
Determining Possible and Necessary Winners under

Common Voting Rules Given Partial Orders

Lirong Xia lxia@cs.duke.edu

Vincent Conitzer conitzer@cs.duke.edu

Department of Computer Science, Duke University, Durham, NC 27708, USA

Abstract

Usually a voting rule requires agents to give their preferences as linear orders. However,
in some cases it is impractical for an agent to give a linear order over all the alternatives. It
has been suggested to let agents submit partial orders instead. Then, given a voting rule,
a profile of partial orders, and an alternative (candidate) c, two important questions arise:
first, is it still possible for c to win, and second, is c guaranteed to win? These are the
possible winner and necessary winner problems, respectively. Each of these two problems
is further divided into two sub-problems: determining whether c is a unique winner (that
is, c is the only winner), or determining whether c is a co-winner (that is, c is in the set of
winners).

We consider the setting where the number of alternatives is unbounded and the votes
are unweighted. We completely characterize the complexity of possible/necessary winner
problems for the following common voting rules: positional scoring rules, Copeland, max-
imin, Bucklin, ranked pairs, voting trees, and plurality with runoff.

1. Introduction

In multiagent systems, often, the agents must make a joint decision in spite of the fact
that they have different preferences over the alternatives. For example, the agents may
have to decide on a joint plan or an allocation of tasks/resources. A general solution to
this problem is to have the agents vote over the alternatives. That is, each agent i gives a
ranking (linear order) ≻i of all the alternatives; then a voting rule takes all of the submitted
rankings as input, and based on this produces a chosen alternative (the winner), or a set
of chosen alternatives. The design of good voting rules has been studied for centuries by
the social choice community. More recently, computer scientists have become interested in
social choice—motivated in part by applications in multiagent systems, but also by other
applications. Hence, a community interested in computational social choice has emerged.

In “traditional” social choice, agents are usually required to give a linear order over all
the alternatives. However, especially in multiagent systems applications, this is not always
practical. For one, sometimes, the set of alternatives is too large. For example, there are
generally too many possible joint plans or allocations of tasks/resources for an agent to
give a linear order over them. In such settings, agents must use a different voting language
to represent their preferences; for example, they can use CP-nets (Boutilier, Brafman,
Domshlak, Hoos, & Poole, 2004; Lang, 2007; Xia, Lang, & Ying, 2007a, 2007b; Lang &
Xia, 2009). However, when an agent uses a CP-net (or a similar language) to represent
its preferences, this generally only gives us a partial order over the alternatives. Another

1

issue is that it is not always possible for an agent to compare two alternatives (Pini, Rossi,
Venable, & Walsh, 2007). Such incomparabilities also result in a partial order.

In this paper, we study the setting where for each agent, we have a partial order cor-
responding to that agent’s preferences. We study the following two questions. (1) Is it
the case that, for some extension of the partial orders to linear orders, alternative c wins?
(2) Is it the case that, for any extension of the partial orders to linear orders, alternative
c wins? These problems are known as the possible winner and necessary winner problems,
respectively, introduced by Konczak and Lang (Konczak & Lang, 2005). Depending on
the interpretation of “c wins”, the possible/necessary winner problems are further divided
into two sub-problems: one is called the possible/neccessary unique winner problem (here
“unique” is often omitted when causing no confusion), in which “c wins” means that c is
the only winner of the election; the other is called the possible/necessary co-winner prob-
lem, in which “c wins” means that c is one of the winners. It should be noted that the
answer depends on the voting rule used. Previous research has also investigated the setting
where there is uncertainty about the voting rule; here, a necessary (possible) winner is an
alternative that wins for any (some) realization of the rule (Lang, Pini, Rossi, Venable, &
Walsh, 2007). In this paper, we will not study this setting; that is, the rule is always fixed.

While these problems are motivated by the above observations on the impracticality
of submitting linear orders, they also relate to preference elicitation and manipulation. In
preference elicitation, the idea is that, instead of having each agent report its preferences
all at once, we ask them simple queries about their preferences (e.g. “Do you prefer a to
b?”), until we have enough information to determine the winner. Preference elicitation
has found many applications in multiagent systems, especially in combinatorial auctions
(for overviews, see (Parkes, 2006; Sandholm & Boutilier, 2006)) and in voting settings
as well (Conitzer & Sandholm, 2002, 2005b; Conitzer, 2009). The problem of deciding
whether we can terminate preference elicitation and declare a winner is exactly the nec-
essary winner problem. Manipulation is said to occur when an agent casts a vote that
does not correspond to its true preferences, in order to obtain a result that it prefers. By
the Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975), for any reason-
able voting rule, there are situations where an agent can successfully manipulate the rule.
To prevent manipulation, one approach that has been taken in the computational social
choice community is to study whether manipulation is (or can be made) computationally
hard (Bartholdi, Tovey, & Trick, 1989a; Bartholdi & Orlin, 1991; Elkind & Lipmaa, 2005;
Conitzer, Sandholm, & Lang, 2007; Zuckerman, Procaccia, & Rosenschein, 2009). The fun-
damental questions that have been studied here are “Given the other votes, can a coalition
of agents cast their votes so that alternative c wins?” (so-called constructive manipulation)
and “Given the other votes, can this coalition of agents cast their votes so that alternative c
does not win?” (so-called destructive manipulation). These problems correspond to the pos-
sible winner problem and (the complement of) the necessary winner problem, respectively.
To be precise, they only correspond to restricted versions of the possible winner problem
and (the complement of) the necessary winner problem in which some of the partial orders
are linear orders (the nonmanipulators’ votes) and the other partial orders are empty (the
manipulators’ votes). However, if there is uncertainty about parts of the nonmanipulators’
votes, or if parts of the manipulators’ votes are already fixed (for example due to preference

2

elicitation), then they can correspond to the general versions of the possible winner problem
and (the complement of) the necessary winner problem.

Another related problem is the evaluation problem (Conitzer et al., 2007). We are
given a probability distribution over each voter’s vote, and we are asked for the probability
that a given alternative wins. It has been shown that for any anonymous voting rule, when
the number of alternatives is no more than a constant, there is a polynomial-time algorithm
that solves the evaluation problem; when the number of alternatives is not bounded
above by a constant, the problem becomes #P hard for plurality, Borda, and Copeland
rules (Hazon, Aumann, Kraus, & Wooldridge, 2008). The complexity of influencing the
voters’ distribution to make a given alternative win has also been studied (Erdélyi, Fernau,
Goldsmith, Mattei, Raible, & Rothe, 2009). The possible/necessary winner problems are
related to the evaluation problem in the following way. If every voter assigns positive
probability to every one of the linear orders that extend her partial order, then, for any
alternative c, c is a possible winner if and only if the probability that c wins the election
is positive; c is a necessary winner if and only if the probability that c wins the election
is 1. We must note that this reduction from the possible/necessary winner problem to
the evaluation problem is in general not polynomial, because for any partial order, it is
possible that there are exponentially many linear orders that extend it. For example, if the
partial order is empty, then any linear order is an extension of it. However, in this paper,
we prove results that show that the possible/necessary winner problem is hard even when
the number of undetermined pairs in each partial order is a constant, so that there are in
fact only polynomially many linear orders that extend it. Hence, our hardness results also
imply (only NP-)hardness results for the evaluation problem.

Because of the variety of different interpretations of the possible and necessary winner
problems, it is not surprising that there have already been significant studies of these prob-
lems. Two main settings have been studied (see (Walsh, 2007) for a good survey). In the
first setting, the number of alternatives is bounded, and the votes are weighted. Here, for
the Borda, veto, Copeland, maximin, STV, and plurality with runoff rules, the possible
winner problem is NP-complete; for the STV and plurality with runoff rules, the necessary
winner problem is coNP-complete (Conitzer et al., 2007; Pini et al., 2007; Walsh, 2007).
However, in many elections, votes are unweighted (that is, each agent’s vote counts the
same). If the votes are unweighted, and the number of alternatives is bounded, then the
possible and necessary winner problems can always be solved in polynomial time (assuming
the voting rule can be executed in polynomial time) (Conitzer et al., 2007; Walsh, 2007).
Hence, the other setting that has been studied is that where the votes are unweighted and
the number of alternatives is not bounded; this is the setting that we will study in this
paper. In this setting, the possible and necessary winner problems are known to be hard for
STV (Bartholdi & Orlin, 1991; Pini et al., 2007; Walsh, 2007). Computing whether an alter-
native is a possible or necessary Condorcet winner can be done in polynomial time (Konczak
& Lang, 2005). However, at the time of the conference version of this work (Xia & Conitzer,
2008), for most of the other common rules, there were no prior results (except for the fact
that the problems are easy for many of these rules when each partial order is either a linear
order or empty, that is, the standard manipulation problem).1

1. An earlier paper (Konczak & Lang, 2005) studied these problems for positional scoring rules, and claimed
that the problems are polynomial-time solvable for these rules; however, there was a subtle mistake in

3

Our contribution
In this paper, we characterize the complexity of the possible and necessary winner

problems for some of the most important other rules—specifically, positional scoring rules,
Copeland, maximin, Bucklin, ranked pairs, voting trees, and plurality with runoff. We
show that the possible winner problems are NP-complete for all these rules except the
possible unique winner problem with respect to plurality with runoff. We also show that the
necessary winner problems are coNP-complete for the Copeland, ranked pairs, and voting
trees; and the necessary co-winner problem is coNP-complete for plurality with runoff. For
the remaining cases, we present polynomial-time algorithms. Our results are summarized
in Table 1.

Possible Winner Necessary Winner

STV
NP-complete

(Bartholdi & Orlin, 1991)
coNP-complete

(Bartholdi & Orlin, 1991)

Plurality P 2 P 2

Veto P 3 P 3

Pos. scoring
(incl. Borda, k-approval)

NP-complete 4 P

Copeland NP-complete 4 coNP-complete 4

Maximin NP-complete 4 P

Bucklin NP-complete 4 P

Ranked pairs NP-complete 4 coNP-complete 4

Voting trees
(incl. balanced trees)

NP-complete 4 coNP-complete 4

Plu. w/ runoff
NP-complete (unique winner)

P (co-winner)
P (unique winner)

coNP-complete (co-winner) 4

Table 1: Summary of complexity of possible/necessary winner problems with respect to common voting
rules. Unless otherwise mentioned, the results do not depend on whether we consider the unique-
winner or the co-winner version of the problem.

This paper is a significant extension of the conference version of this work (Xia &
Conitzer, 2008): this extended version includes all the proofs, and the results on voting
trees, plurality with runoff, and k-approval are new. (The conference version also did
not mention plurality and veto; these results are easy and follow from known results, as
explained in the footnotes under the table.)

their proofs. We will show that the possible winner problem is in fact NP-complete for these rules. We
will also give a correct proof that the necessary winner problem is indeed polynomial-time solvable for
these rules.

2. Easy to prove; also proved in (Betzler & Dorn, 2010), and follows from the bribery algorithm by Fal-
iszewski (Faliszewski, 2008).

3. Easy to prove, also proved in (Betzler & Dorn, 2010).
4. Hardness results hold even when the number of unknown pairs in each partial order is no more than a

constant.

4

Subsequent work since the conference version

Since the conference version of this work, the complexity of the possible winner problem
with respect to any positional scoring rule has been fully characterized (Betzler & Dorn,
2010; Baumeister & Rothe, 2010). By their theorem, the possible winner problem is NP-
complete with respect to Borda and k-approval. Still, they do not directly imply the
hardness results obtained for positional scoring rules in this paper—we prove that the
hardness results for Borda and k-approval hold even when the number of undetermined
pairs in each vote is no more than 4.

Also, a special case of the possible and necessary winner problems where new alternatives
join the election after the voters’ preferences over the initial alternatives have been fully
revealed has been proposed and studied in (Chevaleyre, Lang, Maudet, & Monnot, 2010a).
It has been shown that the possible-winner-with-new-alternatives problem is NP-complete
for maximin, Copeland (Xia, Lang, & Monnot, 2010), and k-approval when k ≥ 3 and there
are at least 3 new alternatives (Chevaleyre, Lang, Maudet, Monnot, & Xia, 2010b); the
problem is in P for Bucklin (Xia et al., 2010), Borda, and k-approval when k ≤ 2 or there
are no more than 2 alternatives (Chevaleyre et al., 2010b).

Meanwhile, a number of new results on the complexity of the unweighted coalitional
manipulation problem have also been obtained. Specifically, the unweighted coalitional ma-
nipulation problem has been shown to be NP-hard for Copelandα for any 0 ≤ α ≤ 1 (except
for α = 1

2 ; these results even hold with two manipulators) (Faliszewski, Hemaspaandra,
& Schnoor, 2008, 2010),5 maximin (two manipulators) and ranked pairs (one manipula-
tor) (Xia, Zuckerman, Procaccia, Conitzer, & Rosenschein, 2009), and a specific positional
scoring rule (two manipulators) (Xia, Conitzer, & Procaccia, 2010). As we mentioned be-
fore, the unweighted coalitional manipulation problem is a special case of the possible winner
problem studied in this paper (where some partial orders are linear orders and the others
are empty); as a result, NP-hardness results for the unweighted coalitional manipulation
problem also imply NP-hardness of the possible winner problem for these rules. Again, this
subsequent research on the unweighted coalitional manipulation does not completely imply
the NP-hardness results that we prove in this paper for the possible winner problem for
Copeland, maximin, ranked pairs, and positional scoring rules, because the hardness results
proved in this paper (except the possible unique winner problem for plurality with runoff)
hold even when for each partial order, the number of pairs of alternatives for which the
order is unknown is a constant.

Elkind et al. (Elkind, Faliszewski, & Slinko, 2009) showed that the possible winner
problem also reduces to the swap bribery problem, in which an interested party can pay
voters to swap adjacent alternatives in their rankings, but the price to swap two alternatives
depends on both the identity of the alternatives and the identity of the voter. That is, (with
respect to a fixed voting rule) the computational complexity of the swap bribery problem
is at least as high as that of the possible winner problem, in terms of polynomial-time
reductions.

5. Faliszewksi et al. (Faliszewski et al., 2008) also study the case of weighted coalitional manipulation with
three alternatives for Copeland, and show that how hard this problem is depends both on α and whether
we consider the unique-winner or the co-winner variant of the problem. We do not study weighted votes
in this paper.

5

The complexity of the possible winner problem has also been studied from a fixed-
parameter tractability perspective, for parameters such as the number of alternatives, the
number of voters, and the number of unknown pairs in each vote (Betzler, Hemmann, &
Niedermeier, 2009). Finally, the counting version of the possible winner problem has also
been studied (Bachrach, Betzler, & Faliszewski, 2010).

2. Preliminaries

Let C = {c1, . . . , cm} be the set of alternatives (or candidates). A linear order on C is
a transitive, antisymmetric, and total relation on C. The set of all linear orders on C is
denoted by L(C). An n-voter profile P on C consists of n linear orders on C. That is,
P = (V1, . . . , Vn), where for every i ≤ n, Vi ∈ L(C). The set of all profiles on C is denoted
by P (C). In the remainder of the paper, m denotes the number of alternatives and n denotes
the number of voters.

A voting rule r is a function from the set of all profiles on C to the set of (nonempty)
subsets of C, that is, r : P (C) → 2C \ ∅. The following are some common voting rules.

1. (Positional) scoring rules: Given a scoring vector ~v = (v(1), . . . , v(m)) of m integers,
for any vote V ∈ L(C) and any c ∈ C, let s(V, c) = v(j), where j is the rank of c in V .

For any profile P = (V1, . . . , Vn), let s(P, c) =
n∑

i=1
s(Vi, c). The rule will select c ∈ C

so that s(P, c) is maximized. Some examples of positional scoring rules are Borda,
for which the scoring vector is (m − 1, m − 2, . . . , 0), plurality, for which the scoring
vector is (1, 0, . . . , 0), veto, for which the scoring vector is (0, . . . , 0, 1), and k-approval
(1 ≤ k ≤ m − 1), for which the scoring vector is (1, . . . , 1

︸ ︷︷ ︸

k

, 0, . . . , 0). In this paper, we

assume that for all j ≤ m, v(j) ∈ N.

2. Copeland: For any two alternatives ci and cj , we can simulate a pairwise election
between them, by seeing how many votes prefer ci to cj , and how many prefer cj to
ci. ci wins if and only if the majority of voters prefer ci to cj . Then, an alternative
receives one point for each win in a pairwise. (Typically, an alternative also receives
half a point for each pairwise tie, but this will not matter for our results.) The winner
is the alternative who has the highest score.

