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Imperfect-information extensive-form games
Up to this point, in our discussion of extensive-form games we have allowed

Y would take at every choice node of the
game. This implies that players know the node they are in, and-—recalling that

We might not always want to make such a strong assumption about our players
and our environment. In many situations we may want to modei agents needing
to act with partial or no knowiedge of the actions taken by others, or even agents
with limited memory of their own past actions. The sequencing of choices allows
s to represent such ignorance.to a limited degree; an “earlier” choice might be
interpreted as a choice made without knowing the “later” choices. However, so

far we could not represent two- choices made in the same play of the game in
mutual ignorance of each other.

Definition

Imperfect-informarion games in extensive form address this limitation. An
imperfect-information game Is an extensive-form game in which each player’s
choice nodes are partitioned into information

sets; intuitively, if two choice nodes
are in the same information set then the agent cannot distinguish between them.?

Definition 5.2.1 {Imperfect-information game) An imperfect-information
game (in extensive form) is g tiple (N, A, H, Z, Xop,0,u, D), where:

* (VA H,Z, X» 0,0, u) is a perfect-
*» /= (I}, PN 1,,), where f,‘ = (1,'!], .
{i.e., a partition offthe H: plh)y =
and p(h) = p(h') whenever there exi

information extensive-form game; and
> hik) is an equivalence relation on
£} with the property that X)) = x(&)
sty a j for which h < Lijandh' e I ;.

Note that in order for the choice nodes to be truly indistinguishable, we

require that the set of actions at each choice node in an information set be
same (otherwise, the

1i,; € I is an equival
1o denote the set of a
],',j.

the
player would be able to distinguish the nodes). Thus, if
ence class, we can unambiguously use the notation x{I; ;

¥
ctions available to player i at any node in information set

Consider the imperfect-information extensive-form game shown in Fig-
ure 5.10. In this game, player 1 has two information sets: the set including
the 1op choice node, and the set including the bottom choice nodes. Note that

information games are obtained by overlaying a partition

structure, as defined in Chapter 13 in connection with models of knewledge, over a perfect-information
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©.0) 2,4 2.4 0.0

Figure 5.10 An imperfect-information game.

5.2.2 Strategies and equilibria

A pure strategy for an agent in an imperfect-information game selects one of the ©

available actions in each information set of that agent.

Definition 5.2.2 (Pure strategies) Let G = (N, A, H,Z, x,p,0,u,I) be an -

imperfect-information extensive-form game. Then the pure strategies of player i
consist of the Cartesian product || i eq X )

Thus perfect-information games can be thought of as a special case of
imperfect-information games, in which every equivalence class of ‘each parti-
tion is a singleton.

Consider again the Prisoner’s Dilemma game, shown as a normal-form game

in Figure 3.3. An equivalent imperfect-information game in extensive form is
given in Figure 5.11.

{(-L,-1 {(—4,0) (0. —4) (-3-3)

Figure 5.11 The Prisoner’s Dilermma game in extensive form.

Note that we could have chosen to make player 2 choose first and player 1
choose second.

Recall that perfect-information games were not expressive enough to capture
the prisoner’s dilemma game and many other ones. In contrast, as is obvious
from this example, any normal-form game can be trivially transformed into an
equivalent imperfect-information game. However, this example is also special in
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(1.0 (100, 100} (5. 1) £2.2)

Figure 5.12 A game with imperfect recatl.

that the Prisoner’s Dilemma is a game with a dominant strategy solution, and
thus in particular a pure-strategy Nash equilibrium. This is not true in general
for imperfect-information games. To be precise about the equivalence between
a normal-form game and its extensive-form image we must consider mixed
strategies, and this is where we encounter a new subtlety.

As we did for perfect-information games, we can define the normal-form
game corresponding to any given imperfect-informaiion game; this normal game
is agam defined by enumerating the pure strategies of each agent. Now, we define
the set of mixed strategies of an imperfect-information game as simply the set of
mixed strategies in its image normal-form game; in the same way, we can also de-
fine the set of Nash equilibria.* However, we can also define the set of behavioral
strategies in the extensive-form game. These are the strategies m which, rather
than randomizing over complete pure strategies, the agent randomizes indepen-
dently at each information set. And so, whereas a mixed strategy is a distribution
over vectors {(each vector describing a pure strategy), a behavioral strategy is a
vector of distributions. '

We illustrate this distinction first in the special case of perfect-information
games. For example, consider the game of Figure 5.2. A strategy for player 1 that
selects A with probability .5 and G with probability .3 is a behavioral strategy. In
contrast, the mixed strategy (.6(A, G), .4(B, H)) is not a behavioral strategy for
that player, since the choices made by him at the two nodes are not independent
(in fact, they are perfectly correlated). ‘

In general, the expressive power of behavioral strategies and the expressive
power of mixed sirategies are noncomparable; in some games there are outcomes
that are achieved via mixed strategies but not any behavioral strategies, and in
some games it is the other way around.

Consider for example the game in Figure 5.12. In this game, when considering
mixed strategies (but not behavioral strategies), R is a strictly dominant strategy
for agent I, D is agent 2’s sirict best response, and thus (R, D) is the unique
Nasgh equilibrium. Note in particular that in a mixed strategy, agent 1 decides

4. Note that we have defined two transformations—one from any normal-form game to an imperfect-
information game, and one in the other direction. However ihe first transformation is not one to one, and
so if we transform a normai-form game to an extensive-form one and then back to normal form, we will
not in general get back the same game we started out with. However, we will get a game with identical
strategy spaces and equilibria,
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probabilistically whether to play £ or R in his information set, but once he decig
he plays that pure strategy consistently. Thus the payoff of 100 is irrelevant in {
context of mixed strategies. On the other hand, with behaviora! strategies agent

gets to randomize afresh each time he finds himself in the information set. Notige
that the pure strategy D is weakly dominant for agent 2 (and in fact is the unique

best response to all strategies of agent 1 other tha

information set), his expected payoff is

I*p2+100*p(l-p)+2*(l—p).

The expression simplifies to —99 p?+98
- p=98/198. Thus (R, D) == ({0, 1), (0, 1)) is no longer an equilibrium in behay-
toral strategies, and instead we get the equilibrium ((98/198, 100/198), (0, ).
There is, however, a broad class of imperfect-information games in which the
expressive power of mixed and behavioral strategies coincides. This is the class
of games of perfect recall. Intuitively speaking, in these games no player forgets
any information he knew about moves made so far; in particular, he remermbers
precisely all his own moves. A formal definition follows.

Definition 5.2.3 (Perfect recall) Player i has perfect recall in an imperfect-

information game G if for any two nodes h, b’ that are in the same information
set for player i, for any path hg, ag, by, ay, by, . . . fn. a,, h from the root of the

game to h (where the h; are decision nodes and the a j are actions) and for any
path hy, ag, hy, ay, hy, ... k.4

me> @ B from the root to B' it must be the case that:
I n=m;

2. forall0 < j<n, h j and h:,- are in the same equivalence class Jor player
i;and

3. forall0 < j <, ifplhj)=1i(ie, hj is a decision node of player i), then
a; = a}.

G is a game of perfect recall if every player has perfect recall in ir.
Clearly, every perfect-information game is a game of perfect recall.

Theorem 5.2.4 (Kuhn, 1953) /1 « game of perfect recall, any mixed strategy
of a given agent can be replaced by an equivalent behavioral strategy, and any
behavioral strategy can be replaced by an equivalent mixed strategy. Here rwo
sirategies are equivalent in the sense that they induce the same probabilities on

ouicomes, for any fixed strategy profile (mixed or behavioral) of the remaining
agents. ‘

As acorollary we can conclude that the set of Nash equilibria does not change if
we restrict ourselves to behavioral strateg

_ tes. This is true only in games of perfect
recall, and thus, for example, in perfec

t-information games. We stress again,
however, that in general imperfect-information games, mixed and behavioral
strategies yield noncomparable sets of equilibria.

n the pure strategy 1.), agem":
1 computes the best response to D as follows. If he uses the behavioral strategy

(p, 1 — p) (ie., choosing L with probability p each time he finds himself in the.

P + 2, whose maximum is obtained at
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Computing equilibria: the sequence form

Because any extensive-form game can be converted into an equivalent normal-
form game, an obvious way to find an equilibrinm of an extensive-form game
is 1o first convert it into a normal-form game and then find the equilibria using,
for example the Lemke—Howson algorithm. This method is inefficient, however,
because the number of actions in the normal-form game is exponential in the size
of the extensive-form game. The normal-form game is created by considering
all combinations of information set actions for each player, and the payoffs that
result when these strategies are employed.

One way to avoid this problem is to operate directly on the extensive-form
representation. This can be done by employing behavioral strategies to express a
game using a description called the sequence form.

Defining the sequence form

The sequence form is (primarily) useful for representing imperfect-information
extensive-form games of perfect recall. Definition 5.2.5 describes the elements of
the sequence-form representation of such games; we then go on to explain what
each of these elements means.

Definition 5.2.5 (Sequence-form representation) Let G be an imperfect-
information game of perfect recall. The sequence-form representation of G is
atuple (N, Z, g, C), where: '

* N isa set of agents; .

