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I CHAPTER 6

GAMBLING AND DATA
COMPRESSION

At first sight, information theory and gambling seem to be unrelated.
But as we shall see, there is strong duality between the growth rate of
investment in a horse race and the entropy rate of the horse race. Indeed,
the sum of the growth rate and the entropy rate is a constant. In the process
of proving this, we shall argue that the financial value of side information
is equal to the mutual information between the horse race and the side
information. The horse race is a special case of investment in the stock
market, studied in Chapter 16.

We also show how to use a pair of identical gamblers to compress a
sequence of random variables by an amount equal o the growth rate of
wealth on that sequence. Finally, we use these gambling techniques to
estimate the entropy rate of English. ‘

6.1 THE HORSE RACE

Assume that s horses run in a race. Let the ith horse win with probability
pi- If horse i wins, the payoff is o; for 1 (i.e., an investment of | dollar
on horse { resulis in o; dollars if horse i wins and O dollars if horse :
loses).
~ There are two ways of describing odds: a-for-1 and b-to-1. The first
g&_refers to an exchange that takes place before the race—the gambler puts
own 1 dollar before the race and at a-for-1 odds will receive a dollars
after the race if his horse wins, and will receive nothing otherwise. The
e_cond refers to an exchange after the race—at b-to-1 odds, the gambler
il pay | doltar after the race if his horse loses and will pick up & dollars
I the race if his horse wins. Thus, a bet at b-to-1 odds is equivalent to
-0el at g-for-1 odds if b = a — 1. For example, fair odds on a coin flip
uld be 2-for-1 or 1-to-1, otherwise known as even odds.

?‘3 of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
¥right © 2006 John Wiley & Sons, Inc.
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We assume that the gambler distributes all of his wealth across the
horses. Let b; be the fraction of the gambler’s wealth invested in horse i,
where b; > 0 and ) b; = 1. Then if horse i wins the race, the gambler
will receive o; times the amount of wealth bet on horse i, All the other
bets are lost. Thus, at the end of the race, the gambler will have muitiplied
his wealth by a factor b;0; if horse i wins, and this will happen with prob-
ability p;. For notational convenience, we use b(i} and b; interchangeably
throughout this chapter.

The wealth at the end of the race is a random variable, and the gambler
wishes to “maximize” the value of this random variable. It is tempting to
bet everything on the horse that has the maximum expected return {i.e.,
the one with the maximum p;0;). But this is clearly risky, since all the
money could be lost.

Some clarity results from considering repeated gambles on this race.
Now since the gambler can reinvest his money, his wealth is the product
of the gains for each race. Let S, be the gambler’s wealth after n races.
Then '

S =[] (X, (6.1)
i=1

where S(X) = b(X)o(X) is the factor by which the gambler’s wealth is
multiplied when horse X wins.

Definition The wealth relative S(X) = b(X)o(X) is the factor by which
the gambler’s wealth grows if horse X wins the race,

Definition The doubling rate of a horse race is
m
W(b,p) = E(log S(X)) = Y _ prlog byox. (6.2)
k=t
The definition of doubling rate is justified by the following theorem.

Theorem 6.1.1 - Let the race outcomes X, Xa, ... be iid ~ p(x).
Then the wealth of the gambler using betting strategy b grows exponen-
tially at rate W (b, p); that is,

S, = 2"Wdp, ' (6.3)
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Proof: Functions of independent random variables are also independent,

and hence log S(X1),log S(X5),... are i.i.d. Then, by the weak law of
large numbers,

1

n

1 n
log §, = - Z log §(X;) — E(log S(X)) in probability.  (6.4)

i=1

Thus,

S, = 2*Wep O (6.5)

Now since the gambler’s wealth grows as 2" ®P) we seek 1o maximize
the exponent Wb, p) over all choices of the portfolio b.