3. Maximin (a.k.a. Simpson): Let NP (ci, cj) denote the number of votes that rank
ci ahead of cj in the profile P . The winner is the alternative c that maximizes
min{NP (c, c′) : c′ ∈ C, c′ 6= c}.

4. Bucklin: An alternative c’s Bucklin score is the smallest number k such that more than
half of the votes rank c among the top k alternatives. The winner is the alternative
who has the smallest Bucklin score. (Sometimes, ties are broken by the number of
votes that rank an alternative among the top k, but for simplicity we will not consider
this tiebreaking rule here.)

5. Ranked pairs: This rule first creates an entire ranking of all the alternatives. NP (ci, cj)
is defined as for the maximin rule. In each step, we will consider a pair of alternatives

6

ci, cj that we have not previously considered; specifically, we choose the remaining
pair with the highest NP (ci, cj). We then fix the order ci > cj , unless this contradicts
previous orders that we fixed (that is, it violates transitivity). We continue until we
have considered all pairs of alternatives (hence we have a full ranking). The alternative
at the top of the ranking wins.

6. Voting trees: A voting tree is a binary tree with m leaves, where each leaf is associated
with an alternative. In each round, there is a pairwise election between an alternative
ci and its sibling cj : if the majority of voters prefer ci to cj , then cj is eliminated,
and ci is associated with the parent of these two nodes; similarly, if the majority of
voters prefer cj to ci, then ci is eliminated, and cj is associated with the parent of
these two nodes. The alternative that is associated with the root of the tree (wins all
its rounds) is the winner.

7. Plurality with runoff: The rule has two steps. In the first step, all alternatives except
the two that are ranked in the top position for most times are eliminated, and the
votes transfers to the second round, in which the plurality rule (a.k.a. majority rule
in case of two alternatives) is used to select the winner.

8. Single transferable vote (STV): The election has m rounds. In each round, the al-
ternative that gets the minimal plurality score drops out, and is removed from all of
the votes (so that votes for this alternative transfer to another alternative in the next
round). The last-remaining alternative is the winner.

We adopt parallel-universes tiebreaking (Conitzer, Rognlie, & Xia, 2009) to define the win-
ning alternatives for the rules that have multiple rounds (i.e., ranked pairs, voting trees,
and plurality with runoff). That is, an alternative c is a winner if and only if there exists
a way to break ties in all of the steps such that c is the winner. A partial order on C is a
reflexive, transitive, and antisymmetric relation on C. We say a linear order V extends a
partial order O if O ⊆ V .

Definition 1 A linear order V on C extends a partial order O on C if for any i, j ≤ m,
ci ≻O cj ⇒ ci ≻V cj.

Throughout the paper we use the following notation. Let V denote a linear order over C;
let O denote a partial order over C; let P denote a profile of linear orders; let Pposet denote
a profile of partial orders.

3. Possible/necessary winners

We are now ready to define possible (necessary) winners, which were first introduced by
Konczak and Lang (Konczak & Lang, 2005).

Definition 2 Given a profile of partial orders Pposet = (O1, . . . , On) on C, we say that an
alternative c ∈ C is: (1) a possible winner if there exists P = (V1, . . . , Vn) such that each Vi

extends Oi, and r(P) = {c}; (2) a necessary winner if for any P = (V1, . . . , Vn) such that
each Vi extends Oi, r(P) = {c}; (3) a possible co-winner if there exists P = (V1, . . . , Vn) such
that each Vi extends Oi, and c ∈ r(P); (4) a necessary co-winner if for any P = (V1, . . . , Vn)
such that each Vi extends Oi, c ∈ r(P).

7

Example 1 Let there be three alternatives {c1, c2, c3}. Three partial orders are illustrated
in Figure 1. Let Pposet = (O1, O2, O3). c1 is a possible (co-)winner of Pposet with respect to
plurality, because we can complete O1 by adding c2 ≻ c3, complete O2 by adding c1 ≻ c2,
and complete O3 by adding c1 ≻ c2 and c1 ≻ c3; then, c1 is the only winner. However, c1 is
not a necessary (co-)winner, because we can complete O1 by adding c2 ≻ c3, complete O2 by
adding c2 ≻ c1, and complete O3 by adding c2 ≻ c1 and c1 ≻ c3; then, c2 is the only winner.

O1

c1

c2

c3

O2
c1

c2

c3

O3
c1

c2 c3

Figure 1: Partial orders.

However, if we let P ′
poset = (O1, O1, O2), then c1 is the (only) necessary winner, because

c1 will be ranked first in at least two votes.

Now, we define the computational problems studied in this paper:

Definition 3 Define the problem Possible Winner (PW) with respect to voting rule r to be:
given a profile Pposet of partial orders and an alternative c, we are asked whether or not c
is a possible winner for Pposet with respect to r.

Necessary Winner (NW), Possible co-Winner (PcW), and Necessary co-Winner (NcW)
are defined similarly.

A natural first question is how these problems are related to each other. It turns out
that (holding the voting rule fixed) if PcW is easy, then NW is also easy:

Proposition 1 For any voting rule r, if computing PcW with respect to r is in P, then
computing NW with respect to r is also in P .

Proof. It is easy to observe that for any alternative c, c is a necessary unique winner
with respect to r if and only if for any alternative d (d 6= c), d is not a possible co-winner.
Therefore, if we have a polynomial-time algorithm that solves the PcW problem with respect
to r, then to solve the NW problem, we simply run the algorithm for every alternative d
(d 6= c), and if any d 6= c is a possible co-winner, then we output that c is not a necessary
unique winner; otherwise, we output that c is a necessary unique winner. 2

There is no similar relationship between the PW and NcW problems. It is true that if
some alternative d (d 6= c) is a possible unique winner, then c is not a necessary co-winner.
However, it is possible that even if no alternative d (d 6= c) is a possible unique winner, c
is still not a necessary co-winner. For example, let r be a voting rule that always outputs
{d1, d2} (c 6= d1 and c 6= d2). For any profile of partial orders, none of the alternatives is a
possible unique winner with respect to r (because the winners are always non-unique), but
clearly c is not a necessary co-winner. More generally, the relationship from PcW to NW
(if the former is easy then the latter is easy) is the only one, at least in the following sense.

Proposition 2 Suppose m ≥ 3 and, for a particular profile of partial orders, we know the
answer to one of the problems X ∈ {PW, PcW, NW, NcW} for every individual alternative.
Then, this does not tell us the answer to problem Y ∈ {PW, PcW, NW, NcW}, unless (1)
X = Y or (2) X = PcW and Y = NW.

8

Proof. The proof of Proposition 1 shows that if X = PcW and Y = NW, then the answers
to X for all alternatives imply the answer to Y for any alternative. Of course, the case
where X = Y is trivial. Hence, all that remains to be proved is that such a relationship
does not hold for any other ordered pair of these problems.

As a quick observation, if we are willing to assume that P 6= NP, then, if we know of a
rule for which problem X is in P and problem Y is NP-hard, it follows that we do not have
the relationship for the ordered pair (X, Y). With the help of Table 1, we would be able to
immediately conclude that we do not have the relationship for any of the following pairs.

• (NW, PW), (NW, PcW), (NcW, PW), and (NcW, PcW) (following from our results
for positional scoring rules);

• (PcW, PW), (NW, NcW), and (PcW, NcW) (following from our results for plurality
with runoff).

This would still leave a number of cases unresolved; for these, we will give a direct
argument. In fact, to avoid the assumption P 6= NP, we will finish by also giving direct
arguments for the other cases.

The direct arguments work as follows. We describe a situation where the answer to Y is
not clear even though we know the answers to X for all alternatives. That is, for each pair
(X,Y), we will describe a situation where the answer to Y is positive, and another situation
where the answer to Y is negative, even though in both situations the answers to X are
the same for all alternatives. We do not explicitly specify the voting rule and the profile
of partial orders in each case, but from the description we give it is easy to create a voting
rule and a profile of partial orders with the required properties. (In fact, the profile can
always consist of empty partial orders in the remainder of this proof.) Let c, d, and e be
three different alternatives. We are asked the answer to Y for c.

• (PW, NW) and (PW, NcW). Suppose that c is the only possible unique winner. Then,
the following two cases are possible: (1) c is the unique winner for any extension,
which means that c is a necessary unique/co-winner. (2) c is the unique winner for
one extension, and for any other extension, {d, e} are the winners, which means that
c is not a necessary unique/co-winner.

• (PW, PcW). Suppose that there is no possible unique winner. Then, the following
two cases are possible: (1) {c, d} are the winners for any extension, which means that
c is a possible co-winner. (2) {d, e} are the winners for any extension, which means
that c is not a possible co-winner.

• (NcW, NW). Suppose that c is the only necessary co-winner. Then, the following two
cases are possible: (1) c is the only winner for any extension, which means that c is
the necessary unique winner. (2) c is the only winner for one extension, and {c, d} are
the winners for any other extension, which means that c is not the necessary unique
winner.

The remaining cases are the ones for which we already made an argument based on the
assumption P 6= NP, but we now give a direct argument to avoid this assumption.

9

• (PcW, PW) and (PcW, NcW). Suppose that c and d are the only possible co-winners.
Then, the following two cases are possible: (1) c is the unique winner for one extension
and d is the unique winner for any other extension, which means that c is a possible
unique winner (meanwhile, c is not a necessary co-winner). (2) {c, d} are the winners
for any extension, which means that c is not a possible unique winner (meanwhile, c
is a necessary co-winner).

• (NW, PW), (NW, PcW), (NcW, PW), (NcW, PcW). Suppose that there is no nec-
essary unique/co-winner. Then, the following two cases are possible: (1) c is the
unique winner for one extension, and for any other extension d is the unique winner,
which means that c is a possible unique/co-winner. (2) d is the unique winner for one
extension, and for any other extension e is the unique winner, which means that c is
not a possible unique/co-winner.

• (NW, NcW). Suppose that there is no necessary unique winner. Then, the following
two cases are possible: (1) {c, d} are the winners for any extension, which means
that c is a necessary co-winner. (2) {c, d} are the winners for one extension, and for
any other extension d is the unique winner, which means that c is not a necessary
co-winner.

2

4. Hardness results

In this section, we prove that PW (PcW) is NP-complete with respect to positional scoring
rules, Copeland, maximin, Bucklin, ranked pairs, and voting trees; NW (NcW) is coNP-
complete with respect to Copeland, ranked pairs, and voting trees; and PW is NP-complete
and NcW is coNP-complete with respect to plurality with runoff. For positional scoring
rules, we will not show that PW is hard for all positional scoring rules—in fact, for plurality
and veto, PW is easy; rather, we will give a sufficient condition on a positional scoring rule
such that PW is hard. Most notably, Borda satisfies this condition. k-approval does not
satisfy this condition, and we will provide a distinct proof for PW (PcW) with respect to k-
approval (k ≥ 2).6 Similarly for voting trees, we provide a necessary condition under which
the hardness results hold, and most notably, balanced voting trees satisfy this condition.
All of these results (except the one for PW with respect to plurality with runoff) hold even
when the partial orders are “almost” linear orders. That is, the number of undetermined
pairs in each partial order is bounded above by a constant.

All the hardness results are proved by reductions from the exact 3-cover (X3C)
problem, except for the result for k-approval, which is proved by a reduction from 3-SAT. In
an X3C instance, we are given a set and a collection of subsets of size 3 of this set, and we are
asked if we can cover all of the elements in the set with nonoverlapping subsets. We denote

6. After the conference version of this paper (Xia & Conitzer, 2008), Betzler and Dorn proved a dichotomy
theorem for possible winner problems with respect to positional scoring rules (Betzler & Dorn, 2010).
According to their theorem, PW with respect to k-approval (k ≥ 2) is NP-complete. In this paper, we
prove that the problem is NP-complete, even when the number of undetermined pairs in each vote is no
more than 4.

10

an X3C instance by V = {v1, . . . , vq},S = {S1, . . . , St}, where Si = {vl(i,1), vl(i,2), vl(i,3)} ⊆ V
for all i ≤ t, with 1 ≤ l(i, 1), l(i, 2), l(i, 3) ≤ q. In a 3-SAT instance, we are given a formula
in conjunctive normal form—that is, written as the disjunction of multiple clauses, where
each clause is the conjunction of 3 literals, and we are asked if the Boolean variables can be
set in a way that makes the formula true. The formula is given as F = C1 ∧ . . . ∧ Ct over
x1, . . . ,xq, where for any j ≤ t, Cj is called a clause. For any j ≤ t, Cj = l1j ∨ l2j ∨ l3j , where
for any α ∈ {1, 2, 3}, lαj is called a literal, and there exists i ≤ q such that either lαj = xi, or
lαj = ¬xi. X3C and 3-SAT are known to be NP-complete (Garey & Johnson, 1979).

In each proof, the instance that we construct from an arbitrary X3C (or 3-SAT) instance
consists of two parts. The first part is a set of partial orders that encode the X3C (or 3-
SAT) instance.7 For example, in some of our PW reductions from X3C, the first part is
structured as follows: in order for c to win, there is an alternative c′ that needs to be placed
in a “high” position in the partial order at least some number of times. However, for each of
the partial orders, there is a set of three alternatives such that if we put c′ in a high position
in that partial order, then these three alternatives must be ranked in even higher positions.
These alternatives that must sometimes be pushed up correspond to the elements of the
X3C instance. The PW instance is set up in such a way that if the same X3C-element
alternative is pushed up in two different votes in the first part, then c cannot win. Thus,
the sets of alternatives that we push up must be disjoint, and the instance is set up in such
a way that we need to push c′ up often enough that the pushed-up 3-sets actually must
constitute an exact cover. The second part is a set of linear orders (that is, in the second
part, everything is determined) whose purpose is, informally stated, to adjust the scores of
the alternatives so that we get the properties just described.

First we introduce some notation to represent the set of all pairwise comparisons in a
linear order.

Definition 4 For any set {a1, . . . , al}, let O(a1, . . . , al) = {(ai, aj) : i < j}.

That is, O(a1, . . . , al) is the set of all ordered pairs consistent with the linear order a1 ≻
. . . ≻ al. For example, O(a, b, c) = {(a, b), (b, c), (a, c)}. The following notation will be
frequently used in the proofs.

Definition 5 For any set A and any partition A1, . . . , Ak of A, let O(A1, . . . , Ak) denote
an arbitrary linear order on A that is consistent with A1 ≻ A2 ≻ . . . ≻ Ak.

The proofs that make use of this notation only use the fact that O(A1, . . . , Ak) is consistent
with A1 ≻ . . . ≻ Ak, so that the order within each Ai (i ≤ k) does not matter. For example,
let A = {a, b, c, d}, A1 = {a}, A2 = {b, c}, A3 = {d}. There are two linear orders that are
consistent with A1 ≻ A2 ≻ A3. They are a ≻ b ≻ c ≻ d and a ≻ c ≻ b ≻ d. O(A1, A2, A3)
can denote either of them, e.g., O(A1, A2, A3) = a ≻ b ≻ c ≻ d. Sometimes we use the
notation “Others” to denote the set of all objects that are not mentioned in the context.
For example, O(A1, A2, A3) = O(Others, A2, A3) = O(A1, Others, A3) = O(A1, A2, Others).

Usually, a positional scoring rule is defined for a fixed number of alternatives (that is,
m is fixed). If we hold m fixed, then there exist polynomial-time algorithms for both PW

7. Typically, we define the partial orders by first defining some linear orders and then removing some of
the pairwise ordering constraints.

11

and NW (Walsh, 2007; Conitzer et al., 2007). However, there are positional scoring rules
that are defined for any number of alternatives—for example, Borda, plurality, and veto.
For such positional scoring rules, the number of alternatives is not bounded, and indeed, we
will prove that PW is not always easy with respect to such rules. To study the complexity
of social choice problems that involve a growing number of alternatives, it is necessary to
associate a score vector with every natural number of alternatives. In the remainder of the
paper, a positional scoring rule r consists of a sequence of scoring vectors {~s1, ~s2, . . .} such
that for any i ∈ N, ~si is the scoring vector for i alternatives. The next theorem provides a
sufficient condition on a positional scoring rule for PW to be NP-complete. In this paper, all
the PW/PcW problems are in NP, and all the NC/NcW problems are in coNP. This follows
from the fact that, given an extension of the partial orders to linear orders, we can compute
the winner(s) in polynomial-time for the rules studied in this paper. With this in mind,
we only prove the hardness direction in the NP-completeness/coNP-completeness proofs.
There do exist rules for which computing the winner(s) is NP-hard, for example, Dodgson’s
rule (Bartholdi, Tovey, & Trick, 1989b; Hemaspaandra, Hemaspaandra, & Rothe, 1997) and
Young’s rule (Rothe, Spakowski, & Vogel, 2003), but we will not study any rules for which
computing the winners is hard here.

