebesgue Density
in the Schervish Representation (14)

Scoring rule S(p, 1) S(p, 0) ν(dc)

Brier −(1 − p)2 −p2 Uniform
Spherical p(1 − 2p + 2p2)−1/2 (1 − p)(1 − 2p + 2p2)−1/2 (1 − 2c + 2c2)−3/2

Logarithmic log p log (1 − p) (c (1 − c))−1

Zero–one (1 − c)1{p > c} c 1{p ≤ c} Point measure in c

S(p,0) = −
∫ p

0
cα(1 − c)β−1 dc,

which is of the form (14) for a mixing measure ν(dc) with
Lebesgue density cα−1(1−c)β−1. This family includes the log-
arithmic score (α = β = 0), and versions of the Brier score (α =
β = 1), and the zero–one score (15) with c = 1

2 (α = β → ∞)
as special or limiting cases. Asymmetric members arise when
α �= β , with the scoring rule S(p,1) = p − 1 and S(p,0) =
p + log(1 − p) being one such example (α = 0, β = 1).

Winkler (1994) proposed a method for constructing asym-
metric scoring rules from symmetric scoring rules. Specifically,
if S is a symmetric proper scoring rule and c ∈ (0,1), then

S∗(p,1) = S(p,1) − S(c,1)

T(c,p)
,

(16)

S∗(p,0) = S(p,0) − S(c,0)

T(c,p)
,

where T(c,p) = S(0,0) − S(c,0) if p ≤ c and T(c,p) =
S(1,1) − S(c,1) if p > c is also a proper scoring rule, stan-
dardized in the sense that the expected score function attains
a minimum value of 0 at p = c and a maximum value of 1 at
p = 0 and p = 1.

Example 6 (Winkler’s score). Tetlock (2005) explored what
constitutes good judgment in predicting future political and
economic events, and looked at why experts are often wrong in
their forecasts. In evaluating experts’ predictions, he adjusted
for the difficulty of the forecast task by using the special case
of (16) that derives from the Brier score, that is,

S∗(p,1) = (1 − c)2 − (1 − p)2

c21{p ≤ c} + (1 − c)21{p > c} ,
(17)

S∗(p,0) = c2 − p2

c21{p ≤ c} + (1 − c)21{p > c} ,

with the value of c ∈ (0,1) adapted to reflect a baseline proba-
bility. This was suggested by Winkler (1994, 1996) as an alter-
native to using skill scores.

Figure 2 shows the expected score or generalized entropy
function, G(p), and the scoring functions, S(p,1) and S(p,0),
for the quadratic or Brier score and the logarithmic score (Ta-
ble 1), the asymmetric zero–one score (15) with c = .6, and
Winkler’s standardized score (17) with c = .2.

4. SCORING RULES FOR CONTINUOUS VARIABLES

Bremnes (2004, p. 346) noted that the literature on scor-
ing rules for probabilistic forecasts of continuous variables is
sparse. We address this issue in the following.

4.1 Scoring Rules for Density Forecasts

Let µ be a σ -finite measure on the measurable space (�,A).
For α > 1, let Lα denote the class of probability measures on
(�,A) that are absolutely continuous with respect to µ and
have µ-density p such that

‖p‖α =
(∫

p(ω)αµ(dω)

)1/α

is finite. We identify a probabilistic forecast P ∈ Lα with
its µ-density, p, and call p a predictive density or density
forecast. Predictive densities are defined only up to a set of
µ-measure zero. Whenever appropriate, we follow Bernardo
(1979, p. 689) and use the unique version defined by p(ω) =
limρ→0 P(Sρ(ω))/µ(Sρ(ω)), where Sρ(ω) is a sphere of ra-
dius ρ centered at ω.

We begin by discussing scoring rules that correspond to Ex-
amples 1, 2, and 3. The quadratic score,

QS(p,ω) = 2p(ω) − ‖p‖2
2, (18)

is strictly proper relative to the class L2. It has expected score or
generalized entropy function G(p) = ‖p‖2

2, and the associated
divergence function, d(p,q) = ‖p − q‖2

2, is symmetric. Good
(1971) proposed the pseudospherical score,

PseudoS(p,ω) = p(ω)α−1/‖p‖α−1
α ,

that reduces to the spherical score when α = 2. He described
original and generalized versions of the score—a distinc-
tion that in a measure-theoretic framework is obsolete. The
pseudospherical score is strictly proper relative to the class
Lα . The strict convexity of the associated entropy function,
G(p) = ‖p‖α , and the nonnegativity of the divergence function
are straightforward consequences of the Hölder and Minkowski
inequalities.

The logarithmic score,

LogS(p,ω) = log p(ω), (19)

emerges as a limiting case (α → 1) of the pseudospherical
score when suitably scaled. This scoring rule was proposed
by Good (1952) and has been widely used since then, under
various names, including the predictive deviance (Knorr-Held
and Rainer 2001) and the ignorance score (Roulston and Smith
2002). The logarithmic score is strictly proper relative to the
class L1 of the probability measures dominated by µ. The asso-
ciated expected score function or information measure is nega-
tive Shannon entropy, and the divergence function becomes the
classical Kullback–Leibler divergence.

Bernardo (1979, p. 689) argued that “when assessing the
worthiness of a scientist’s final conclusions, only the proba-
bility he attaches to a small interval containing the true value
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Figure 2. The Expected Score or Generalized Entropy Function G(p) (top row) and the Scoring Functions S(p, 1) ( —) and S(p, 0) ( - - -) (bottom
row), for the Brier Score and Logarithmic Score (Table 1), the Asymmetric Zero–One Score (15) With c = .6 and Winkler’s Standardized Score (17)
With c = .2.

should be taken into account.” This seems subject to debate,
and atmospheric scientists have argued otherwise, putting forth
scoring rules that are sensitive to distance (Epstein 1969; Staël
von Holstein 1970). That said, Bernardo (1979) studied local
scoring rules S(p,ω) that depend on the predictive density p
only through its value at the event ω that materializes. Assum-
ing regularity conditions, he showed that every proper local
scoring rule is equivalent to the logarithmic score, in the sense
of (2). Consequently, the linear score, LinS(p,ω) = p(ω), is
not a proper scoring rule, despite its intuitive appeal. For in-
stance, let ϕ and u denote the Lebesgue densities of a standard
Gaussian distribution and the uniform distribution on (−ε, ε).
If ε <

√
log 2, then

LinS(u, ϕ) = 1

(2π)1/2

1

2ε

∫ ε

−ε

e−x2/2 dx

>
1

2π1/2
= LinS(ϕ,ϕ),

in violation of propriety. Essentially, the linear score encour-
ages overprediction at the modes of an assessor’s true predic-
tive density (Winkler 1969). The probability score of Wilson,
Burrows, and Lanzinger (1999) integrates the predictive den-
sity over a neighborhood of the observed, real-valued quantity.
This resembles the linear score and is not a proper score either.
Dawid (2006) constructed proper scoring rules from improper

ones; an interesting question is whether this can be done for
the probability score, similar to the way in which the proper
quadratic score (18) derives from the linear score.

If Lebesgue densities on the real line are used to predict dis-
crete observations, then the logarithmic score encourages the
placement of artificially high density ordinates on the target val-
ues in question. This problem emerged in the Evaluating Pre-
dictive Uncertainty Challenge at a recent PASCAL Challenges
Workshop (Kohonen and Suomela 2006; Quiñonero-Candela,
Rasmussen, Sinz, Bousquet, and Schölkopf 2006). It disappears
if scores expressed in terms of predictive cumulative distribu-
tion functions are used, or if the sample space is reduced to the
target values in question.

