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Abstract

Effective use of subjective judgment is essential in all fields of knowledge. We present a method for
finding truth when the subjective judgments of multiple respondents are the only evidence available,
and majority opinion may be wrong. Respondents are scored for their own judgments and for their
metaknowledge of others’ judgments. In a probabilistic model of belief formation, their scores
converge to the subjective probabilities they implicitly assign to the truth. Hence, the judgments of the
highest scoring respondents reveal truth, irrespective of majority opinion. An experiment demonstrates
that the method outperforms majority rule in selecting truth, and in identifying experts.
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Subjective judgment is an irreducible component of pure and applied knowledge (/). Experts
estimate the likelihood of rare accidents, assess the evolutionary significance of bone fragments,
pronounce on aesthetic value and give interpretation on points of law. Even the touchstone of scientific
practice — peer review of articles and proposals — rests on referees’ subjective assessments of
originality and significance. But experts often disagree, and can be wrong (2, 3). The lack of accepted
procedures for reconciling opinions feeds skepticism about subjective judgment, and promotes
controversy when expertise is claimed but difficult to prove (4).

New Web-based technologies have made it easier to tap the knowledge of dispersed individuals,
raising hopes that automated opinion aggregation mechanisms might provide an impartial, efficient
alternative to expert judgment (2, 5). Indeed, electronic information (prediction) markets have proved
remarkably accurate in some domains (6, 7). However, markets suffer from a fundamental limitation:
They can only trade claims whose final value is defined by a public event. For example, one can
organize a market to predict the outcome of a jury trial, which is of course a public event, but not to
determine the defendant’s true guilt or innocence (5).

We present a method for finding truth when subjective judgment remains the only source of
evidence and there is a possibility that most people are wrong. The method selects the judgments of
respondents who reveal superior metaknowledge — knowledge of others’ opinions. The explicit
metaknowledge criterion distinguishes our method from other approaches, such as voting algorithms
(8-13), multi-item analysis (14, 15), or Bayesian updating (I, 16-18).

The instrument for measuring metaknowledge is a mathematical formula called the Bayesian
Truth Serum (BTS) (/9). As input to the formula, respondents provide their judgments and also their
predictions of the distribution of judgments in a sample of peers. These dual reports then undergo
competitive, zero-sum scoring as a function of the sample statistics. Previously, it was shown that BTS
scoring provides incentives for respondents to answer truthfully (/9), but the problem of identifying
judgments that are closer to objective, impersonal truth was left open. Here, the same formula is shown
to select judgments that are objectively true, under fairly mild assumptions about how truth and belief
are related. Hence, when these assumptions hold, the BTS scoring system provides an integrated
solution to both problems — rewarding truthfulness, and aggregating judgments to discover truth (20).

Metaknowledge is an effective truth diagnostic whenever information is unevenly distributed
among respondents, so that some pieces are widely shared but other pieces are known only by a
minority (/6, 21). As an elementary example, consider the (false) proposition that Chicago is the capital
of the state of Illinois. Respondents might form different opinions about the truth of the proposition,
depending on whether they knew: (a) that Chicago is a large city, (b) that it is located in the state of

Illinois, (c) that Springfield is the actual capital of Illinois, and so on. If the typical person is aware of



(a) and (b) but not of (c), then the majority of those queried might vote for the incorrect answer, that the
proposition is True.

A democratic poll ignores the asymmetry in metaknowledge between respondents who know
the right answer and those who do not. Those who know that Chicago is not the capital of Illinois can
imagine that many others will be misled. A comparable insight into the opinions of others is not
available to those who falsely believe the answer is Yes (22). Our scoring method in effect reweights
the votes so as to reflect different levels of metaknowledge associated with each possible answer. If the
method works as claimed, the true answer should emerge as the winner, regardless of how many
respondents endorse it. Later on, this claim will be justified within a Bayesian model of belief
formation, using the mathematical theorem about the BTS formula given in Box 1. But first we give a
description of the method itself.

