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E CO NOMET RI C A 
VOLUME 41 July, 1973 NUMBER 4 

MANIPULATION OF VOTING SCHEMES: A GENERAL RESULT 

BY ALLAN GIBBARD 

It has been conjectured that no system of voting can preclude strategic voting-the 
securing by a voter of an outcome he prefers through misrepresentation of his preferences. 
In this paper, for all significant systems of voting in which chance plays no role, the con- 
jecture is verified. To prove the conjecture, a more general theorem in game theory is 
proved: a gameform is a game without utilities attached to outcomes; only a trivial game 
form, it is shown, can guarantee that whatever the utilities of the players may be, each 
player will have a dominant pure strategy. 

1. INTRODUCTION 

I SHALL PROVE in this paper that any non-dictatorial voting scheme with at least 
three possible outcomes is subject to individual manipulation. By a "voting 
scheme," I mean any scheme which makes a community's choice depend entirely 
on individuals' professed preferences among the alternatives. An individual 
"manipulates" the voting scheme if, by misrepresenting his preferences, he secures 
an outcome he prefers to the "honest" outcome-the choice the community would 
make if he expressed his true preferences. 

The result on voting schemes follows from a theorem I shall prove which covers 
schemes of a more general kind. Let a gameform be any scheme which makes an 
outcome depend on individual actions of some specified sort, which I shall call 
strategies. A voting scheme, then, is a game form in which a strategy is a profession 
of preferences, but many game forms are not voting schemes. Call a strategy 
dominant for someone if, whatever anyone else does, it achieves his goals at least 
as well as would any alternative strategy. Only trivial game forms, I shall show, 
ensure that each individual, no matter what his preferences are, will have available 
a dominant strategy. Hence in particular, no non-trivial voting scheme guarantees 
that honest expression of preferences is a dominant strategy. These results are 
spelled out and proved in Section 3. 

The theorems in this paper should come as no surprise. It is well-known that 
many voting schemes in common use are subject to individual manipulation. 
Consider a "rank-order" voting scheme: each voter reports his preferences among 
the alternatives by ranking them on a ballot; first place on a ballot gives an alterna- 
tive four votes, second place three, third place two, and fourth place one. The 
alternative with the greatest total number of votes wins. Here is a case in which 
an individual can manipulate the scheme. There are three voters and four 
alternatives; voter a ranks the alternatives in order xyzw on his ballot; voter b in 
order wxyz; and voter c's true preference ordering is wxyz. If c votes honestly, then, 
the winner is his second choice, x, with ten points. If c pretends that x is his last 
choice by giving his preference ordering as wyzx, then x gets only eight points, and 
c's first choice, w, wins with nine points. Thus c does best to misrepresent his 
preferences. 
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588 ALLAN GIBBARD 

Since many voting schemes in common use are known to be subject to 
manipulation, writers on the subject have conjectured, in effect, that all voting 
schemes are manipulable. Dummett and Farquharson define "voting procedure" 
roughly as "voting scheme" is defined here, and remark, "It seems unlikely that 
there is any voting procedure in which it can never be advantageous for any voter 
to vote 'strategically,' i.e., non-sincerely" [3, p. 34]. The definition of manipulability 
used here is roughly that originated by Dummett and Farquharson. The result 
they prove, however, applies only to a special class of voting schemes which they 
call "majority games," not to voting schemes in general. 

Vickrey [5, p. 518] makes a related conjecture on manipulability. He conjectures 
that immunity to manipulation is equivalent to the conjunction of two of the 
conditions' that figure in the Arrow impossibility theorem [1]. Arrow's conditions 
are jointly inconsistent, and hence from Vickrey's conjecture, it would follow that a 
scheme satisfying the remaining Arrow conditions is manipulable-almost the 
result in this paper. Indeed the proof in this paper proceeds roughly by confirming 
Vickrey's conjecture. 

A result such as the one given here, then, was to be expected. It does not, how- 
ever, turn out to be easy to prove from known results: the proof given here relies 
on the Arrow impossibility theorem, but not in a simple way. I leave the statement 
and proof of the results in this paper until later; first, informal elucidation. 

2. MANIPULABILITY IN THE WORLD 

A way of making decisions can be represented by a variety of mathematical 
structures. In the next part, theorems are proved about structures of two kinds, 
called "game forms" and "voting schemes." In this part, I shall argue that the game 
form and the voting scheme that represent a decision-making system pick out the 
aspects of the system pertinent to its manipulability. 