Definition The optimum doubling rate W*(p) is the maximum doubling
rate over all choices of the portfolio b:

m
W* = Wb, = . er
(p) = max W (b, p) b:b,.z{??%’ib,:l;p‘ logho;,  (6.6)

We maximliz'e Wb, p) as a function of b subject to the constraint
2 bi = 1. Writing the functional with a Lagrange muitiplier and changing

;he base of the logarithm (which does not affect the maximizing b), we
ave

J) =" pilnbo; + AY by (6.7)
Differentiating this with respect to b; yields

8J_p1-

ﬁ{-“b,»“%’ 5#1,2,...,m. (6.8)

Setting the partial derivative equal to 0 for a maximum, we have

bi = _%_ 6.9)
ubstituting this in the constraint 3" 5; = | yields 4 = ~1 and b = p;.
" Hence, we can conclude that b = P is a stationary point of the function
J(b). To prove that this is actually a maximum is tedious if we take
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second derivatives. Instead, we use a method that works for many such
problems: Guess and verify. We verify that proportional gam'bling b=p
is optimal in the following theorem. Proportional gambling is known as
Kelly gambling [308].

Theorem 6.1.2 (Proportion.al gambling is log-optimal)  The optimum
doubling rate is given by

W) =) pilogoi—H({p) (6.10)
and is achieved by the proportional gambling scheme b* = p.

Proof: We rewrite the function W (b, p) in a form in which the maximum
is obvious:

Wb, p) =) piloghio; (6.11)
b;
=3 pilog{ —pio; 6.12)
Lo (yp)
=" pilogo; — H(p) — D(plib) (6.13)
< ) pilogor — Hp), (6.14)

with equality iff p = b (i.e., the gambler bets on each horse in proportion
to its probability of winning). O

Example 6.1.7 Consider a case with two horses, where horse 1 wins
with probability p; and horse 2 wins with probability p;. Assume even
odds (2-for-1 on both horses). Then the optimal bet is proportional bet-
ting (i.e., b; = pi, b2 = p). The optimal doubling rate is W*(p) =
> pilogo; — H(p) = 1 — H(p), and the resulting wealth grows to infin-
ity at this rate:

S, = on(I=-H({@) (6.15)

Thus, we have shown that proportional betting is growth rate optimal
for a sequence of i.i.d. horse races if the gambler can reinvest his wealth
and if there is no alternative of keeping some of the wealth in cash.

We now consider a special case when the odds are fair with respect to
some distribution (i.e., there is no track take and 3 5{- = 1). In this case,

we write r; = ‘%, where r; can be interpreted as a probability mass function
1
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over the horses. (This is the bookie’s estimate of the win probabilities.)
With this definition, we can write the doubling rate as

Wb, p) = Z i log bio; (6.16)
=3 prlog (ﬁfi) 617

piri ,
= D(p{Ir) — D{p||b). (6.18)

This equation gives another interpretation for the relative entropy dis-
tance: The doubling rate is the difference between the distance of the
bookie’s estimate from the true distribution and the distance of the gam-
bler’s estimate from the true distribution. Hence, the gambler can make
money only if his estimate (as expressed by b) is better than the bookie’s.

An even more special case is when the odds are m-for-1 on each horse.
In this case, the odds are fair with respect to the uniform distribution and
the optimum doubling rate is

1
W*(p)=D (pllg) = logm — H(p). (6.19)

In this case we can clearly see the duality between data compression and
the doubling rate.

Theorem 6.1.3 (Conservation theorem) For uniform fair odds,
W*(p) + H(p) = logm. (6.20)
Thus, the sum of the doubling rate and the entropy rate is a constant,

Every bit of entropy decrease doubles the gambler’s wealth. Low entropy
races are the most profitable.