Theorem 1 For any positional scoring rule r with scoring vectors {~s1, ~s2, . . .}, if there
exists a polynomial f(x) such that for any x ∈ N, there exist l and k, such that x ≤ l ≤ f(x)
and k ≤ l − 4, and satisfy the following conditions:

(1) ~sl(k) − ~sl(k + 1) = ~sl(k + 1) − ~sl(k + 2) = ~sl(k + 2) − ~sl(k + 3) > 0,

(2) ~sl(k + 3) − ~sl(k + 4) > 0,

then PW and PcW are both NP-complete with respect to r, even when the number of unde-
termined pairs in each vote is no more than 4. (To obtain membership in NP, it is assumed
that the score vectors can be computed in polynomial time.)

Proof. Given an X3C instance V = {v1, . . . , vq}, S = {S1, . . . , St}, let q + 3 ≤ l ≤ f(q + 3)
(where q is the number of elements in the X3C instance) satisfy the two conditions in
the assumption, and let k ≤ l − 4 satisfy ~sl(k) − ~sl(k + 1) = ~sl(k + 1) − ~sl(k + 2) =
~sl(k + 2) − ~sl(k + 3) > 0, and ~sl(k + 3) − ~sl(k + 4) > 0. We construct the PW instance as
follows.
Alternatives: C = {c, w, d} ∪ V ∪ A, where d and A = {a1, . . . , al−q−3} are auxiliary
alternatives.
First part (P1) of the profile: For any i ≤ t, choose any Bi ⊂ C \ (Si ∪ {w, d}) with
|Bi| = k − 1. We define a partial order Oi as follows.

Oi = O(Bi, w, Si, d, Others) \ [{w} × (Si ∪ {d})]

That is, Oi is a partial order that agrees with Bi ≻ w ≻ Si ≻ d ≻ Others, except that the
pairwise relations between (w, Si) and (w, d) are not determined (and these are the only 4
undetermined relations). Let P1 = {O1, . . . , Ot}.
Second part (P2) of the profile: We first give the properties that we need P2 to satisfy;
we will show how to construct P2 in polynomial time later in the proof. We recall that

12

all votes in P2 are linear orders. Let P ′
1 = {O(Bi, w, Si, d, Others) : i ≤ t}. That is, P ′

1

(|P ′
1| = t) is an extension of P1 (in fact, P ′

1 is the set of linear orders that we started with
to obtain P1, before removing some of the pairwise relations). P2 is a set of linear orders
such that the following holds for Q = P ′

1 ∪ P2:

(1) For any i ≤ q, ~sl(Q, c) − ~sl(Q, vi) = 2(~sl(k) − ~sl(k + 1)), ~sl(Q, w) − ~sl(Q, c) = q
3 ×

(~sl(k) − ~sl(k + 4)) − ~sl(k + 3) + ~sl(k + 4).

(2) For any i ≤ q, the scores of vi and w, c are higher than those of the other alternatives
in any extension of P1 ∪ P2.

(3) P2’s size is polynomial in t + q.

Given such a P2, c is a possible winner if and only if there exists an extension P ∗
1 of P1 such

that w is ranked lower than c at least q
3 times, in order for the total score of w to be lower

than the total score of c. Meanwhile, for any j ≤ q, vj is not ranked higher than w more
than once in P ∗

1 , because otherwise the total score of vj will be higher than or equal to the
total score of c. Given a solution to this, let I be the set of subscripts of votes in P ∗

1 for
which w is ranked lower than c; then, SI = {Si : i ∈ I} is a solution to the X3C instance.
Conversely, given a solution to the X3C instance, let I be the set of indices of Si that are
included in the X3C. Then, a solution to the possible winner instance can be obtained by
ranking c ahead of w exactly in the votes with subscripts in I. Therefore, c is a possible
winner if and only if there exists a solution to the X3C problem, which means that PW and
PcW are NP-complete with respect to positional scoring rules that satisfy the conditions
stated in the theorem.

For possible co-winner, we replace (1) by the following condition.
(1’) For any i ≤ q, s(Q, c) − s(Q, vi) = ~sl(k) − ~sl(k + 1), s(Q, w) − s(Q, c) = q

3 × (~sl(k) −
~sl(k + 4)).

Next, we show how to construct the profile P2 so that it satisfies the three conditions.
P2 consists of the following three parts.

The first part, P ′
2. Let MV denote the cyclic permutation among V ∪ {c, w}. That

is, MV = c → w → v1 → v2 → . . . → vq → c. For any j ∈ N, and any e ∈

V ∪ {c, w}, we let M0
V (e) = e, and M j

V (e) = MV (M j−1
V (e)). The first part of P2 is

P ′
2 = MV (P ′

1) ∪ M2
V (P ′

1) ∪ . . . ∪ M q+1
V (P ′

1). It follows that for any e, e′ ∈ V ∪ {c, w},
~sl(P

′
1 ∪ P ′

2, e) = ~sl(P
′
1 ∪ P ′

2, e
′).

The second part, P ∗
2 . Choose any B ⊆ C \ {d, w, c} such that |B| = k − 1, and any

A′ ⊆ C \ (B ∪ {d, w}) such that |A′| = 3. We define the following partial orders.

V1 = O(B, d, w, c,Others), V ′
1 = O(B, c, w, d,Others)

V2 = O(B, d, c, w,Others), V ′
2 = O(B, w, c, d,Others)

V3 = O(B, d, A′, w,Others), V ′
3 = O(B, w, A′, d, Others)

V4 = O(B, A′, d, w, Others), V ′
4 = O(B, A′, w, d, Others)

P ∗
2 is defined as follows.

P ∗
2 ={V ′

1 , V
′
2 , MV (V1), MV (V2), . . . , M

q+1
V (V1), M

q+1
V (V2)}

∪
q

3
× {V ′

3 , MV (V3), . . . , M
q+1
V (V3)} ∪ {V ′

4 , MV (V4), . . . , M
q+1
V (V4)}

13

Here
q

3
×{V ′

3 , MV (V3), . . . , M
q+1
V (V3)} represents

q

3
copies of {V ′

3 , MV (V3), . . . , M
q+1
V (V3)}.

Putting P ′
2 and P ∗

2 together, the condition (1) in the description of P2 is satisfied.

The third part, P̃2. P̃2 is defined in a way such that in P̃2, the total scores of any
two alternatives in V ∪ {c, w} are the same, and the total score of any alternative in
V∪{c, w} is significantly higher than the total score of any alternative in C\(V∪{c, w}).
Let MO be a cyclic permutation among C \ (V ∪ {c, w}). That is, we let MO = d →
a1 → a2 → . . . → al−q−3 → d. Let V5 = O(V, c, w,Others). We define the third part
P̃2 as follows.

P̃2 = (|P1 ∪ P ′
2 ∪ P ∗

2 | + 1) × {M i
V (M j

O(V5)) : i ≤ q + 2, j ≤ l − q − 2}

We note that |P1 ∪P ′
2 ∪P ∗

2 |+1 = t(q +3)+3(q +2)+ q(q +2)/3, which is polynomial
in t + q.

2

Theorem 1 provides a sufficient condition on positional scoring rules for PW and PcW
to be NP-complete. It can be applied to show NP-completeness of PW and PcW for Borda,
as the following corollary shows.

Corollary 1 PW and PcW are NP-complete with respect to Borda, even when the number
of undetermined pairs in each vote is no more than 4.

Proof. For any l ∈ N, the scoring vector ~sl for Borda is (l − 1, l − 2, . . . , 0). If we let
f(x) = x, l = x, and k = l − 4, then the conditions in Theorem 1 are all satisfied, and the
claim follows. 2

Theorem 1 does not apply to k-approval. As we noted in Table 1, the possible and
necessary winner problems with respect to plurality (1-approval) are in P. We next show
that for any fixed k ∈ N with k ≥ 2, PW and PcW with respect to k-approval are NP-
complete.

Theorem 2 For any fixed natural number k ≥ 2, PW and PcW are NP-complete with
respect to k-approval, even when the number of undetermined pairs in each vote is no more
than 4.

Proof. We first prove the NP-hardness for PW with respect to 2-approval. Then, we show
how to extend the proof to any k ∈ N, where k ≥ 2.

We prove the NP-hardness by a reduction from 3-SAT. In a 3-SAT instance, we are
given a set of variables x1, . . . ,xq and a formula F = C1 ∧ . . . ∧ Ct in conjunctive normal
form, where the Cj ’s are clauses. For any j ≤ t, Cj = l1j ∨ l2j ∨ l3j , where for any α ∈ {1, 2, 3},
lαj is called a literal, and there exists i ≤ q such that either lαj = xi, or lαj = ¬xi. We are
asked whether the Boolean variables {x1, . . . ,xq} can be set to values that make F true.
Without loss of generality, we assume that q + t ≥ 2 (generally, for any given k ∈ N, we can
assume that q + t ≥ k), and that in each clause of F , no variable appears more than once.

Given a 3-SAT instance, we construct an instance of PW with respect to 2-approval as
follows.

14

Alternatives: C = {c}∪C ∪X ∪X1 ∪X¬
1 ∪ . . .∪Xq ∪X¬

q ∪D1 ∪D¬
1 ∪ . . .∪Dq ∪D¬

q ,
where C = {c1, . . . , ct}, X = {x1, . . . , xq,¬x1, . . . ,¬xq}, and for any i ≤ q,

– Xi = {x1
i , . . . , x

t
i, x̂

1
i , . . . , x̂

t
i}, X¬

i = {¬x1
i , . . . ,¬xt

i,¬x̂1
i , . . . ,¬x̂t

i};

– Di = {d1
i , . . . , d

q
i }, D¬

i = {¬d1
i , . . . ,¬dq

i }.

In words, C represents the set of clauses in F ; xi and ¬xi represent the values that the
Boolean variable xi can take; Xi (respectively, X¬

i) represents a set of “duplicates” of
xi (respectively, ¬xi); Di (respectively, D¬

i) represents a set of auxiliary alternatives
that are associated with xi (respectively, ¬xi).

First part P1 of the profile: For any i ≤ q, we let Vi = O(c, xi,¬xi, Others). Then,
we obtain Oi by removing (xi,¬xi) from Vi. That is, in any extension of Oi, c must
be in the top position, and one of xi and ¬xi must be in the second position (and
the other, in the third). We will see later in the proof that the two extensions of Oi

correspond to the two valuations of the variable xi, i.e., xi being ranked in the top
two positions corresponds to xi = false.

For any i ≤ q, we define the following linear orders.

V 1
i = O(xi, d

1
i , x

1
i , x̂

1
i , Others)

∀2 ≤ j ≤ t, V j
i = O(x̂j−1

i , dj
i , x

j
i , x̂

j
i , Others)

Then, we obtain O1
i from V 1

i by removing {xi, d
1
i } × {x1

i , x̂
1
i }; for any 2 ≤ j ≤ t,

we obtain Oj
i from V j

i by removing {x̂j−1
i , dj

i} × {xj
i , x̂

j
i}. We define V j,¬

i and Oj,¬
i

similarly by adding ¬ to each alternative explicitly written in the definition of V j
i and

Oj
i , respectively (that is, the alternatives that are not in “Others”). For example,

V 1,¬
i = O(¬xi,¬d1

i ,¬x1
i ,¬x̂1

i , Others).

For any j ≤ t, let fj : X → X1∪X¬
1 ∪. . .∪Xq∪X¬

q be the mapping such that for any x ∈
X, fj(x) is obtained from x by adding j to the superscript of x. For example, fj(x1) =

xj
i and fj(¬x2) = ¬xj

2. For any j ≤ t, let Wj = O(c, fj(l
1
j), fj(l

2
j), fj(l

3
j), Others).

Then, we obtain Qj from Wj by removing {fj(l
1
j), fj(l

2
j), fj(l

3
j)}×{fj(l

1
j), fj(l

2
j), fj(l

3
j)}.

That is, in any extension of Qj , c must be in the top position, and one of {fj(l
1
j), fj(l

2
j), fj(l

3
j)}

must be in the second position. We will see that the extensions of Qj correspond to
how Cj (the jth clause) is satisfied under a valuation of x1, . . . ,xq.

We let P1 = {O1, . . . , Oq} ∪ {Oj
i , O

j,¬
i : ∀i ≤ q, j ≤ t} ∪ {Qj : ∀j ≤ t}.

Second part P2 of the profile: for any profile P and any alternative c′, we let
s2(P, c′) denote the score of c′ in P , under 2-approval. That is, s2(P, c′) is the number
of times that c′ is ranked in the top two positions in P . We let P2 be an arbitrary
profile of linear orders that satisfies the following conditions.

– s2(P2, c) = 0.

– For any i ≤ q and any j ≤ t, s2(P2, xi) = s2(P2,¬xi) = s2(P2, x
j
i) = s2(P2,¬xj

i) =

s2(P2, x̂
j
i) = s2(P2,¬x̂j

i) = q + t − 2.

15

– For any c′ not mentioned above, s2(P2, c
′) ≤ 1.

Because t + q ≥ 2, P2 is well-defined and |P2| is bounded above by a polynomial of t and q
(we try to fit q + t − 2 copies of {xi,¬xi, x

j
i ,¬xj

i , x̂
j
i ,¬x̂j

i : ∀i ≤ q, j ≤ t} into the top two
positions of ⌈6(q + t − 2)/2⌉ = 3(q + t − 2) votes). It is easy to check that the number of
undetermined pairs in each vote is no more than 4.

Suppose there is a feasible solution to the 3-SAT instance. Let g denote a valuation of
x1, . . . ,xq under which F is satisfied. We define an extension of P1 ∪ P2 as follows.

• For any i ≤ q, if g(xi) = true, then we define the following extensions of partial orders
in P1.

– Let V̄i be the extension of Oi in which ¬xi is ranked in the second position.

– Let V̄ 1
i be an extension of O1

i in which xi and d1
i are ranked in the top two

positions; let V̄ 1,¬
i be an extension of O1,¬

i in which ¬x1
i and ¬x̂1

i are ranked in
the top two positions.

– For any 2 ≤ j ≤ t, let V̄ j
i be an extension of Oj

i in which x̂j−1
i and dj

i are ranked
in the top two positions.

– For any 2 ≤ j ≤ t, let V̄ j,¬
i be an extension of Oj,¬

i in which ¬xj
i and ¬x̂j

i are
ranked in the top two positions.

• For any i ≤ q, if g(xi) = false, then we define the following extensions (which are
similar to the extensions in the case where g(xi) = true).

– Let V̄i be the extension of Oi in which xi is ranked in the second position.

– Let V̄ 1,¬
i be an extension of O1,¬

i in which ¬xi and ¬d1
i are ranked in the top two

positions; let V̄ 1
i be an extension of O1

i in which x1
i and x̂1

i are ranked in the top
two positions.

– For any 2 ≤ j ≤ t, let V̄ j,¬
i be an extension of Oj,¬

i in which ¬x̂j−1
i and ¬dj

i are
ranked in the top two positions.

– For any 2 ≤ j ≤ t, let V̄ j
i be an extension of Oj

i in which xj
i and x̂j

i are ranked
in the top two positions.

• For any j ≤ t, if Cj is satisfied by xi = true (respectively, xi = false) for some i ≤ q,

then, we let W̄j be an extension of Qj in which xj
i (respectively, ¬xj

i) is ranked in the
second position.

• Let P ∗ = {V̄1, . . . , V̄q} ∪ {V̄ j
i , V̄ j,¬

i : ∀i ≤ q, j ≤ t} ∪ {W̄1, . . . , W̄t} ∪ P2.

It can be checked that in P ∗ \ P2, every alternative c′ (c′ 6= c) is ranked in the two top
positions at most once. We recall that s2(P2, c

′) ≤ q+ t−2 and s2(P ∗, c) = q+ t. Therefore,
c is the unique winner.

Next, we show how to convert a feasible solution to PW to a feasible solution to the
3-SAT instance. Let P ∗ be an extension for which c is the unique winner. Let g be the
truth assignment such that for any i ≤ q, g(xi) = true if and only if in the extension of
Oi in P ∗, ¬xi is ranked in the second position. We prove the following claim to show that
under g, all clauses are satisfied.