The scoring works at the level of a single question with m answers, which is posed to n
respondents, indexed by r, s,.. € {/,2,..,n}. The question should admit only one right answer, and it
should be reasonable to believe that if one could somehow pool information from all respondents, then
that collective knowledge would determine the right answer. For example,

(a) Chicago is the state capital of Illinois (m=2: True, False)
(b) The best current estimate of the global temperature increase between now and 2100 is

(m=5: <2°C, 2°-4°C, 4°-6°C, 6°-8°C, >8°C)

(c) On current evidence, the probability of intelligent extraterrestrial life in the universe is ____
(m=10: numerical probability scale, divided into 10 categories)
The respondent is asked to endorse the answer mostly likely to be true, and to predict the proportion of

the sample that will endorse each possible answer. Let x, € {0,1} indicate whether respondent r has

endorsed answer k, and y = (y,,..,y, ) her prediction of the sample proportions (y, =0, E v, =1). The
k

truth-selection algorithm proceeds in four steps.

Step 1 Calculate the average X, of the endorsements and the geometric mean Yy, of the

predictions:
ol N .
Xo=— Dx[, logy, = Y logy (1)
n r=1 n r=1
Step 2 Calculate the BTS score (23) of each individual r:
u =y x, logg + Efck log¥ )
k=1 ko k=l Xk

Step 3 For each answer £, calculate the average BTS score #, of all individuals endorsing

answer k:



7, 1 \ r_.r
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Step 4 Select the answer k that maximizes z, .

This algorithm will be validated both theoretically and experimentally, but first a few words about our
methodology are in order. The theoretical justification is based on a model of belief formation
presented below. While this model is intuitively reasonable, its quality as an approximation to real-
world situations cannot be decided by purely theoretical means. Therefore we will also provide a simple
empirical test. In this application the true answers are known independently, so that the accuracy of the
method can be quantified.

The model formalizes the relation between truth and subjective beliefs of an ideal Bayesian
respondent. The truth € =1 is associated with one of the m answers, and is drawn from a probability
distribution Pr[Q = k]. Each respondent r then receives a signal 7", representing information relevant to
the question. Respondents are identical apart from the value of their signal, and signals of different

respondents are presumed independent when conditioned on Q. Therefore, the signal generation
process is fully specified by a signal matrix S;; = Pr[Tr = k‘Q = j].

The complete probability distribution over all variables, also called the common prior, is
assumed to be common knowledge among respondents (24). In that case, Bayesian respondents can

compute a belief matrix B, = Pr[Q = j‘T" = k] , which expresses subjective uncertainty about truth, and
a metaknowledge matrix, M ; = Pr[Ts =jlIT = k], which expresses uncertainty about signals received

by others. We simplify the belief matrix by assuming that exactly one signal favors each possible
answer. Then there is no ambiguity in taking 7" = k to mean that respondent » believes that Q=k is
most likely to be true,

Pi{Q=kIT" =k|>P[Q=jIT" = k] for all jk.
For dichotomous questions this completes the model. For m=3, one further assumption on the structure
of the belief matrix is necessary. This is truth sensitivity,

Pr[Q=iIT"=i]>Pr[Q=iIT’=k] 4)
for any k different from the truth i. In other words, if we compare the degree of beliefs in the true
answer Q=i, those who received the signal 7"=i believe more strongly in the true answer than those who
received other signals. The reasonableness of this assumption may be more evident when rewritten
using Bayes’ rule, as

P[T =ilQ=i] PT"=i]

P 7" = k1Q=i] g P77 = k]

which asserts that conditioning upon truth strengthens belief in truth relative to belief in untruth (25).



Above we stated that respondents’ signals are independent when conditioned on truth. From this
assumption one might jump to the mistaken conclusion that the predictions of all respondents should be
the same, regardless of the answers they endorse. In fact, the signals of the respondents have statistical
dependencies induced by uncertainty about €. Calculation of the metaknowledge matrix by Bayes’
rule therefore requires averaging over all possible values of €2, giving rise to differences in
metaknowledge and causing predictions of respondents to depend on which answer they endorse. This
dependence is consistent with Bayesian reasoning and is also well-corroborated by experiments (26).