In the analysis above, we assumed that the gambler was fully invested,
In general, we should aliow the gambler the option of retaining some of
his wealth as cash. Let b(0) be the proportion of wealth held out as cash,
and &5(1), b(2),...,b(m) be the proportions bet on the various horses,
Then at the end of a race, the ratio of final wealth to initial wealth (the
wealth relative) is

S(X) = b(0) + b(X)o(X). (6.21)

Now the optimum strategy may depend on the odds and will not necessar-
ily have the simple form of proportional gambling. We distinguish three
subcases:
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1. Fair odds with respect to some distribution. Z - = 1. For fair odds,
the option of withholding cash does not changc the analysis. This i 1s
because we can get the effect of withholding cash by betting b; = L
on the ith horse, i = 1,2,...,m. Then S(X) =1 irrespective of
which horse wins. Thus, whatever money the gambler keeps aside
as cash can equally well be distributed over the horses, and the
assumption that the gambler must invest all his money does not
change the analysis. Proportional betting is optimal.

2. Superfair odds: —o—, < 1. In this case, the odds are even better than
fair odds, so one would always want to put all one’s wealth into the
race rather than leave it as cash. In this race, too, the optimum
strategy is proportional betting. However, it is possﬂ)le to choose
b 50 as to form a Dutch book by choosing b; = c—, where ¢ =

1/3. L, to get 0;b; = c, irrespective of which horse wins. With

this allotment one has wealth S(X) =1/} — L~ 1 with probability
1 (i.e., no risk). Needless to say, one seldom finds such odds in
real life. Incidentally, a Dutch book, although risk-free, does not
optimize the doubling rate.

3. Subfair odds: } -- -l- > 1. This is more representative of real life. The
organizers of the race track take a cut of all the bets. In this case it
is optimal to bet only some of the money and leave the rest aside
as cash. Proportional gambling is no longer log-optimal. A paramet-
ric form for the optimal strategy can be found using Kuhn—-Tucker
conditions (Problem 6.6.2); it has a simple “water-filling” interpre-
tation.

6.2 GAMBLING AND SIDE INFORMATION

‘Suppose the gambler has some information that is relevant to the outcome

of the gamble. For example, the gambler may have some information
about the performance of the horses in previous races, What is the value
of this side information?

One definition of the financial value of such information is the increase
in wealth that results from that information. In the setting described in
Section 6.1 the measure of the value of informatton is the increase in the
doubling rate due to that information. We will now derive a connection
between mutual information and the increase in the doubling rate.

To formalize the notion, let horse X € {1, 2, ..., m} win the race with
probability p(x} and pay odds of o(x) for 1. Let (X,Y) have joint
probability mass function p(x, y). Let b(x|y) > 0, >, b(x|y) = | be an
arbitrary conditional betting strategy depending on the side information
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Y, where b(x|y} is the proportion of wealth bet on horse x when v is
observed. As before, let b(x) > 0, X b(x) =1 denote the unconditional
betting scheme.

Let the unconditional and the conditional doubling rates be

WH*X) = max ; p(x) log b(x)o(x), (6.22)
WHXIY) = max Zy p(x, y) logb(x|y)o(x) (6.23)

and let
AW = W*(X|Y) —~ W*(X). (6.24)

We observe that for (X;, ¥;) 1.1.d. horse races, wealth grows like 2" WHXIY)
with side information and like 2*%"(X) without side information.

Theorem 6.2.1  The increase AW in doubling rate due to side infor-
mation Y for a horse race X is

AW =I1(X; 7). (6.25)
Proof: With side information, the maximum value of W*(X|¥) with
stde information Y is achieved by conditionally proportional gambling
[ie., b*(x]y) = p(x|y)]. Thus,
W*(X[Y) = max Ellog §] =

¥) = max E[log ] ,%Zp(x, ) logo(n)b(x]y)  (6.26)
=" plx. y)logo(x)p(xly) (6.27)
= Zp(x)logo(x) — H(X|Y).  (6.28)

Without side information, the optimal doubling rate is

W*(X) = ) p(x)logo(x) — H(X). (6.29)

Thus, the increase in doubling rate due to the presence of side information
Yis

AW = W*(X|Y) — W*(X) =HX)-HX|Y)=I(X;V). O (630
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Hence, the increase in doubling rate is equal to the mutual informa-
tion between the side information and the horse race. Not surprisingly,
independent side information does not increase the doubling rate.