4.2 Continuous Ranked Probability Score

The restriction to predictive densities is often impractical.
For instance, probabilistic quantitative precipitation forecasts
involve distributions with a point mass at zero (Krzysztofow-
icz and Sigrest 1999; Bremnes 2004), and predictive distribu-
tions are often expressed in terms of samples, possibly origi-
nating from Markov chain Monte Carlo. Thus it seems more
compelling to define scoring rules directly in terms of predic-
tive cumulative distribution functions. Furthermore, the afore-
mentioned scores are not sensitive to distance, meaning that no
credit is given for assigning high probabilities to values near but
not identical to the one materializing.
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To address this situation, let P consist of the Borel proba-
bility measures on R. We identify a probabilistic forecast—
a member of the class P—with its cumulative distribution func-
tion F, and use standard notation for the elements of the sample
space R. The continuous ranked probability score (CRPS) is
defined as

CRPS(F, x) = −
∫ ∞

−∞
(F(y) − 1{y ≥ x})2 dy (20)

and corresponds to the integral of the Brier scores for the asso-
ciated binary probability forecasts at all real-valued thresholds
(Matheson and Winkler 1976; Hersbach 2000).

Applications of the CRPS have been hampered by a lack of
readily computable solutions to the integral in (20), and the use
of numerical quadrature rules has been proposed instead (Staël
von Holstein 1977; Unger 1985). However, the integral often
can be evaluated in closed form. By lemma 2.2 of Baringhaus
and Franz (2004) or identity (17) of Székely and Rizzo (2005),

CRPS(F, x) = 1

2
EF|X − X′| − EF|X − x|, (21)

where X and X′ are independent copies of a random variable
with distribution function F and finite first moment. If the pre-
dictive distribution is Gaussian with mean µ and variance σ 2,
then it follows that

CRPS(N (µ,σ 2), x) = σ

[
1√
π

− 2ϕ

(
x − µ

σ

)

− x − µ

σ

(
2�

(
x − µ

σ

)
− 1

)]
,

where ϕ and � denote the probability density function and the
cumulative distribution function of a standard Gaussian vari-
able. If the predictive distribution takes the form of a sample of
size n, then the right side of (20) can be evaluated in terms of
the respective order statistics in a total of O(n log n) operations
(Hersbach 2000, sec. 4.b).

The CRPS is proper relative to the class P and strictly proper
relative to the subclass P1 of the Borel probability measures
that have finite first moment. The associated expected score
function or information measure,

G(F) = −
∫ ∞

−∞
F(y)(1 − F(y))dy = −1

2
EF|X − X′|,

coincides with the negative selectivity function (Matheron
1984), and the respective divergence function,

d(F,G) =
∫ ∞

−∞
(F(y) − G(y))2 dy,

is symmetric and of the Cramér–von Mises type.
The CRPS lately has attracted renewed interest in the at-

mospheric sciences community (Hersbach 2000; Candille and
Talagrand 2005; Gneiting, Raftery, Westveld, and Goldman
2005; Grimit, Gneiting, Berrocal, and Johnson 2006; Wilks
2006, pp. 302–303). It is typically used in negative orientation,
say CRPS∗(F, x) = −CRPS(F, x). The representation (21) then
can be written as

CRPS∗(F, x) = EF|X − x| − 1

2
EF|X − X′|,

which sheds new light on the score. In negative orientation, the
CRPS can be reported in the same unit as the observations, and
it generalizes the absolute error to which it reduces if F is a de-
terministic forecast—that is, a point measure. Thus the CRPS
provides a direct way to compare deterministic and probabilis-
tic forecasts.

4.3 Energy Score

We introduce a generalization of the CRPS that draws on
Székely’s (2003) statistical energy perspective. Let Pβ , β ∈
(0,2), denote the class of the Borel probability measures P on
R

m that are such that EP‖X‖β is finite, where ‖ · ‖ denotes the
Euclidean norm. We define the energy score,

ES(P,x) = 1

2
EP‖X − X′‖β − EP‖X − x‖β, (22)

where X and X′ are independent copies of a random vector
with distribution P ∈ Pβ . This generalizes the CRPS, to which
(22) reduces when β = 1 and m = 1, by allowing for an index
β ∈ (0,2) and applying to distributional forecasts of a vector-
valued quantity in R

m. Theorem 1 of Székely (2003) shows that
the energy score is strictly proper relative to the class Pβ . [For
a different and more general argument, see Sec. 5.1.] In the lim-
iting case β = 2, the energy score (22) reduces to the negative
squared error,

ES(P,x) = −‖µp − x‖2, (23)

where µP denotes the mean vector of P. This scoring rule is
regular and proper, but not strictly proper, relative to the class
P2.

The energy score with index β ∈ (0,2) applies to all Borel
probability measures on R

m, by defining

ES(P,x) = −β2β−2�(m
2 + β

2 )

πm/2�(1 − β
2 )

∫

Rm

|φP(y) − ei〈x,y〉|2
‖y‖m+β

dy,

(24)
where φP denotes the characteristic function of P. If P belongs
to Pβ , then theorem 1 of Székely (2003) implies the equality of
the right sides in (22) and (24). Essentially, the score computes
a weighted distance between the characteristic function of P
and the characteristic function of the point measure at the value
that materializes.

4.4 Scoring Rules That Depend on First and
Second Moments Only

An interesting question is that for proper scoring rules that
apply to the Borel probability measures on R

m and depend on
the predictive distribution, P, only through its mean vector, µP,
and dispersion or covariance matrix, �P. Dawid (1998) and
Dawid and Sebastiani (1999) studied proper scoring rules of
this type. A particularly appealing example is the scoring rule

S(P,x) = − log det�P − (x − µP)′�−1
P (x − µP), (25)

which is linked to the generalized entropy function

G(P) = − log det�P − m,

and to the divergence function

d(P,Q) = tr(�−1
P �Q) − log det(�−1

P �Q)

+ (µP − µQ)′�−1
P (µP − µQ) − m.



368 Journal of the American Statistical Association, March 2007

[Note the order of the arguments in the definition (7) of the
divergence function.] This scoring rule is proper but not strictly
proper relative to the class P2 of the Borel probability measures
P for which EP‖X‖2 is finite. It is strictly proper relative to any
convex class of probability measures characterized by the first
two moments, such as the Gaussian measures, for which (25) is
equivalent to the logarithmic score (19). For other examples of
scoring rules that depend on µP and �P only, see (23) and the
right column of table 1 of Dawid and Sebastiani (1999).

The predictive model choice criterion of Laud and Ibrahim
(1995) and Gelfand and Ghosh (1998) has lately attracted the
attention of the statistical community. Suppose that we fit a pre-
dictive model to observed, real-valued data x1, . . . , xn. The pre-
dictive model choice criterion (PMCC) assesses the model fit
through the quantity

PMCC =
n∑

i=1

(xi − µi)
2 +

n∑

i=1

σ 2
i ,

where µi and σ 2
i denote the expected value and the variance of

a replicate variable Xi, given the model and the observations.
Within the framework of scoring rules, the PMCC corresponds
to the positively oriented score

S(P, x) = −(x − µP)2 − σ 2
P, (26)

where P has mean µP and variance σ 2
P . The scoring rule (26)

depends on the predictive distribution through its first two mo-
ments only, but it is improper; if the forecaster’s true belief is P
and if he or she wishes to maximize the expected score, then
he or she will quote the point measure at µP—that is, a de-
terministic forecast—rather than the predictive distribution P.
This suggests that the predictive model choice criterion should
be replaced by a criterion based on the scoring rule (25), which
reduces to

S(P, x) = −
(

x − µP

σP

)2

− logσ 2
P (27)

in the case in which m = 1 and the observations are real-valued.