First, then, let us provide definitions of "voting scheme" and "game form." A 
voting scheme is a formula. by which individual preferences among alternatives 
completely determine a community choice, or "outcome." A voting scheme, then, 
is a function of the following sort. Let there be n voters, and let Z be the set of 
alternatives open to society. Call an ordering of Z a preference ordering, and an 
n-tuple of preference orderings a preference n-tuple. ("Orderings" in ikhis paper 
allow ties.) A preference ordering is thus an individual's account of his preferences 
among available alternatives, and a preference n-tuple consists of a profession of 
preferences from each individual. A voting scheme is a function which assigns a 
member of Z to each possible preference n-tuple for a given number n and set Z. 

A voting scheme is a special case of what I shall call a "game form," and the 
theorem on voting schemes is a special case of a general result about game forms 
which I shall give. A game form, as I shall explain, is a system which allows each 
individual his choice among a set of strategies, and makes an outcome depend, in 
a determinate way, on the strategy each individual chooses. A "strategy" here is 
the same as a pure strategy in game theory, and indeed a game form is a game with 

1 Independence of irrelevant alternatives and positive association, which Vickrey calls non-perversity. 
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no individual utilities yet attached to the possible outcomes. Formally, then, a 
gameJorm is a function g with a domain of the following sort. To each player 1 to 
n is assigned a non-empty set, S,... ., Sn respectively, of strategies. It does not 
matter, for purposes of the definition, what a strategy is. The domain of the function 
g consists of all n-tuples <s1, ... , sn>, where s1 E S1,s2 E S2 ... . sn E Sn. The values 
of the function g are called outcomes. A voting scheme, it follows, is a game form 
such that, for each player, his set of strategies is the set of all orderings of a set Z of 
available alternatives, where Z includes the set X of outcomes. 

Voting schemes and game forms are mathematical structures used to represent 
flesh and blood systems of decision making which might be instituted. They 
represent decision-making systems which leave nothing to chance, but let the 
choice a community makes depend solely on what its members do. Other struc- 
tures could be used for the same purpose, but here, voting schemes and game forms 
are especially apt: each, I shall argue, applies to a wide range of non-chance 
decision-making systems, and each picks out certain aspects of a system which 
pertain to manipulability. 

Game forms apply to the widest range of decision-making systems, and apply to 
each in a clear-cut way. Every non-chance procedure by which individual choices 
of contingency plans for action determine an outcome is characterized by a game 
form. Game forms, then, characterize any non-chance procedure we would consider 
voting. In representing a system as a game form, each possible way of voting counts 
as a strategy. In single-ballot voting of any sort, for instance, a strategy would 
consist of a way of marking the ballot. In sequential voting, a strategy is a way of 
marking each ballot on the basis of what has gone before. For any such system, it 
is clear what constitutes a strategy, and what each combination of strategies has 
as its outcome. It is clear, then, what game form characterizes the system. 

For game forms alone, however, there is no such thing as manipulation. To 
manipulate a system, a voter must misrepresent his preferences. Nothing in the 
structure of a game form tells us what strategy "honestly" represents any given 
preference ordering, and hence which strategies would misrepresent it. To talk of 
manipulation, then, we must specify not only a game form, but for each voter and 
preference ordering P, we must specify the strategy which "honestly represents" 
P. Only then can we apply the definition of manipulation as securing an outcome 
one prefers by selecting a strategy other than the one that honestly represents 
one's preferences. 

Manipulability, then, is a property of a game form g(s1, ... , sn) plus n functions 
O1 .... 0 n, where for each individual k and preference ordering P, uk(P) is the 
strategy for k which honestly represents P. Formally, then, where Z is the set of all 
alternatives open to the community, each Sk is a function whose arguments are all 
orderings of Z and whose values are strategies open to k. Manipulability is a 
property of a game form in conjunction with an n-tuple <a1,.. .,n> of such 
functions. 

Where a decision-making system is characterized by functions g, a, . . ., an as 
I have indicated, it is characterized by a voting scheme, 

V(Pl, . . ., Pn) = g(a1(P1), ) - . , Cn(Pn))- 
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For each n-tuple <P1,.. ., Pa>, v(P1, .. ., Pn) is the outcome if individuals 1,... n,n 

honestly profess preference orderings Pl, . . ., Pn respectively. Whereas manipul- 
ability is not a property of a game form alone, it is a property of a voting scheme 
alone. Voting scheme v is manipulable if for some k and preference n-tuples 
<P1,..., Pn > and <Pg, . . , Pn>, Pi = P' except when i = k, and 

VW' P.. Pn) k V(Pl, - I n 

For, then, if Pk is k's real preference ordering, given the way the others vote, k 
prefers the result of expressing preference ordering Pk' to that of expressing Pk. 

Note that to call a voting scheme manipulable is not to say that, given the actual 
circumstances, someone really is in a position to manipulate it. It is merely to say 
that, given some possible circumstances, someone could manipulate it. A voting 
scheme is manipulable, then, unless its structure guarantees that no matter bow 
each person votes, no one will ever be in a position to manipulate the scheme. 