This relationship can also be extended to the general stock market
(Chapter 16). In this case, however, one can only show the inequality
AW < I, with equality if and only if the market is a horse race.

6.3 DEPENDENT HORSE RACES AND ENTROPY RATE

The most common example of side information for a horse race is the
past performance of the horses. If the horse races are independent, this
information will be useless. If we assume that there is dependence among
the races, we can calculate the effective doubling rate if we are allowed
to use the results of previous races to determine the strategy for the next
race.

Suppose that the sequence {X;} of horse race outcomes forms a stochas-
tic process. Let the strategy for each race depend on the results of previous
races. In this case, the optimal doubling rate for uniform fair odds is

WXk Xe-1, Xe—2, .+, X1)

:E[ max E[lOgS(Xk)IXkﬁl,kag,...,X[]:I

b(-IXk_l-Xk—z--m_Xl)
=logm-—H(XkIXk_;,Xk_z,...,Xl), (631)

which is achieved by 6% (x|xp—1. ..., x1) = pelxp—1, ..., x1).

At the end of n races, the gambler’s wealth is
n
Se =[] (X0, (6.32)

and. the exponent in the growth rate (assuming m for 1 odds) is
1 1
—Elog$, =— Y Elog S(X;) (6.33)
n "

=~ S ogm — HX/[Xio1, Xpcaro X)) (634

H(X, X2 ..., Xp)
n

{6.35)

= logm —
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The quantity %H (X1, X2, ..., Xp) is_ the average entropy per race. For
a stationary process with entropy rate H (%), the limit in (6.35) yields-

1
lim - ElogS + H{(X) =logm. (6.36)

n—od 1

Again, we have the result that the entropy rate plus the doubling rate is a
constant.

The expectation in (6.36) can be removed if the process is ergodic. It
will be shown in Chapter 16 that for an ergodic sequence of horse races,

S, = 2% with probability 1, 6.37)

where W = logm — H(A) and
i
H()():lim;H(Xl,Xz,...,Xn). (6_.38)

Example 6.3.1 (Red and black) In this example, cards replace horses
and the outcomes become more predictable as time goes on. Consider the
case of betting on the color of the next card in a deck of 26 red and 26
black cards. Bets are placed on whether the next card will be red or black,
as we go through the deck. We also assume that the game pays 2-for-1;
that is, the gambler gets back twice what he bets on the right color. These
are fair odds if red and black are equally probable.
We consider two alternative betting schemes:

1. If we bet sequentially, we can calculate the conditional probablhty
of the next card and bet proportlonally Thus, we should bet (2 2)
on (red, black) for the first card, (2, £) for the second card if the
first card is black, and so on.

2. Altematlvely, we can bet on the entire sequence of 52 cards at once.
There are (2) possible sequences of 26 red and 26 black cards, all
of them equally likely. Thus, proportional betting implies that we
put 1/ (26) of our money on each of these sequences and let each
bet “ride.”

We will argue that these procedures are equivalent. For example, half
the sequences of 52 cards start with red, and so the proportion of money
bet on sequences that start with red in scheme 2 is also one-half, agreeing
with the proportlon used in the first scheme. In general, we can verify that
‘betting 1/(37) of the money on each of the possible outcomes will at each
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stage give bets that are proportional to the probability of red and black
at that stage. Since we bet 1/ (gé) of the wealth on each possible output
sequence, and a bet on a sequence increases wealth by a factor of 2°% on
the sequence observed and 0 on all the others, the resulting wealth is

252
85 = —5 = 9.08. (6.39)
o)
Rather interestingly, the return does not depend on the actual sequence.

This is like the AEP in that the return is the same for all sequences. All
sequences are typical in this sense,

6.4 THE ENTROPY OF ENGLISH

An important example of an information source is English text. It is
not immediately obvious whether English is a stationary ergodic process.
Probably not! Nonetheless, we will be interested in the entropy rate of
English. We discuss various stochastic approximations to English. As we
increase the complexity of the model, we can generate text that looks like
English. The stochastic models can be used to compress English text. The
better the stochastic approximation, the better the compression.