5. KERNEL SCORES, NEGATIVE AND POSITIVE
DEFINITE FUNCTIONS, AND INEQUALITIES

OF HOEFFDING TYPE

In this section we use negative definite functions to construct
proper scoring rules and present expectation inequalities that
are of independent interest.

5.1 Kernel Scores

Let � be a nonempty set. A real-valued function g on � ×�

is said to be a negative definite kernel if it is symmetric in its
arguments and

∑n
i=1

∑n
j=1 aiajg(xi, xj) ≤ 0 for all positive inte-

gers n, all a1, . . . ,an ∈ R that sum to 0, and all x1, . . . , xn ∈ �.
Numerous examples of negative definite kernels have been
given by Berg, Christensen, and Ressel (1984) and the refer-
ences cited therein.

We now give the key result of this section, which generalizes
a kernel construction of Eaton (1982, p. 335). The term kernel
score was coined by Dawid (2006).

Theorem 4. Let � be a Hausdorff space and let g be a non-
negative, continuous negative definite kernel on � × �. For a
Borel probability measure P on �, let X and X′ be independent
random variables with distribution P. Then the scoring rule

S(P, x) = 1

2
EPg(X,X′) − EPg(X, x) (28)

is proper relative to the class of the Borel probability mea-
sures P on � for which the expectation EPg(X,X′) is finite.

Proof. Let P and Q be Borel probability measures on �, and
suppose that X,X′ and Y,Y ′ are independent random variates
with distribution P and Q. We need to show that

−1

2
EQg(Y,Y ′) ≥ 1

2
EPg(X,X′) − EP,Qg(X,Y). (29)

If the expectation EP,Qg(X,Y) is infinite, then the inequality
is trivially satisfied; if it is finite, then theorem 2.1 of Berg
et al. (1984, p. 235) implies (29).

Next we give examples of scoring rules that admit a kernel
representation. In each case, we equip the sample space with
the standard topology. Note that evaluating the kernel scores is
straightforward if P is discrete and has only a moderate number
of atoms.

Example 7 (Quadratic or Brier score). Let � = {1,0} and
suppose that g(0,0) = g(1,1) = 0 and g(0,1) = g(1,0) = 1.
Then (28) recovers the quadratic or Brier score.

Example 8 (CRPS). If � = R and g(x, x′) = |x − x′| for
x, x′ ∈ R in Theorem 4, we obtain the CRPS (21).

Example 9 (Energy score). If � = R
m, β ∈ (0,2), and

g(x,x′) = ‖x − x′‖β for x,x′ ∈ R
m, where ‖ · ‖ denotes the

Euclidean norm, then (28) recovers the energy score (22).

Example 10 (CRPS for circular variables). We let � = S de-
note the circle and write α(θ, θ ′) for the angular distance be-
tween two points θ, θ ′ ∈ S. Let P be a Borel probability mea-
sure on S, and let � and �′ be independent random variates
with distribution P. By theorem 1 of Gneiting (1998), angular
distance is a negative definite kernel. Thus,

S(P, θ) = 1

2
EPα(�,�′) − EPα(�, θ) (30)

defines a proper scoring rule relative to the class of the Borel
probability measures on the circle. Grimit et al. (2006) intro-
duced (30) as an analog of the CRPS (21) that applies to di-
rectional variables, and used Fourier analytic tools to prove the
propriety of the score.

We turn to a far-reaching generalization of the energy
score. For x = (x1, . . . , xm) ∈ R

m and α ∈ (0,∞], define
the vector norm ‖x‖α = (

∑m
i=1 |xi|α)1/α if α ∈ (0,∞) and

‖x‖α = max1≤i≤m |xi| if α = ∞. Schoenberg’s theorem (Berg
et al. 1984, p. 74) and a strand of literature culminating in the
work of Koldobskiı̌ (1992) and Zastavnyi (1993) imply that if
α ∈ (0,∞] and β > 0, then the kernel

g(x,x′) = ‖x − x′‖β
α, x,x′ ∈ R

m,

is negative definite if and only if the following holds.
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Assumption 1. Suppose that (a) m = 1, α ∈ (0,∞], and β ∈
(0,2]; (b) m ≥ 2, α ∈ (0,2], and β ∈ (0, α]; or (c) m = 2, α ∈
(2,∞], and β ∈ (0,1].

Example 11 (Non-Euclidean energy score). Under Assump-
tion 1, the scoring rule

S(P,x) = 1

2
EP‖X − X′‖β

α − EP‖X − x‖β
α

is proper relative to the class of the Borel probability mea-
sures P on R

m for which the expectation EP‖X − X′‖β
α is fi-

nite. If m = 1 or α = 2, then we recover the energy score; if
m ≥ 2 and α �= 2, then we obtain non-Euclidean analogs. Mat-
tner (1997, sec. 5.2) showed that if α ≥ 1, then EP,Q‖X − Y‖β

α

is finite if and only if EP‖X‖β
α and EQ‖Y‖β

α are finite. In partic-

ular, if α ≥ 1, then EP‖X − X′‖β
α is finite if and only if EP‖X‖β

α

is finite.

The following result sharpens Theorem 4 in the crucial case
of Euclidean sample spaces and spherically symmetric negative
definite functions. Recall that a function η on (0,∞) is said
to be completely monotone if it has derivatives η(k) of all orders
and (−1)kη(k)(t) ≥ 0 for all nonnegative integers k and all t > 0.

Theorem 5. Let ψ be a continuous function on [0,∞) with
−ψ ′ completely monotone and not constant. For a Borel prob-
ability measure P on R

m, let X and X′ be independent random
vectors with distribution P. Then the scoring rule

S(P,x) = 1

2
EPψ(‖X − X′‖2

2) − EPψ(‖X − x‖2
2)

is strictly proper relative to the class of the Borel probability
measures P on R

m for which EPψ(‖X − X′‖2
2) is finite.

The proof of this result is immediate from theorem 2.2 of
Mattner (1997). In particular, if ψ(t) = tβ/2 for β ∈ (0,2), then
Theorem 5 ensures the strict propriety of the energy score rela-
tive to the class of the Borel probability measures P on R

m for
which EP‖X‖β

2 is finite.

5.2 Inequalities of Hoeffding Type and Positive
Definite Kernels

A number of side results seem to be of independent inter-
est, even though they are easy consequences of previous work.
Briefly, if the expectations EPg(X,X′) and EPg(Y,Y ′) are finite,
then (29) can be written as a Hoeffding-type inequality,

2EP,Qg(X,Y) − EPg(X,X′) − EQg(Y,Y ′) ≥ 0. (31)

Theorem 1 of Székely and Rizzo (2005) provides a nearly iden-
tical result and a converse: If g is not negative definite, then
there are counterexamples to (31), and the respective scoring
rule is improper. Furthermore, if � is a group and the negative
definite function g satisfies g(x, x′) = g(−x,−x′) for x, x′ ∈ �,
then a special case of (31) can be stated as

EPg(X,−X′) ≥ EPg(X,X′). (32)

In particular, if � = R
m and Assumption 1 holds, then inequal-

ities (31) and (32) apply and reduce to

2E‖X − Y‖β
α − E‖X − X′‖β

α − E‖Y − Y′‖β
α ≥ 0 (33)

and

E‖X − X′‖β
α ≤ E‖X + X′‖β

α, (34)

thereby generalizing results of Buja, Logan, Reeds, and Shepp
(1994), Székely (2003), and Baringhaus and Franz (2004).