Manipulability pertains to voting schemes, and in that sense, then, a voting 
scheme picks out the aspects of a decision-making system which pertain to 
manipulation. In some cases, however, it will not be clear what voting scheme 
characterizes a given decision-making system. It will be clear enough what game 
form characterizes it, but the voting scheme which characterizes it is derived from 
the game form by means of the functions o,,. . ., an . What are we to make of these 
functions? They characterize "honest" voting, I have said. That makes sense as 
long as for each individual k and preference ordering P, it is clear what strategy 
for k "honestly expresses" P. For many systems of voting, however, it is not always 
clear what constitutes honesty. A system may give no single clear way to express 
certain preference orderings. 

Suppose, for instance, a club is to vote first on whether to have a party, and then, 
if the motion to have a party carries, on whether to make it alcoholic. What 
strategy would count as expressing the following preference ordering: a non- 
alcoholic party first, no party at all second, and an alcoholic party last? It is not at 
all clear. Hence, although it is clear what game form characterizes the system, it is 
not at all clear what voting scheme, if any, characterizes it. Manipulability is most 
clearly a property of voting schemes, but many real systems of voting are not 
clearly characterized by any one voting scheme. 

In short, then, game forms are more versatile but manipulability pertains more 
directly to voting schemes. Any non-chance system of decision making is 
characterized by a game form in a clear-cut way, but manipulability is not a 
property of game forms alone. It is rather a property of a game form plus the 
functions 1,,. . ., an which characterize honest voting. Equivalently, it is a property 
of the voting scheme defined from the game form g and a 1, . , an Unless, however, 
the system prescribes for each preference ordering a way to express it, the choice 
of functions 1, . . ., an to characterize honest expression of preferences will be to 
some degree arbitrary. Hence the choice of a voting scheme to characterize the 
system will be to some degree arbitrary. Game forms most clearly characterize 
decision-making systems, but manipulation pertains to voting schemes. 
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The moral, of course, is that unless a decision-making system prescribes clearly 
how each voter is honestly to express each possible preference ordering, manipula- 
tion of the system is an unclear notion. A voter manipulates the system if, by 
misrepresenting his preferences, he secures an outcome he prefers. Unless we have 
clear standards of honest representation and hence of misrepresentation, 
manipulation makes no clear sense. 

Even so, we can prove a general result on the manipulability of decision-making 
systems, and do so either in terms of game forms or of voting schemes. What we 
can show is this: however we characterize honest voting in a system, the system as 
we characterize it will be manipulable. All non-trivial voting schemes are 
manipulable, so that no matter what voting scheme we choose to characterize a 
system, the system, as characterized, will be manipulable. Whatever functions 
a1, . . . ,a,, we choose to characterize honest voting, honesty will not always be the 
best policy. The only exceptions are trivial systems-dictatorial systems and 
systems with no more than two outcomes. 

Here is the result put in terms of game forms. A strategy s* is dominant for player 
k and preference ordering P of the set of outcomes if, for each fixed assignment of 
strategies to players other than k, strategy s* for k produces an outcome at least as 
high in preference ordering P as does any other strategy open to k. For player 1, 
for instance, s* is dominant for P if there is no strategy n-tuple <s,... s, Sn> such 
that 

g(S 1 S2 ** S.) P g(s*, S2 ** S.). 

A game form is straightforward if for every player k and preference ordering P of 
the outcomes, some strategy is dominant for k and P. The theorem on game forms 
says that no non-trivial game form is straightforward. 

From that the result put in terms of voting schemes follows. The argument is 
given in Section 3 in the proof of the corollary. A voting scheme, as I have said, is 
a game form of a special kind, in which the strategies are preference orderings of 
the alternatives. Now take a voting scheme, and take a voter k and preference 
ordering P for which no strategy is dominant. Then in particular, honest voting is 
not a dominant strategy for k and P. Thus if P is k's real preference ordering, then 
given some possible way the others might vote, k does best to misrepresent his 
preferences. The voting scheme is therefore manipulable. The result on manipul- 
ability, then, can be put in terms either of game forms or of voting schemes, and the 
result put in terms of voting schemes follows from the result put in terms of game 
forms. 