16

Claim 1 For any i ≤ q, if g(xi) = true (respectively, g(xi) = false), then for any j ≤ t,
¬xj

i and ¬x̂j
i (respectively, xj

i and x̂j
i) are ranked in the top two positions in the extension

of Oj,¬
i (respectively, Oj

i) in P ∗.

Proof. For any i ≤ q, we prove the claim by induction on j. We only prove the case where
g(xi) = true; the case where g(xi) = false can be proved similarly.

Suppose g(xi) = true. By definition, ¬xi is ranked in the second position in the exten-
sion of Oi in P ∗. We recall that s2(P2,¬xi) = q + t − 2 = s2(P ∗, c) − 2. Because c is the
unique winner, ¬xi is not ranked in the top two positions in any extension of P1 \ {Oi}.
Specifically, ¬xi is not ranked in the top two positions in the extension of O1,¬

i . We recall

that ¬xi ≻ ¬d1
i in O1,¬

i . Therefore, ¬d1
i is not ranked in the top two positions in the

extension of O1,¬
i (otherwise, ¬xi would also be ranked in the top two positions, which im-

mediately prevents c from being the unique winner). We also note that ¬xi,¬d1
i ,¬x1

i ,¬x̂1
i

are the only four alternatives that can be ranked in the top two positions in an extension of
O1,¬

i . It follows that in the extension of O1,¬
i , ¬x1

i ,¬x̂1
i are ranked in the top two positions.

This means that the claim holds for j = 1.
Suppose the claim holds for all j with j ≤ j′. Following similar reasoning as in the

case where j = 1, we can prove that the claim holds for j = j′ + 1. More precisely, by

the induction hypothesis, ¬x̂j′

i is ranked in the top two positions in the extension of Oj′,¬
i .

Therefore, ¬x̂j′

i is not ranked in the top two positions in the extension of Oj′+1,¬
i (otherwise

the score of ¬x̂j′

i is at least as large as the score of c, which means that c is not a unique

winner). We recall that ¬x̂j′

i ≻ ¬dj′+1
i in Oj′+1,¬

i . Therefore, ¬dj′+1
i is not ranked in the

top two positions in the extension of Oj′+1,¬
i (otherwise ¬x̂j′

i must also be ranked in the
top two positions, which immediately prevents c from being the unique winner). We also

note that ¬x̂j′

i ,¬dj′+1
i ,¬xj′+1

i ,¬x̂j′+1
i are the only four alternatives that can be ranked in

the top two positions in an extension of Oj′+1,¬
i . It follows that in the extension of Oj′+1,¬

i ,

¬xj′+1
i and ¬x̂j′+1

i are ranked in the top two positions. This means that the claim holds for
j = j′ + 1.

Therefore, the claim holds for any j ≤ t. 2

We are now ready to show that under g, all the clauses are satisfied. Let j be a number
no more than t. If xj

i is ranked in the second position in the extension of Qj , then we must

have that g(xi) = true. If not, then, from Claim 1, xj
i is ranked in the top two positions in

the extension of Oj
i , which means that xj

i is ranked in the top two positions in P ∗\P2 at least

twice: once in Oj
i , and once in Qj . It follows that s2(P ∗, xj

i) ≥ q+t−2+2 ≥ q+t = s2(P ∗, c),
which contradicts the assumption that c is the unique winner. Similarly, if in the extension of
Qj , ¬xj

i is ranked in the second position, then we must have that g(xi) = false. This means
that under g, any clause Cj is satisfied by the valuation of the variable that corresponds to
the alternative that is ranked in the second position in the extension of Qj . Hence, F is
satisfied.

For PcW, we simply replace s2(P2, xi) = s2(P2,¬xi) = s2(P2, x
j
i) = s2(P2,¬xj

i) =

s2(P2, x̂
j
i) = s2(P2,¬x̂j

i) = q + t − 2 in the definition for P2 by s2(P2, xi) = s2(P2,¬xi) =

s2(P2, x
j
i) = s2(P2,¬xj

i) = s2(P2, x̂
j
i) = s2(P2,¬x̂j

i) = q + t − 1.
The reduction for k > 2 is similar to the case where k = 2. For any 3-SAT instance, let

P1 and P2 be the profile of partial orders defined for the case k = 2. For k > 2, we add

17

|P1 ∪P2| × (k− 2) new alternatives to the instance, and in each partial order in P1 ∪P2, we
let the top k − 2 positions be occupied by the new alternatives, and we put the remaining
new alternatives in the bottom positions, such that none of the new alternatives is ranked
in the top k positions more than once. Let P̄1 and P̄2 denote the profiles of partial orders
obtained in this way. It follows that c is a possible (co-)winner for P̄1 ∪ P̄2 with respect to
k-approval if and only if c is a possible (co-)winner for P1 ∪ P2 with respect to 2-approval.
2

Theorem 3 PW and PcW are NP-complete and NW and NcW are coNP-complete with
respect to Copeland, even when the number of undetermined pairs in each vote is at most
8.

Proof. We first prove the PW and NcW parts, in one reduction from X3C. Without loss
of generality, we can always assume that in the X3C instance, t is odd and t = q, because
if not, then we make the following changes to the X3C instance.

• If t > q, then we add 3(t − q) dummy elements v′1, . . . , v
′
3(t−q) and 2(t − q) sets

S′
1, S

′
1, . . . , S

′
t−q, S

′
t−q, where for any i ≤ t − q, S′

i = {v′3i−2, v
′
3i−1, v

′
3i}.

• If q > t, then we add q − t copies of S1.

• If q = t and t is even, then we add three dummy elements v′1, v
′
2, v

′
3, and three copies

of S′
1 = {v′1, v

′
2, v

′
3}.

In the new X3C instance, t = q, there is an odd number of sets, the size of the instance is
polynomial in that of the old one, and the new X3C instance has a feasible solution if and
only if the old one has.

Given an X3C instance V = {v1, . . . , vq}, S = {S1, . . . , St}, where q = t and t is odd, we
construct a PW instance as follows.

Alternatives: {c, w, d} ∪ V ∪ A ∪ B, where A = {a1, . . . , at−2}, B = {b1, . . . , b7t}.
First part P1 of the profile: Let M be a cyclic permutation among B. That is, M =
b1 → b2 → . . . → b7t → b1. Let VB = b1 ≻ b2 ≻ . . . ≻ b7t. For each i ≤ t, we obtain a partial
order by starting with O(V\Si, d, Si, w, c, M i(VB), A)—a linear order that is consistent with
V \ Si ≻ d ≻ Si ≻ w ≻ c ≻ M i(VB) ≻ A— and then removing the ordering relationships in
({d} ∪ Si) × {w, c}.
Second part P2 of the profile:

• t −
2q

3
+ 1 votes: for any t + 1 ≤ i ≤ 2t −

2q

3
+ 1, there is a vote that is consistent

with w ≻ c ≻ d ≻ V ≻ M i(VB) ≻ A.

•
q

3
− 2 votes: for any 2t −

2q

3
+ 2 ≤ i ≤ 2t −

q

3
− 1, there is a vote that is consistent

with w ≻ c ≻ d ≻ V ≻ M i(VB) ≻ A.

•
q

3
− 2 votes: for any 2t −

q

3
≤ i ≤ 2t − 3, there is a vote that is consistent with

w ≻ d ≻ c ≻ V ≻ M i(VB) ≻ A.

18

• 2 votes: for any 2t − 2 ≤ i ≤ 2t − 1, there is a vote that is consistent with c ≻ w ≻
d ≻ V ≻ M i(VB) ≻ A.

• 2 votes: for any 2t ≤ i ≤ 2t + 1, there is a vote that is consistent with d ≻ c ≻ V ≻
w ≻ M i(VB) ≻ A.

•
1

2
(5t− 1) votes: for any 2t + 2 ≤ i ≤

1

2
(9t + 1), there is a vote that is consistent with

w ≻ A ≻ c ≻ M i(VB) ≻ V ≻ d.

•
1

2
(5t − 1) votes: for any

1

2
(9t + 3) ≤ i ≤ 7t, there is a vote that is consistent with

M i(VB) ≻ V ≻ w ≻ d ≻ A ≻ c.

It is easy to check that the number of undetermined pairs in each vote is no more than
8.

Let P ′
1 denote the profile that extends P1 such that in each vote d and Si are ranked

higher than w and c, that is, P ′
1 = {O(V \ Si, d, Si, w, c, B, A) : i ≤ t}. We make the

following observations on each pairwise election:

• w always defeats c, d, B, A, and DP ′

1
∪P2

(vi, w) = 3 for each i ≤ q.

• c always defeats V, B, always loses to A, and DP ′

1
∪P2

(d, c) =
2q

3
− 1.

• B always defeats d,V, A, and due to its cyclic order in the profile, bj always defeats
bj+1, . . . , bj+ 1

2
(7t−1), where for any i ∈ N, bi = bi+7t, and always loses to the other

alternatives in B.

So in P ′
1 ∪ P2, the total number of pairwise elections won by each alternative is:

• w wins |B| + |A| + 2 = 8t,

• c wins |V| + |B| = q + 7t = 8t,

• d, any v ∈ V, and any a ∈ A wins at most 8t + q + 1 − 7t = t + q + 1, because they
all lose to B,

• any b ∈ B wins at most 1
2(|B| − 1) + |A|+ |V|+ 1 = 1

2(9t + 2q − 3) pairwise elections.

We recall that in the X3C instance t = q, which means in P ′
1 ∪ P2, the winners are

{w, c}. In order for c to be the unique winner, the only possibility is for c to win the

pairwise election against d by putting c ≻ d in at least
q

3
votes in P1. However, when we

put c ahead of d in a vote corresponding to Si, the pairwise score difference between w and
v increases by 2 for all v ∈ Si. Moreover, if w ≻ v for some v ∈ V at least twice in an
extension P ∗ of P1, then DP ∗∪P2

(v, w) ≤ −1, which means w defeats v in their pairwise
election. In this case, w would win 8m + 1 pairwise elections, which means that c cannot
be a unique winner. Therefore, c is a possible unique winner if and only if there exists an

extension P ∗ of P1 such that c ≻ d in exactly
q

3
votes in P ∗, and the corresponding Si

19

do not overlap, that is, they constitute an exact cover of V. This means that PW has a
solution if and only if the X3C problem has a solution. So PW is NP-complete.

It is now easy to see that NcW is coNP-complete, because in the above reduction, w
would always be a co-winner if c is not the unique winner. For PcW and NW, we just
need to modify the reduction for PW and NcW slightly: let |A| = t − 1 and keep the rest
unchanged. Then, w will initially win 8t+1 pairwise elections, and c is a possible co-winner
(w is not the necessary unique winner) if and only if there exists a feasible solution to the
X3C problem. 2

Theorem 4 PW and PcW are NP-complete with respect to Bucklin, even when the number
of undetermined pairs in each vote is at most 16.

Proof. First, we give a reduction from X3C to PW. Given any X3C instance V =
{v1, . . . , vq}, S = {S1, . . . , St}, we construct a PW instance as follows.

Alternatives: W ∪ D ∪ V ∪ {c, w}, where W = {w1, . . . , wq+1}, D = {d1, . . . , dq+1}.

First part P1 of the profile: for each i ≤ t, we start with O(w1, . . . , wq+1, Si, c,V \
Si, D), and then obtain a partial order by removing the relations in {wq−2, wq−1, wq, wq+1}×
({c} ∪ Si).

Second part P2 of the profile:

1. t copies of V ≻ c ≻ Others,

2.
q

3
− 1 copies of V ≻ w ≻ c ≻ Others,

3.
q

3
+ 2 copies of D ≻ w1 ≻ Others.

It is easy to check that the number of undetermined pairs in each vote is no more than

16. Notice |P1 ∪P2| = 2t +
2q

3
+ 1, and w1 is ranked within top q + 2 positions in t +

q

3
+ 2

votes. Therefore, in order for c to win, c ≻ wq−2 must hold in at least
q

3
votes in the

extension of P1. However, whenever we put c ahead of wq−2 in a vote, we are forcing the
alternatives in the Si corresponding to that vote be ranked within top q positions. If some
v ∈ V is ranked within top q positions at least twice in an extension of P1, then overall it

will be ranked within top q positions in at least t +
q

3
+ 1 votes, which means c will not be

the uniqe winner.

If there exists a feasible solution to the X3C problem, then we can put c ahead of wq−2

in the votes corresponding to this solution, so that we obtain an extension P ∗ of P1 such

that c is ranked within top q+1 positions in
q

3
votes, while for any v ∈ V, v is ranked within

top q (and, in fact, the first q + 1) positions just once. As a result, c is the unique winner
of the profile P ∗ ∪ P2, because no other alternative is ranked within top q + 1 positions in

at least t +
q

3
votes. Conversely, if c is the unique winner in some profile P ∗ ∪ P2, then

P ∗ corresponds to a feasible solution to the X3C problem. Therefore, PW with respect to
Bucklin is NP-complete.

20

For PcW, we just need to modify the reduction slightly, by changing the last
q

3
+1 votes

from D ≻ w1 ≻ Others to d1 ≻ . . . ≻ dq ≻ w1 ≻ Others. In this case, the Bucklin score of
w1 is q + 1, which means c can at best hope to be a co-winner. As a result, PcW is also
NP-complete. 2

To prove our hardness results for maximin, ranked pairs, and voting trees, we first give
two helpful lemmas.

Definition 6 Given a profile P , the pairwise score difference DP (c, c′) of alternative c and
c′ is defined as follows.

DP (c, c′) = |{V ∈ P : c ≻V c′}| − |{V ∈ P : c′ ≻V c}|

The subscript P is omitted when there is no risk of confusion. For a linear order V over
C, we let DV denote the pairwise score difference function of the profile that consists of a
single vote V . That is, DV = D{V }. It follows from the definition that D(c, c′) = −D(c′, c).
We note that although maximin, ranked pairs, and voting trees are based on pairwise scores,
they can also be computed by pairwise score differences in the same way, because for any
profile P of n votes, and any pair of alternatives (c, c′), we have DP (c, c′) = 2NP (c, c′)− n.

We now show that given any pair of alternatives c, c′, there exist two linear orders that
increase D(c, c′) by two while keeping all other pairwise score differences unchanged. (This
lemma has been used previously (McGarvey, 1953; Conitzer & Sandholm, 2005a).) We
will use this technique in the second (score-adjusting) part of the reductions for maximin,
ranked pairs, and voting trees.

Lemma 1 Given any profile P and any two alternatives c, c′, let the remaining alternatives
be {c1, . . . , cm−2}. Let P ′ be the profile consisting of P plus the following two votes:

1. c ≻ c′ ≻ c1 ≻ . . . ≻ cm−2, and

2. cm−2 ≻ . . . ≻ c1 ≻ c ≻ c′.

Then, DP ′(c, c′) = DP (c, c′) + 2, and for any alternatives d, d′ such that {d, d′} 6= {c, c′},
DP ′(d, d′) = DP (d, d′).

This lemma tells us that the pairwise score differences can be changed almost arbitrarily.
The only constraint is that the parity of the pairwise score differences remains the same.
The following lemma is a direct corollary.

Lemma 2 (The main theorem in (McGarvey, 1953)) Given a profile P and any skew
symmetric function F : C × C → Z (that is, F (c1, c2) = −F (c2, c1) for all c1, c2), such that
for all pairs of alternatives c, c′ ∈ C, F (c, c′)−DP (c, c′) are all even (or all odd), then there
exists a profile P ′ such that

1. |P ′| ≤
1

2

∑

c,c′(|F (c, c′) − DP (c, c′)| + 1),

2. DP∪P ′ = F .

21

That is, for any skew-symmetric function F such that F (c, c′) − DP (c, c′) has the same
parity for all pairs of alternatives (c, c′) (with c 6= c′), we can change the pairwise score

differences from DP to F by adding no more than
1

2

∑

c,c′(|F (c, c′)−DP (c, c′)|+1) votes to P .

Here, the factor 1
2 comes from the fact that for any pair of alternatives c and c′, the absolute

value of the difference between F and DP is counted twice, i.e., |F (c, c′) − DP (c, c′)| =
|F (c′, c)−DP (c′, c)|. In fact, it is possible to obtain even tighter bounds on the needed size
of P ′ (Erdös & Moser, 1964), but for the purpose of our NP-hardness proofs this does not
matter.