In the foregoing case in which � is a group and g satisfies
g(x, x′) = g(−x,−x′) for x, x′ ∈ �, the argument leading to the-
orem 2.3 of Buja et al. (1994) and theorem 4 of Ma (2003)
implies that

h(x, x′) = g(x,−x′) − g(x, x′), x, x′ ∈ �, (35)

is a positive definite kernel, in the sense that h is symmetric in
its arguments and

∑n
i=1

∑n
j=1 aiajh(xi, xj) ≥ 0 for all positive

integers n, all a1, . . . ,an ∈ R, and all x1, . . . , xn ∈ �. Specifi-
cally, under Assumption 1,

h(x,x′) = ‖x + x′‖β
α − ‖x − x′‖β

α, x,x′ ∈ R
m, (36)

is a positive definite kernel, a result that extends and completes
the aforementioned theorem of Buja et al. (1994).

5.3 Constructions With Complex-Valued Kernels

With suitable modifications, the foregoing results allow for
complex-valued kernels. A complex-valued function h on � ×
� is said to be a positive definite kernel if it is Hermitian, that is,
h(x, x′) = h(x′, x) for x, x′ ∈ �, and

∑n
i=1

∑n
j=1 cicjh(xi, xj) ≥ 0

for all positive integers n, all c1, . . . , cn ∈ C, and all x1, . . . , xn ∈
�. The general idea (Dawid 1998, 2006) is that if h is continu-
ous and positive definite, then

S(P, x) = EPh(X, x) + EPh(x,X) − EPh(X,X′) (37)

defines a proper scoring rule. If h is positive definite, then g =
−h is negative definite; thus, if h is real-valued and sufficiently
regular, then the scoring rules (37) and (28) are equivalent.

In the next example, we discuss scoring rules for Borel prob-
ability measures and observations on Euclidean spaces. How-
ever, the representation (37) allows for the construction of
proper scoring rules in more general settings, such as prob-
abilistic forecasts of structured data, including strings, se-
quences, graphs, and sets, based on positive definite kernels
defined on such structures (Hofmann, Schölkopf, and Smola
2005).

Example 12. Let � = R
m and y ∈ R

m, and consider the pos-
itive definite kernel h(x,x′) = ei〈x−x′,y〉 − 1, where x,x′ ∈ R

m.
Then (37) reduces to

S(P,x) = −∣∣φP(y) − ei〈x,y〉∣∣2
, (38)

that is, the negative squared distance between the characteristic
function of the predictive distribution, φP, and the characteris-
tic function of the point measures in the value that materializes,
evaluated at y ∈ R

m. If we integrate with respect to a nonnega-
tive measure µ(dy), then the scoring rule (38) generalizes to

S(P,x) = −
∫

Rm

∣∣φP(y) − ei〈x,y〉∣∣2
µ(dy). (39)

If the measure µ is finite and assigns positive mass to all inter-
vals, then this scoring rule is strictly proper relative to the class
of the Borel probability measures on R

m. Eaton, Giovagnoli,
and Sebastiani (1996) used the associated divergence function
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to define metrics for probability measures. If µ is the infinite
measure with Lebesgue density ‖y‖−m−β , where β ∈ (0,2),
then the scoring rule (39) is equivalent to the Euclidean energy
score (24).

6. SCORING RULES FOR QUANTILE AND
INTERVAL FORECASTS

Occasionally, full predictive distributions are difficult to
specify, and the forecaster might quote predictive quantiles,
such as value at risk in financial applications (Duffie and Pan
1997) or prediction intervals (Christoffersen 1998) only.

6.1 Proper Scoring Rules for Quantiles

We consider probabilistic forecasts of a continuous quantity
that take the form of predictive quantiles. Specifically, suppose
that the quantiles at the levels α1, . . . , αk ∈ (0,1) are sought.
If the forecaster quotes quantiles r1, . . . , rk and x materializes,
then he or she will be rewarded by the score S(r1, . . . , rk; x). We
define

S(r1, . . . , rk;P) =
∫

S(r1, . . . , rk; x)dP(x)

as the expected score under the probability measure P when
the forecaster quotes the quantiles r1, . . . , rk. To avoid technical
complications, we suppose that P belongs to the convex class P
of Borel probability measures on R that have finite moments of
all orders and whose distribution function is strictly increasing
on R. For P ∈ P , let q1, . . . ,qk denote the true P-quantiles at
levels α1, . . . , αk. Following Cervera and Muñoz (1996), we say
that a scoring rule S is proper if

S(q1, . . . ,qk;P) ≥ S(r1, . . . , rk;P)

for all real numbers r1, . . . , rk and for all probability measures
P ∈ P . If S is proper, then the forecaster who wishes to maxi-
mize the expected score is encouraged to be honest and to vol-
unteer his or her true beliefs.

To avoid technical overhead, we tacitly assume P-integrabil-
ity whenever appropriate. Essentially, we require that the func-
tions s(x) and h(x) in (40) and (42) be P-measurable and grow
at most polynomially in x. Theorem 6 addresses the prediction
of a single quantile; Corollary 1 turns to the general case.

Theorem 6. If s is nondecreasing and h is arbitrary, then the
scoring rule

S(r; x) = αs(r) + (s(x) − s(r))1{x ≤ r} + h(x) (40)

is proper for predicting the quantile at level α ∈ (0,1).

Proof. Let q be the unique α-quantile of the probability mea-
sure P ∈P . We identify P with the associated distribution func-
tion so that P(q) = α. If r < q, then

S(q;P) − S(r;P)

=
∫

(r,q)

s(x)dP(x) + s(r)P(r) − αs(r)

≥ s(r)(P(q) − P(r)) + s(r)P(r) − αs(r)

= 0,

as desired. If r > q, then an analogous argument applies.

If s(x) = x and h(x) = −αx, then we obtain the scoring rule

S(r; x) = (x − r)(1{x ≤ r} − α), (41)

which has been proposed by Koenker and Machado (1999),
Taylor (1999), Giacomini and Komunjer (2005), Theis (2005,
p. 232), and Friederichs and Hense (2006) for measuring in-
sample goodness of fit and out-of-sample forecast performance
in meteorological and financial applications. In negative orien-
tation, the econometric literature refers to the scoring rule (41)
as the tick or check loss function.

Corollary 1. If si is nondecreasing for i = 1, . . . , k and h is
arbitrary, then the scoring rule

S(r1, . . . , rk; x)

=
k∑

i=1

[
αisi(ri) + (si(x) − si(ri))1{x ≤ ri}

] + h(x) (42)

is proper for predicting the quantiles at levels α1, . . . , αk ∈
(0,1).

Cervera and Muñoz (1996, pp. 515 and 519) proved Corol-
lary 1 in the special case in which each si is linear. They asked
whether the resulting rules are the only proper ones for quan-
tiles. Our results give a negative answer; that is, the class of
proper scoring rules for quantiles is considerably larger than
anticipated by Cervera and Muñoz. We do not know whether
or not (40) and (42) provide the general form of proper scoring
rules for quantiles.