Some further comments on voting schemes. They characterize a large variety of 
systems. A voting scheme need in no way be democratic, and it need not guarantee 
that all individuals count alike. Some voting schemes represent dictatorships, 
some oligarchies, and some democracies. Nor must a voting scheme treat all 
alternatives in the same way. A voting scheme might, for instance, allow Jones a 
special say on what groceries get delivered to him. It might also rule out duels even 
if everyone wanted one to be fought. Some voting schemes treat all alternatives 
alike; others do not. 
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A voting scheme must assign an outcome to every preference n-tuple, not just 
to some. Murakami [4, pp. 75-77] discusses group manipulability of structures 
which do not meet this condition, but as far as I can see, doing so makes no sense. 
However people vote, something will happen. If some preference n-tuples lead to 
stalemate and inaction, then inaction is a possible outcome. If someone prefers 
inaction to the outcome he would secure with honest voting, and he can secure 
inaction by misrepresenting his preferences, the system is manipulable. Stalemate 
must be counted as an outcome, and so in discussing manipulability, we should 
consider a function which assigns a value to every preference n-tuple and not just 
to some. 

Finally, neither voting schemes nor game forms allow ties. Both take single 
outcomes as values, and for good reason. In questions of manipulability, the final 
outcome is what matters; manipulation, after all, is a way of securing a final out- 
come one prefers. Here we are considering decision-making systems in which 
chance plays no part, and to display manipulation of such a system, we need 
functions whose values are definite final outcomes. 

In this respect, a voting scheme differs from an Arrow "constitution" [2], which 
it resembles in most other respects. Both a constitution and a voting scheme take 
preference n-tuples as arguments, but whereas to each preference n-tuple a voting 
scheme assigns a single alternative, a constitution assigns a choice function-a 
function which, for each non-empty set of alternatives, chooses a non-empty subset. 
Now this subset may have more than one member. Some constitutions, then, allow 
ties. 

Voting schemes rule out ties, for in systems which leave nothing to chance, ties 
make no sense. A voter misrepresents his preferences in order to secure a decision 
he prefers, and in the end only one alternative is chosen. In a non-chance decision- 
making system, it does a voter no good to have an alternative he likes tie for 
winning place if some other alternative tied with it is actually chosen.2 To 
investigate manipulability, we must consider the entire system by which the choice 
is made, including the system for breaking any ties which may develop. That means 
considering a system which results in a single choice. Voting schemes and game 
forms, then, suit the present purpose; some Arrow constitutions do not. 

Suppose, though, a system breaks ties by chance. Game forms and voting 
schemes, I have said, characterize only non-chance decision-making systems. What 
can we say about the manipulability of systems which make an outcome depend 
partly on preferences but also partly on chance? 

A system which broke ties by chance would not be a voting scheme. It would 
assign to each preference n-tuple not an outcome, but a lottery among possible 
outcomes. We might call it a "'mixed decision scheme." Let a prospect be an 
assignment to alternatives of probabilities which total one. Then a mixed decision 
scheme is a function which assigns a prospect to each preference n-tuple. 

Just as we can talk about the manipulability of a voting scheme, we can talk 
about the manipulability of a mixed decision scheme. Call a mixed decision scheme 

2 Vickrey [5, p. 508] makes roughly the same point. 
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manipulable unless it is the case that, whenever everyone expresses his preferences 
honestly in an election, the scheme assigns to that election a prospect each voter 
likes as well as any prospect he could have secured by misrepresenting his 
preferences, given the actual votes of everyone else. Whereas, with trivial excep- 
tions, all voting schemes are manipulable, it is easy to find a mixed decision scheme 
which is not manipulable. Take the scheme which assigns to each alternative the 
fraction of voters for whom it is a first choice. In other words, each voter writes his 
first choice on a ballot; a single ballot is drawn at random; and the choice on that 
ballot is selected. A voter then has every incentive to give his true first choice. If 
his ballot is not drawn, it makes no difference how he votes, whereas if his ballot 
is drawn, the voter gets his true first choice if and only if he puts it as first choice 
on his ballot. His second and lower choices do not matter, for only the choice on 
the ballot can affect the outcome. Hence the system is not manipulable, and we 
have established the existence of a mixed decision scheme which is not manipul- 
able, not dictatorial, and can allow a large number of possible outcomes. 

That leaves the question of whether any non-manipulable mixed decision 
schemes are attractive. Exactly what is required for a scheme to be "attractive," I 
cannot specify. Clearly, though, the scheme I have presented is unattractive; it 
leaves too much to chance. On the other hand, a system which allowed only 
occasional ties to be broken by chance might be quite attractive. Work needs to 
be done on mixed decision schemes. It would be good to identify properties which 
would make a mixed decision scheme attractive, and to have theorems on the 
manipulability of classes of mixed decision schemes which, by various criteria, are 
attractive. No such work is attempted in this paper. 

I have argued, then, that in discussing manipulability of systems which leave 
nothing to chance, we must consider functions whose values are single outcomes- 
voting schemes or game forms. For systems with an element of chance, we must 
consider functions whose values are prospects-mixed decision schemes. There 
exists a non-manipulable mixed decision scheme, but whether any non-manipul- 
able mixed decision schemes are attractive in any way remains to be seen. 