* X =(X). ..., I,), where Z; is the set of sequences available to agent i ;

* g=10(g1....,8) where g; : © — R is the payoff function for agent i ; and

» C=A(Cy,...,C,), where C; is a set of linear constraints on the realization
probabilities of agent i

Now let us define all these terms. To begin with, what is a sequence? The key
insight of the sequence form is that, while there are exponentially many pure
strategies in an extensive-form game, there are only a small number of nodes in
the game tree. Rather than building a player’s strategy around the idea of pure
strategies, the sequence form builds it around paths in the tree from the root to
each node.

Definition 5.2.6 (Sequence) A sequence of actions of playeri € N, defined by a
node h € H U Z of the game tree, is the ordered set of player i’s actions that lie
on the path from the root to h. Let @ denote the sequence corresponding to the root
node. The set of sequences of player i is denoted T;, and & = T} X --- x X, is
the set of all sequences.

A sequence can thus be thought of as a string listing the action choices that
player i would have to take in order to get from the root to a given node A.
Observe that 1 may or may not be a leaf node; observe also that the other players’
actions that form part of this path are not part of the sequence.
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2 A B
A B
g1 00 0.0 0,0 ——
Le | 0,0 2,4
L] 00 0.0 0.0 —
Lr | 2,4 0,0
R | 1,1 0,0 0.0
‘ RC | 1,1 1,1
Let 0,0 | 0,0 2,4
Rr | 1,1 11
Lr | 0.0 2,4 0,0 —1

Figure 5.14 The induced normal form of the

) game from Figure 5.10.
Figure 5.13 The sequence form of the game from

Figure 5.10.

Definition 5.2.7 (Payoff function) The payoff function g; : = + R for agenti

is given by g(o) = u(z) if a leaf node 7 € Z would be reached when each player
played his sequence o; € o, and by g(o) = 0 otherwise.

Given the set of sequences T and the payoff function g, we can think of the
sequence form as defining a tabular representation of an imperfect-information
extensive-form game, much as the induced normal form does. Consider the game

given in Figure 5.10 (see p. 126). The sets of sequences for the two players '

are Xy ={{J, L, R, L€, Lr}and 2 = 1{@, A, B}. The payoff function is given in
Figure 5.13. For comparison, the induced normal form of the same game is given
in Figure 5.14. Written this way, the sequence form is larger than the induced
normal form. However, many of the entries in the game matrix. in Figure 5.13
correspond 1o cases where the payoff function is defined to be zero because the
given pair of sequences does not correspond to a leaf node in the game tree. These
entries are shaded in gray to indicate that they could not arise in play. Each payoff
that is defined at a leaf in the game tree occurs exactly once in the sequence-form
table. Thus, if g was represented using a sparse encoding, only five values would
have to be stored. Compare this to the induced normal form, where all of the
eight entries correspond to leaf nodes from the game tree.

We now have a set of players, a set of sequences, and a mapping from se-
quences to payoffs. At first glance this may look like everything we need to
describe our game. However, sequences do not quite take the place of actions.
In particular, a player cannot simply select a single sequence in the way that he
would select a pure strategy—the other player(s) might not play in a way that
would allow him to follow it to its end. Put another way, players still need to define

what they would do in every information set that could be reached in the game
tree.
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What we want is for agents to select behavioral strategies. (Since we have

| assumed that our game G has perfect recall, Theorem 5.2.4 tells us that any

equilibrium will be expressible using behavioral strategies.) However, it tumns
out that it is not a good idea to work with behavioral strategies direcily—if we
did so, the optimization problems we develop later would be computationally
harder to solve. Instead, we will develop the alternate concept of a realization
plan, which corresponds to the probability that a given seguence would arise
under a given behavioral strategy.

Consider an agent i following a behavioral strategy that assigned probability
Bi(h, a;) to taking action a; at a given decision node #. Then we can construct a
realization plan that assigns probabilities to sequences in a way that recovers i’s
behavioral strategy £.

Definition 5.2.8 (Realization plan of 8;) The realization plan of 8; for player
i € Nisamapping r; : L v [0, 1] defined as ri{o;) = [].., Bi(c). Each value
ri{o;) is called a realization probability.

CET;

Definition 5.2.8 is not the most useful way of defining realization probabilities.
There is a second, equivalent definition with the advantage that it involves a set
of linear equations, although it is a bit more complicated. This definition relies
on two functions that we will make extensive use of in this section.

'To define the first function, we make use of our assumption that G is a game of
perfect recall. This entails that, given an information set I € I;, there must be one
single sequence that player / can play to reach all of his nonterminal choice nodes
h € 1. We denote this mapping as seq; : /; — I, and call seq;(7) the sequence
leading to information set I. Note that while there is only one sequence that
leads to a given information set, a given sequence can lead to multiple different
information sets. For example, if player 1 moves first and player 2 observes his
move, then the sequence ¥ will lead to multiple information sets for player 2.

The second function considers ways that sequences can be built from other
sequences. By o;a; denote a sequence that consists of the sequence o; followed
by the single action a;. As long as the new sequence still belongs to %;, we say
that the sequence o;; extends the sequence o;. A sequence can often be extended
in multiple ways—for example, perhaps agent i could have chosen an action a]
instead of g; after playing sequence o;. We denote by Ext; : &; +> 2% a function
mapping from sequences to sets of sequences, where Ext;(o;) denotes the set
of sequences that extend the sequence o;. We define Ext; () to be the set of all
single-action sequences. Note that extension always refers to playing a single
action beyond a given sequence; thus, o;a;a! does not belong to Ext;{(0;), even
if it is a valid sequence. (It does belong 10 Ext;(0;a;).) Also note that not all
sequences have extensions; one example is sequences leading to leaf nodes. In
such cases Ext; () returns the empty set. Finally, to reduce notation we introduce
the shorthand Ex1;(1) = Ext;(seq,(])): the sequences extending an information

set are the sequences extending the (unique) sequence leading to that information
sef.
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tealization plan  Definition 5,2.9 (Realization plan) A realization planfor playeri € N isafup

tion ry : X; > [0, 1] satisfving the following constrainis.

r(@) = 1 5.1
Y rle)) = rilseq (D) Viel (52)

o} €Ext; (I} ' .

ri(oy) = 0 Vo, € X (KR

If a player i follows a realization plan r;, we must be able to recover 3

behavioral strategy f; from it. For a decision node & for player i that is iy - b

information set I € J;, and for any sequence (seq;(Na;) € Ext;(I}, Bi(h, a)) is
defined as 29090 a5 Jong as ri(seq,(1)) > 0. If ri(seq;()) = O then we can
assign ﬁi(h,‘a;) an arbitrary value from [0, 1]: here 8; describes the player's
behavioral strategy at a node that could never be reached in play because of the
player’s own previous decisions, and so the value we assign to f; is irrelevant.

Let C; be the set of constraints (5.2) on realization plans of player i. Let
C =(Cy....,C,). We have now defined all the elements® of a sequence-form
represenfation G = (N, I, g, C), as laid out in Definition 5.2.5.

What is the space complexity of the sequence-form representation? Unlike the
normal form, the size of this representation is linear in the size of the extensive-
form game. There is one sequence for each node in the game tree, plus the @
sequence for each player. As argued previously, the payoff function g can be rep-
resented sparsely, so that each payoff corresponding to a leaf node is stored only
once, and no other payoffs are stored at all. There is one version of constraint (5.2)
for each edge in the game tree. Each such constraint for player i references
only { Ext;(7)] + 1 variables, again allowing sparse encoding.

Computing best responses in two-player games

The sequence-form representation can be leveraged to allow the computation of
equilibria far more efficiently than can be done using the induced normal form.
Here we will consider the case of two-player games, as it is these games for
which the strongest results hold. First we consider the problem of determining
player 1's best response to a fixed behavioral sirategy of player 2 (represented as
a realization plan). This problem can be written as the following lincar program.

maximize Z (Z g:(cmcrz)rz(crz)) ri(or) BNGYN)

g €8 teoY=32%
subjectto (i) =1 (5.5)
D7 rile]) = nifsequ(iy) Viel,  (56)
o, cExq (1) _
1'1(0'1) =0 Yo, € (57)

3. We do not need to explicitly store constraints (5.1 and (5.3), because they are always the same for
every sequence-form representation.
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This linear program is straightforward. First, observe that g1{) and ry(-) are’
constants, while r(-) are variables. The LP states that player 1 should choose r,
to maximize his expected utility (given in the objective function (5.4)) subject
to constraints (5.5)~5.7) which require that r, corresponds to a valid realization
plan.

In an equilibrium, player 1 and player 2 best respond simultaneous] y. However,
if we treated both r) and r, as variables in Equations (5.4)~(5.7) then the objective
function (5.4} would no longer be linear. Happily, this problem does not arise in
the dual of this linear program.® Denote the variables of our dual LP as v; there will
be one v; for every information set J € J, {corresponding to constraint (5.6) from
the primal) and one additional variable vp {corresponding to constraint (5.5)). For
notational convenience, we define a “dummy” information set O for player 1;
thus, we can consider every dual variable to correspond to an information set.