6.2 Interval Score

Interval forecasts form a crucial special case of quantile pre-
diction. We consider the classical case of the central (1 − α) ×
100% prediction interval, with lower and upper endpoints that
are the predictive quantiles at level α

2 and 1 − α
2 . We denote a

scoring rule for the associated interval forecast by Sα(l,u; x),
where l and u represent for the quoted α

2 and 1 − α
2 quantiles.

Thus, if the forecaster quotes the (1−α)×100% central predic-
tion interval [l,u] and x materializes, then his or her score will
be Sα(l,u; x). Putting α1 = α

2 , α2 = 1 − α
2 , s1(x) = s2(x) = 2 x

α
,

and h(x) = −2 x
α

in (42), and reversing the sign of the scoring
rule, yields the negatively oriented interval score,

Sint
α (l,u; x)

= (u − l) + 2

α
(l − x)1{x < l} + 2

α
(x − u)1{x > u}. (43)

This scoring rule has intuitive appeal and can be traced back
to Dunsmore (1968), Winkler (1972), and Winkler and Mur-
phy (1979). The forecaster is rewarded for narrow prediction
intervals, and he or she incurs a penalty, the size of which de-
pends on α, if the observation misses the interval. In the case
α = 1

2 , Hamill and Wilks (1995, p. 622) used a scoring rule that
is equivalent to the interval score. They noted that “a strategy
for gaming [. . . ] was not obvious,” thereby conjecturing propri-
ety, which is confirmed by the foregoing. We anticipate novel
applications, particularly for the evaluation of volatility fore-
casts in computational finance.
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6.3 Case Study: Interval Forecasts for a Conditionally
Heteroscedastic Process

This section illustrates the use of the interval score in a
time series context. Kabaila (1999) called for rigorous ways of
specifying prediction intervals for conditionally heteroscedastic
processes and proposed a relevance criterion in terms of con-
ditional coverage and width dependence. We contend that the
notion of proper scoring rules provides an alternative and pos-
sibly simpler, more general, and more rigorous paradigm. The
prediction intervals that we deem appropriate derive from the
true conditional distribution, as implied by the data-generating
mechanism, and optimize the expected value of all proper scor-
ing rules.

To fix the idea, consider the stationary bilinear process
{Xt : t ∈ Z} defined by

Xt+1 = 1

2
Xt + 1

2
Xtεt + εt, (44)

where the εt’s are independent standard Gaussian random vari-
ates. Kabaila and He (2001) studied central one-step-ahead pre-
diction intervals at the 95% level. The process is Markovian,
and the conditional distribution of Xt+1 given Xt,Xt−1, . . . is
Gaussian with mean 1

2 Xt and variance (1 + 1
2 Xt)

2, thereby sug-
gesting the prediction interval

I =
[

1

2
Xt − c

∣∣∣∣1 + 1

2
Xt

∣∣∣∣,
1

2
Xt + c

∣∣∣∣1 + 1

2
Xt

∣∣∣∣

]
, (45)

where c = �−1(.975). This interval satisfies the relevance prop-
erty of Kabaila (1999), and Kabaila and He (2001) adopted I
as the standard prediction interval. We agree with this choice,
but we prefer the aforementioned more direct justification; the
prediction interval I is the standard interval because its lower
and upper endpoints are the 2.5% and 97.5% percentiles of the
true conditional distribution function. Kabaila and He consid-
ered two alternative prediction intervals,

J = [F−1(.025),F−1(.975)], (46)

where F denotes the unconditional, stationary distribution func-
tion of Xt, and

K =
[

1

2
Xt − γ

(∣∣∣∣1 + 1

2
Xt

∣∣∣∣

)
,

1

2
Xt + γ

(∣∣∣∣1 + 1

2
Xt

∣∣∣∣

)]
, (47)

where γ (y) = (2(log 7.36− log y))1/2y for y ≤ 7.36 and γ (y) =
0 otherwise. This choice minimizes the expected width of the
prediction interval under the constraint of nominal coverage.
However, the interval forecast K seems misguided, in that it
collapses to a point forecast when the conditional predictive
variance is highest.

We generated a sample path {Xt : t = 1, . . . ,100,001} from
the bilinear process (44) and considered sequential one-step-
ahead interval forecasts for Xt+1, where t = 1, . . . ,100,000.
Table 2 summarizes the results of this experiment. The inter-
val forecasts I, J, and K all showed close to nominal coverage,
with the prediction interval K being sharpest on average. Nev-
ertheless, the classical prediction interval I performed best in
terms of the interval score.

Table 2. Comparison of One-Step-Ahead 95% Interval Forecasts for
the Stationary Bilinear Process (44)

Interval Empirical Average Average
forecast coverage width interval score

I (45) 95.01% 4.00 4.77
J (46) 95.08% 5.45 8.04
K (47) 94.98% 3.79 5.32

NOTE: The table shows the empirical coverage, the average width, and the average value of
the negatively oriented interval score (43) for the prediction intervals I, J, and K in 100,000
sequential forecasts in a sample path of length 100,001. See text for details.

6.4 Scoring Rules for Distributional Forecasts

Specifying a predictive cumulative distribution function is
equivalent to specifying all predictive quantiles; thus we can
build scoring rules for predictive distributions from scoring
rules for quantiles. Matheson and Winkler (1976) and Cervera
and Muñoz (1996) suggested ways of doing this. Specifically,
if Sα denotes a proper scoring rule for the quantile at level α

and ν is a Borel measure on (0,1), then the scoring rule

S(F, x) =
∫ 1

0
Sα(F−1(α); x)ν(dα) (48)

is proper, subject to regularity and integrability constraints.
Similarly, we can build scoring rules for predictive distrib-

utions from scoring rules for binary probability forecasts. If S
denotes a proper scoring rule for probability forecasts and ν is
a Borel measure on R, then the scoring rule

S(F, x) =
∫ ∞

−∞
S(F(y),1{x ≤ y})ν(dy) (49)

is proper, subject to integrability constraints (Matheson and
Winkler 1976; Gerds 2002). The CRPS (20) corresponds to the
special case in (49) in which S is the quadratic or Brier score
and ν is the Lebesgue measure. If S is the Brier score and ν

is a sum of point measures, then the ranked probability score
(Epstein 1969) emerges.

The construction carries over to multivariate settings. If P
denotes the class of the Borel probability measures on R

m, then
we identify a probabilistic forecast P ∈ P with its cumulative
distribution function F. A multivariate analog of the CRPS can
be defined as

CRPS(F,x) = −
∫

Rm
(F(y) − 1{x ≤ y})2ν(dy).

This is a weighted integral of the Brier scores at all m-variate
thresholds. The Borel measure ν can be chosen to encourage
the forecaster to concentrate his or her efforts on the impor-
tant ones. If ν is a finite measure that dominates the Lebesgue
measure, then this scoring rule is strictly proper relative to the
class P .