Back, then, to the topic of this paper: voting schemes which leave nothing to 
chance. Every voting scheme is dictatorial, limited to one or two possible out- 
comes, or subject to manipulation. Why should that matter? It means that no 
system of decision making but a trivial one can depend on informed self-interest 
to make outcomes a function of true preferences. If a system does make outcomes 
a function of preferences, it is in virtue of individual integrity, ignorance, or stupid- 
ity, or because preferences are sufficiently predictable that the system does not have 
to accommodate all possible patterns of preferences. For suppose a system 
accommodates all possible preference patterns, and makes outcomes a function of 
preferences. Then where v is that function, v is a voting scheme, and unless trivial, 
is manipulable. Hence for some k and P1, . . ., P, let x = v(P1, . . ., Pn). Then for 
some y, y Pk x, but given the preferences of everyone else, for some Pk, if k's 
preference ordering were Pk, the outcome would be y. Thus if k acted as if his 
preference ordering were Pk, the outcome would be y, which would be more to 
his liking than the outcome he actually secures. The way k actually acts, given his 
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preferences, is not the way which best promotes k's interests. The way k acts, then, 
must depend on something other than informed self-interest-perhaps ignorance, 
integrity, or stupidity. No straightforward appeal to informed self-interest can 
make the outcome a non-trivial function of preferences regardless of what those 
preferences are. 

I have argued, then, that game forms'and voting schemes are the best subjects 
for manipulability theorems on non-chance systems of decision-making, and that 
the theorems proved here have regrettable consequences. 

3. MANIPULABILITY THEOREMS AND PROOFS 

The results and proofs which follow are self-contained. 
A game form is characterized by: 

(i) A set X, whose members are called possible outcomes, or simply outcomes. 
Unless otherwise stated, variables x, y, and z will range over outcomes. 

(ii) A positive integer n, called the number of players. The n players will be 
denoted by the integers 1 to n, and variables i,j, and k will range over these integers. 

(iii) n sets Si, one for each i. For each i the members of Si are called strategies 
for i. The word "strategy," then, refers here to what in game theory is usually called 
a "pure strategy." An n-tuple <s,. .. , sn>, with s1 E S1, ... , sn E Sn will be called a 
strategy n-tuple. Strategy n-tuples will be indicated by bold-face small letters on 
the pattern s = <s1,... , se>, s' = <s'1,.. I, s'>, and so forth. 

(iv) A function g, defined for every strategy n-tuple, whose range is X. 
Strictly speaking, a game form is simply a function g which can be characterized 

as above. We can define a game form, then, as a function whose domain is the 
Cartesian product S1 X ... X Sn of a finite number of finite non-empty sets. Its 
values are called outcomes, its arguments are called strategy n-tuples, and a member 
of a set Si is called a strategy for i. 

We now define what it is for a game form g to be straightforward. An ordering 
of a set Z is a two-place relation P between members of Z, such that for all x, y, 
and z in Z, 

(la) - (x P y & y P x), 

(Ib) xPz-(xPy V yPz). 

A preference ordering is an ordering of X, the set of outcomes. The variable P then 
means "is preferred to." Distinct x and y may be indifferent under ordering P; if 
so, neither x P y nor y P x. 

Now we will explain some matters of notation. In the first place, for any two- 
place relation P between members of X, x R y will mean - y P x, and x I y will 
mean x P y & - y P x. Thus if P is a preference ordering, P indicates strict 
preference, I indifference, and R preference or indifference. On the same pattern, 
x R' y will mean - y P' x, x Rk y will mean - y Pk x, and so forth. Likewise x I' y 
will mean '-x P'y & - y P' x, x Ii y will mean -x Pi y & -y Pi x, and so forth. In 
the second place, for any n-tuple indicated by boldface type, the result of altering 
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its kth place will be indicated by a symbol on the following pattern. Where 

S = <S1, I Sn>. 

we have 

sk/t = <S1, . . 1 d , Sk+ 1, Sn> 

In other words, s' = sk/t iff s' = t and 

(Vi) [i ? k -+s' = si] 

Where P is a preference ordering, a strategy t is P-dominant for k if for every 
strategy n-tuple s, g(sk/t)Rg(s). In other words, t is P-dominant for k iff no matter 
what strategies are fixed for everyone else, strategy t for k produces an outcome at 
least as high in preference ordering P as does any other. A game form is straight- 
forward if, for every preference ordering P and player k, there is a strategy which 
is P-dominant for k. 

A player k is a dictator for game form g if, for every outcome x, there is a 
strategy s(x) for k such that g(s) = x whenever Sk = s(x). A game form g is dictatorial 
if there is a dictator for g. 

THEOREM: Every straightforward gameform with at least three possible outcomes 
is dictatorial. 