We now define one more function. Let i i LU0l bea mapping from
player i 's sequences to information sets. We define Zi(o;)tobe Oiff o; = @, and to
be the information set 7 ¢ I; in which the final action in o; was taken otherwise.
Note that the information set in which each action in a sequence was taken is
unambiguous because of our assumption that the game has perfect recall. Finally,
we again overload notation to simplify the expressions that follow, Given a set of
sequences T/, let 7,( %) denote {7; (e"io] € X!}. Thus, for example, Z; (Ext; (¢))
is the (possibly empty) set of final information sets encountered in the (possibly
empty) set of extensions of a;.

The dual LP foilows.
minimize vy (5.8)
subject o VT io) — Z vy > Z gl(U], 0’2)]’2(0‘2) VO’] < Z[ (59)

e (Exty (o)) 02€ 5,

The variable v, represents player 1’s expected utility under the realization plan
he chooses to play, given player 2°s realization plan. In the optimal solution v
will correspond to player 1’s expected utility when he plays his best response.
(This follows from LP duality—primal and dual linear programs always have
the same optimal solutions.) Each other variable vy can be understood as the
portion of this expected utility that player 1 will achieve under his best-response
realization plan in the subgame starting from information set , again given player
2’5 realization plan ry.

There is one version of constraint (5.9) for every sequence oy of player 1.
Observe that there is always exactly one positive variable on the left-hand side
of the inequality, corresponding to the information set of the Iast action in the
sequence. There can also be zero or more negative variables, each of which
corresponds to a different information set in which player 1 can end up after
playing the given sequence. To understand this constraint, we will consider three
different cases.

First, there are zero of these negative variables when the sequence cannot
be extended—that is, when player I never gets to move again after 7,04, no

6. The dual of a linear program is defined in Appendix B.
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matter what player 2 does. In this case, the right-hand side of the constraint wil
evaiuate to player 1’s expected payoff from the subgame beyond oy, given player
2’s realization probabilities r,. (This subgame is either a terminal node or one or

. more decision nodes for player 2 leading ultimately to terminal nodes.) Thus, here. "
the constraint states that the expected utility from a decision at information set
Zi(oy) must be at least as large as the expected utility from making the decision |
according to 0. In the optimal solution this constraint will be realized as equality -

if o is played with positive probability; contrapositively, if the inequality is strict,
o will never be played.

The second case is when the structure of the game 15 such that player 1 will
face another decision node no matter how he plays at information set Zi{oy).
For example, this occurs if oy = @ and player 1 moves at the root node: then
Zy(Ext (o)) == {1} (the first information set). As another example, if player 2
takes one of two moves at the root node and player 1 observes this move before
choosing his own move, then for a1 =9 we will have Z,(Ext(c,)) = {1,2).
Whenever player 1 is guaranteed to face another decision node, the right-hand
side of constraint (5.9) will evaluate to zero because gy (ay, on) will equal 0 for all
&3. Thus the constraint can be interpreted as stating that player 1°s expected utility
at information set 7o) must be €qual to the sum of the expected utilities at the
information sets 7, (Ext; (o). In the optimal solution, where vy is minimized,
these constraints are always be realized as equality.

Finally, there is the case where there exist extensions of sequence oy, but

where it is also possible that player 2 will play in a way that will deny player 1
another move. For example, consider the game in Figure 5.2 from earlier in the
chapter. If player 1 adopts the sequence B at his first information set, then he
will reach his second information set if player 2 plays F, and will reach a leaf
node otherwise. In this case there will be both negative terms on the left-hand
side of constraint (5.9) (one for every information set that player 1 could reach
beyond sequence o) and positive terms on the right-hand side (expressing the
expected utility player 1 achieves for reaching a leaf node). Here the constraint
can be interpreted as asserting that i’s expected utility at 7,(oy) can only exceed
the sum of the expected utilities of i s successor information sets by the amount
of the expected payoff due to reaching leaf nodes from player 2’s move(s).

Computing equilibria of two-player zero-swum games

For two-player zero-sum games the sequence form allows us to write a linear
program for computing a Nash equilibrium that can be solved in time poly-
nomial in the size of the exiensive form. Note that in confrast, the methods
described in Section 4.1 would require time exponential in the size of the exten-
sive form, because they require construction of an LP with a constraint for each
pure strategy of each player and a variable for cach pure strategy of one of the
players.

This new linear program for games in sequence form can be constructed quite
directly from the dual LP given in Equations (5.8)~(5.9). Intuitively, we simply
treat the terms #(-) as variables rather than constants, and add in the constraints
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follows,

minimize 1y,

(5.10)
subject o vy, ~ Z vy > Z &1(oy, &2)r{os) Vo, € T, (5.11)
18T\ (Exuy (o3} o168y
r2(fy =1 (5.12)
D oD = ralseq, () vieh (513
a._J'EExlg(I)
ra{oz) = 0

Vo, € 5, (5.14)

Computing equilibria of two-player general-sum games

For two-player general-

Sum games, the problem of finding a Nagh equilibrium
can be formulated as a |

inear complementarity problem as foliows,

@ =1 (5.15)
@) =1 (5.16)
Do nbo]) = nisequ ) Yiel (5.17)
a,’eExt;(!)
D0 o) = raseq, (1) Vielh (5.18)
aﬁeExl;(l)
r{o) =0 Yo, € 21? (5.19)
Foz) = 0

Yo € X;  (3.20)
(”}.(a,) - Z v},) - (Z &iloy, Uz)rz(dz)) >0 Yo e X (321)

VeT|{Exty(0))) o7eTy
(u.%z(az) - Z Ufr) - (Z &20e), oa)ry{o )) =0 Yo, € X, (5.22)
1 €T2(Ex1a{ca)) OIEL]
Tl(O'l)[(UIl,g,,,) - Z v},) - (Z gi{oy, 02)?’2(02))] =0 VYo exm (523
F'eZ (Exty (o)) 026,
rz(%)[(v%z(gz) - Z Uf:) - (Z &2(01, Gz)rl(ﬂl))] =0 Voyex, (524)
1"eZ7(Exty(a0)) orel;

Like the linear complementarity problem for two-

player games in normal
form given in Equations (4.14)<4.19) on Page 91, thi

s is a feasibility problem
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consisting of linear constraints and complementary slackness conditions. The
linear constraints are those from the primal LP for player 1 (constraints (5.15)
(5.17), and (5.19)), from the dual LP for player 1 (constraint (5.21)), and frop
the corresponding versions of these primal and dual programs for player 2 (cop.
straints (5.16), (5.18), (5.20), and (5.22)). Note that we have rearranged some of
these constraints by moving all terms to the left side, and have superscripted the
v's with the appropriate player number.
If we stopped at constraint (5.22) we would hav
variables v would be allowed to take arbitraril
slackness conditions (constraints (5.23)and (5
of shifting us from a linear program to a linea
examine constraint (5.23). It states that eithe
ri(o)) = () or that

1 l ‘
Yoy ~ Z vy = Z guloy, o2)ra(os).

f'EI](EXl](O’l n EE,

What does it mean for Equation (5.25) to hold? The short answer is that this equa-
tion requires a property that we previously observed of the optimal solution to the
dual LP given in Equations (5.8)—(5.9): that the weak inequality in constraint (5.9
will be realized as strict equality whenever the corresponding sequence is played
with positive probability. We were able to achieve this property in the dual LP by
minimizing vg; however, this does not work in the tw
where we have both v} and vZ.

that we previously applied in t

e a linear program, but the
y large values. The complementary
.24)) fix this problem at the expense
r complementarity problem. Let yg
T sequence oy is never played (ie.,

(5.25)

Instead, we use the complementary slackness idea
he LCP for normal-form games (constraint (4.19)).
This linear complementarity program cannot be solved using the Lemke-
Howson algorithm, as we were able to do with our
However, it can be solved using the Lemke al
of Lemke-Howson.

LCP for normal-form games.
gorithm, a more general version
Neither algorithm is polynomial time in the worst case.
However, it is exponentially faster to run the Lemke algorithm on a game in
sequence form than it is to run the Lemke-Howson algorithm on the game's
induced normal form. We omit the details of how to apply the Lemke algorithm

1o sequence-form games, but refer the interested reader to the reference given at
the end of the chapter. '

Sequential equilibrium

We have already seen that the Nash equilibrium concept is too weak for perfect-
information games, and how the more selecttve notion of subgame-
librium can be more instructive. The question is whether this essential idea can
be applied to the broader class of imperfect-information games: it turns out that

it can, aithough the details are considerably more involved.
Recall that in a subgame-
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immediately apparent that th
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perfect equilibrium we require that the strategy of
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(0, 1000y 0,00 (1,0 3.1

Figure 5.15 Player 2 knows where in the information set he is.

collection of subgames. We could require that each player’s strategy be a best
response in each subgame in each forest, but that would be both too strong a
requirement and too weak. To see why it is too strong, consider the game in
Figure 5.15.