7. SCORING RULES, BAYES FACTORS, AND
RANDOM–FOLD CROSS–VALIDATION

We now relate proper scoring rules to Bayes factors and to
cross-validation and propose a novel form of cross-validation:
random-fold cross-validation.
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7.1 Logarithmic Score and Bayes Factors

Probabilistic forecasting rules are often generated by proba-
bilistic models, and the standard Bayesian approach to compar-
ing probabilistic models is by Bayes factors. Suppose that we
have a sample X = (X1, . . . ,Xn) of values to be forecast. Sup-
pose also that we have two forecasting rules, based on proba-
bilistic models H1 and H2. So far in this article we have concen-
trated on the situation where the forecasting rule is completely
specified before any of the Xi’s are observed; that is, there are
no parameters to be estimated from the data being forecast. In
that situation, the Bayes factor for H1 against H2 is

B = P(X|H1)

P(X|H2)
, (50)

where P(X|Hk) = ∏n
i=1 P(Xi|Hk) for k = 1,2 (Jeffreys 1939;

Kass and Raftery 1995).
Thus, if the logarithmic score is used, then the log Bayes

factor is the difference of the scores for the two models,

log B = LogS(H1,X) − LogS(H2,X). (51)

This was pointed out by Good (1952), who called the log Bayes
factor the weight of evidence. It establishes two connections:
(1) the Bayes factor is equivalent to the logarithmic score in this
no-parameter case, and (2) the Bayes factor applies more gener-
ally than merely to the comparison of parametric probabilistic
models, but also to the comparison of probabilistic forecasting
rules of any kind.

So far in this article we have taken probabilistic forecasts to
be fully specified, but often they are specified only up to un-
known parameters estimated from the data. Now suppose that
the forecasting rules considered are specified only up to un-
known parameters, θk for Hk, to be estimated from the data.
Then the Bayes factor is still given by (50), but now P(X|Hk) is
the integrated likelihood,

P(X|Hk) =
∫

p(X|θk,Hk)p(θk|Hk)dθk,

where p(X|θk,Hk) is the (usual) likelihood under model Hk, and
p(θk|Hk) is the prior distribution of the parameter θk.

Dawid (1984) showed that when the data come in a partic-
ular order, such as time order, the integrated likelihood can be
reformulated in predictive terms,

P(X|Hk) =
n∏

t=1

P(Xt|Xt−1,Hk), (52)

where Xt−1 = {X1, . . . ,Xt−1} if t ≥ 1, X0 is the empty set and
P(Xt|Xt−1,Hk) is the predictive distribution of Xt given the past
values under Hk, namely

P(Xt|Xt−1,Hk) =
∫

p(Xt|θk,Hk)P(θk|Xt−1,Hk)dθk,

with P(θk|Xt−1,Hk) the posterior distribution of θk given the
past observations Xt−1.

We let Sk,B = log P(X|Hk) denote the log-integrated likeli-
hood, viewed now as a scoring rule. To view it as a scoring rule
it helps to rewrite it as

Sk,B =
n∑

t=1

log P(Xt|Xt−1,Hk). (53)

Dawid (1984) showed that Sk,B is asymptotically equivalent to
the plug-in maximum likelihood prequential score

Sk,D =
n∑

t=1

log P(Xt|Xt−1, θ̂ t−1
k ), (54)

where θ̂ t−1
k is the maximum likelihood estimator (MLE) of

θk based on the past observations, Xt−1, in the sense that
Sk,D/Sk,B → 1 as n → ∞. Initial terms for which θ̂ t−1

k is pos-
sibly undefined can be ignored. Dawid also showed that Sk,B

is asymptotically equivalent to the Bayes information criterion
(BIC) score,

Sk,BIC =
n∑

t=1

log P(Xt|Xt−1, θ̂n
k ) − dk

2
log n,

where dk = dim(θk), in the same sense, namely Sk,BIC/Sk,B →
1 as n → ∞. This justifies using the BIC for comparing fore-
casting rules, extending the previous justification of Schwarz
(1978), which related only to comparing models.

These results have two limitations, however. First, they as-
sume that the data come in a particular order. Second, they use
only the logarithmic score, not other scores that might be more
appropriate for the task at hand. We now briefly consider how
these limitations might be addressed.

7.2 Scoring Rules and Random-Fold Cross-Validation

Suppose now that the data are unordered. We can replace (53)
by

S∗
k,B =

n∑

t=1

ED
[
log p

(
Xt|X(D),Hk

)]
, (55)

where D is a random sample from {1, . . . , t − 1, t + 1, . . . ,n},
the size of which is a random variable with a discrete uniform
distribution on {0,1, . . . ,n − 1}. Dawid’s results imply that this
is asymptotically equivalent to the plug-in maximum likelihood
version,

S∗
k,D =

n∑

t=1

ED
[
log p

(
Xt|X(D), θ̂

(D)
k ,Hk

)]
, (56)

where θ̂
(D)
k is the MLE of θk based on X(D). Terms for which

the size of D is small and θ̂
(D)
k is possibly undefined can be

ignored.
The formulations (55) and (56) may be useful because they

turn a score that was a sum of nonidentically distributed terms
into one that is a sum of identically distributed exchangeable
terms. This opens the possibility of evaluating S∗

k,B or S∗
k,D

by Monte Carlo, which would be a form of cross-validation.
In this cross-validation, the amount of data left out would be
random rather than fixed, leading us to call it random-fold
cross-validation. Smyth (2000) used the log-likelihood as the
criterion function in cross-validation, as here, calling the result-
ing method cross-validated likelihood, but used a fixed hold-
out sample size. This general approach can be traced back at
least to Geisser and Eddy (1979). One issue in cross-validation
generally is how much data to leave out; different choices lead
to different versions of cross-validation, such as leave-one-out,
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10-fold, and so on. Considering versions of cross-validation in
the context of scoring rules may shed some light on this issue.

We have seen by (51) that when there are no parameters being
estimated, the Bayes factor is equivalent to the difference in
the logarithmic score. Thus we could replace the logarithmic
score by another proper score, and the difference in scores could
be viewed as a kind of predictive Bayes factor with a different
type of score. In Sk,B, Sk,D, Sk,BIC, S∗

k,B, and S∗
k,D, we could

replace the terms in the sums (each of which has the form of a
logarithmic score) by another proper scoring rule, such as the
CRPS, and we conjecture that similar asymptotic equivalences
would remain valid.

8. CASE STUDY: PROBABILISTIC FORECASTS OF
SEA–LEVEL PRESSURE OVER THE NORTH

AMERICAN PACIFIC NORTHWEST

Our goals in this case study are to illustrate the use and the
properties of scoring rules and to demonstrate the importance
of propriety.

8.1 Probabilistic Weather Forecasting Using Ensembles

Operational probabilistic weather forecasts are based on en-
semble prediction systems. Ensemble systems typically gener-
ate a set of perturbations of the best estimate of the current state
of the atmosphere, run each of them forward in time using a nu-
merical weather prediction model, and use the resulting set of
forecasts as a sample from the predictive distribution of future
weather quantities (Palmer 2002; Gneiting and Raftery 2005).

Grimit and Mass (2002) described the University of Wash-
ington ensemble prediction system over the Pacific Northwest,
which covers Oregon, Washington, British Columbia, and parts
of the Pacific Ocean. This is a five-member ensemble com-
prising distinct runs of the MM5 numerical weather prediction
model with initial conditions taken from distinct national and
international weather centers. We consider 48-hour-ahead fore-
casts of sea-level pressure in January–June 2000, the same pe-
riod as that on which the work of Grimit and Mass was based.
The unit used is the millibar (mb). Our analysis builds on a ver-
ification data base of 16,015 records scattered over the North
American Pacific Northwest and the aforementioned 6-month
period. Each record consists of the five ensemble member fore-
casts and the associated verifying observation. The root mean
squared error of the ensemble mean forecast was 3.30 mb, and
the square root of the average variance of the five-member fore-
cast ensemble was 2.13 mb, resulting in a ratio of r0 = 1.55.