Before proceeding with the proof, we present a corollary. 
A voting scheme is a game form v such that for some set Z with X c Z, the set 

Si of strategies open to each player i is the set of orderings of Z. A voting scheme is 
manipulable if for some k, for some n-tuple P of orderings of Z, and for some 
ordering P* of Z, v(P) P* v(Pk/P*). 

COROLLARY: Every voting scheme with at least three outcomes is either dictatorial 
or manipulable. 

PROOF (from the principal theorem): Suppose v is non-dictatorial and has at 
least three possible outcomes. Then, since v is a game form, v is not straight- 
forward, and thus for some k and P, no strategy is P-dominant for k. P here is an 
ordering of X, the set of outcomes, and a strategy is an ordering P* of the set Z of 
alternatives, with X c Z. Let P* extend P to Z, so that for all x and y in X, 

(2) xP*y',+ xPY. 

Then, in particular, P* is not P-dominant for k. Hence for some strategy n-tuple 
P of orderings of Z, it is not the case that v(Pk/P*) Rv(P), and so v(P) P v(Pk/P*). 
But since v(P) E X and v(Pk/P*) E X, from (2), v(P) P* v(Pk/P*), and v is manipul- 
able. Assuming the main theorem, we have proved the corollary. 

Back, now, to the main theorem. We prove it by means of the Arrow impossibility 
theorem, which I shall now state. A preference n-tuple over a set X is an n-tuple 
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<P1, .i. , P > whose terms are preference orderings of X. Preference n-tuples will 
be designated in bold-face type on the pattern P = <P1,... Pa>, P' = <P1,... ,> 
and so forth. A social welfare function is a function whose arguments, for some 
fixed n and X, are all preference n-tuples P over X, and whose values are preference 
orderings of X. Arrow [1] showed that every social welfare function violates at 
least one of the following Arrow conditions. 

Scope: X has at least three members. 
Unanimity: If P = f(P) and (Vi) x Pi y, then x P y. 
Pairwise Determination:3 If 

(Vi)[xPiy xPiY], 

(Vi) [y Pi X y P' x], 

P =f(P), 

P, = f(P), 

then 

x P y + x P'y. 

Non-dictatorship: There is no dictator for f, where a dictator for f is a k such 
that for every P, x, and y, if x Pk y and P = f(P), then x P y. 

The proof of the theorem on straightforwardness takes up the remainder of the 
paper. Let g be a straightforward game form, fixed for the entire proof, with at 
least three outcomes. We must prove g dictatorial. 

Since g is straightforward, for every i and P, there is a strategy s which is 
P-dominant for i. For each i, let vi be a function such that for every P, strategy 
vi(P) is P-dominant for i. For each preference n-tuple P, let 

5(P) = <KU(P1), . .,,(P)> 

The functions a and ,, ... , o, will be fixed throughout the proof; v will be the 
composition of g and a, so that for all P, v(P) = g(a(P)). 

We now use v to generate from each preference n-tuple P a two-place relation 
f (P) which turns out to be an ordering. The function f so defined is thus an Arrow 
social welfare function. We shall show that f satisfies all the Arrow conditions 
except non-dictatorship, and is therefore dictatorial. From this it will follow that 
g is dictatorial. Hence any straightforward game form with at least three outcomes 
is dictatorial. 

A chain ordering is an ordering in which no distinct items are indifferent: P is a 
chain ordering iff 

(Vx) (Vy) [x I y -+x = y]. 

Let Q be a chain ordering of X, fixed for the entire proof. We let preference n-tuple 
P determine a two-place relation between members of X in the following way. 

' Arrow gives an equivalent condition, the independence of irrelevant alternatives, but in effect uses 
the condition given here in the proof of his theorem. 
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Let Z c X. For each i, we derive a chain ordering Pi * Z of X from the ordering 
Pi by moving the members of Z to the top, preserving their ordering with respect 
to each other except in case of ties, and otherwise ordering everything according to 
Q. In other words, for each pair of alternatives x and y, 

(3a) If xeZandyeZ,thenx(Pi *Z)yiffeitherxPiyorbothxIiyandxQy. 

(3b) If xeZ and y Z, then x(Pi *Z)y. 

(3c) Ifx0Zandy0Z,thenx(P1*Z)yiffxQy. 

For each i we have defined a two-place relation Pi * Z between members of X. 
Let 

p * Z = <Pi * Z,., Pn *Z> 

The following features of the * operator follow easily from (3a)-(3c). (i) For 
each i, Pi * Z is a chain ordering. (ii) If Y c Z, then (P * Z) * Y = P * Y. (iii) Sup- 
pose P and P' agree on Z; that is, suppose 

(Vi)(Vx)(Vy) [(X E Z & y E Z) -+ (x Pi Y -+ x Pi Y)]. 