The pure strategies of player 1 are {L, C, R} and of player 2 {U, D}. Note
also that the two pure Nash equilibria are (L, U) and (R, D). But should either of
these be considered “subgame perfect?” On the face of it the answer is ambi guous,
since in one subtree U (dramatically) dominates I and in the other D dominates
U. However, consider the following argument. R dominates C for player 1, and
player 2 knows this. So although player 2 does not have explicit information
about which of the two nodes he is in within his information set, he can deduce
that he is in the rightmost one based on player 1’s incentives, and hence will
go D. Furthermore player 1 knows that player 2 can deduce this, and therefore
player 1 should go R. Thus, (R, D) is the only subgame-perfect equilibrium.

This example shows how a requirement that a sub strategy be a best response
in all subgames is too simplistic. However, in general it is not the case that
subtrees of an information set can be pruned as in the previous example so that
all remaining ones agree on the best strategy for the player. In this case the naive
application of the SPE intuition would rule out all strategies.

There have been several related proposals that apply the intuition underlying
subgame-perfection in more sophisticated ways. One of the more influential
notions has been that of sequential equilibrium (SE). Tt shares some features with
the notion of trembling-hand perfection, discussed in Section 3.4.6. Note that
indeed trembling-hand perfection, which was defined for normal-form games,
applies here just as well; just think of the normat form induced by the extensive-
form game. However, this notion makes no reference to the tree structure of the
game. SE does, but at the expense of additional complexity.

Sequential equilibrium is defined for games of perfect recall. As we have seen,
In such games we can restrict our attention to behavioral strategies. Consider
for the moment a fully mixed-strategy profile.” Such a sirategy profile induces
a positive probability on every node in the game tree. This means in particular

7. Again, recall that a strategy is fully mixed if, at every information se1, each action is given some positive
probability.
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that every information set is given a positive probability. Therefore, for a giv
fully mixed-strategy profile, one can meaningfully speak of i’s expected utjl;
given that he finds himself in any particular information set. (The expected utjlj
of starting at any node is well defined, and since each node is given positi
probability, one can apply Bayes’ rule to aggregate the expected utilities

the different nodes in the information set.) If the fully mixed-strategy prof
constitutes an equilibrium, it must be that each agent’s strategy maximizes

expected utility in each of his information sets, holding the strategies of the othey

agents fixed.

All of the preceding discussion is for a fully mixed-strategy profile. The:

problem is that equilibria are rarely fully mixed, and strategy profiles that ar

not fully mixed do nor induce a positive probability on every information set.’
The expected utility of starting in information sets whose probability is zeto:

under the given strategy profile is simply not well defined. This is where the
ingenious device of SE comes in. Given any strategy profile § (not necessarily
fully mixed), imagine a probability distribution (k) over each information set. ;¢

has to be consistent with S, in the sense that for sets whose probability is nonzero

under their parents’ conditional distribution S, this distribution is precisely the
one defined by Bayes’ rule. However, for other information sets, it can be any
distribution. Intuitively, one can think of these distributions as the new beliefs of
the agents, if they are surprised and find themselves in a situation they thought
would not occur.® This means that each agent’s expected utility is now well defined

in any information set, including those having measure zero. For information set %
h belonging to agent i, with the associated probability- distribution p(h), the -

expected utility under strategy profile S is denoted by w; (S { &, w(h)).
With this, the precise definition of SE is as follows.

Definition 5.2.10 (Sequential equilibrium) A strategy profife § is a sequential
equilibrium of an extensive-form game G if there exist probability distributions

() for each information set h in G, such that the Jollowing two conditions
hold: '

1. (S, ) = lim,,, oo (S", 1£”) for some sequence (S1, '), (S2, u2), ... where
S Is fully mixed, and p" is consistent with §" {in fact, since S” is fully
mixed, W* is uniquely determined by §"); and

2. Forany information set h belonging to agent i, and any alternative strategy
S of i, we have that

wlS | by ph)) = wi (S, S0y | b, puih)).

Analogous to subgame perfect equilibria in games of perfect information,
sequential equilibria are guaranteed to always exist.

Theorem 5.2.11 Every finite game of perfect recall has a sequential equilibrium.

Finally, while sequential equilibria are defined for games of imperfect infor-
mation, they are obviously also well defined for the special case of games of

8. This construction is essentially that of an LPS, discussed in Chapter 13.
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perfect information. This raises the question of whether, in the context of games
of perfect information, the two solution concepts coincide. The answer is that
they almost do, but not quite.

Theorem 3.2.12 Every subgame-perfect equilibrium is a sequential equilibrium,
but the converse is not true in general ®

5.3 History and references

As in Chapter 3, much of the material in this chapter is covered in modern game
theory textbooks. Some of the historical references are as follows. The earliest
game-theoretic publication is arguably that of Zermelo, who in 1913 introduced
the notions of a game tree and backward induction and argued that in principle
chess admits a trivial solution [Zermelo, 1913]. It was already mentioned in
Chapter 3 that extensive-form games were discussed explicitly in von Neumann
and Morgenstern [1944], as was backward induction. Subgame perfection was
introduced by Selten {1965], who received a Nobel Prize in 1994. The materia}
on computing all subgame-perfect equilibria is based on Littman et al. [2006].
The Centipede game was introduced by Rosenthal [1981]; many other papers
discuss the rationality of backward induction in such games [Aumann, 1995,
1996; Binmore, 1996].

In 1953 Kuhn introduced extensive-form games of imperfect information,
including the distinction and connection between mixed and behavioral sirategies
[Kuhn, 1953]. The sequence form, and its application to computing the equilibria
of zero-sum games of imperfect information with perfect recall, is due to von
Stengel [1996]. Many of the same ideas were developed earlier by Koller and
Megiddo [1992]; see [von Stengel, 1996, pp. 242-243] for the distinctions. The
use of the sequence form for computing the equilibria of general-sum two-player
games of imperfect information is explained by Koller et al. [1996]. Sequentiat
equilibria were introduced by Kreps and Wilson [1982]. Here, as in normal-form
games, the full list of alternative solution concepts and connection among them
is long, and the interested reader is referred 1o Hillas and Kohiberg [2002] and
Govindan and Wilson [2005b} for a more extensive survey than is possible here.

9. For the record, the converse /s true in so-called generic games, but we do not discuss those here. We
do discuss genericity in normal-form games in Chapier7, though there too only briefly.
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Richer Representations: Beyond the Normal
and Extensive Forms

In this chapter we will go beyond the normal and extensive forms by considering
a variety of richer game representations. These further representations are tmpor-
tant becanse the normal and extensive forms are not always suitable for modeling
large or realistic game-theoretic settings.

First, we may be interested in games that are not finite and that therefore
cannot be represented in normal or extensive form. For example, we may want to
consider what happens when a simple normal-form game such as the Prisoner’s
Dilernma is repeated infinitely. We might want to consider a game played by an
uncountably infinite set of agents. Or we may want to use an interval of the real
numbers as each player’s action space.!

Second, both of the representations we have studied so far presume that agents
have perfect knowledge of everyone’s payoffs. This seems like a poor model of
many realistic situations, where, for example, agents might have private informa-
tion thas affects their own payoffs and other agents might have only probabilistic
information about each others” private information. An elaboration like this can
have a big impact, because one agent’s actions can depend on what he knows
about another agent’s payoffs.

Finally, as the numbers of players and actions in a game grow—even if they
remain finite—games can quickly become far too large to reason about or even
to write down using the representations we have studied so far. Luckily, we
are not usually interested in studying arbitrary strategic situations. The sorts of
noncooperative settings that are most interesting in practice tend to involve highly
structured payoffs. This can occur because of constraints imposed by the fact that
the play of a game actually unfolds over time (e.g., because a large game actually
corresponds to finitely repeated play of a small game). It can also occur because
of the nature of the problem domain (e.g., while the world may involve many
agents, the number of agents who are able to directly affect any given agent's

payoff is small). If we understand the way in which agents’ payoffs are stractured,

we can represent them much more compactly than we would be able 1o do using

L. We will explore the first example in detail in this chapter, A thorough treatment of infinite sets of
players or action spaces is beyond the scope of this book; nevertheless, we will consider certain games
with infinite sets of players in Section 6.4.4 and with infinite action spaces in Chapters 10 and 11,
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the normal or extensive forms. Often, these compact representations also allow
us to reason more efficiently about the games they describe (¢.g., the computation
of Nash equilibria can be provably faster, or pure-strateg)} Nash equilibria can be
proved to always exist).

In this chapter we will present various different representations that address
these liritations of the normal and extensive forms. In Section 6.1 we will begin
by considering the special case of extensive-form games that are constructed by
repeatedly playing a normal-form game and then we will extend our considera-
tion to the case where the normal form is repeated infinitely. This will lead us to
stochastic games in Section 6.2, which are like repeated games but do not require
that the same normal-form game is played in each time step. In Section 6.3 we
will consider structure of a different kind: instead of considering time, we will
consider games involving unceriainty. Specifically, in Bayesian games agents
face uncertainty—and hold private information—about the game’s payoffs. Sec-
tion 6.4 describes congestion games, which model situations in which agents
contend for scarce resources. Finally, in Section 6.5 we will consider represen-
tations that are motivated primarily by compactness and by their usefulness for
permitting efficient computation (e.g., of Nash equilibria), Such compact rep-
resentations can extend any other existing representation, such as normal-form
games, extensive-form games, or Bayesian games.