This underdispersive behavior—that is, observed errors that
tend to be larger on average than suggested by the ensemble
spread—is typical of ensemble systems and seems unavoidable,
given that ensembles capture only some of the sources of uncer-
tainty (Raftery, Gneiting, Balabdaoui, and Polakowski 2005).
Thus, to obtain calibrated predictive distributions, it seems nec-
essary to carry out some form of statistical postprocessing. One
natural approach is to take the predictive distribution for sea-
level pressure at any given site as Gaussian, centered at the en-
semble mean forecast, and with predictive standard deviation
equal to r times the standard deviation of the forecast ensemble.
Density forecasts of this type were proposed by Déqué, Royer,
and Stroe (1994) and Wilks (2002). Following Wilks, we refer
to r as an inflation factor.

8.2 Evaluation of Density Forecasts

In the aforementioned approach, the predictive density is
Gaussian, say ϕµ,rσ ; its mean, µ, is the ensemble mean fore-
cast, and its standard deviation, rσ , is the product of the in-
flation factor, r, and the standard deviation of the five-member
forecast ensemble, σ . We considered various scoring rules S
and computed the average score,

s(r) = 1

16,015

16,015∑

i=1

S
(
ϕµi,rσi, xi

)
, r > 0, (57)

as a function of the inflation factor r. The index i refers to the
ith record in the verification database, and xi denotes the value
that materialized. Given the underdispersive character of the en-
semble system, we expect s(r) to be maximized at some r > 1,
possibly near the observed ratio, r0 = 1.55, of the root mean
squared error of the ensemble mean forecast over the square
root of the average ensemble variance.

We computed the mean score (57) for inflation factors r ∈
(0,5) and for the quadratic score (QS), spherical score (SphS),
logarithmic score (LogS), CRPS, linear score (LinS), and prob-
ability score (PS), as defined in Section 4. Briefly, if p denotes
the predictive density and x denotes the observed value, then

QS(p, x) = 2p(x) −
∫ ∞

−∞
p(y)2 dy,

SphS(p, x) = p(x)
/(∫ ∞

−∞
p(y)2 dy

)1/2

,

LogS(p, x) = log p(x),

CRPS(p, x) = 1

2
Ep|X − X′| − Ep|X − x|,

LinS(p, x) = p(x),

and

PS(p, x) =
∫ x+1

x−1
p(y)dy.

Figure 3 and Table 3 summarize the results of this experiment.
The scores shown in the figure are linearly transformed, so that
the graphs can be compared side by side, and the transforma-
tions are listed in the rightmost column of the table. In the case
of the quadratic score, for instance, we plotted 40 times the
value in (57) plus 6. Clearly, transformed and original scores
are equivalent in the sense of (2). The quadratic score, spherical
score, logarithmic score and CRPS were maximized at values
of r > 1, thereby confirming the underdispersive character of

Table 3. Probabilistic Forecasts of Sea-Level Pressure Over the North
American Pacific Northwest in January–July 2000

Argmaxr s( r ) Linear transformation
Score in eq. (57) plotted in Figure 3

Quadratic score (QS) 2.18 40s + 6
Spherical score (SphS) 1.84 108s − 22
Logarithmic score (LogS) 2.41 s + 13
CRPS 1.62 10s + 8

Linear score (LinS) .05 105s − 5
Probability score (PS) .02 60s − 5

NOTE: The predictive density is Gaussian, centered at the ensemble mean forecast, and with
predictive standard deviation equal to r times the standard deviation of the forecast ensemble.
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Figure 3. Probabilistic Forecasts of Sea-Level Pressure Over the North American Pacific Northwest in January–July 2000. The scores are shown
as a function of the inflation factor r , where the predictive density is Gaussian, centered at the ensemble mean forecast, and with predictive standard
deviation equal to r times the standard deviation of the forecast ensemble. The scores were subject to linear transformations as detailed in Table 3.

the ensemble. These scores are proper. The linear and proba-
bility scores were maximized at r = .05 and r = .02, thereby
suggesting ignorable forecast uncertainty and essentially deter-
ministic forecasts. The latter two scores have intuitive appeal,
and the probability score has been used to assess forecast en-
sembles (Wilson et al. 1999). However, they are improper, and
their use may result in misguided scientific inferences, as in this
experiment. A similar comment applies to the predictive model
choice criterion given in Section 4.4.

It is interesting to observe that the logarithmic score gave the
highest maximizing value of r. The logarithmic score is strictly
proper but involves a harsh penalty for low probability events
and thus is highly sensitive to extreme cases. Our verification
database includes a number of low-spread cases for which the
ensemble variance implodes. The logarithmic score penalizes
the resulting predictions unless the inflation factor r is large.
Weigend and Shi (2000, p. 382) noted similar concerns and
considered the use of trimmed means when computing the log-
arithmic score. In our experience, the CRPS is less sensitive to
extreme cases or outliers and provides an attractive alternative.

8.3 Evaluation of Interval Forecasts

The aforementioned predictive densities also provide interval
forecasts. We considered the central (1 −α)× 100% prediction
interval where α = .50 and α = .10. The associated lower and
upper prediction bounds li and ui are the α

2 and 1 − α
2 quantiles

of a Gaussian distribution with mean µi and standard deviation
rσi, as described earlier. We assessed the interval forecasts in

their dependence on the inflation factor r in two ways: by com-
puting the empirical coverage of the prediction intervals and by
computing

sα(r) = 1

16,015

16,015∑

i=1

Sint
α (li,ui; xi), r > 0, (58)

where Sint
α denotes the negatively oriented interval score (43).

This scoring rule assesses both calibration and sharpness, by
rewarding narrow prediction intervals and penalizing intervals
missed by the observation. Figure 4(a) shows the empirical cov-
erage of the interval forecasts. Clearly, the coverage increases
with r. For α = .50 and α = .10, the nominal coverage was ob-
tained at r = 1.78 and r = 2.11, which confirms the underdis-
persive character of the ensemble. Figure 4(b) shows the inter-
val score (58) as a function of the inflation factor r. For α = .50
and α = .10, the score was optimized at r = 1.56 and r = 1.72.

9. OPTIMUM SCORE ESTIMATION

Strictly proper scoring rules also are of interest in estimation
problems, where they provide attractive loss and utility func-
tions that can be adapted to the problem at hand.

9.1 Point Estimation

We return to the generic estimation problem described in
Section 1. Suppose that we wish to fit a parametric model Pθ

based on a sample X1, . . . ,Xn of identically distributed obser-
vations. To estimate θ , we can measure the goodness of fit by
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(a) (b)

Figure 4. Interval Forecasts of Sea-Level Pressure Over the North American Pacific Northwest in January–July 2000. (a) Nominal and actual
coverage and (b) the negatively oriented interval score (58), for the 50% central prediction interval (α = .50, - - -) and the 90% central prediction
interval (α = .10, —; score scaled by a factor of .60). The predictive density is Gaussian, centered at the ensemble mean forecast, and with
predictive standard deviation equal to r times the standard deviation of the forecast ensemble.

the mean score

Sn(θ) = 1

n

n∑

i=1

S(Pθ ,Xi),

where S is a scoring rule that is strictly proper relative to a con-
vex class of probability measures that contains the parametric
model. If θ0 denotes the true parameter value, then asymptotic
arguments indicate that

arg maxθSn(θ) → θ0 as n → ∞. (59)