Then P * Z = P' * Z. Features (i)-(iii) will be cited at later points in the proof. 
Now let xPy be the relation 

x * y & x = v(P * {x, y}). 

We have defined a two-place relation P as a function of P, and we shall call that 
function f, so that P = f (P). We shall show in the following three assertions that 
f is an Arrow social welfare function which satisfies the Arrow conditions other 
than non-dictatorship. 

In what follows, P means f(P), P' means f(P'), and so forth. Also, xRy means 
-y P x, and so 

xRy?-*[x = y V y * v(P* {x,y})]. 

Hence, (iv) if x P y, then x R y. 
As a first step in showing that f satisfies the Arrow conditions, note that f 

satisfies the Arrow condition of pairwise determination. 
(v) Suppose 

(Vi)[xPiyYXxPiY], 

(Vi)[yPix?YyPiX] 

Then x P y + x P' y. 
For then from (iii), P * {x, y} = P' * {x, y}, and hence 

xev(P * {x,y})?-*xev(P' * {x,y}), 

which is to say x P y *-+ x P'y. 
Assertion 1, which follows, is used in a number of ways throughout the rest of 

the proof of the theorem. It says, in effect, that if y R x, and nobody is indifferent 



598 ALLAN GIBBARD 

between x and y, then given the strategies of those who prefer y to x, those who 
prefer x to y could not, whatever their strategies, get x chosen. 

ASSERTION 1: Let s = v(P). Suppose for strategy n-tuple s' and alternatives x 
and y, x * y, and 

(4a) (Vi) [y Pi x +s'i = Si] 

(4b) (Vi) - x Ii Y, 

(4c) yRx. 

Then x * g(s'). 

PROOF: Suppose on the contrary that x = g(s'). We shall show that for some 
k, uk(Pk) is not Pk-dominant for k, contrary to what has been stipulated for Sk. 

Let P* = P * {x, y}, and let strategy n-tuple t = u(P*). Then y R x means 

x = y V x + v(P*), 

and since x * y and v(P*) = g(u(P*)) = g(t), we have x * g(t). Now let 
s0, ... I S' be the sequence obtained by starting with s' and at each step k replacing 
Sk with tk. Thus 

s = s, 

S = sk 1 k/tk, 

and in reverse order, 

Sn = t 

k-1 = skk/s. 

In other words, for each k, S is the strategy n-tuple <S k... sk> such that for 
each i, 

(5a) i _< k sik = ti 

(5b) i > k si = s' 

so that 

so KS' ,'2S13,S ...s> S=<1 E 2 E 3 E n> 

S t 2 E 3 In > I 

s= 2 t ,t2s, E 
I 

SI> 

and so forth. Since x = g(s') but x 7 g(t), we have x = g(s?) but x 7 g(sn)* Let k be 
the least such that g(sk) 7 x. We shall show that either tk is not Pk-dominant for 
k or Sk is not Pk-dominant for k. Since tk = ak(Pk*), and Sk = ak(pk), in either case 
the original characterization of a is violated. The supposition that x = g(s') is 
therefore false. Consider two cases, jointly exhaustive. 
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CASE 1: g(sk) = y and y Pkx. 

Then since g(5k 1) = x, we have g(Sk) kg(Sk -), and since Sk-l = skk/s', it is not 
the case that g(skk/s) Rk g(sk), and thus sk is not Pk-dominant for k. But since 
y Pk x, by (4a), sk = Sk, and Sk is not Pk-dominant for k. But since Sk = Uk(Pk), Sk is 
Pk-dominant for k, and we have a contradiction. 

CASE 2: g(sk) * y or x Pk y. 

Then we always have x P* g(Sk). For if g(sk) = y, then x Pk y, and by (3a) and the 
definition of P*, x P* y. If, instead, g(sk) + y, then since g(sk) * x, we have 
g(sk) 0 {x, y}, and by (3b), again x P* g(sk ). Now x = g(sk ), and sk = sk 'k/tk. 
Hence g(sk ) Pk* g(s k/tk), and tk is not P*-dominant for k. But since tk = Uk(Pk), 
tk is P*-dominant for k, and we have a contradiction. In both Cases 1 and 2, then, 
the supposition that x = g(s') leads to a contradiction. Since by (4b), - x Ik y, the 
two cases exhaust the possibilities. Therefore x * g(s'), and the assertion is proved. 

From Assertion 1, a number of properties of v follow easily. 

COROLLARY 1: If (Vi) x Pi y, then x P y. 

PROOF: Since x is an outcome, for some strategy n-tuple s', x = g(s'). If s = v(P), 
then all the hypotheses of Assertion 1 are satisfied except for (4c), and the 
conclusion of Assertion 1 is violated. Therefore (4c) is false, and x P y. 