Repeated games

In repeated games, a given game (often thought of in normal form) is played
multiple times by the same set of players. The game being repeated is called the
stage game. For example, Figure 6.1 depicts iwo players playing the Prisoner’s
Dilemma exactly twice in a row.

C D C D
c | -1,-1 —4,0 c | -1-1 —4,0
=
D 0: —4 _3» -3 D 0, —4 —3, -3

Figure 6.1 Twice-played Prisoner’s Dilemma.

This representation of the repeated game, while intuitive, obscures some key
factors. Do agents see what the other agents played earlier? Do they remembex
what they knew? And, while the utility of each stage game is specified, what is
the utility of the entire repeated game?

We answer these questions in two steps. We first consider the case in which
the game is repeated a finite and commonty-known numnber of times, Then we
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Figure 6.2 Twice-played Prisones’s Dilemma in extensive form.

consider the case in which the game is repeated infinitely often, or a finite but
unknown number of times.

Finitely repeated games

One way to completely disambiguate the semantics of a finitely repeated game
is to specify it as an imperfect-information game in extensive form. Figure 6.2
describes the twice-played Prisoner’s Dilemma game in extensive form. Note that
it captures the assumption that at cach iteration the players do not know what the
other player is playing, but afterward they do. Also note that the payoff furction
of each agent is additive; that is, it is the sum of payoffs in the two-stage games.

The extensive form also makes it clear that the strategy space of the repeated
game is much richer than the strategy space in the stage game. Certainly one
strategy in the repeated game is to adopt the same sirategy in each stage game;
clearly, this memory less strategy, called a stationary strategy, is a behavioral
strategy in the extensive-form representation of the game. But in general, the
action (or mixture of actions) played at a stage game can depend on the history
of play thus far. Since this fact plays a particularly important role in infinitely
repeated games, we postpone further discussion of it to the next section. Indeed,
in the finite, known repetition case, we encounter again the phenomenon of
backward induction, which we first eacountered when we introduced subgame-
perfect equilibria. Recall that in the Centipede game, discussed in Section 5.1.3,
the unique SPE was to go down and terminate the game at every node. Now
consider a finitely repeated Prisones’s Dilemma game. Again, it can be argued,
in the last round it is a dominant strategy to defect, no matter what happened so
far. This is common knowledge, and no choice of action in the preceding rounds
will impact the play in the last round. Thus in the second-to-last round too it is
a dominant strategy to defect. Similarly, by induction, it can be argued that the

. ouly equilibrium in this case is to always defect. However, as in the case of the
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Centipede game, this argument is vulnerable to both efripirical and theoretical
criticisms.

Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result
is an infinite tree. So the payoffs cannot be attached to any terminal nodes, nor
can they be defined as the sum of the payoffs in the stage games (which in general
will be infinite). There are two common ways of defining a player’s payoff i’\
an infinitely repeated game to get around this problem. The first is the average
payoff of the stage game in the limit.2

Definition 6.1.1 (Average reward) Given an infinite sequence of payoffs rl.(l),
r,.m, ... for player i, the average reward of i is

k G}
- E j=1 ri
lim ———.
k-ro0 k
The future discounted reward 1o a player at a certain point of the game is the

sum of his payoff in the immediate stage game, plus the sum of future rewards
discounted by a constant factor. This is a recursive definition, since the future
rewards again give a higher weight to early payoffs than to Jater ones.

Definition 6.1.2 (Discounted reward) Given an infinite sequence of payoffs
rrp}, r,@, ... for player i, and a discount factor B with O < B <1, the future
discounted reward of i is )52, B/ &

The discount factor can be interpreted in two ways. First, it can be taken to
represent the fact that the agent cares more about his well-being in the near term
than in the Jong term. Alternatively, it can be assnmed that the agent cares about
the future just as much as he cares about the present, but with some probability
the game will be stopped any given round; 1 — £ represents that probability. The
analysis of the game is not affected by which perspective is adopted.

Now let us consider strategy spaces in an infinitely repeated game. In particular,
consider the infinitely repeated Prisoner’s Dilemma game. As we discussed, there
are many strategies other than stationary ones. One of the most famous is Tit-for-
Tat. TT is the strategy in which the player starts by cooperating and thereafter
chooses in round j + 1 the action chosen by the other player in round j. Beside
being both simple and easy to compute, this strategy is notoriously hard to beat; it
was the winner in several repeated Prisoner’s Dilemma competitions for computer
programs.

Since the space of strategies is so large, a natural question is whether we can
characterize all the Nash equilibria of the repeated game. For example, if the
discount factor is large enough, both players playing T{T is a Nash equilibriumn.
But there is an infinite number of others. For example, consider the rrigger
strategy. This is a draconian version of TfT; in the trigger strategy, a player starts

2. The observant reader will notice a potential difficulty in this definition, since the limit may not exist.
One can extend the definition to cover these cases by using the lim sup operator in Definition 6.1.1 rather
than lim.
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by cooperating, but if ever the other player defects then the first defects forever.
Again, for sufficiently large discount factor, the trigger strategy forms a Nash
equilibrium not only with itself but also with TfT.

The folk theorem—so-called because it was part of the common lore before it
was formally written down—helps us understand the space of all Nash equilibria
of an infinitely repeated game, by answering a related question. It does not
characterize the equilibrium strategy profiles, but rather the payoffs obtained
in them. Roughly speaking, it states that in an infinitely repeated game the set
of average rewards attainable in equilibrium are precisely those pairs attainable
under mixed strategies in a single-stage game, with the constraint on the mixed
strategies that each player’s payoff is at least the amount he would receive if the
other players adopted minmax strategies against him.

More formally, consider any n-player game G = (N, A, u) and any payoff
profiler = (11, ra, ..., ra). Let

v; = min maxu;(s.;, s).
s_y€S; .)','GS,‘

In words, v; is player i’s minmax value: his wtility when the other players play
minmax strategies against him, and he plays his best response.
Before giving the theorem, we provide some more definitions,

Definition 6.1.3 (Enforceable) A payoff profile r = (ry,ry, ..., 1) is enforce-
able ff Vi e N, r; > v,

Definition 6.1.4 (Feasible) A payoff profile r = (ri, ra, ..., r.) is feasible if
there exist rational, nonnegative values o, such that for alf i, we can express
Ti 085 ) pep (@), withy 05 = 1.

In other words, a payoff profile is feasible if it is a convex, rational combination
of the outcomes in G,

Theorem 6.1.5 (Folk Theorem) Consider any n-player normal-form game G
and any payoff profile r = (r1,ra, ..., 1,).

1. Ifr is the payaff profile for any Nash equilibrium s of the infinitely repeated
G with average rewards, then for each player 1, r; is enforceable.

2. If r is both feasible and enforceable, then r is the payoff profile for some
Nash equilibrium of the infinitely repeated G with average rewards.

This proof is both instructive and intuitive. The first part uses the definition
of minmax and best response to show that an agent can never receive less than
his mirmax value in any equilibrium. The second part shows how to construct
an equilibrium that yields each agent the average payoffs given in any feasible
and enforceable payoff profile », This equilibrium has the agents cycle in perfect
lock-step through a sequence of game outcomes that achieve the desired average
payoffs. If any agent deviates, the others punish him forever by playing their

.. minmax strategies against him.
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Proof. Part 1: Suppose r is not enforceable, that is, r; < v; for some i.
Then consider an alternative strategy for i: playing B R(s_;(h)), where s_;(h)
is the equilibrivm strategy of other players given the ‘current history % and
BR(s_;(h)) is a function that returns a best response for i to a given strategy
profile s_; in the (unrepeated) stage game G. By definition of a minmax
strategy, player i receives a payoff of at least v; in every stage game if he
plays B R(s_;(h)), and so i’s average reward is also at least v;. Thus, if r; < v;
then s cannot be a Nash equilibrium. ,

Part 2: Since r is a feasible enforceable payoff profile, we can write it

S L A AT A L S AR SR

V). Second, this strategy profile is a Nash equilibrivm. Suppose everybody
plays according to 5;, and player j deviates at some point. Then, forever after,
player j will receive his minmax payoff v; < r;, rendering the deviation
unprofitable. ' n

'

RS LR AR DN v}

The reader might wonder why this proof appeals to i's minmax valve rather
than his maxmin valve. First, notice that the trigger strategies in Part 2 of the
proof use minmax strategies to ponish agent /. This makes sense because even
in cases where i’s minmax value is strictly greater than his maxmin value,? i’s
minmax value is the smallest amount that the other agents can guarantee that
i will receive. When i best responds to a minmax strategy played against him
by —i, he receives exactly his minmax value; this is the deviation considered in
Part 1. '

Theorem 6.1.5 is actvally an instance of a large family of folk theorems. As
stated, Theorem 6.1.5 is restricted to infinitely repeated games, to average revard,
{0 the Nash equilibrinm, and to games of complete information. However, there
are folk theorems that hold for other versions of each of these conditions, as well
as other conditions not mentioned here, In particular, there are folk theorems for
infinitely repeated games with discounted reward (for a large enough discount
factor), for finitely repeated games, for subgame-perfect equilibria (i.e., where
agents only administer finite punishments fo deviators), and for games of incom-
plete information. We do not review them here, but the message of each of them

3. This can happen in gares with more than two players, as discussed in Section 3.4.1,

§ asr= ) .. A(%")ui(a), where B, and y are nonnegative integers. (Recall
: that @, were required to be rational. So we can take y to be their common >
‘j denominaior.) Since the combination was convex, wehave y =3 _, S,.
We are going to construct a strategy profile that will cycle through all
E: outcomes a € A of G with cycles of length y, each cycle repeating action
ﬂ a exactly B, times. Let (a”) be such a sequence of outcomes. Let us define
r{ a strategy s; of player i to be a trigger version of playing (a"): if nobody
? deviates, then s; plays g in period 1. However, if there was a period ¢’ in
: which some player j # i deviated, then s; will play (p-;);, where (p—;) isa
¢ solution to the minimization problem in the definition of v;.