Observe that the common prior contains information about counterfactual scenarios. For
example, what fraction of people would believe that Chicago is the capital of Illinois, if Chicago were
actually the capital of Illinois? What is the prior probability that Chicago is the capital of Illinois?
Introspectively, these seem to be difficult and speculative questions, and our method does not require
respondents to answer them. Instead, we only request that respondents pick the answer they believe
most likely to be true, and predict the distribution of endorsements in the sample.

These paired reports are in turn directly related to the elements of the belief model. The
endorsement of a respondent is identified with his signal. The predictions of a respondent are
interpreted as a noisy report of the single column of the metaknowledge matrix associated with his
signal. Therefore, if respondents are truthful, their predictions and their distribution of endorsements
will estimate, respectively, the full metaknowledge matrix and a single column of the signal matrix, the
column corresponding to the true answer.

Nothing in the belief model rules out the possibility that the largest entry in this column is
associated with a wrong answer, which is to say, that a wrong answer will receive the most votes. The
model is noncommittal about the circumstances that might give rise to such widespread false beliefs,
but it is worth outlining an example for concreteness (Box 2). Suppose that most respondents only
recognize Chicago as the largest city in Illinois. They are likely to conclude that Chicago is the state
capital, whether or not that statement is true. A smaller number of respondents have more specific
information, because they remember hearing that another city is capital. This memory is not 100%
reliable, but is sufficient to tip judgment against the proposition. These differences in knowledge could
give rise to the numbers shown in Box 2.

To sharpen the truth-detection problem, the numbers have been fine-tuned to create a situation
where respondents with the wrong signal should be more confident. Those endorsing Yes should infer
from their signal (by applying Bayes’ rule) that there is an 83% probability that they are correct, while
those endorsing No should infer that there is only a 73% probability that they are correct. Hence, if
opinions are weighted by confidence the collective decision would still be wrong, as would any

decision reached by mathematical aggregation of subjective probabilities.



In the actual world Chicago is not the capital of Illinois. However, this model explains how
most people might think that it is, even though they understand the informational mechanism and
follow the rules of Bayesian inference. How does BTS discern the true answer in this situation? The
user of BTS asks respondents to predict the beliefs of others. If respondents compute the
metaknowledge matrix, those with the incorrect opinion will predict that 89% will agree with them,
while those with the correct opinion will predict that only 30% will agree, that is, they expect to be in
the minority. The user would record these two sets of predictions, and would also record that about
60% of the sample endorses the proposition that Chicago is the capital. Applying (3) to these statistics,
she would arrive at a score of —0.57 for Yes and +0.86 for No, and conclude that majority opinion is
wrong.

To prove that this will work in the general case, we must specify how actual reports relate to the
probabilistic model in the large sample limit. An ideal respondent, facing the scoring system, would
carry out the Bayesian computations required to find the metaknowledge matrix. In reality, errors in
these computations and noise in the reports are likely, but they are assumed to average out. Namely, the
average log prediction of all respondents endorsing answer j converges to the jth column of the log

metaknowledge matrix, log M,;. Second, the average endorsement frequencies converge to the column

of the signal matrix associated with the true answer.

With these inputs, the BTS formula reveals, for each possible signal, the probability that that
signal assigns to the true answer (modulo a constant). This is proven in the Theorem of Box 1, which
states that the average score of respondents endorsing answer k is

limu, = logPr[Q=iIT’=k] + C, (5)
where Q=i is the true answer, and C does not depend on k. The theorem proves that the BTS user can
rank respondents according to how well they anticipate the truth. Indeed, the theorem goes further,
proving that the asymptotic BTS score is identical to the score that respondents would have received
with the logarithmic proper scoring rule (27), as administered by a user with independent access to
truth.

Equation 5 is the central mathematical result of this paper. When combined with truth
sensitivity it immediately implies that maximizing the average BTS score u, with respect to k is a
prescription for finding truth, in the limit of a large number of respondents. Therefore the truth selection
property of the BTS method is proven, at least for the particular model of belief formation considered
here (28).