For the purposes of discussion, we assume that the alphabet of English
consists of 26 letters and the space symbol. We therefore ignore punctua-
tion and the difference between upper- and lowercase letters. We construct
models for English using empirical distributions collected from samples
of text. The frequency of letters in English is far from uniform. The most
common letter, E, has a frequency of about 13%, and the least common
letters, Q and Z, occur with a frequency of about 0.1%. The letter E is
$¢ common that it is rare to find a sentence of any length that does not
‘contain the letter. [A surprising exception to this is the 267-page novel,

" Gadsby, by Emest Vincent Wright (Lightyear Press, Boston, 1997; orig-
inal publication in 1939), in which the author deliberately makes no use
of the letter E.]

The frequency of pairs of letters is also far from uniform. For example,
the letter Q is always followed by a U. The most frequent pair is TH,
which occurs normally with a frequency of about 3.7%. We can use
the frequency of the pairs to estimate the probability that a letter fol-
lows any other letter. Proceeding this way, we can also estimate higher-
order conditional probabilities and build more complex models for the
language. However, we soon run out of data. For example, to build
a third-order Markov approximation, we must estimate the values of
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p(xi|xi.1, Xi-3, X;.3). There are 274 = 531, 441 entries in this table, and
we would need to process millions of letters to make accurate estimates
of these probabilities.

The conditional probability estimates can be used to generate random
samples of letters drawn according to these distributions (using a random
number generator). But there is a simpler method to simulate randomness
using a sample of text (a book, say}. For example, to construct the second-
order model, open the book at random and choose a letter at random on
the page. This will be the first letter, For the next letter, again open the
book at random and starting at a random point, read until the first letter is
encountered again. Then take the letter after that as the second letter. We
repeat this process by opening to another page, searching for the second
letter, and taking the letter after that as the third letter. Proceeding this
way, we can generate text that simulates the second-order statistics of the
English text.

Here are some examples of Markov approximations to English from
Shannon’s original paper [472]:

1. Zero-order approximation. (The symbols are independent and equi-
probable.) '

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

2. First-order approximation. (The symbols are independent. The fre-
quency of letters matches English text.)

OCRO HLI RGWR NMIELWI|S EU LL. NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

3. Second-order approximation. (The frequency of pairs of letters
matches English text.)

ON IE ANTSQUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

4. Third-order approximation, (The frequency of triplets of letters
matches English text.)

IN NO IST LAT WHEY CRATICT FROURE BERS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE
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5. Fourth-order approximation. (The frequency of quadruplets of let-
ters matches English text. Each letter depends on the previous three
letters. This sentence is from Lucky’s book, Silicon Dreams [366).)

THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED
CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL
IT DO HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER
ANY OF PUBLE AND TO THEORY. EVENTIAL CALLEGAND TO ELAST
BENERATED IN WITH PIES AS IS WITH THE )

Instead of continuing with the letter models, we jump to word
models.

6. First-order word model. (The words are chosen independently but
with frequencies as in English.)

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN
DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO
EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE
THESE.

7. Second-order word model. {The word transition probabilities match
English text.)

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER
METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD
THE PROBLEM FOR AN UNEXPECTED

The approximations get closer and closer to resembling English, For
example, long phrases of the last approximation could easily have occurred
in a real English sentence. [t appears that we could get a very good approx-
imation by using a more complex model. These approximations could be
used to estimate the entropy of English. For example, the entropy of the
zeroth-order model is log27 = 4.76 bits per letter. As we increase the
complexity of the model, we capture more of the structure of English,
and the conditional uncertainty of the next letter is reduced. The first-
order model gives an estimate of the entropy of 4.03 bits per letter, while
the fourth-order model gives an estimate of 2.8 bits per letter. But even
the fourth-order model does not capture all the structure of English. In
Section 6.6 we describe alternative methods for estimating the entropy of
English.