This suggests a general approach to estimation: Choose a
strictly proper scoring rule tailored to the problem at hand and
take θ̂n = arg maxθSn(θ) as the respective optimum score es-
timator. The first four values of the arg max in Table 3, for
instance, refer to the optimum score estimates of the infla-
tion factor r based on the logarithmic score, spherical score,
quadratic score, and CRPS. Pfanzagl (1969) and Birgé and
Massart (1993) studied optimum score estimators under the
heading of minimum contrast estimators. This class includes
many of the most popular estimators in various situations, such
as MLEs, least squares and other estimators of regression mod-
els, and estimators for mixture models or deconvolution. Pfan-
zagl (1969) proved rigorous versions of the consistency result
(59), and Birgé and Massart (1993) related rates of convergence
to the entropy structure of the parameter space. Maximum like-
lihood estimation forms the special case of optimum score esti-
mation based on the logarithmic score, and optimum score es-
timation forms a special case of M-estimation (Huber 1964),
in that the function to be optimized derives from a strictly
proper scoring rule. When estimating the location parameter in

a Gaussian population with known variance, for example, the
optimum score estimator based on the CRPS amounts to an M-
estimator with a ψ -function of the form ψ(x) = 2�( x

c ) − 1,
where c is a positive constant and � denotes the standard
Gaussian cumulative. This provides a smooth version of the ψ -
function for Huber’s (1964) robust minimax estimator (see Hu-
ber 1981, p. 208). Asymptotic results for M-estimators, such as
the consistency theorems of Huber (1967) and Perlman (1972),
then apply to optimum scores estimators as well. Wald’s (1949)
classical proof of the consistency of MLEs relies heavily on the
strict propriety of the logarithmic score, which is proved in his
lemma 1.

The appeal of optimum score estimation lies in the potential
adaption of the scoring rule to the problem at hand. Gneiting
et al. (2005) estimated a predictive regression model using the
optimum score estimator based on the CRPS—a choice mo-
tivated by the meteorological problem. They showed empiri-
cally that such an approach can yield better predictive results
than approaches using maximum likelihood plug-in estimates.
This agrees with the findings of Copas (1983) and Friedman
(1989), who showed that the use of maximum likelihood and
least squares plug-in estimates can be suboptimal in prediction
problems. Buja et al. (2005) argued that strictly proper scor-
ing rules are the natural loss functions or fitting criteria in bi-
nary class probability estimation, and proposed tailoring scor-
ing rules in situations in which false positives and false nega-
tives have different cost implications.

9.2 Quantile Estimation

Koenker and Bassett (1978) proposed quantile regression us-
ing an optimum score estimator based on the proper scoring
rule (41).
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9.3 Interval Estimation

We now turn to interval estimation. Casella, Hwang, and
Robert (1993, p. 141) pointed out that “the question of measur-
ing optimality (either frequentist or Bayesian) of a set estimator
against a loss criterion combining size and coverage does not
yet have a satisfactory answer.”

Their work was motivated by an apparent paradox due to
J. O. Berger, which concerns interval estimators of the loca-
tion parameter θ in a Gaussian population with unknown scale.
Under the loss function

L(I; θ) = cλ(I) − 1{θ ∈ I}, (60)

where c is a positive constant and λ(I) denotes the Lebesgue
measure of the interval estimate I, the classical t-interval is
dominated by a misguided interval estimate that shrinks to the
sample mean in the cases of the highest uncertainty. Casella
et al. (1993, p. 145) commented that “we have a case where
a disconcerting rule dominates a time honored procedure. The
only reasonable conclusion is that there is a problem with the
loss function.” We concur, and propose using proper scoring
rules to assess interval estimators based on a loss criterion that
combines width and coverage.

Specifically, we contend that a meaningful comparison of in-
terval estimators requires either equal coverage or equal width.
The loss function (60) applies to all set estimates, regardless
of coverage and size, which seems unnecessarily ambitious.
Instead, we focus attention on interval estimators with equal
nominal coverage and use the negatively oriented interval score
(43). This loss function can be written as

Lα(I; θ) = λ(I) + 2

α
inf
η∈I

|θ − η| (61)

and applies to interval estimates with upper and lower ex-
ceedance probability α

2 × 100%. This approach can again be
traced back to Dunsmore (1968) and Winkler (1972) and avoids
paradoxes, as a consequence of the propriety of the interval
score. Compared with (60), the loss function (61) provides a
more flexible assessment of the coverage, by taking the distance
between the interval estimate and the estimand into account.

10. AVENUES FOR FUTURE WORK

Our paper aimed to bring proper scoring rules to the atten-
tion of a broad statistical and general scientific audience. Proper
scoring rules lie at the heart of much statistical theory and prac-
tice, and we have demonstrated ways in which they bear on pre-
diction and estimation. We close with a succinct, necessarily
incomplete, and subjective discussion of directions for future
work.

Theoretically, the relationships between proper scoring rules
and divergence functions are not fully understood. The Sav-
age representation (10), Schervish’s Choquet-type representa-
tion (14), and the underlying geometric arguments surely allow
generalizations, and the characterization of proper scoring rules
for quantiles remains open. Little is known about the propri-
ety of skill scores, despite Murphy’s (1973) pioneering work
and their ubiquitous use by meteorologists. Briggs and Ruppert
(2005) have argued that skill score departures from propriety
do little harm. Although we tend to agree, there is a need for
follow-up studies. Diebold and Mariano (1995), Hamill (1999),

Briggs (2005), Briggs and Ruppert (2005), and Jolliffe (2006)
have developed formal tests of forecast performance, skill, and
value. This is a promising avenue for future work, particu-
larly in concert with biomedical applications (Pepe 2003; Schu-
macher, Graf, and Gerds 2003). Proper scoring rules form key
tools within the broader framework of diagnostic forecast eval-
uation (Murphy and Winkler 1992; Gneiting et al. 2006), and in
addition to hydrometeorological and biomedical uses, we see a
wealth of potential applications in computational finance.

Guidelines for the selection of scoring rules are in strong de-
mand, both for the assessment of predictive performance and
in optimum score approaches to estimation. The tailoring ap-
proach of Buja et al. (2005) applies to binary class probabil-
ity estimation, and we wonder whether it can be generalized.
Last but not least, we anticipate novel applications of proper
scoring rules in model selection and model diagnosis problems,
particularly in prequential (Dawid 1984) and cross-validatory
frameworks, and including Bayesian posterior predictive distri-
butions and Markov chain Monte Carlo output (Gschlößl and
Czado 2005). More traditional approaches to model selection
such as Bayes factors (Kass and Raftery 1995), the Akaike in-
formation criterion, the BIC, and the deviance information cri-
terion (Spiegelhalter, Best, Carlin, and van der Linde 2002) are
likelihood-based and relate to the logarithmic scoring rule, as
discussed in Section 7. We would like to know more about their
relationships to cross-validatory approaches based directly on
proper scoring rules, including, but not limited to, the logarith-
mic rule.

APPENDIX: STATISTICAL DEPTH FUNCTIONS

Statistical depth functions (Zuo and Serfling 2000) provide useful
tools in nonparametric inference for multivariate data. In Section 1
we hinted at a superficial analogy to scoring rules. Specifically, if P
is a Borel probability measure on R

m, then a depth function D(P,x)

gives a P-based center-outward ordering of points x ∈ R
m. Formally,

this resembles a scoring rule S(P,x) that assigns a P-based numerical
value to an event x ∈ R

m. Liu (1990) and Zuo and Serfling (2000) have
listed desirable properties of depth functions, including maximality at
the center, monotonicity relative to the deepest point, affine invariance,
and vanishing at infinity. The latter two properties are not necessarily
defendable requirements for scoring rules; conversely, propriety is ir-
relevant for depth functions.

[Received December 2005. Revised September 2006.]
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