Now we are ready to prove the hardness results for maximin and ranked pairs. As we
mentioned in the beginning of this section, in all hardness proofs in this section, the profile
consists of P1 and P2, where P1 is a set of partial orders used to encode the X3C instance,
and P2 is a set of linear orders used to adjust the “scores” of the alternatives. For maximin,
ranked pairs, and voting trees, P2 is used to adjust the pairwise score differences. We do not
explicitly give P2 in the reductions for these rules. Instead, we present the properties of P2,
then appeal to Lemma 2 to assert that P2 does exist, and can be constructed in polynomial
time.

Theorem 5 PW and PcW are NP-complete with respect to maximin, even when the num-
ber of undetermined pairs in each vote is at most 4.

Proof. We first prove that PW is NP-complete. Given an X3C instance V = {v1, . . . , vq},
S = {S1, . . . , St}, we construct a PW instance as follows.

Alternatives: V ∪ {c, w, w′}.

First part P1 of the profile: for each i ≤ t, we start with O(w, Si, c,V \Si, w
′), and

subsequently obtain a partial order Oi by removing the relations in {w} × ({c} ∪ Si).

Second part P2 of the profile: according to Lemma 2, P2 is defined to be a a set
of votes such that the pairwise score differences of {O(w, Si, c,V \ Si, w

′) : i ≤ t} ∪ P2

satisfy:

(1) D(w, c) = t+
2q

3
− 2, D(w, vi) = t+2 for all i ≤ q, D(w′, w) = D(v1, w

′) = t+4,

D(w′, c) = t − 2.

(2) D(l, r) ≤ 1 for all other pairwise scores not defined in (1).

It is easy to check that the number of undetermined pairs in each vote is no more than
4. Lemma 2 implies that |P2| is polynomial in (q + t).

We note that the minimum pairwise score difference of w is D(w, w′) = −t − 4; the
minimum pairwise score difference of w′ is also −t − 4 = D(w′, v1). If c is raised higher

than w in at least one and at most
q

3
− 1 votes in an extension of P1, then, D(c, w) ≤ −t,

and there exists i ≤ q such that D(vi, w) ≥ −t (the smallest pairwise score difference of
vi), which means that c is not the unique winner because vi is performing at least as well.

If c is ranked higher than w in at least
q

3
+ 1 votes in an extension of P1, then we still

have D(c, w′) = −t + 2, and there exists i ≤ q such that vi is ranked higher than w in at

22

least two votes in the extension, which means that D(vi, w) ≥ −t+2 (the smallest pairwise
score difference of vi). It follows that in this case, c is not the unique winner because vi is
performing at least as well. Therefore, the only way for c to win is to decrease D(w, c) by

raising c higher than w in exactly
q

3
votes in an extension of P1. However, each time that

we decrease D(w, c) by 2 due to adding c ≻ w to Oi ∈ P1, for any v ∈ Si, D(w, v) is also
decreased by two. Because D(w′, c) = t− 2, decreasing D(w, c) to less than t− 2 would not
raise the minimum pairwise score difference of c. But if D(w, vi) is decreased by 4 or more
for some i ≤ q, then the minimum pairwise score of vj is at least −t + 2, which means that
in this case c cannot be the unique winner. Therefore, if there exists a profile P ∗ extending
P1 such that c wins in P ∗ ∪ P2, then the sets Si in the votes in P ∗ such that c ≻ w cannot
overlap. Because there must be at least q/3 of these votes, the corresponding subsets Si

constitute a feasible solution to the X3C problem. Conversely, for each feasible solution of
the X3C problem instance, we can find a P ∗ extending P1 such that c is the unique winner
of the profile P ∗ ∪ P2 with respect to the maximin rule. Therefore PW is NP-complete.

For PcW, we just need to modify the above reduction slightly: we replace the condition
D(w, vi) = t + 2 by D(w, vi) = t when constructing P2.

Therefore PcW is NP-complete. 2

Theorem 6 PW and PcW are NP-complete and NW and NcW are coNP-complete with
respect to ranked pairs, even when the number of undetermined pairs in each vote is at most
8.

Proof. We first prove the NP-hardness of PW and NcW in one reduction. Given an X3C
instance V = {v1, . . . , vq}, S = {S1, . . . , St}, we construct a PW instance as follows.

Alternatives: V ∪ {c, a, b, w}.

First part P1 of the profile: for each i ≤ t, we start with O(a, c, Si, b, Others), and
subsequently obtain a partial order Oi by removing the relations in ({a, c}×(Si∪{b})).

Second part P2 of the profile: according to Lemma 2,8 a set of votes such that
the pairwise score differences of {O(a, c, Si, b, Others) : i ≤ t} ∪ P2 satisfy:

1. For all i ≤ q, D(c, b) = D(w, a) = D(w, vi) = 3t +
2q

3
.

2. D(a, c) = t +
2q

3
, D(c, w) = t +

2q

3
− 2, D(vi, c) = t +

2q

3
− 6, D(b, a) = t + 2.

3. D(l, r) = 0 in all other cases.

It is easy to check that the number of undetermined pairs in each vote is no more than 8.
By Lemma 2, there exists a profile P2 satisfying the above conditions and |P2| is polynomial
in (q + t).

We note that D(c, b), D(w, a), and D(w, vi) (for every i ≤ q) are much larger than the
remaining pairwise score differences in any extension of P1 ∪ P2. Therefore, c ≻ b, w ≻ a,
and w ≻ vi (for every i ≤ q) are fixed first for any extension of P1 ∪ P2. Therefore, in the

8. We can assume without loss of generality that t is an even number, so that the lemma can be applied.

23

output (a linear order over C) of any extension of P1 ∪P2, we must have that c ≻ b, w ≻ a,
and w ≻ vi (for any i ≤ q). We note that the only way for c to be the unique winner is to

lock b ≻ a before a ≻ c. That is, D(b, a) must be at least t + 2 +
2q

3
. However, whenever

we let b ≻ a in an extension of Oi, we are forcing Si ≻ c. Let P ′
1 be an extension of P1 such

that c is the unique winner for the profile P ′
1 ∪ P2 (or, equivalently, such that w is not a

co-winner for the profile P ′
1 ∪ P2). We note that if there exists i ≤ q such that vi ≻ c in at

least two votes in P ′
1, then D(vi, c) ≥ t +

2q

3
− 6 + 4 = t +

2q

3
− 2 = D(c, w), which means

that w is a co-winner (by locking vi ≻ c before c ≻ w). Therefore, in P ′
1, we must have

that b ≻ a in exactly
q

3
votes of P ′

1, and for all i ≤ q, vi ≻ c in exactly one vote of P ′
1. This

naturally corresponds to a solution to the X3C instance.

On the other hand, if the X3C problem instance has a solution {Si1 , . . . , Siq/3
}, then let

P ′
1 be the profile obtained from P1 by letting b ≻ a in Oij for all j ≤ q/3, and letting all

other votes be a ≻ c ≻ Si ≻ b ≻ Others (where i 6= ij for any j ≤ q/3). It follows that c is
the unique winner under this profile (and hence, w is not a co-winner). Therefore, PW is
NP-complete and NcW is coNP-complete with respect to ranked pairs.

For PcW and NW, we slightly modify the above reduction by letting D(b, a) = t and

D(vi, c) = t +
2q

3
− 4. 2

Next, we consider voting trees. Because a voting tree is defined for a fixed number
of alternatives, to study the complexity of the possible/necessary winner problems with
respect to voting trees, we need to consider an infinite sequence of trees, one for each
natural number (representing the number of alternatives).9 Therefore, we let a voting tree
rule T be composed of an infinite sequence of voting trees {T1, T2, . . .}, where for any m ∈ N,
Tm is a voting tree for m alternatives (that is, Tm is a binary tree that has m leaf nodes,
and each leaf is associated with an alternative. We assume that for any m ∈ N, the target
alternative c is always a leaf of Tm, in order for the possible/necessary winner problems to
make sense).

For any t ∈ N, a voting tree Tm is t-well-spread if there exist t pairs of leaves (c1, a1), . . . , (ct, at),
such that for any i ≤ t, ci and ai are siblings. We say any such a leaf in a pair is a rich
leaf. A voting tree is balanced if the depths of any two leaves differ at most by one, and the
number of leaves whose sibling is not a leaf is at most one.

Example 2 Two voting trees are illustrated in Figure 2. The voting tree in (a) is 1-well-
spread, and c1 and c2 are rich leaves; the voting tree in (b) is balanced and 3-well-spread,
and all leaves except c5 are rich leaves.

Theorem 7 For any voting tree rule T = {T1, T2, . . .}, if there exists a polynomial function
f(x) such that for any x ∈ N, there exists l ∈ N with x ≤ l ≤ f(x) such that Tl is x-well-
spread, then, PW and PcW are NP-complete, and NW and NcW are coNP-complete with
respect to T , even when the number of undetermined pairs in each vote is at most 16.

9. This is similar to the case of positional scoring rules, which are technically defined only for a specific
number of alternatives.

24

c1

c4

c3

c2 c1 c2 c3 c4

c5

c6 c7

(a) (b)

Figure 2: Voting trees.

Proof. Let j2, j3, . . . be the index of the voting trees such that for any z ∈ N (z ≥ 2), Tjz

is 2(z + 1)-well-spread and jz ≤ f(2(z + 1)). For any z, we let c be an arbitrary rich leaf in
Tjz .

We first prove the NP-hardness of PW and PcW in a single reduction. Given an X3C
instance V = {v1, . . . , vq}, S = {S1, . . . , St}, we construct a PW instance as follows.

Alternatives: Let C be the leaves of Tjq , where C = {c, d, w} ∪ V ∪ A ∪ E, and
A = {a1, . . . , aq}, E = {e1, . . . , emq−2q−3}, where mq is the number of leaves in Tjq .
Let the tree be such that {c, d} ∪ V ∪ A are rich leaves in a subtree whose root is a
child of the root of Tjq (because Tjq is 2(q + 1)-well-spread, this is always possible);
d is the sibling of c; the only common ancestor of c and w is the root; and for any
1 ≤ i ≤ q, vi and ai are siblings of each other. The positions of {c, d, w} ∪ V ∪ A are
illustrated in Figure 3. E is the set of all other alternatives in Tjq . For any i ≤ t, if
Si = {vl(i,1), vl(i,2), vl(i,3)}, then we let Ai = {al(i,1), al(i,2), al(i,3)}—that is, Ai consists
of the siblings of the elements in Si.

c d v1 a1 vq aq

w

Figure 3: Positions of the alternatives in Tjq .

First part (P1) of the profile: for each i ≤ t, we start with O(d, Ai, Si, c,Others),
and subsequently obtain a partial order Oi by removing relations in ({d} ∪ Ai)× (Si∪
{c}).

25

Second part P2 of the profile: according to Lemma 2, P2 is defined to be a
set of votes (linear orders) such that the pairwise score differences for the profile
{O(d, Ai, Si, c,Others) : i ≤ t} ∪ P2 satisfy:

(1) D(c, d) = −2q/3 + 1, D(c, w) = 2q + 1.

(2) For any i ≤ q, D(ai, vi) = 3, D(vi, c) = D(c, ai) = 2q + 1.

(3) For any c′ ∈ C (with c′ 6= c), D(w, c′) = 2q + 1.

(4) For any i, i′ ≤ q (with i 6= i′), D(vi, ai′) = 2q + 1.

(5) For any x ∈ C \ E, e ∈ E, D(x, e) = 2q + 1.

We note that the only way for c to win is to beat d in the first round, and not to meet any of
{v1, . . . , vq} in later rounds, which can only happen if every vi is beaten by the corresponding
ai in the first round. This is because by item (4), for any i 6= i′, D(vi, ai′) = 2q + 1, which
means that if for some i ≤ q, vi wins in the first round, it will only be beaten by w or vj for
some j ≤ q in subsequent rounds. So if for some i ≤ q, vi wins in the first round, then the
winner must be w. It follows that in an extension of P1 that makes c win, c must be ranked
higher than d at least q/3 times. However, if we rank c higher than d in an extension of
Oi, then in the extension we must have that Si ≻ Ai. In order for every ai to defeat vi, for
any i ≤ q, vi can be ranked higher than ai at most once in the extension of P1. Therefore,
if there exists a profile P ∗ extending P1 such that c is the unique winner (or co-winner) in
P ∗∪P2, then the sets Si’s in the votes in P ∗ where c ≻ d constitute a feasible solution to the
X3C problem instance. Conversely, for any feasible solution to the X3C problem instance,
we can find a P ∗ extending P1 such that c is the unique winner of the profile P ∗ ∪ P2 with
respect to Tij . Therefore, PW and PcW are NP-complete.

We also note that if c is not the unique winner, then w is always the unique winner.
Therefore, NW and NcW are coNP-complete. 2

From Theorem 7, we immediately obtain the following hardness results for voting tree
rules composed of balanced trees, by setting f(x) = 4x (because there will exist some integer
y such that 2x ≤ 2y ≤ 4x, so in the balanced tree for 2y alternatives there will be at least
x pairs of siblings).

Corollary 2 PW and PcW are NP-complete and NW and NcW are coNP-complete with
respect to the voting tree rule that is composed of balanced binary trees, even when the
number of undetermined pairs in each vote is at most 16.

Finally, we have the following theorems on the complexity of PW and NcW with respect
to plurality with runoff.

Theorem 8 PW is NP-complete with respect to plurality with runoff.

Proof. We now prove NP-hardness by showing a reduction from an arbitrary X3C instance.
Given an X3C instance V = {v1, . . . , vq}, S = {S1, . . . , St}, we construct a PW instance as
follows.

Alternatives: C = {c, d, e}∪SV ∪E, where SV = {s1, . . . , st} and E = {e1, . . . , e(q+4)2(t+4)4}.

First part P1 of the profile: P1 = P 1
1 ∪P 2

1 , where P 1
1 and P 2

1 are defined as follows.

26

– P 1
1 : for each i ≤ q, we start from a linear order O(d,SV , c,Others), and sub-

sequently obtain a partial order Oi by removing ({d} ∪ SV) × {sj : vi ∈ Sj}.
That is, we remove a minimum set of constraints such that any alternative in
{sj : vi ∈ Sj} can be ranked in the top position in at least one extension of Oi.
Let P 1

1 = {Oi : i ≤ q}.

– P 2
1 : for each j ≤ t, we start from a linear order O(d, e, c,Others), and subse-

quently obtain a partial order Q1
j by removing ({d}× {e})∪ (C × {sj}). That is,

in any extension of Q1
j , only d, e, and sj can be ranked in the top position. We

let Q2
j = Q1

j , and P 2
1 = {Q1

j : j ≤ t} ∪ {Q2
j : j ≤ t}.

Second part P2 of the profile: P2 = P 1
2 ∪ P 2

2 , where P 1
2 and P 2

2 are defined as
follows.

– P 1
2 : a set of q(t + 7/3) + 8 votes, in which c is ranked in the top position q + 4

times, d is ranked in the top position q + 2 times, e is ranked in the top position
q/3+2 times, and for any j ≤ t, sj is ranked in the top position q times. It does
not matter how the remaining alternatives are ranked in each vote of P 1

2 .

– P 2
2 : we first obtain, according to Lemma 2, a profile P̂ 2

2 such that the pairwise
score differences of {q copies of O(d,SV , c,Others)}∪{2t copies of O(d, e, c,Others)}∪
P 1

2 ∪ P̂ 2
2 satisfy the following conditions.

1. D(d, c) = D(e, c) = 1;

2. for all j ≤ t, D(c, sj) = 1.

From Lemma 2, we have that |P̂ 2
2 | ≤ (q + 4)2(t + 4)4. Next, we obtain P 2

2 from
P̂ 2

2 by moving an arbitrary alternative in E to the top position in each vote of
P̂ 2

2 , in such a way that no two votes in P 2
2 rank the same alternative in the top

position. P 2
2 is well-defined, because |E| ≥ |P̂ 2

2 |.

For any profile P , and any alternative c′, we let PluP (c′) denote the plurality score of c′ in P ,
that is, the number of times that c′ is ranked in the top position in the votes of P . The sub-
script P is omitted when there is no risk of confusion. We make the following observations
on the profile {q copies of O(d,SV , c,Others)} ∪ {2t copies of O(d, e, c,Others)} ∪ P 1

2 ∪ P 2
2 :

• D(d, c) = D(e, c) = 1, and for all j ≤ t, D(c, sj) = 1;

• Plu(c) = q + 4, P lu(d) = 2t + 2q + 2, P lu(e) = q/3 + 2; for any j ≤ t, Plu(sj) = q; for
any e′ ∈ E, Plu(e′) ≤ 1.