’i"; First observe that if everybody plays according to s;, then, by construction,
5 playeri receives average payoff of r; (look at averages over periods of length
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D | 4,0 L1

Figure 6.3 Prisonet's Dilemma game.

is fundamentally the same: the payoffs in the equilibria of a repeated game are
essentially constrained only by enforceability and feasibility.

“Bounded rationdlz'ty”: repeated games played by automata

Until now we have assumed that players can engage in arbitrarily deep reasoning
and mutual modeling, regardless of their complexity. In particular, consider the
fact that we have tended to rely on equilibriurn concepts as predictions of—or
prescriptions for—behavior. Even in the relatively uncontroversial case of two-
player zero-sum games, this is a questionable stance in practice; otherwise, for
example, there would be no point in chess competitions. While we will continue
to make this questionable assumption in much of the remainder of the book,
we pause here to revisit it. We ask what happens when agents are not perfectly
rational expected-utility maximizers. In particular, we ask what happens when
we impose specific computational limitations on them,

Consider (yet again) an instance of the Prisoner’s Dilemma, which is repro-
duced in Figure 6.3. In the finitely repeated version of this game, we know that
each player’s dominant strategy (and thus the only Nash equilibrium) is to choose
the strategy D in each iteration of the game. In reality, when people actually play
the game, we typically observe a significant amount of cooperation, especially
in the earlier iterations of the game. While much of game theory is open to the
criticism that it does not match well with human behavior, this is a particularly
stark example of this divergence. What models might explain this fact?

One early proposal in the literature is based on the notion of an e-equilibrium,
defined in Section 3.4.7. Recall that this is a strategy profile in which no agent can
gain more than € by changing his strategy; 2 Nash equitibrium is thus the special
case of a O-equilibrium. This equilibrivm concept is motivated by the idea that
agents’ rationality may be bounded in the sense that they are willing to settle for
payoffs that are slightly below their best response payoffs. In the finitely repeated
Prisoner’s Dilemma game, as the number of repetitions increases, the corre-
sponding sets of e-equilibria include cutcomes with longer and longer sequences
of the “cooperate” strategy.

Various other models of bounded rationality exist, but we will focus on what
has proved to be the richest source of results so far, namely, restricting agents’
strategies to those implemented by automata of the sort Investigated in computer

~..§cience.
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-games, an alternative is to use an algorithm developed by Shapley that is related

to value iteration, & commonly-used method for solving MDPs (see Appendix C).
Moving on to the average reward case, we have to impose more restrictions
in order to use a linear program than we did for the discounted reward case,
Specifically, for the class of two-player, general-sum, average-reward stochastic
games, the single-controller assumption no longer suffices—we also need the
game to be zero sum. ‘
Even when we cannot use 2 linear program, irreducibility allows us to use an
algorithm that is guaranteed to converge. This algorithm is a combination of policy
iteration (another method used for solving MDPs) and successive approximation.

\\

Bayesian games

All of the game forms discussed so far assumed that all players know what -
game is being played. Specifically, the number of players, the actions available
to each player, and the payoff associated with each action vector have all been
assumed to be common knowledge among the players. Note that this is ttue even
of imperfect-information games; the actual moves of agents are not common
knowledge, but the game itself is. In contrast, Bayesian games, or games of
incomplete information, allow us to represent players’ oncertainties about the very
game being played.* This uncertainty is represented as a probability distribution
over a set of possible games. We make two assumptions.

1. All possible games have the same number of agents and the same strategy
space for each agent; they differ only in their payoffs.

2. The beliefs of the different agenis are posteriors, obtained by conditioning a
common prior on individual private signals.

The second assumption is substantive, and we return to it shortly. The first
is not particularly restrictive, although at first it might seem to be. One can
imagine many other potential types of uncertainty that players might have about
the game—how many players are involved, what actions are available to each
piayer, and perhaps other aspects of the situation. It might seem that we have
severely limited the discussion by ruling these ount, However, it turns out that
these other types of uncertainty can be reduced to uncertainty only about payoffs
via problem reformulation. ‘

For example, imagine that we want to model a sitvation in which one player
is unceriain about the number of actions available to the other players. We can
reduce this uncertainty to uncertainty about payoffs by padding the game with
irrelevant actions. For example,; consider the following two-player game, in which
the row player does not know whether his opponent has only the two strategies
L and R or also the third one C:

4, It is easy to confuse the term “ihcomplete information” with “imperfect information™, don't. ..
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L R L c R
U 1,1 1,3 U 1,1 0,2 1,3
D | o3 1,13 D | 053 2,8 1,13

Now consider replacing the leftmost, smaller game by a padded version, in
which we add a new C column.

L C R

vl 1 }o-wo] 13

D 0.5 2, 100 1,13

Clearly the newly added column is dominated by the others and will not

a participate in any Nash equilibrium (or any other reasonable solution concept).
Indeed, there is an isomorphism between Nash equilibria of the original game
and the padded one. Thus the uncertainty about the strategy space can be reduced
to uncertainty about payoffs.

Using similar tactics, it can be shown that it is also possible to reduce uncer-
tainty about other aspects of the game to uncertainty about payoffs only. This is
not a mathematical claim, since we have given no mathematical characterization

, of all the possible forms of uncertainty, but it is the case that such reductions have
. been shown for all the common forms of uncertainty. '
common-prior The second assumption about Bayesian games is the common-prior assump-

ASSUDPEON  sion, addressed in more detail in our discussion of multiagent probabilities and
KP-structures in Chapter 13. As discussed there, a Bayesian game thus defines
not only the uncertainties of agents about the game being played, but also their
beliefs about the beliefs of other agents about the game being played, and indeed
an entire infinite hicrarchy of nested beliefs (the so-called epistemic type space).
As also discussed in Chapter 13, the common-prior assumption is a substantive
assurnption that limits the scope of applicability. We nonetheless make this as-
A ' sumption since it alfows us to formulate the main ideas in Bayesian games, and
without the assumption the subject matter becomes much more involved than is
appropriate for this text. Indeed, most (but not all) work in game theory makes
this assumption,

Lt

6.3.1 Definition

There are several ways of presenting Bayesian games; we will offer three different
definitions. All three are equivalent, modulo some subtleties that lic outside the

g
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Figore 6.7 A Bayesian pame.

scope of this book. We include all three since each formulation is useful in
different settings and offers different intuition about the underlying structure of
this family of games.

Information sets

First, we present a definition that is based on information sets. Under this defini-
i tion, 2 Bayesian game consists of a set of games that differ only in their payoffs,
a common prior defined over them, and a partition structure over the games for
each agent.’

Bayesian game  Definition 6.3.1 (Bayesian game: information sets) A Bayesian game is g -
ple (N, G, P, I} where:

* N is a set of agents;

G is a set of games with N agents each such that if g, g' € G then for each
agenti € N the strategy space in g is identical to the Strategy space in g';
* P e IG) is a common prior over games, where H(G) is the set of all
probability distributions over G; and

I = (L, ..., I} is a tuple of partitions of G, one for each agent.

Figure 6.7 gives an example of a Bayesian game. It consists of four 2 x 2
games (Matching Pennies, Prisoner’s Dilemma, Coordination and Batile of the
Sexes), and each agent’s partition consists of two equivalence classes.

WM&W&E&E&E&&&;:MMWM,T.a.\»,,-.;;»-...-.-::ﬂ Soane s e e T e e

b e A

Extensive form with chance moves

A second way of capturing the commion prior is to hypothesize a special agent
called Nature who makes probabilistic choices. While we could have Nature’s

3. This combination of a common prior and a set of partitions over states of the werld tums ont to
correspond to a KP-structure, defined in Chapter 13.
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choice bé interspersed arbitrarily with the agents’ moves, without loss of gen-
erality we assume that Nature makes all its choices at the outset. Nature does
not have a utility function (or, alternatively, can be viewed as having a constant
one), and has the unique strategy of randomizing in a commonly known way,
The agenis receive individual signals about Nature’s choice, and these are cap-
tured by their information sets in a standard way. The agents have no additional
information; in particular, the information sets capture the fact that agents make
their choices without knowing the choices of others. Thus, we have reduced
games of incomplete information to games of imperfect information, albeit ones
with chance moves. These chance moves of Nature require minor adjustments
of existing definitions, replacing payoffs by their expectations given Nature’s
moves.®

For example, the Bayesian game of Figure 6.7 can be represented in extensive
form as depicted in Figure 6.8.