The distribution of English is useful in decoding encrypted English text.
For example, a simple substitution cipher (where each letter is replaced
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by some other letter) can be solved by looking for the most frequent letter
and guessing that it is the substitute for E, and so on. The redundancy in
English can be used to fill in some of the missing letters after the other
letters are decrypted: for example,

THR. S _NLY NWYT_FLL NTH.V.W_LS NTH.S S.NT.NGC..

Some of the inspiration for Shannon’s original work on information
theory came out of his work in cryptography during World War II. The
mathematical theory of cryptography and its relationship to the entropy
of language is developed in Shannon [481].

" Stochastic models of language also play a key role in some speech
recognition systems. A commonly used model is the trigram (second-order
Markov) word model, which estimates the probability of the next word
given the preceding two words. The information from the speech signal
is combined with the model to produce an estimate of the most likely
word that could have produced the observed speech. Random models do
surprisingly well in speech recognition, even when they do not explicitly
incorporate the complex rules of grammar that govern natural languages
such as English.

We can apply the techniques of this section to estimate the entropy rate
of other information sources, such as speech and images. A fascinating
nontechnical introduction to these issues may be found in the book by
Lucky [366].

6.5 DATA COMPRESSION AND GAMBLING

We now show a direct connection between gambling and data compres-
sion, by showing that a good gambler is also a good data compressor. Any
sequence on which a gambler makes a large amount of money is also a
sequence that can be compressed by a large factor, The idea of using
the gambler as a data compressor is based on the fact that the gambler’s
bets can be considered to be his estimate of the probability distribution
of the data. A good gambler will make a good estimate of the probability
distribution. We can use this estimate of the distribution to do arithmetic
coding (Section 13.3). This is the essential idea of the scheme described
below, : _
We assume that the gambler has a mechanically identical twin, who
will be used for the data decompression. The identical twin will place the
same bets on possible sequences of outcomes as the original gambler (and
will therefore make the same amount of money). The cumulative amount
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of money that the gambler would have made on 'al} sequences that a;e
lexicographically less than the given sequence v'nll be.used as a; 1co e
for the sequence. The decoder will use the 1deqt1ca1 twin to gam le on
all sequences, and look for the sequence for. which the same cumu agvg
amount of money is made. This sequence will be chosen as the decode

Se({,l:tn?;, X,, ..., X, be a sequence of rand(?m variables that we wish
to compress. Without loss of generality, we will assume that the random
variables are binary. Gambling on this sequence will be defined by a

sequence of bets

bGieat | X0 %2,k 2 0, D bl Lxn %2, x) =1,

Xi+1
(6.40)
where b{xp41 | X1, X2, ..., Xx) 18 the proportion of money bet at Lime k on
the event that Xy = Xk+1 given the observed past xi, X2, ..., Xk Bets

are paid at uniform odds (2-for-1). Thus, the wealth S, at the end of the
sequence is given by

S,,=2"‘li[b(x;c | X0 ens Xhet) (6.41)
=1
= 2";(x1,x2, e Xn)y {6.42)
where
B{X|, X3, e s Xp)} = In_[b(xklxkfl, e X1 (6.43)
k=1

So sequential gambling can also be considered as an assignment of proba-
bilities (or bets) b(xy, X2, ..., %n) 2 0, le ,,,, o DO %) = 1, on the
n ible sequences.