We also note that in any extension of P1 ∪ P2, Plu(c) = q + 4.

If the X3C instance has a solution Sj1 , . . . , Sjq/3
, then we construct a solution to the

PW instance as follows.

• For any i ≤ q, let Vi = [sjl
≻ d ≻ SV \ {sjl

} ≻ c ≻ Others], where jl is such that
ci ∈ Sjl

; we note that Vi extends Oi;

• for any l ≤ q/3, let V 1
jl

= V 2
jl

= [e ≻ d ≻ c ≻ Others]; we note that V 1
jl

(V 2
jl
) extends

Q1
jl

(Q2
jl
);

27

• for any j ≤ t (with j 6= jl for any l ≤ q/3), let V 1
j = V 2

j = [sj ≻ d ≻ e ≻ c ≻ Others];

we note that V 1
j (V 2

j) extends Q1
j (Q2

j);

• then, we use these votes to extend the partial orders in P1: let P ∗
1 = {Vi : i ≤

q} ∪ {V 1
j , V 2

j : j ≤ t}.

In P ∗
1 ∪P2, we have Plu(c) = q+4, Plu(d) = Plu(e) = q+2; for any l ≤ q/3, Plu(sjl

) = q+3;
for any j 6= jl (l = 1, . . . , q/3), Plu(sj) = q + 2; and for any e′ ∈ E, Plu(e′) ≤ 1. Also, we
have that for any l ≤ q/3, D(c, sjl

) = 1. It follows that the pairs that enter the runoff (in
some parallel universe) are (c, sj1), . . . , (c, sjq/3

), and c wins each of these pairwise elections.
Therefore, c is the unique winner for P ∗

1 ∪ P2.
Next, we show how to convert a solution to the PW instance to a solution to the X3C

instance. Let P ∗
1 = P 1∗

1 ∪ P 2∗
1 be an extension of P1 such that c is the unique winner for

P ∗
1 ∪ P2, where P 1∗

1 = {Vi : i ≤ q} extends P 1
1 , and P 2∗

1 = {V 1
j : j ≤ t} ∪ {V 2

j : j ≤ t}

extends P 2
1 . We make the following sequence of claims.

Claim 2 Neither d nor e can enter the runoff, which means that the only pairs that could
potentially still enter the runoff are the (c, sj), for some j ≤ t.

Proof. If d or e entered the runoff in some parallel universe, then it would defeat c
in the runoff (unless c is not even in the runoff, in which case c also does not win in this
parallel universe), contradicting that c is the unique winner. 2

Claim 3 For any j ≤ t, PluP ∗

1
(sj) ≤ 3.

Proof. If this does not hold, then we let j∗ be an index of s such that PluP ∗

1
(sj∗) is

maximized. It follows that PluP 2∗

1

(sj∗) ≥ 1, because PluP 1∗

1

(sj∗) ≤ 3. However, by putting

sj∗ in the top position in a partial order in P 2
1 , we are forcing D(c, sj∗) to be reduced by 2,

which means that sj∗ beats c in their pairwise election. Moreover, because, by Claim 2, one
of the sj must enter the runoff, and because sj∗ has the maximum plurality score among
the sj alternatives, in one of the parallel universes, sj∗ must be in the runoff. Hence, c
cannot win in this parallel universe, contradicting that c is the unique winner. 2

Claim 4 PluP ∗

1
(d) = 0, PluP ∗

1
(e) ≤ 2q/3.

Proof. It follows from Claim 3 that for any j ≤ t, PluP ∗

1
∪P2

(sj) ≤ q + 3. Therefore,
from Claim 2 we must have that PluP ∗

1
∪P2

(d) ≤ q + 2 and PluP ∗

1
∪P2

(e) ≤ q + 2. The claim
follows. 2

Claim 5 For any j ≤ t, if PluP 2∗

1

(sj) ≥ 1, then PluP ∗

1
(sj) ≤ 2.

Proof. This follows from the proof for Claim 3: if PluP 2∗

1

(sj) ≥ 1, and sj enters the
runoff in some parallel universe, then c cannot win in that parallel universe. Therefore, sj

cannot be in the runoff; but because, by Claim 3, for any j′, PluP ∗

1
(sj′) ≤ 3, and by Claim 2,

one of the sj′ must be in the runoff, it follows that we must have that PluP ∗

1
(sj) ≤ 2. 2

Claim 6 Let X1 = {sj : PluP 1∗

1

(sj) > 0, P luP 2∗

1

(sj) = 0}, and X2 = {sj : PluP 1∗

1

(sj) =

0, P luP 2∗

1

(sj) > 0}. We have X1 ∪ X2 = SV and |X1| = q/3.

28

Proof. Let x1 = |X1|, x2 = |X2|, and x3 = t − x1 − x2. We recall that for any O ∈ P 1
1 ,

the top-ranked alternative of any extension of O must be either d or an element in SV ; for
any Q ∈ P 2

1 , the top-ranked alternative of any extension of Q must be d, e, or an element
in SV . We then use these observations to obtain two inequalities.

First, in order for c to be the unique winner, d cannot be in the top position in any vote
in P 1∗

1 . Therefore, all of the q top positions in P 1∗
1 must be taken by alternatives in SV .

Any alternative in X1 can take at most 3 of these top positions; any alternative in X2 takes
none of these top positions by definition; and any alternative in SV \ (X1 ∪X2) can take at
most 1 of these top positions, by Claim 5. It follows that 3x1 + x3 ≥ q.

Now, we apply a similar analysis to P 2∗
1 . In order for c to be the unique winner,

e cannot be in the top position in more than 2q/3 of the votes in P 2∗
1 , leaving at least

2t− 2q/3 top positions to be filled. Alternatives in X1 can take none of these top positions;
a given alternative in X2 can take at most 2 of these top positions, by Claim 5; and a given
alternative in SV \ (X1 ∪ X2) can take at most 1 of these top positions, by Claim 5. It
follows that 2x2 + x3 ≥ 2t − 2q/3.

By substituting the q in the second inequality by the q in the first inequality, we obtain
2x1 + 2x2 + 5

3x3 ≥ 2t. But, we recall that x1 + x2 + x3 = t. Therefore, x3 = 0, x1 + x2 = t.
Now the first inequality becomes x1 ≥ q/3 and the second inequality becomes x2 ≥ t− q/3.
It follows from x1 + x2 = t that x1 = q/3 and x2 = t − q/3. 2

Based on all these claims, we can now construct a solution to the X3C instance. Let
X1 = {sj1 , . . . , sjq/3

}. From Claim 3, Claim 6, |P 1∗
1 | = q, and the fact that every top position

in P 1∗
1 must be occupied by one of the alternatives in X1, it follows that Sj1 , . . . , Sjq/3

is
a solution to the X3C instance. Therefore, PW with respect to plurality with runoff is
NP-complete to compute. 2

Theorem 9 NcW is coNP-complete with respect to plurality with runoff, even when the
number of undetermined pairs in each vote is at most 4.

Proof. We now prove coNP-hardness by showing a reduction from an arbitrary X3C
instance. Given an X3C instance V = {v1, . . . , vq}, S = {S1, . . . , St}, we construct a NcW
instance as follows.

Alternatives: {c, d} ∪ V ∪ E, where E = {e1, . . . , et(q+2)3}.

First part P1 of the profile: for each i ≤ t, we start with O(d ≻ Si ≻ c ≻ Others),
and subsequently obtain a partial order Oi by removing the orderings in ({d}∪Si)×{c}.

Second part P2 of the profile: P2 = P 1
2 ∪ P 2

2 , where P 1
2 and P 2

2 are defined as
follows.

– P 1
2 : a set of t(q + 1) + q/3 votes, such that c is ranked in the top position t + 1

times; d is ranked in the top position q/3 − 1 times; and for any i ≤ q, vi is
ranked in the top position t times.

– P 2
2 : we first obtain, according to Lemma 2, a profile P̂ 2

2 such that the pairwise
score differences of {O(d, Sj , c,Others) : j ≤ t} ∪ P 1

2 ∪ P̂ 2
2 satisfy the following

conditions.

29

1. D(c, d) = 2t + 1;

2. for all i ≤ q, D(vi, c) = 3.

From Lemma 2, we have that |P̂ 2
2 | is bounded above by a polynomial function

of t + q. Next, we obtain P 2
2 from P̂ 2

2 by raising an alternative in E to the
top position in each vote, in such a way that no two votes in P 2

2 rank the same
alternative in the top position.

We recall that for any profile P and any alternative c′, PluP (c′) denotes the number of
times that c′ is ranked in the top position in P . We make the following observations on
{O(d, Si, c,Others) : i ≤ t} ∪ P2.

• D(c, d) = 2t + 1, and for all i ≤ q, D(vi, c) = 3;

• Plu(c) = t + 1, P lu(d) = t − 1 + q/3; for any i ≤ q, Plu(vi) = t; for any e ∈ E,
Plu(e) ≤ 1.

It follows from the observations that in any extension of P1 ∪ P2, c must enter the runoff;
also, in any extension, c beats d in the pairwise election. Let P ∗

1 ∪ P2 (where P ∗
1 is an

extension of P1) be a profile in which c is not a co-winner. We must have that d does not
enter the runoff, which means that PluP ∗

1
∪P2

(d) ≤ t−1. It follows that c ≻ d in at least q/3
votes in P ∗

1 . However, by ranking c ≻ d in a partial order Oi, we are forcing c ≻ Si. Then,
the pairs of alternatives that enter the runoff (in parallel universes) are (c, v1), . . . , (c, vq).
Since c loses in any of these pairwise elections in the runoff (because, by assumption, c is
not a co-winner), we must have, for any vj , that c ≻ vj in at most one vote in P ∗

1 . Hence,
a solution to the NcW instance naturally corresponds to a solution to the X3C instance.
Conversely, it is easy to see that any solution to the X3C instance corresponds to a solution
to the NcW instance. This proves the hardness of NcW with respect to plurality with
runoff. 2

5. Polynomial time algorithms for possible and necessary winner
problems

In this section we present polynomial-time algorithms to compute whether an alternative is
a necessary (co-)winner with respect to positional scoring rules, maximin, and Bucklin. For
any positional scoring rule, maximin, and Bucklin, we present algorithms that solves the
NW and NcW problems in time O(nm2), O(nm3), and O(nm2), respectively. For plurality
with runoff, we present a O(m2n4) algorithm for PcW, and a O(m3n4) algorithm for NW.
We recall that PW is NP-complete (Theorem 8) and NcW is coNP-complete (Theorem 9),
both with respect to plurality with runoff.

We note that positional scoring rules, maximin, and Bucklin are all based on some type
of scores, so if we can find an extension of the partial orders to linear orders so that the score
of c, denoted by S(c), is no more than the score of another alternative w, then c is not the
(unique) winner in this profile, and hence c is not a necessary winner. So, in the following
algorithms for these rules, we check all alternatives w 6= c, and try to make S(c) − S(w)
as low as possible on a vote-by-vote basis (or equivalently, make S(w) − S(c) as high as
possible). For each vote O (partial order), there can be two cases. In the first case, c 6≻O w.

30

In this case, we just consider c and w separately, raising w as high as possible and lowering
c as low as possible. (This part of the algorithm has already been considered in (Konczak
& Lang, 2005).) The following example, Example 3, illustrates this.

Example 3 A partial order O is illustrated in Figure 4. Let c = c2 and w = c5. Since
c2 6≻O c5, we can raise c5 as high as possible while lowering c2 as low as possible, as shown
in Figure 5.

c1

c2 c3 c4

c5 c6

Figure 4: A partial order O.

c1 c2 c3 c4c5 c6

Figure 5: An extension V1 of O.

In the second case, c ≻O w. This case is more complicated, and in what follows we
show how to minimize S(c)− S(w) for positional scoring rules, maximin, and Bucklin. For
plurality with runoff, we convert PcW into a maximum flow problem to solve it; this also
gives an algorithm for NW, simply by checking whether any other alternative is a possible
co-winner (see Proposition 1).

In this section, the input consists of C = {c, c1, . . . , cm−1}, c (the alternative for which
we wish to decide whether or not it is a necessary (co-)winner), a profile Pposet of n partial
orders over C, and the voting rule r.

We first define some notation that will be used in the algorithms.

Definition 7 Given a partial order O and an alternative c, let UpO(c) = {c′ ∈ C : c′ �O c}
and DownO(c) = {c′ ∈ C : c �O c′}. Given another alternative w such that c ≻O w, let O’s
c ≻ w block be defined as follows: BlockO(c, w) = {c′ ∈ C : c �O c′ �O w}.

That is, UpO(c) is the set of alternatives that are weakly preferred to c in O (including c
itself), and DownO(c) is the set of alternatives that c is weakly preferred to in O (including
c itself). If c ≻O w, then BlockO(c, w) is the set of all the alternatives, including c and w,
that are ranked between c and w. It is easy to check that for any partial order O, and any
alternatives c, w (with c ≻O w), BlockO(c, w) = DownO(c) ∩ UpO(w).

Example 4 Let O be the partial order illustrated in Figure 4. We have that UpO(c2) =
{c1, c2}, UpO(c4) = {c1, c2, c3, c4}, DownO(c2) = {c2, c3, c4}, DownO(c4) = {c4}, and
BlockO(c2, c3, c4) = {c2, c3, c4}.

The notion of a block is useful for the following reason. In the algorithm, we want to
think about an extension of the partial orders in which w does as well as possible, and c
does as poorly as possible. When c ≻O w in some partial order O, we cannot rank c below

31

w; but at least it makes sense to have as few alternatives between them as possible. The
alternatives in the block are exactly the ones that need to be between them; we will rank
the others outside of the block. Then, the question is where to position the block, and we
will “slide” the block through the ranking.

Now we are ready to present the algorithms. First we note that given a partial order O,
computing the Up and Down sets takes O(m) time.10

Algorithm 1 (Computing NW with respect to a positional scoring rule)

1. Compute the Up and Down sets for each partial order O.

2. Repeat Steps 3a-c for all w 6= c:

3a. Let S(w) = S(c) = 0.

3b. For each partial order O in P ,

– if c 6≻O w, then (following Example 3) the lowest possible position for c is
the m+1−|DownO(c)|th position, and the highest possible position for w is the
|UpO(w)|th position, so we add the scores r(|UpO(w)|) and r(m+1−|DownO(c)|)
to S(w) and S(c), respectively;

– if c ≻O w, then the highest that we can slide O’s c ≻ w block (as measured by c’s
position, which is at the top of the block) is position |UpO(w)\DownO(c)|+1 (if
an alternative a is ranked above w in the partial order, then we will place it above
c, unless the partial order ranks c above a), and the lowest (as measured by w’s
position, which is at the bottom of the block) is position m−|DownO(c)\UpO(w)|
(if an alternative a is ranked below c in the partial order, then we will place it
below w, unless the partial order ranks a above w). Any position between these
extremes is also possible. We find the position that minimizes the score of c
minus the score of w, then add the scores that c and w get for these positions to
S(c) and S(w), respectively.

3c. If the result is that S(w) ≥ S(c), then output that c is not a necessary winner
(terminating the algorithm).

4. Output that c is a necessary winner (if we reach this point).

The algorithm for computing NcW is obtained simply by checking whether S(w) > S(c)
in Step 4.

Proposition 3 Algorithm 1 checks whether or not c is a necessary winner for Pposet with
respect to a given positional scoring rule. It runs in time O(nm2).

Proof. It is equivalent to check whether there exists an extension P of Pposet and an
alternative w 6= c, such that s(P, w) ≥ s(P, c)—that is, whether c is not a necessary (unique)

10. The complexity of computing Up and Down sets depends on how we represent the partial order: if the
partial order is represented by the collection of Up and Down sets of all alternatives, then it becomes
trivial. In this paper, we assume that the partial orders are represented by pairwise comparisons of
alternatives.

32

winner. To this end, for any O ∈ Pposet, we maximize s(VO, w)−s(VO, c) over all extensions
VO of O.