@0 02 (0.2 20 2 .3) 6.0 LD 2.2 00 ©0 (L) @D 0.0 ©@0) (12

Figure 6.8 The Bayesian game from Figuwre 6.7 in exiensive form.

Although this second definition of Bayesian games can be initially more
intuitive than our first definition, it can also be more cumbersome (o work with.
This is becanse we use an extensive-form representation in a setting where players
are unable to observe each others’ moves. (Indeed, for the same reason we
do not routinely use extensive-form games of imperfect information to model
simultaneous interactions such as the Prisoner's Dilemma, though we could do
so if we wished.) For this reason, we will not make further use of this definition. .
We close by noting one advantage that it does have, however: it extends very
naturally to Bayesian games in which players move sequentially and do {at least
sometimes) learn about previous players’ moves.

Epistemic types

Recall that a game may be defined by aset of players, actions, and uiility functions.
In our first definition agenis arc uncertain about which game they are playing;
however, each possible game has the same sets of actions and players, and so
agents are really only uncertain about the game’s utility function.

6. Nate that the special structure of this extensive-form game means that we do not have to agenize over
the refinements of Mash equilibrium; since agents have no information about prior choices made other
than by Nature, all Nash equilibria are also sequential equilibria.
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a a 6 6 o ay a B O w
U L &, 6; 2 0 D L 6, & 0 2
U L 6, 62 2 2 D L 6, 62 3 0
U L 62 6, 2 2 D L 6o 63 0 0
U L 82 &2 2 1 D L 82 63 0 0
U R 6y &, 0 2 D R &, 6, 2 o
U R 6 6., 0 3 D R 6, 8&a 1 1
U R &2 6, 0 0 D R 62 6; 1 1
U R G2 &2 0 0 D R &3 62 1 2

Figure 6.9 Utility fanctions u; and us for the Bayesian game from Figure 6.7,

Our third definition uses the notion of an epistemic rype, or simply a type as a '
way of defining uncertzinty directly over a game”s uiility function.

Definition 6.3.2 (Bayesian game: types) A Bayesian game is a fuple (N, A,
&, p, u) where:

* N is a set of agents;

* A=Ay x---x Ay, where A; is the set of actions available to player i;

* © =0, x...x 8,, where ©; is the type space of player i ;

* p:© > [0, 1) is a common prior over types; and

¢ uw={u,...,u,), where u; : A x © > R is the utility function for player
i.

The assumption is that all of the above is common knowledge among the
players, and that each agent knows his own type. This definition can seem mys-
tertous, because the notion of type can be rather opague. In general, the type of
agent encapsulates all the information possessed by the agent that is not common
knowledge. This is often quite simple (e.g., the agent’s knowledge of his private
payoff function), but can also include his beliefs about other agents’ payoffs,
about their beliefs about his own payoff, and any other higher-order beliefs.

We can get further insight into the notion of a type by relating it to the for-
mulation at the beginning of this section. Consider again the Bayesian game in
Figure 6.7. For each of the agents we have two types, corresponding to his two
information sets. Denote player 1's actions as U and D, player 2’s actions as L
and R. Call the types of the first agent 8, ; and 6y 5, and those of the second agent
#2,1 and 62,2 The joint distribution on these types is as follows: p(8) 1, Br1)=.3,
P13, 622) = .1, p(Br2,621) = .2, p(6),2, 62,2) = .4. The conditional probabil-
ities for the first player are p(61 | 61,1) = 3/4, p(6:, | 01,1) =1/4, p(621 |
012) = 1/3, and p(D,2 | 61 2) = 2/3. Both players’ utility functions are given
in Figure 6.9,

Strategies and equilibria

Now that we have defined Bayesian games, we must explain how to reason about
them. We will do this using the epistemic type definition, because that is the
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definition most commonly used in mechanism design (discussed in Chapter 10),
one of the main applications of Bayesian games. All of the concepts defined
below can also be expressed in terms of the first two Bayesian game definitions
as well.

The first task is to define an agent’s strategy space in a Bayesian game. Recall
that in an imperfect-information extensive-form game a pure strategy isa mapping
from information sets to actions. The definition is similar in Bayesian games: a
pure strategy «; : ©; > A; is a mapping from every type agent i could have to
the action he would play if he had that type. We can then define mixed strategies
in the natural way as probability distributions over pure strategies. As before,
we denote a mixed strategy for [ as s; € §;, where S; is the set of alf i’s mixed
strategies. Furthermore, we use the notation s (a; 1) to denote the probability
under mixed sirategy 5; that agent j plays action a;, given that j’s type is 6;.

Next, since we have defined an environment with multiple sources of uncer-
tainty, we will pause to reconsider the definition of an agent’s expected utility. In
a Bayesian game setting, there are three meaningful notions of expected utility:
ex post, ex interim and ex ante. The first is computed based on all agents’ actual
types, the second considers the setting in which an agent knows his own type but
not the types of the other agents, and in the third case the agent does not know
anybody’s type.

Definition 6.3.3 (Ex post expected utility) Agent i’s ex post expected wtility in
a Bayesian game (N, A, ©, p, u), where the agenis’ strategies are given by s
and the agent’ types are given by 6, is defined as

EUs, 8y =Y | []ss6as16p) }wita, 6). (6.1)

achd \ jeN

In this case, the only uncertainty concerns the other agents’ mixed strategies,
since agent i’s ex post expected utility is computed based on the other agents’
actual types. Of course, in a Bayesian game no agent will know the others’
types; while that does not prevent us from offering the definition given, it might
make the reader question its usefulness. We will see that this notion of expected
utility is useful both for defining the other two and also for defining a specialized
equilibrium concept.

Definition 6.3.4 (Ex inferim expected utility) Agent i’s ex interim expected
utility in a Bayesian game (N, A, ®, p, u), where i’s type is 6; and where the
agents’ strategies are given by the mixed-strategy profile 5, is defined as

EUG.6)= 3 p@-0d Y | [1s:@6p Juata,0-:,6),  62)

9_1€0..; acA \ jeN

or equivalently as

EUi(s,6) = ") pO_118)EUi(s, 6, 6-0)). (6.3)

f_e®_;
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Thus, i must consider every assignment of types to.the other agents #._; and

- every pure action profile @ in order to evaluate his utility function »;(a 0, 8-0).
- He must weight this utility value by two amounts: the probability that the other

players’ types would be 8_; given that his own type is 6;, and the probability that
the pure action profile 2 would be realized given all players’ mixed strategies and
types. (Observe that agents’ types may be correlated.) Because uncertainty over
mixed strategies was already handled in the ex post case, we can also write ex
interim expected utility as a weighted sum of EU;(s, 6) terms.

Finally, there is the ex ante case, where we compute i°s expected utility undex
the joint mixed strategy s without observing any agents’ types.

Definition 6.3.5 (Ex ante expected utility) Agenti’s ex ante expected utility in
a Bayesian game (N, A, ©, p, u), where the agents’ strategies are given by the
mixed-strategy projfile s, is defined as

EUs)=_ p@) Y t []s:6a;16) | uia, 6), 64)

#e® acd \ jeN

or equivalently as

EU(s) = ¥ pO)EU;(s. 0), (65)
de@

or again eguivalently as

EUs) = ) p@)EU;(s, 6). (68
6;e®;

Next, we define best response.

Definition 6,3.6 (Best response in a Bayesian game) The set of agent i's best
responses fo mixed-strategy profile s_; are given by

BR;(s—;) = argmax EU;(s}, s_;). 6.7)
sjes;

Note that BR; is a set because there may be many strategies for ; that yield
the same expected utility. It may seem odd that BR is calculated based on i’s
ex ante expected utility. However, write EU;(s) as ¥ g .o, P6)EUi(s,6;) and
observe that EU;(s/, s, 6;) does not depend on strategies that ; would play if
his type were not §;. Thus, we are in fact performing independent maximization
of i’s ex interim expectgd utilities conditioned on each type that he could have.
Intitively speaking, if a certain action is best after the signal is received, it is
also the best conditional plan devised ahead of time for what to do should that
signal be received.

We are now able to define the Bayes—Nash equilibrium.

Definition 6.3.7 (Bayes-Nash equilibrium) A BayesNash equilibrium is a
mixed-strategy profile s that satisfies Vi s; € BRi{s_;).
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This is exactly the definition we gave for the Nash equilibrium in Defini-
tion 3.3 4: each agent plays 2 best response to the strategies of the other players.
The difference from Nash equilibrium, of course, is that the definition of Bayes—
Nash equilibrium is built on top of the Bayesian game definitions of best response
and expected utility, Observe that we would not be able to define equilibrium in
this way if an agent’s strategies were not defined for every possible type. In order
for a given agent i to play a best response to the other agents —i, i must know
what strategy each agent would play for each of his possible types. Without this
information, it would be impossible to evaluate the term EU;(s?, s_;) in Equa-
tion {6.7).