Our theorem predicts that the BTS decision rule should outperform majority rule in recovering
true answers. We test this with a survey of knowledge of US state capitals, presented to students at MIT
(n=51) and Princeton (n=32) (details in SOM). The survey contained fifty questions, of the form: “Is

Chicago the capital of Illinois,” where the named city was always the most populous in the state.



Students answered Yes or No, and predicted the distribution of Yes and No votes in the sample.
Although elementary, these questions should give rise to differences in knowledge that the method can
exploit. Given natural variation in backgrounds, it is likely that for most states some subset — the local
experts — would know the correct answer. At the same time, their number might be small and their
influence diluted by the uninformed majority. The survey tests our main theoretical claim — that BTS
is able to reduce such dilution of expert votes.

The survey proved difficult — the average respondent was slightly above chance, endorsing
29.5 correct answers at MIT and 31 at Princeton. The collective judgment was slightly better: The
majority decision was correct for 31 states at MIT, and for 36 states (and 4 ties) at Princeton. As
implied by the Bayesian model, endorsements had a strong impact on predictions. Respondents who
agreed that a city was the capital predicted on average that 70.3% of others would vote Yes, while those
who denied the proposition predicted only 49.8% for Yes (29). Predictions made by respondents with
correct answers were on average more accurate, closer to actual percentages in 37 states at MIT, 46
states at Princeton.

Can the BTS algorithm determine the true answers, as implied by theory? Following Steps 1-4,
we find that in the MIT sample, BTS decision differs from the majority decision on 18 states: for 14
states (including Illinois) it corrects a wrong majority decision, while for 4 states it reverses a correct
majority decision. The 14-4 split is significantly different from chance (p<.02, binomial test). The total
number of mistakes drops from 19 to 9 (matched pair t,,=2.45, p<.01) In the Princeton sample, the split
is 12-4 in favor of BTS (p<.05, binomial test). If ties are coded as 0.5, the total number of mistakes
drops from 12 to 6 (matched pair t,,=1.69, p<.05).

BTS does, therefore, improve on majority decision when applied to individual questions.
However, BTS scores can also be used identify expert respondents if knowledge correlates across
multiple questions. BTS suggests two possible indices for rating the expertise of a single respondent r.
The first, individual index is the BTS score u” of the respondent, averaged across all questions. The
second, pooled index is the average BTS score of the answer endorsed by respondent r, i xfu,,

k=1
averaged over all questions. The two indices coincide in theory, because respondents endorsing the
same answer should have identical BTS scores. An advantage of the pooled index is that it filters out
individual differences in prediction competence (i.e., longrun calibration of predictions).

Figure 2 shows how the pooled BTS index of expertise correlates with actual knowledge of
states’ capitals. As benchmark, we included an index of conventional wisdom (CW), defined as the
number of states for which a respondent votes with the majority opinion for that state. Because majority
opinion is correct more than half the time, one might expect that respondents with high CW scores will

also get more answers right. However, accuracy and CW are uncorrelated, as shown by the two left



panels of Figure 2. CW is worthless as a predictor of genuine knowledge for this domain (30). By
contrast, the panels on the right show that the BTS score is able to sort respondents by true accuracy
(MIT: r=+.84, p<.0001; Princeton: r=+.94, p<.0001). The pooled BTS index is thus an excellent
predictor of genuine knowledge.

The effectiveness of the BTS expertise index suggests hybrid decision policies. For example,
one could follow the majority opinion of expert subsets, where expertise is determined by BT'S scores
across all fifty questions. Judgments of other respondents would be ignored in this elitist version of
majority rule. Figure 2 shows the performance of such policies for the two expertise indices displayed
in Figure 1, as a function of subset size. Each line starts with a subset of one — the accuracy of the
single respondent who scored highest on the corresponding criterion. For any size of expert subset
(indicated by the numerical value on the x-axis) the y-axis gives the number of correct answers
produced by majority rule applied to that subset.