COROLLARY 2: If (Vi) - x Ii y and y R x, then v(P) * x. 

PROOF: (4b). and (4c) in Assertion 1 are satisfied. Let s' = s = v(P). Then in 
addition, (4a) is satisfied, and by Assertion 1, g(s') * x. Thus since g(s') = g(&(P)) 
= v(P), we have v(P) * x. 

COROLLARY 3: If (Vi) - x Ii y and v(P) = x, then x P y. 

This is the contrapositive of Corollary 2. 

ASSERTION 2: P is a preference ordering. 

P clearly satisfies the condition 

(Vx)(Vy) - (x P y & y P x), 

for x P y means 

x * y&x = v(P* {x,y}), 

and y P x means 

y * x&y = v(P* {x,y}). 
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It remains to show that P satisfies the condition that for all x, y, and z, 

xPz-+ (Vy)(xPj V yPz). 

Let P' = P * {x, y, z}. Then from (ii), P' * {x, z} = P * {x, z}, so that since 

x P z[x7 z &x= v(P *{x,z}) ], 

xP'z< [x 7 z&x = v(P' * {x,z}) 

we have 

x P' z x P z. 

Similarly, 

x P' y x P y, 

y P' Z y P z. 

We need only to show, then, that for all x, y, and z, 

xP'z-+(xP'y V yP'z). 

Suppose x P' z. Then x and z are distinct, since x P' z means 

x * z&x = v(P'*{x,z}). 

If y = x, we have y P' z, and if y = z, we have x P' y. There remains the case where 
y * x and y * z. Then by (i) and the definition of P', each P' is a chain ordering, 
and 

(Vi) [-x y & -xI Fz& - yI Fz]. 

CASE 1: X = V(P'). 

Then by Corollary 3 to Assertion 1, x P' y. 

CASE 2: x * v(P'). 

Since x P' z, by Corollary 2 to Assertion 1, z * v(P'). If w 0 {x, y, z}, then by (3b) 
and the definition of P', (Vi) x P' w. Hence by Corollary 1 to Assertion 1, x P' w, 
and by Corollary 2, w * v(P'). We have, then, x * v(P'), z * v(P'), and if 
w 0 {x, y, z}, then w * v(P'). Thus by elimination, y = v(P'), and by Corollary 3 
to Assertion 1, y P' z. From x P' z, we have shown that in Case 1, x P' y, and in Case 
2, y P' z. This, as we said, suffices to show that P is an ordering, and the assertion 
is proved. 

ASSERTION 3: If g has at least three possible outcomes, then f violates the Arrow 
condition of non-dictatorship. 

That is, there is an individual k, called the dictator for f, such that for every 
preference n-tuple P and every x and y, x Pk y -+ x P y. 
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PROOF: Since by Assertion 2, the values of f are preference orderings, f is an 
Arrow social welfare function. We have shown that f satisfies all of the Arrow 
conditions but non-dictatorship. In the first place, since every outcome of g is an 
outcome of v, scope holds. By (v),f satisfies pairwise determination, and by Corollary 
1 to Assertion 1, f satisfies unaminity. Therefore, since the Arrow theorem says 
that no social welfare function satisfies all four Arrow conditions, f violates non- 
dictatorship. 

It remains to show that since f violates the Arrow condition of non-dictatorship, 
g is dictatorial. 

ASSERTION 4: The dictatorforf is dictatorfor g. 

PROOF: Let k be dictator for f. Then k is dictator for g if for every outcome y, 
there is a strategy s(y) for k such that 

(6) (Vs') [sk = s(y) -+ g(s') = y]. 

Let Py be any ordering such that (Vx) [x + y -+ y Py x] and let s(y) = Gk(PY). We 
appeal to Assertion 1 to show that this s(y) satisfies (6). 

Let s' be such that s' = s(y), and suppose x + y. Then by the way Py was 
characterized, y Py x. We shall show that g(s') + x. Let P be any preference 
n-tuple such that 

(7a) Pk = P, 

(7b) (Vi) [i :& k -+x Pi Y], 

and let s = ((P). Then Sk = uk(Pk) = ak(Py) = s(y) = sk. Thus since by (7b), only 
k prefers y to x, (4a) is satisfied, and since in addition, y Py x and hence by (7a) 
y Pk x, (4b) is satisfied also. Since y Pk x and k is dictator for f, we have y P x, and 
(4c) is satisfied. Therefore by Assertion 1, x * g(s'). We have shown that if x * y, 
then x +& g(s'). Hence y = g(s'). 

We have shown, then, that if s(y) = uk(Py), then (6) is satisfied. Thus k is dictator 
for g, and g is dictatorial. This completes the proof that any straightforward 
voting scheme with at least three outcomes is dictatorial. 

University of Chicago 
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