Computing equilibria

Despite its similarity to the Nash equilibrium, the Bayes—Nash equilibrium may
seem more conceptually complicated. However, as we did with extensive-form
games, we can construct a normal-form representation that corresponds to a given
Bayesian game, '

As with games in extensive form, the induced normal form for Bayesian
games has an action for every pure strategy. That is, the actions for an agent /
are the distinct mappings from ®; to A;. Each agent i’s payoff given a pure-
strategy profile s is his ex ante expected utility under s. Then, as it turns out, the
Bayes-Nash eqnilibria of a Bayesian game are precisely the Nash equilibria of
its induced normal form. This fact allows us to note that Nash’s theorem applies
directly to Bayesian games, and hence that Bayes—Nash equilibria always exist,

An example will help. Consider the Bayesian game from Figure 6.9. Note
that in this game each agent has four possible pure strategies (two types and two
actions). Then player 1's four strategies in the Bayesian game can be labeled UU,
UD, DU, and DD: UU means that 1 chooses U regardless of his type, U D that
he chooses U when he has type 6;; and D when he has type 61 2, and so forth,
Similarly, we can denote the strategies of player 2 in the Bayesian game by R R,
RL,LE,and LL.

We now define a4 x 4 normal-form game in which these are the four strategies
of the two agents, and the payoffs are the expected payoffs in the individual games,
giventhe agents’ common prior beliefs. For example, player 2°s ex ante expected
utility under the strategy profile (UU, LL) is calculated as follows:

u(UU, LL)
=Y p@maU, L,6)
el
= pO,1, 021)u(U, L, 811, 62,1) + p@11, . 2)ua(U, L, 611, 02.2)
+ P62, 02,0u2(U, L, 61,2, 62.1) + p(612, ,2)ua(U, L, 61 2, 622)
=0.3(0) + 0.1(2) + 0.2(2) + 0.4(1) = 1.

- Continuing in this manner, the complete payoff matrix can be constructed as
shown in Figure 6.10.
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LL LR RL _ RR

ov 2,1 .| 1,07 1,12 0,0.9

UD (08,02 | 1,1.1 04,1 (06,19

DU 15,14 105,11 | 17,04 | 07,0.1

DD 103,06 | 05,15 | 1.1,02 | 1.3, 1.1

Figure 6,10 Induced normal form of the game from Figure 6.9.

Now the game may be analyzed straightforwardly. For example, we can de-
termine that player 1’s best response to RL is DU,

Given a particular signal, the agent can compute the posterior probabilities and
recompute the expected utility of any given strategy vector. Thus in the previous
example once the row agent gets the signal 8) ) he can update the expected payoffs
and compute the new game shown in Figure 6.11.

LL - LR RL RR

vu 2,05 15,075 05,2 0,2.25

UbD 2,05 1.5,0.75 05,2 0,225

DU | 075,15 {025,175 2.25,0 1.75,0.25

DD | 075,15 | 025175 2.25,0 1.75,0.25

Figure 6.12 Ex interim induced normal-form game, where player 1 observes type b1,

Note that for the row player, DU is still a best response to RL; what has
changed is how much better it is compared to the other three strategics. In
particular, the row player’s payoffs are now independent of his choice of which
action to take upon observing type 6; »; in effect, conditional on observing type
61,1 the player necds only to select a single action U or D, (Thus, we could have
written the ex interim induced normal form in Figure 6.11 as a table with four
columns but only two rows.)

Although we can use this matrix to find best responses for player 1, it turns
out to be meaningless to analyze the Nash equilibria in this payoff matrix. This is -
because these expected payoffs are not common knowledge; if the column player
were to condition on his signal, he would arrive at a different set of numbers
(though, again, for him best responses would be preserved). Ironically, it is only
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in the induced normal form, in which the payoffs do not correspond to any ex
interim assessment of any agent, that the Nash equilibria are meaningful.

Other computational techniques exist for Bayesian games that also have tem-
poral structure—that is, for Bayesian games written using the “extensive form
with chance moves™ formulation, for which the game tree is smaller than its
induced normal form. First, there is an algorithm for Bayesian games of perfect
information that generalizes backward induction (defined in Section 5.14), is
called expectimax. Intuitively, this algorithm is very much like the standard back-
ward induction algorithm given in Figure 5.6. Like that algorithm, expectimax
recursively explores a game tree, labeling each non-leaf node # with a payoff
vector by examining the labels of each of s child nodes—the actual payoffs
when these child nodes are leaf nodes—and keeping the payoff vector in which
the agent who moves at % achieves maximal utility. The new wrinkle is that
chance nodes must also receive labels. Expectimax labels a chance node k with a
weighted sum of the labels of its child nodes, where the weights are the probabili-
ties that each child node will be selected. The same idea of labeling chance nodes
with the expected value of the next node’s label can also be applied to extend
the minimax algorithm (from which expectimax gets its name) and alpha-beta
pruning (see Figure 5.7) in order to solve zero-sum games. This is a popular algo-
rithmic framework for building computer players for perfect-information games
of chance such as Backgammon.

There are also efficient computational techniques for computing sample equi-
libria of imperfect-information extensive-form games with chance nodes. In par-
ticular, all the computational results for computing with the sequence form that
we discussed in Section 5.2.3 still hold when chance nodes are added, Intuitively,
the only change we need to make is to replace our definition of the payoff func-
tion (Definition 5.2.7) with an expected payoff that supplies the expected value,
ranging over Nature’s possible actions, of the payoff the agent would achieve by
following a given sequence. This means that we can sometimes achieve a substan-
tial computational savings by working with the extensive-form representation of
a Bayesian game, rather than considering the game’s induced normal form,

Ex post equilibrium

Finally, working with ex post utilities allows us to define an equilibrium concept
that is stronger than the Bayes—Nash equilibrivm.

Definition 6.3.8 (Ex post equilibrium) An ex post equilibrium is a mixed-
strategy profile s that satisfies V0, Vi, s; € arg max, .. EU;(s{, s, 0).

Observe that this definition does not presume that each agent actually does
know the others’ types; instead, it says that ne agent would ever want to devi-
ate from his mixed strategy even if he knew the complete type vector 8. This
form of equilibrium is appealing because it is unaffected by perturbations in the
type distribution p(8). Said another way, an ex post equilibrium does not ever
require any agent to believe that the others have accurate beliefs about his own
type distribution, (Note that a standard Bayes—Nash equilibrium can imply this
requirement.) The ex post equilibrium is thus similar in flavor to equilibria in
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dominant strategies, which do not require agents to believe that other agents act
rationally. G -

Indeed, many dominant strategy equilibria are also ex Ppost equilibria, making
it easy o believe that this relationship always holds. In fact, it does not, as the fol-
Iowing example shows. Consider a two-player Bayesian game where each agent
has two actions and two comesponding types (Vien, A; = ©; = {H, L)) dis-
tributed vniformly (V;.y, P(6; = H) = 0.5), and with the same utility function
for each agent i; :

10 a; = 9...,‘ = 9,"
u,-(a, 9) = 2 a; = 9_,' # 9,';
0 otherwise.

In this game, each agent has a dominant strategy of choosing the action that
corresponds to his type, a; == 6;. An equilibrium in these dominant strategies
1s not ex post because if either agent knew the other’s type, he would prefer to
deviate to playing the strategy that corresponds to the other agent’s type, a; = 6_.,.

Unfortunately, another sense in which ex post equilibria are in fact similar to
equilibria in dominant strategies is that neither kind of equilibrium is gaaranteed
10 exist.

Finally, we note that the texm “ex post equilibriom” has been used in several
different ways in the literature. One alternate usage requires that each agent’s
strategy constitute a best response not only to every possible type of the others,
but also to every pure strategy profile that can be realized given the others’ mixed
strategies. (Indeed, this solution concept has also been applied in settings where
there is no uncertainty about agents’ types.) A third usage even more stringently
requires that no agent ever play a mixed strategy. Both of these definitions can
be useful, e.g., in the context of mechanism design (see Chapter 10). However,
the advantage of Definition 6.3.8 is that of the three, it describes the most general
prior-free equ\ilibrium concept for Bayesian games.

Congestion games

Congestion games are arestricted class of games that are useful formodeling some
important real-world seitings and that also have attractive theoretical properties.
Intuitively, they simplify the representation of a game by imposing constraints
on the effects that a single agent’s action can have on other agents’ utilities,

Definition

Intuitively, in a congestion game each player chooses some subset from a set of
resources, and the cost of each resource depends on the number of other agknts
who select it. Formally, a congestion game is single-shot n-player game, defined
as follows.

Definition 6.4.1 (Congestion game) A congestion game is a tuple (N, R, 4, ¢),
where

* N is a set of n agents;
* R is a set of r resources;