The blue lines in the Figure show that there is no benefit in eliminating respondents with
unconventional judgments. However, if the sample is purified according to BTS scores (red lines), then
small subsets achieve impressive accuracy levels. Retaining the votes of the top 20% of the sample
results in 45 (MIT) or 47 (Princeton) correct majority opinions. The majority vote of the top three
respondents by BTS score is a nearly perfect indicator of truth in either sample (47 at MIT, 48 at
Princeton). These results highlight the latent superiority of expert subsets and establish the possibility
of using purely internal criteria to select them. As the simple survey shows, it may be better to follow a
handful of individuals with high metaknowledge than the majority opinion of the full sample.

In summary, we have presented here an algorithmic method for determining true answers, when
private opinions are the only source of information. The method aims to extend the advantages of
competitive information aggregation mechanisms to subjective domains of knowledge, such as
aesthetics or law. Like an information market, the method requires minimal inputs from the user —
only the question and possible answers. Although the supporting theory assumes a Bayesian model of
belief formation, the user is not challenged to specify prior probabilities and in fact need not be a
Bayesian at all.

The algorithm is naturally suited to open access implementation, which is often presented as a
special virtue of markets (2, 6, 7). Since truth is not associated with a statistical average but with the
opinions of winners, there is no need to screen for expertise. The less informed individuals will not
disturb the outcome, but will only subsidize those who are more informed. Over time, self-selection and
attrition should lead to a situation where experts predominate in the active player pool. In this sense, the

BTS algorithm enforces a meritocratic outcome by an open democratic process.
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The superiority of this algorithm over majority decision should be detectable even with small
samples. Observe that by Bayes’ rule, the BTS score of equation 5 is the log ratio of

Pr[T* =klQ= i] to Pr[T’ = k], The first quantity is the endorsement frequency in a large

sample. This is normalized (weighted inversely) by the second quantity, the probability of
endorsements unconditioned on the truth. The normalization is what makes it possible for a
minority opinion to win. If small sample frequencies deviate substantially from

Pr[T" =klQ= i], this will potentially affect not only the BTS decision but also the majority

decision, which goes exclusively by these frequencies. The benefit of weighting the frequencies
accrues to BTS alone.

Pooling across all questions and both samples. For example, with the Chicago question those
who endorsed Yes believed that 80% would agree, while those endorsing No predicted a 50-
50% split; the actual percentage was 59% for Yes. The true answer has a very small positive
impact on predictions (+2.5%), after controlling for the respondent’s answer and subject fixed
effects. This is consistent with our assumption that respondents' information can be
approximated by a binary signal favoring one or the other answer. State-by-state statistics are in
the SOM.

Average percent agreement with other respondents also fails to predict accuracy (MIT: r= +.09;
Princeton: r=.+22). Another index of interest is skepticism, defined as the total number of No
answers. Skepticism does correlate with accuracy (+.66 & +.60). However, in a simultaneous
regression on both variables, the partial correlation of accuracy and BTS remains very high
(+.71 & +.91), while the partial correlation of accuracy and skepticism disappears (+.26 &
—.02). This rules out the interpretation that the objective accuracy of individuals with high BTS
scores derives from a nonspecific, but correct suspicion that the largest city is often not the
capital. Additional indices, including principal component scores, are considered in the SOM,
with similar results (Tables S5, S6).



Box 1 The BTS formula reveals the subjective probability of truth
Consider the model of belief formation described in the main text. Suppose that the average of n

endorsements converges to the i-th column of the signal matrix:

lim¥, =lim Ex =5, (a)

n—
nsl

and that the average of log predictions converges to the logarithm of the metaknowledge matrix:

limézx‘;logy; =logM,; (b)

Theorem. It follows from (a) and (b) above that the averages of BTS scores for experts endorsing the
same answer j=1,.., m,
u; = hm—Ex u', ()