? '?'I?fssg);renblﬁlg elicits both an estimate of the true Qrobability of the text
sequence (f(x1, .., X} = S,/2") as well as an estimate of the entropy
[ 1= —ﬁ log ﬁ] of the text from which the sequence was drawn. We now
wish to show that high values of wealth S, Jead to high data_compressmn.
Specifically, we argue that if the text in question results in 'w.ea!th Sns
then log S, bits can be saved in a naturally associated fiete'mumstlc‘datla
compression scheme. We further assert that if .thg gambling is log optimal,
the data compression achieves the Shannon limit H.
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Consider the following data compression algorithm that maps the
text X = xjxz --x, € {0, I}" into a code sequences cicy- ¢k, ¢; €
{0,1}. Both' the compressor and the decompressor know . Let
the 2" text sequences be arranged in lexicographical order: for
example, 0100101 < 0101101, The encoder observes the sequence
x" = (x1,x2,...,x,). He then calculates what his wealth S,!(x'(n))
would have been on all sequences x'(n) < x(n) and calculates
Flx(n)) = Zx’(n)sx(n) 2‘”Sn(x'(n)). Clearly, F(x{(n)) € [0, 1]. Let k =
(n —log Sy(x(n))]. Now express F(x(n)) as a binary decimal to k-place
accuracy: [F(x(n))] = .cicz- - cx. The sequence c(k) = (c1, 2, ..., Ck)
is transmitted to the decoder.

The decoder twin can calculate the precise value S (x’(n)) associated
with each of the 2" sequences x’(n). He thus knows the cumulative sum
of 278 (x'(n)) up through any sequence x(n). He tediously calculates
this sum until it first exceeds .c(k). The first sequence x(n) such that
the cumulative sum falls in the interval [.cy -« ¢y, €1 ... + (1 /2)"] is
defined uniquely, and the size of S(x(n))/2" guarantees that this sequence
will be precisely the encoded x(n).

Thus, the twin uniquely recovers x(n). The number of bits required
is k=[n—logSx(n))]. The number of bits saved is n—~k =
[log S(x(n}}]. For proportional gambling, S(x(n)) = 2" p(x(n)). Thus,
the expected number of bits is Ek = Z plx(r)—log px(n))] <
H(X.,.... X+ 1. '

We see that if the betting operation is deterministic and is known
both to the encoder and the decoder, the number of bits necessary to
encode x|, ..., X, is less than n — log S, + 1. Moreover, if p(x) is known,
and if proportional gambling is used, the description length expected is
E(n—log$,) < H(X:1,...,X,)+ 1. Thus, the gambling results corre-
spond precisely to the data compression that would have been achieved
by the given human encoder—decoder identical twin pair.

‘The data compression scheme using a gambler is similar to the idea
of arithmetic coding (Section 13.3) using a distribution b(x;, X3, oo, Xn)
rather than the true distribution, The procedure above brings out the duality
between gambling and data compression. Both involve estimation of the

‘true distribution. The better the estimate, the greater the growth rate of

the gambler’s wealth and the better the data compression.

6.6 GAMBLING ESTIMATE OF THE ENTROPY OF ENGLISH

We now estimate the entropy rate for English using a human gambler to
estimate probabilities, We assume that English consists of 27 characters
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(26 letters and a space symbol). We therefore ignore punctuation and case
of letters. Two different approaches have been proposed to estimate the
entropy of English.

1. Shannon guessing game. In this approach the human subject is
given a sample of English text and asked to guess the next letter.
An optimal subject will estimate the probabilities of the next letter
and guess the most probable letter first, then the second most prob-
able letter next, and so on. The experimenter records the number of
guesses required to guess the next letter. The subject proceeds this
way through a fairly large sample of text. We can then calculate the
empirical frequency distribution of the number of guesses required
to guess the next letter. Many of the letters will require only one
guess; but a large number of guesses will usually be needed at the
beginning of words or sentences.

Now let us assume that the subject can be modeled as a computer
making a deterministic choice of guesses given the past text. Then
if we have the same machine and the sequence of guess numbers,
we can reconstruct the English text. Just let the machine run, and if
the number of guesses at any position is k, choose the kth guess of
the machine as the next letter. Hence the amount of information in
the sequence of guess numbers is the same as in the English text.
The entropy of the guess sequence is the entropy of English text. We
can bound the entropy of the guess sequence by assuming that the
samples are independent. Hence, the entropy of the guess sequence
is bounded above by the entropy of the histogram in the experiment.
The experiment was conducted in 1950 by Shannon [482], who
obtained a value of 1.3 bits per symbol for the entropy of English.