We note that for any extension VO of O, s(VO, w) ≤ r(|UpO(w)|) (because w cannot
be ranked in a position higher than the |UpO(w)|th position) and s(VO, c) ≥ r(m + 1 −
|DownO(c)|) (because c cannot be ranked in a position lower than the (m+1−|DownO(c)|)th
position). We recall that for any i ≤ m, r(i) is the score of the alternative that is ranked
at the ith position. These two bounds can be achieved if c 6≻O w: for any d ∈ C \ UpO(w),
we add w ≻ d to O; and for any d ∈ C \DownO(c), we add d ≻ c to O. We obtain a partial
order O′ this way, and we let VO be an (arbitrary) linear order that extends O′. It follows
that s(VO, w) − s(VO, c) = r(|UpO(w)|) − r(m + 1 − |DownO(c)|).

However, if c ≻O w, there may not exist VO in which s(VO, w) = r(|UpO(w)|) and
s(VO, c) = r(m + 1 − |DownO(c)|) hold simultaneously. We note that in any V ∗

O that
maximizes s(VO, w) − s(VO, c), the only alternatives between c and w must be those in
BlockO(c, w). Therefore, for any d ∈ C such that d ≻O w and c 6≻O d, we must have that
d ≻V ∗

O
c; and for any d ∈ C such that c ≻O d and d 6≻O w, we must have that w ≻V ∗

O
d.

It follows that s(VO, w) − s(VO, c) ≤ maxl(r(l + |BlockO(c, w)| − 1) − r(l)), where l ranges
between |UpO(w) \ DownO(c)| + 1 and m − |DownO(c) \ UpO(w)|. Let V ′

O be an extension
of O restricted to C \ BlockO(c, w) in which UpO(w) \ DownO(c) is ranked at the top and
DownO(c) \ UpO(w) is ranked at the bottom. For any d ∈ C \ (UpO(w) ∪ DownO(c))
and any d′ ∈ BlockO(c, w), we must have d 6≻O d′ and d′ 6≻O d. Therefore, for any
|UpO(w)\DownO(c)|+1 ≤ l ≤ m−|DownO(c)\UpO(w)|, we can put BlockO(c, w) between
the (l − 1)th position and the lth position in V ′

O, to obtain a linear order that extends O.

This proves the correctness of Step 3b, which computes maxVO
(s(VO, w) − s(VO, c)). It

follows that the algorithm correctly checks whether or not c is a necessary winner.

Step 3b runs in time O(nm). We note that we run Step 3b for every w 6= c. Hence,
Algorithm 1 runs in time O(nm2). 2

We now move on to the maximin rule. We note that c is not a necessary winner for Pposet

with respect to maximin if and only if there exists a profile of linear orders P extending
Pposet, and two alternatives w and w′, such that NP (w, d) ≥ NP (c, w′) for all alternatives d.
We recall that NP (w, d) is the number of votes in P where w ≻ d. Therefore, our algorithm
considers all pairs (w, w′), and then checks whether there exists an extension of the input
partial orders for which the inequality holds for all alternatives d. To perform such a check,
in each partial order, we would like to rank w′ ahead of c, and also to rank w as high as
possible. However, these two objectives may conflict: it may be the case that if we rank
c ahead of w′, then we can rank w higher than in the case where we rank w′ ahead of c.
In this case, we first place w′ ahead of c, and then rank w as high as possible under this
additional constraint. This works for the following reason. Let O ∈ Pposet be a partial
order where c 6≻O w′ and w′ 6≻O c; let V be an arbitrary extension of O in which w′ ≻V c
and let V ′ be an arbitrary extension of O in which c ≻V ′ w′. For any d ∈ C, we have
that N{V }(w, d)−N{V }(c, w

′) ≥ 0 ≥ N{V ′}(w, d)−N{V ′}(c, w
′), which means that enforcing

w′ ≻ c is always at least as good as enforcing c ≻ w′.

Algorithm 2 (Computing NW with respect to maximin)

1. Compute the Up set for each partial order O.

33

2. Repeat 3a-c for all tuples w, w′, where c 6= w and c 6= w′.

3a. Let S(c, w′) = 0, and for any alternative d 6= w, let S(w, d) = 0.

3b. For each partial order O,

– if c 6≻O w′, then add w′ ≻ c to O and raise w as high as possible; for any d 6= w,
if, in the resulting vote, w is ahead of d (that is, d 6∈ UpO(w) and if c ∈ UpO(w),
then d 6∈ UpO(w′)), then add 1 to S(w, d).

– if c ≻O w′, then raise w as high as possible; add 1 to S(c, w′); for any d 6= w,
if, in the resulting vote, w is ahead of d (that is, d 6∈ UpO(w)), then add 1 to
S(w, d).

3c. Check if for all d 6= w, S(w, d) ≥ S(c, w′); if the answer is yes, then output that
c is not a necessary winner (terminating the algorithm).

4. Output that c is a necessary winner.

The algorithm for computing NcW with respect to maximin is similar: the only modification
is that in Step 3, we check if for all alternatives d 6= w, S(w, d) > S(c, w′).

Proposition 4 Algorithm 2 checks whether or not c is a necessary winner for Pposet with
respect to maximin. It runs in time O(nm3).

Proof. The function S(x, y) computed in the algorithm is the number of times x is preferred
to y in an extension of Pposet. For any partial order O, we let VO be the extension computed
in Step 3b. Let g(V, d) = NV (w, d) − NV (c, w′). We next prove that for any d 6= w and
any extension V ′

O of O, g(VO, d) ≥ g(V ′
O, d). If c 6≻O w′ and c ≻V ′

O
w′, then g(V ′

O, d) ≤
0 ≤ g(VO, d) (because NVO

(c, w′) = 0 and NV ′

O
(c, w′) = 1). If c 6≻O w′ and w′ ≻V ′

O
c, then

NV ′

O
(c, w′) = NVO

(c, w′). We note that VO is obtained by raising w as high as possible in O
while w′ ≻ c, which means that NV ′

O
(w, d) ≤ NVO

(w, d). It follows that g(VO, d) ≥ g(V ′
O, d).

Similarly, if c ≻O w′, then we also have that NV ′

O
(w, d) ≤ NVO

(w, d) for all d 6= w.
Therefore, for any extension P of Pposet and any d 6= w, S(w, d)−S(c, w′) = NP (w, d)−

NP (c, w′) ≤
∑

O∈Pposet
g(VO, d), and when P is the profile computed in Step 3b, the in-

equality becomes an equality. It follows that the algorithm is correct.
The time complexity of Step 3b is O(nm); the time complexity of Step 3c is O(m). We

note that we run Step 3b for every w, w′ (w 6= c, w′ 6= c). Therefore, the algorithm runs in
time O(nm3). 2

Now we move on to the Bucklin rule. We note that c is not a necessary winner of
Pposet with respect to Bucklin, if and only if there exists an extension P of Pposet and an
alternative w, such that either w’s Bucklin score is 1, or there exists 2 ≤ k ≤ m, such that
w is among the top k for more than n

2 votes, and c is among the top k − 1 for at most n
2

votes. Therefore, like Algorithm 1, the algorithm for Bucklin considers each alternative w,
computes the possible positions for the blocks BlockO(c, w), and then checks for all k from
1 to m whether the above condition can be made to hold.

In the algorithm, if c 6≻Oj w, then High(j) (respectively, Low(j)) is the highest (respec-
tively, lowest) position that w (respectively, c) reaches in an extension of Oj . If c ≻Oj w,
then High(j) (respectively, Low(j)) is the highest (respectively, lowest) position of c given
that c and w are ranked as close to each other as possible, and Length(j) is the size of

34

BlockOj (c, w). For any i ≤ m, d ∈ {c, w}, let S(i, d) denote the minimum number of times
that d is ranked in the top i positions, where the minimum is taken over all optimal exten-
sions of Pposet (we will elaborate on the meaning of optimality later). U(k) is the number
of partial orders for which we will have to compute where to put the block BlockOj (c, w)
to make c not a necessary unique winner. That is, U(k) is the number of partial orders for
which there exists an extension in which c is in the top k − 1 positions and w is in the top
k positions, as well as another extension in which c is not in the top k − 1 positions and w
is not in the top k positions.

Algorithm 3 (Computing NW with respect to Bucklin)

1. Compute the Up and Down sets for each partial order O.

2. Repeat Steps 3a-d for all w 6= c:

3a. For any j ≤ n, let High(j) = Low(j) = Length(j) = 0. For any i ≤ m, let
S(i, c) = S(i, w) = U(i) = 0.

3b. For each partial order Oj ,

– if c 6≻Oj w, then let Length(j) = 0, and let High(j) = |UpOj
(w)|, Low(j) =

m + 1 − |DownOj (c)|;

– if c ≻Oj w, then let Length(j) = |BlockOj (c, w)|, High(j) = |UpOj
(w) \

DownOj (c)| + 1, Low(j) = m + 1 − |DownOj (c)|.

3c. For each k ≤ m, each j ≤ n,

– if Length(j) = 0, then add 1 to S(k, w) if High(j) ≤ k, and add 1 to S(k−1, c)
if Low(j) ≤ k − 1;

– if Length(j) > 0, then add 1 to S(k, w) if either Low(j)+Length(j)−1 ≤ k, or
the following two conditions both hold: Low(j) ≤ k−1 and High(j)+Length(j)−
1 ≤ k. Also, add 1 to S(k−1, c) if Low(j) ≤ k−1; add 1 to U(k) if Low(j) > k−1
and High(j) + Length(j) − 1 ≤ k.

3d. If S(1, w)+U(1) > n
2 , or there exists 2 ≤ k ≤ m such that S(k, w) > S(k− 1, c),

S(k − 1, c) ≤ n
2 , and S(k, w) + U(k) > n

2 , then output that c is not a necessary
winner (terminating the algorithm).

4. Output that c is a necessary winner.

The algorithm for computing NcW is obtained by making following changes to Steps 3c and
3d as follows.

3c′. For each k ≤ m, each j ≤ n,

– if Length(j) = 0, then add 1 to S(k, w) if High(j) ≤ k, and add 1 to S(k, c) if
Low(j) ≤ k;

– if Length(j) > 0, then add 1 to S(k, w) if either Low(j) + Length(j) − 1 ≤ k, or
the following two conditions both hold: Low(j) ≤ k and High(j) + Length(j) − 1 ≤
k. Also, add 1 to S(k, c) if Low(j) ≤ k; add 1 to U(k) if Low(j) ≥ k + 1 and
High(j) + Length(j) − 1 ≤ k.

35

3d′. If there exists 0 ≤ l ≤ U(1) such that S(1, w) + l > n
2 ≥ S(1, c) + l, or there exists

2 ≤ k ≤ m and l ≤ U(k) such that S(k, w) + l > n
2 ≥ S(k, c) + l, then output that c

is not a necessary co-winner (terminating the algorithm).

Proposition 5 Algorithm 3 checks whether or not c is a necessary winner for Pposet with
respect to Bucklin. It runs in time O(nm2).

Proof. Similarly as in the case of positional scoring rules, for Bucklin, if c 6≻O w, then we
can simply rank c as low as possible while rank w as high as possible, independently. On
the other hand, if c ≻O w, then we can without loss of generality place as few alternatives
between c and w as possible, but the question is where to place the c ≻ w block. The
algorithm will consider a particular k, and try to make it so that w is among the top k for
more than half the votes, and c is among the top k − 1 for at most half the votes. For a
particular vote with c ≻O w, depending on where the block is placed, either (1) c is among
the top k−1 and w is among the top k; or, (2) c is among the top k−1 and w is not among
the top k; or, (3) c is not among the top k − 1 and w is not among the top k. However,
not all three of these possibilities may exist for a particular vote. The algorithm will never
choose (2) unless that is the only option, so that the only difficult case is when a decision
must be made between (1) and (3).

We recall that for any i ≤ m and d ∈ {c, w}, S(i, d) is the minimum number of times
that d is ranked within top i positions, where the minimum is taken over all extensions
of Pposet that are consistent with the observations in the previous paragraph (specifically,
option (2) is never chosen unless there is no other choice). U(k) is the number of partial
orders for which there exists an extension in which c is ranked within top k − 1 positions
and w is ranked within top k positions, as well as an extension in which c is not ranked
within top k − 1 positions and w is not ranked within top k positions (that is, we have a
choice between (1) and (3)).

For any k ≤ m, and any j ≤ n, we consider how to extend Oj .

• If c 6≻Oj w, then the positions of c and w are already determined by our previous
observations (w is ranked as high as possible and c is ranked as low as possible).

• If c ≻Oj w and High(j) ≥ k, then c cannot be ranked within top k − 1 positions and
w cannot be ranked within top k positions; therefore, we add 0 to S(k − 1, c) and
S(k, w).

• If c ≻Oj w, High(j) < k and High(j)+Length(j)−1 > k, then c can be ranked within
top k − 1 positions, but w cannot be ranked within top k positions. There are two
sub-cases: (1) if Low(j) ≥ k, then we rank c in the Low(j)th position, and henceforth
add 0 to both S(k − 1, c) and S(k, w); (2) if Low(j) < k, then c is inevitably ranked
within top k − 1 positions, and w cannot be ranked within top k positions, which
means that we add 1 to S(k − 1, c) and 0 to S(k, w).

• The final case is where c ≻Oj w, High(j) < k and High(j)+Length(j)−1 ≤ k. Again,
there are two subcases: (1) if Low(j) < k, then it means that c must be ranked within
top k − 1 positions. Therefore we rank w in the top k positions, and add 1 to both
S(k−1, c) and S(k, w); (2) if Low(j) ≥ k, then it means that we have three options for

36

an extension of Oj , corresponding to the cases (1), (2), (3) discussed in the beginning
of the proof.

(1) c’s position is within top k − 1 and w’s position is within top k.

(2) c’s position is within top k−1 and w’s position is not within top k (if Length(i) >
2).

(3) c’s position is not within top k − 1 and w’s position is not within top k.

As we already discussed, option (2) is suboptimal. So, we add 0 to both S(k − 1, c)
and S(k, w), and add 1 to U(k).

The only remaining decision is for how many of the votes corresponding to the number
U(k) to choose option (1) (as opposed to option (3)). This corresponds to Step 3d of the
algorithm, where it checks whether there exists a way of choosing the number of extensions
(but no more than U(k)) that choose (1) in such a way that c is not the winner. Remember
that in the algorithm, when we try to show that w can be (at least) a co-winner with c,
we need to show that, for some completion of the votes, for some k, c is in the top k − 1
at most half the time, and w is in the top k more than half the time. Hence, we want to
put c in the top k − 1 as few times as possible (this is how we count points for c) and w in
the top k as many times as possible (this is how we count points for w). In some partial
orders, however, we have that c must be ranked ahead of w, and we have a choice between
giving both of them a point, or neither of them a point. The number of such partial orders
is exactly U(k). Then, what we need is to show that there are some completions such that
the number of points for c (i.e., how often c is ranked in the top k−1) is strictly lower than
the number of points for w (i.e., how often w is ranked in the top k). If this is the case,
then by playing with the partial orders that can either give a point to both or to neither,
we can shift both the scores and make it so that w gets strictly more than n/2 points and c
gets at most n/2 points, so that c is not a unique winner for this completion. S(k, w) and
S(k − 1, c) are the numbers of points that w and c get when we don’t give either of them
any points from the the partial orders that can either give a point to both or to neither, so
the condition that w gets more points than c can be rewritten as S(k, w) > S(k − 1, c).

The time complexity of Step 3b is O(nm); the time complexity of Step 3c is O(nm);
the time complexity of Step 3d is O(m). We note that we run Step 3b for every w 6= c.
Therefore, the algorithm runs in time O(nm2). 2

Finally, we consider the possible co-winner problem with respect to plurality with runoff.
We will show that this problem can be solved in polynomial time. From this, it also follows
that the necessary (unique) winner problem can be solved in polynomial time (Proposi-
tion 1). In contrast, we have already shown that for plurality with runoff, the possible
unique winner problem is NP-complete (Theorem 8) and the necessary co-winner problem
is coNP-complete (Theorem 9).

Our algorithm for determining whether c is a possible co-winner is based on the following
key observation: c is a possible co-winner for Pposet with respect to plurality with runoff
if and only if there exists an extension of Pposet, denoted by P ∗, an alternative d 6= c, and
two natural numbers l1, l2, such that (1) c is preferred to d in at least half of votes (linear
orders) in P ∗, and (2) PluP ∗(c) = l1, PluP ∗(d) = l2, and for any alternative c′ (c′ 6= c and
c′ 6= d), PluP ∗(c′) ≤ min{l1, l2}. That is, c and d can enter the runoff (there could be other

37

s

O1

On

c0
1

c1

cm−1

t

c2

c

t 0

1

1

1 ⌊n/2⌋−α1

1

1

1

l2

lmin

lmin

1

l1

n− l1 − l2

.