" nx; o

converge to the log of the row of the belief matrix B, = Pr[Q =ilT" = j] corresponding to the true

answer Q =1, plus a constant C that is independent j,

limu, =logPr[Q=ilT" = j]+C,  (d)

n—

Proof: Our task is to compute (c), the average of the BTS scores (see Eq. 2)

m

E log— Exklog— (e)
y

k=1 k k=1 k

over all experts who endorsed answer j, and then take the limit » — . Averaging the first term selects

the k=j element from the summation, leaving log(fc i1y j). In the limit, assumption (a) allows the

replacement of x ; by §;;. Furthermore, y ; is replaced by }liinlog y,; = E S,;log M ;, , which follows from

k=1
assumption (b). Averaging the second term of (e) and taking the limit n —  replaces the predictions

by the metaknowledge matrix, according to assumption (b). In this term also, the average endorsements

x, are replaced by S;. The final resultis limu

n—

ES/“ log . By Bayes’ rule

ki
jk

S,.
k The second term does not
i k=l Uy

Jji

M, = M,;u;, yielding the desired average liinﬁi =log

depend on j. Application of Bayes’ rule to the first term yields S, /u; « B;. Equation (d) of the

Theorem follows.




Box 2 Illustration of the theorem in context of the Chicago — Illinois problem

Is Chicago the
capital of lllinois?

Prior probabilities g5 - 25
Possible truth

values Q

Signal pr((j)_tt)_abililties 95 05 .60 40
conditional on 8 P
truth value > <

* large city
*in lllinois

arge city
*in lllinois
* not state

* large city
*in lllinois

arge city
*in lllinois
* not state

.

capital capital
Beliefs conditional 83% that 27% that 83% that 27% that
on signal Chicago is Chicago is Chicago is Chicago is
the capital the capital the capital the capital
Endorsements
conditional on Yes No Yes No
signal

Predictions | 89% for Yes 70% for Yes 89% for Yes 70% for Yes
conditional on 11% for No 30% for No  11% for No 30% for No
signal

BTS score +0.06 -1.05 -0.57 +0.86

The blue numbers are the unobserved common prior. The red numbers are what the BTS user will
observe. The prior odds are 3:1 that a prominent city like Chicago is a state capital. Solid arrows
represent the actual scenario, that Chicago is not the capital; dotted arrows, the counterfactual scenario.
Respondents receive either a null signal (no further information), or a signal suggesting a different
capital. On the counterfactual scenario, there is a small probability (5%) of getting the wrong signal. On
the actual scenario, the probability of getting the correct signal is 40%. Predicted percentages are
derived by Bayes’ rule: The null signal implies a 83% probability that Chicago is the capital, leading to
a 89% = (.83)(.95)+(.17)(.60) prediction of fraction voting Yes; the other signal implies a 27%
probability that Chicago is the capital, leading to a 70% = (.27)(.95)+(.73)(.60) prediction for Yes.
From these predictions and the 60-40 split in actual votes, the user calculates BTS scores of: —.57 for
Yes and +.86 for No, and concludes that majority decision is incorrect. Counterfactually, were Chicago
the capital of Illinois, the observed votes would split 95-5 in favor, leading to BTS scores of +.06 for
Yes, and —1.05 for No, again in favor of the correct answer.
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Figure 1 Expertise correlates with BTS scores but not with Conventional Wisdom.
Conventional wisdom is defined as the number of consensus answers (answers consistent with
majority). The two top panels are taken from the MIT study; the bottom panels from the
Princeton study. The y-axis is the number of correct answers out of fifty. The x-axis is: (left
panels) the number of states where a respondent’s answer matches majority opinion; (right) for
each subject r, the sum over 50 states of the BTS score for the answer that they endorsed

m
(averaged across individuals who endorsed that answer), or: Ex,:ﬁk.

k=1
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each case the top ranked respondents by given criterion are retained in the subset. Right panel is
MIT study, left panel the Princeton study. The y-axis is the number of correct answers for
decisions reached by majority rule within a respondent subset (ties are credited 0.5). The x-axis
is the number of respondents in the subset. The majority opinion of small BTS selected subsets
is more accurate than majority decision (solid black horizontal line) and also more accurate than
the BTS criterion applied to each question individually (dashed red horizontal line).