.

.
.
.
.

Figure 6: The maximum flow problem Fl1,l2,1.

pairs of alternatives who enter the runoff in some parallel universe) and c can then defeat
d in the runoff.

For any i∗ ≤ m − 1, we let αi∗ be the number of partial orders O ∈ Pposet such that
ci∗ ≻O c. For any O ∈ Pposet, we let Top(O) denote the set of alternatives c′ for which there
exists at least one extension of O where c′ is in the top position. Based on the observations
in the previous paragraph, we will consider all possibilities for l1, l2, and d (we will use i∗

to denote possibilities for the index of d), and solve a maximum flow problem instance for
each possibility.11 Specifically, for any l1, l2 ≤ n and i∗ ≤ m−1 (with αi∗ ≤ n/2), we define
a maximum flow problem Fl1,l2,i∗ as follows (illustrated in Figure 6, in which i∗ = 1).

Vertices: s, O1, . . . , On, c′i∗ , c, c1, . . . , cm−1, t′, t.

Edges: we have the following five types of edges.

– Edges from s to {O1, . . . , On}: for any i ≤ n, there is an edge (s, Oi) with
capacity 1.

– Edges from {O1, . . . , On} to {c′i∗ , c, c1, . . . , cm−1}: we have

∗ for any j ≤ n and any d ∈ C such that d 6= ci∗ , there is an edge (Oj , d) with
capacity 1 if d ∈ Top(Oj);

∗ for any j ≤ n, there is an edge (Oj , ci∗) with capacity 1 if ci∗ ∈ Top(O) and
ci∗ ≻Oj c;

∗ for any j ≤ n, there is an edge (Oj , c
′
i∗) with capacity 1 if ci∗ ∈ Top(O) and

ci∗ 6≻Oj c.

– Edge from c′i∗ to ci∗: there is an edge (c′i∗ , ci∗) with capacity ⌊n/2⌋ − αi∗ .

– Edges from C \ {c, ci∗} to t′: for any c′ ∈ C \ {c, ci∗}, we have an edge (c′, t′)
with capacity lmin = min{l1, l2}.

– Edges from {c, ci∗ , t
′} to t: we have

∗ an edge (c, t) with capacity l1;

11. Our original proof used a minimum cost flow problem, but one of the anonymous reviewers pointed out
how to modify this approach into the simpler maximum flow approach presented here, for which we
thank the reviewer.

38

∗ an edge (ci∗ , t) with capacity l2;

∗ an edge (t′, t) with capacity n − l1 − l2.

Next, we prove that c is a possible co-winner for Pposet with respect to plurality with runoff
if and only if there exist l1, l2 ≤ n and i∗ ≤ m− 1 such that Fl1,l2,i∗ has a solution in which
the value of the flow is n.

Because all parameters in Fl1,l2,i∗ are integers, if there exists a solution to Fl1,l2,i∗ , then
there must also exists an integer solution. First, we show how to convert an integer solution
to Fl1,l2,i∗ to a solution to the PcW problem with respect to plurality with runoff. Let f
be an integer solution to Fl1,l2,i∗ , that is, f : Vertices × Vertices → Z. We construct an
extension P ∗ = (V ∗

1 , . . . , V ∗
n) of Pposet as follows:

• for any j ≤ n, if f(Oj , c
′
i∗) = 1 then we let V ∗

j be an extension of Oj in which ci∗ is
ranked in the top position;

• for any j ≤ n and any d ∈ C, if f(Oj , d) = 1 then we let O∗
j be an extension of Oj in

which d is ranked in the top position, and c is ranked as high as possible.

Because the value of f is n, the plurality score of c is l1 and the plurality score of ci∗ is
l2, while the plurality score of ci (i 6= i∗) is at most lmin. Therefore, c and ci∗ enter the
runoff together in at least one parallel universe. Now, the capacity constraint on the edge
(c′i∗ , ci∗) ensures that c will win the runoff: the reason is that if we rank ci∗ first in a vote
in which we could have ranked c ahead of ci∗ , then it will contribute 1 to the flow on this
edge. Moreover, the capacity of the edge (c′i∗ , ci∗) is ⌊n/2⌋ − αi∗ , which means that ci∗ ≻ c
in at most αi∗ + (⌊n/2⌋ − αi∗) ≤ n/2 votes of P ∗. Hence, c is a co-winner for P ∗.

Conversely, if there exists an extension P ∗ of P such that c is a co-winner of P ∗, then
there exists a ci∗ such that in some parallel universe, {c, ci∗} enter the runoff, and c wins
this runoff. Let l1, l2 be the plurality scores of c, ci∗ . Then, this extension can be converted
to a solution to Fl1,l2,i∗ (we omit the details because they are similar to the details for the
other direction).

Therefore, the following algorithm solves PcW with respect to plurality with runoff.

Algorithm 4 (Computing PcW with respect to plurality with runoff)

1. For any O ∈ Pposet, compute Top(O) and UpO(c). For any i ≤ m−1, let αi = #{O ∈
Pposet : ci ∈ UpO(c)}.

2. Repeat Steps 3a-b for all i ≤ m − 1 and l1, l2 ≤ n:

3a. Construct the maximum flow problem Fl1,l2,i.

3b. Solve Fl1,l2,i by the Ford-Fulkerson algorithm (Cormen, Leiserson, Rivest, &
Stein, 2001). If the maximum flow is n, then output that c is a possible co-
winner. Terminate the algorithm.

4. Output that c is not a possible co-winner.

The runtime of Step 1 is O(m). The runtime of the Ford-Fulkerson algorithm is
O(E max |f |), where E is the number of edges, and max |f | is the value of the maximum

39

flow. We have E = O(mn) and max |f | = O(n). Therefore, the runtime of Step 3b is
O(mn2). We note that we run Step 3b for every i ≤ m − 1 and l1, l2 ≤ n. Therefore, the
runtime of Algorithm 4 is O(m2n4).

Proposition 6 Algorithm 4 checks whether or not c is a possible co-winner for Pposet with
respect to plurality with runoff. It runs in time O(m2n4).

We recall from the proof of Proposition 1 that c is a necessary unique winner if and only
if no other alternative is a possible co-winner. Therefore, we naturally obtain an algorithm
for NW, simply by using Algorithm 4 to check if any alternative other than c is a possible
co-winner; this procedure has a runtime of O(m3n4).

Proposition 7 Algorithm 4 can be used to check whether or not c is a necessary unique
winner for Pposet with respect to plurality with runoff, in time O(m3n4).

6. Conclusion

We considered the following problem: given a set of alternatives, a voting rule, and a
set of partial orders, which alternatives are possible/necessary winners? That is, which
alternatives would win for some/any extension of the partial orders? We considered the
case where the votes are not weighted and the number of alternatives is not bounded.
Table 1 in the introduction summarizes our results. These results hold whether or not the
alternative must be the unique winner, or merely a co-winner, unless specifically mentioned.

In this paper, there was no restriction on the partial orders. However, if the reason
that we have partial orders is that preferences are submitted as CP-nets, this introduces
additional structure on the partial orders; that is, not all partial orders correspond to a
CP-net. Hence, while our positive results would still apply, it is not immediately obvious
that our negative results would still apply.

Another approach is to approximate the sets of possible/necessary winners. More pre-
cisely, we are asked to output a superset (respectively, subset) of possible (respectively,
necessary) winners such that the size of the output set should be within a fixed ratio of
the number of the possible (respectively, necessary) winners. Pini et al. (Pini et al., 2007)
proved the inapproximability of the set of possible/necessary winners for the single trans-
ferable vote rule (STV) rule. We conjecture that similar inapproximability results hold for
most of the common voting rules studied in this paper (for which the possible/necessary
winner problems are (co-)NP-complete).

Acknowledgements

We thank Nadja Betzler, Jérôme Lang, Toby Walsh, the anonymous reviewers for AAAI-08
and JAIR, and all participants of the Dagstuhl Seminar 07431: Computational Issues in
Social Choice for helpful discussions and comments. Lirong Xia is supported by a James
B. Duke Fellowship and Vincent Conitzer is supported by an Alfred P. Sloan Research Fel-
lowship. This work is supported by NSF under award numbers IIS-0812113 and CAREER
0953756.

40

References

Bachrach, Y., Betzler, N., & Faliszewski, P. (2010). Probabilistic possible winner determina-
tion. In Proceedings of The Twenty-fourth AAAI conference on Artificial Intelligence
(AAAI), Atlanta, GA, USA.

Bartholdi, III, J., & Orlin, J. (1991). Single transferable vote resists strategic voting. Social
Choice and Welfare, 8 (4), 341–354.

Bartholdi, III, J., Tovey, C., & Trick, M. (1989a). The computational difficulty of manipu-
lating an election. Social Choice and Welfare, 6 (3), 227–241.

Bartholdi, III, J., Tovey, C., & Trick, M. (1989b). Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare, 6, 157–165.

Baumeister, D., & Rothe, J. (2010). Taking the final step to a full dichotomy of the possible
winner problem in pure scoring rules. In Proceedings of The 19th European Conference
on Artificial Intelligence (ECAI), Lisbon, Portugal.

Betzler, N., & Dorn, B. (2010). Towards a dichotomy for the possible winner problem
in elections based on scoring rules. To appear in Journal of Computer and System
Sciences.

Betzler, N., Hemmann, S., & Niedermeier, R. (2009). A multivariate complexity analysis of
determining possible winners given incomplete votes. In Proceedings of the Twenty-
First International Joint Conference on Artificial Intelligence (IJCAI), pp. 53–58,
Pasadena, CA, USA.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004). CP-nets: a tool
for representing and reasoning with conditional ceteris paribus statements. Journal
of Artificial Intelligence Research, 21, 135–191.

Chevaleyre, Y., Lang, J., Maudet, N., & Monnot, J. (2010a). Possible winners when new
candidates are added: the case of scoring rules. In Proceedings of The Twenty-fourth
AAAI conference on Artificial Intelligence (AAAI), Atlanta, GA, USA.

Chevaleyre, Y., Lang, J., Maudet, N., Monnot, J., & Xia, L. (2010b). New candidates
welcome! Possible winners with respect to the addition of new candidates. Submitted
to Mathematical Social Sciences.

Conitzer, V. (2009). Eliciting single-peaked preferences using comparison queries. Journal
of Artificial Intelligence Research, 35, 161–191.

Conitzer, V., Rognlie, M., & Xia, L. (2009). Preference functions that score rankings and
maximum likelihood estimation. In Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence (IJCAI), Pasadena, CA, USA.

Conitzer, V., & Sandholm, T. (2002). Vote elicitation: Complexity and strategy-proofness.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 392–
397, Edmonton, AB, Canada.

Conitzer, V., & Sandholm, T. (2005a). Common voting rules as maximum likelihood es-
timators. In Proceedings of the 21st Annual Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 145–152, Edinburgh, UK.

41

Conitzer, V., & Sandholm, T. (2005b). Communication complexity of common voting rules.
In Proceedings of the ACM Conference on Electronic Commerce (EC), pp. 78–87,
Vancouver, BC, Canada.

Conitzer, V., Sandholm, T., & Lang, J. (2007). When are elections with few candidates
hard to manipulate?. Journal of the ACM, 54 (3), Article 14, 1–33. Early versions in
AAAI-02 and TARK-03.

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2001). Introduction to Algorithms
(Second edition). MIT Press.

Elkind, E., Faliszewski, P., & Slinko, A. (2009). Swap bribery. In Proceedings of the 2nd
International Symposium on Algorithmic Game Theory.

Elkind, E., & Lipmaa, H. (2005). Hybrid voting protocols and hardness of manipulation.
In Annual International Symposium on Algorithms and Computation (ISAAC), 3827
of Lecture Notes in Computer Science, pp. 206–215, Sanya, Hainan, China.

Erdélyi, G., Fernau, H., Goldsmith, J., Mattei, N., Raible, D., & Rothe, J. (2009). The com-
plexity of probabilistic lobbying. In The 1st International Conference on Algorithmic
Decision Theory, pp. 86–97, Venice, Italy.

Erdös, P., & Moser, L. (1964). On the representation of directed graphs as unions of
orderings. Math. Inst. Hung. Acad. Sci., 9, 125–132.

Faliszewski, P. (2008). Nonuniform bribery. In Proceedings of the Seventh International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp.
1569–1572, Estoril, Portugal.

Faliszewski, P., Hemaspaandra, E., & Schnoor, H. (2008). Copeland voting: ties matter.
In Proceedings of the Seventh International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), pp. 983–990, Estoril, Portugal.

Faliszewski, P., Hemaspaandra, E., & Schnoor, H. (2010). Manipulation of copeland elec-
tions. In Proceedings of the Nineth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), Toronto, Canada.

Garey, M., & Johnson, D. (1979). Computers and Intractability. W. H. Freeman and
Company.

Gibbard, A. (1973). Manipulation of voting schemes: a general result. Econometrica, 41,
587–602.

Hazon, N., Aumann, Y., Kraus, S., & Wooldridge, M. (2008). Evaluation of election out-
comes under uncertainty. In Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems, pp. 959–966, Estoril, Portugal.

Hemaspaandra, E., Hemaspaandra, L. A., & Rothe, J. (1997). Exact analysis of Dodgson
elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP.
Journal of the ACM, 44 (6), 806–825.

Konczak, K., & Lang, J. (2005). Voting procedures with incomplete preferences. In Multi-
disciplinary Workshop on Advances in Preference Handling.

42

Lang, J. (2007). Vote and aggregation in combinatorial domains with structured prefer-
ences. In Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1366–1371, Hyderabad, India.

Lang, J., Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2007). Winner determination
in sequential majority voting. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI), Hyderabad, India.

Lang, J., & Xia, L. (2009). Sequential composition of voting rules in multi-issue domains.
Mathematical Social Sciences, 57 (3), 304–324.

McGarvey, D. C. (1953). A theorem on the construction of voting paradoxes. Econometrica,
21 (4), 608–610.

Parkes, D. (2006). Iterative combinatorial auctions. In Cramton, P., Shoham, Y., & Stein-
berg, R. (Eds.), Combinatorial Auctions, chap. 2, pp. 41–77. MIT Press.

Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2007). Incompleteness and incompara-
bility in preference aggregation. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI), Hyderabad, India.

Rothe, J., Spakowski, H., & Vogel, J. (2003). Exact complexity of the winner problem for
Young elections. In Theory of Computing Systems, Vol. 36(4), pp. 375–386. Springer-
Verlag.

Sandholm, T., & Boutilier, C. (2006). Preference elicitation in combinatorial auctions. In
Cramton, P., Shoham, Y., & Steinberg, R. (Eds.), Combinatorial Auctions, chap. 10,
pp. 233–263. MIT Press.

Satterthwaite, M. (1975). Strategy-proofness and Arrow’s conditions: Existence and cor-
respondence theorems for voting procedures and social welfare functions. Journal of
Economic Theory, 10, 187–217.

Walsh, T. (2007). Uncertainty in preference elicitation and aggregation. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pp. 3–8, Vancouver, BC,
Canada.

Xia, L., Lang, J., & Monnot, J. (2010). Possible winners when new alternatives join: New
results coming up!. To appear in COMSOC-10.

Xia, L., & Conitzer, V. (2008). Determining possible and necessary winners under com-
mon voting rules given partial orders. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pp. 196–201, Chicago, IL, USA.

Xia, L., Conitzer, V., & Procaccia, A. D. (2010). A scheduling approach to coalitional
manipulation. In Proceedings of the ACM Conference on Electronic Commerce (EC),
Boston, MA, USA.

Xia, L., Lang, J., & Ying, M. (2007a). Sequential voting rules and multiple elections para-
doxes. In Proceedings of the Eleventh Conference on Theoretical Aspects of Rationality
and Knowledge (TARK), pp. 279–288, Brussels, Belgium.

Xia, L., Lang, J., & Ying, M. (2007b). Strongly decomposable voting rules on multiattribute
domains. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
Vancouver, BC, Canada.

43

Xia, L., Zuckerman, M., Procaccia, A. D., Conitzer, V., & Rosenschein, J. (2009). Com-
plexity of unweighted coalitional manipulation under some common voting rules. In
Proceedings of the Twenty-First International Joint Conference on Artificial Intelli-
gence (IJCAI), Pasadena, CA, USA.

Zuckerman, M., Procaccia, A. D., & Rosenschein, J. S. (2009). Algorithms for the coalitional
manipulation problem. Artificial Intelligence, 173 (2), 392–412.

44