2. Gambling estimate. In this approach we let a human subject gamble

. on the next letter in a sample of English text. This allows finer
gradations of judgment than does guessing. As in the case of a horse
race, the optimal bet is proportional to the conditional probability
of the next letter. The payoff is 27-for-1 on the correct letter.

"Since sequential betting is equivalent to betting on the entire
sequence, we can write the payoff after n letters as

S, = @2N"b(X\, X2, ... Xn). (6.44)

Thus, after # rounds of betting, the expected log wealth satisfies

1 i
E;I—logS =Iog27+—Elogb(X1,X2,...,X,;) (6.43)
n :

SUMMARY 175

1
=log27 + ~ > p(x") logb(x™) (6.46)
I (xﬂ)
=1log27 — — " Jog 252
227 - - ;p(x )log 5

I .
= Y PG log p(x™) (6.47)

] I
=10g27 ~ = D(pGMIB(") = ~H (X1, Xa, .., Xy)

(6.48)
I

<log27 — —H(X1. Xa,..., Xp) (6.49)

< log27 — H(A), (6.50)

Iwhere H(X) is the entropy rate of English. Thus, log27 — E1 log $,

is an upper bound on the entropy rate of English, The uppelr'1 bound

est.lmate, H(X)=log27 — %Iog Su, converges to H () with prob-

ability 1 if English is ergodic and the gambler uses b(x") = p{(x").

An experiment [131] with 12 subjects and a sample of 75 letters

from the book Jefferson the Virginian by Dumas Malone (Little,

Brgwm Boston, 1948; the source used by Shannon) resulted in an -
estimate of 1.34 bits per letter for the entropy of English,
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(652)

¥ in doubling-

PROBLEMS

6.1 Horse race. Three horses run a race. A gambler offers 3-for-
1 odds on each horse. These are fair odds under the assumption
that all horses are equally likely to win the race. The true win
probabilities are known to be

111 )
p=(p, p2.p3) = (E‘Z’Z) F6.54) ‘

Let b = (b), b2, b3), b; = 0, 3_b; = 1, be the amount invested on
each of the horses. The expected log wealth is thus

3
W(b) = Z pi log 3b;. (6.55)
i=|

(a) Maximize this over b to find b* and W*, Thus, the wealth
achieved in repeated horse races should grow to infinity like
2"W" with probability 1.

(b) Show that if instead we put all of our money on horse 1, the
most likely winner, we will eventually go broke with probabil-
ity 1,

6.2 Horse race with subfair odds. If the odds are bad (due to a track
take), the gambler may wish to keep money in his pocket. Let 5(0)
be the amount in his pocket and let b(1), b(2), ..., b(mm) be the
amount bet on horses 1, 2, ..., m, with odds o(1), 0(2), ..., o(m),
and win probabilities p(1), p(2),..., p(m}. Thus, the resulting
wealth is S(x) = &(0) 4+ b(x)o(x), with probability p(x), x =
1.2,...,m.

(a) Find b* maximizing Elog § if 3_ 1/o(i) < 1.

6.3

6.4

6.5

6.6
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(b) Discuss b* if 3~ 1/0(i) > 1. (There isn’t an easy closed-form
solution in this case, but a “water-filling” solution results from
the application of the Kuhn—Tucker conditions.)

Cards. An ordinary deck of cards containing 26 red cards and
26 black cards is shuffled and dealt out one card at time without
replacement. Let X; be the color of the ith card.

(a) Determine H(X,),

(b) Determine H(X5).

(c) Does H(X; | X1, X2...., Xr—1) increase or decrease?

(d} Determine H(X,, X3,..., Xs52).

Gambling. Suppose that one gambles sequentially on the card
outcomes in Problem 6.6.3. Even odds of 2-for-1 are paid. Thus,
the wealth S, at time » is S, =2"0(x1,x2,...,Xx,), where
b{xy, x2...., xy) is the proportion of wealth beti on x;, X2, ..., X,.
Find maxpy E log Ssz.

Beating the public odds. Consider a three-horse race with win

probabilities
( - P11
P, P2 p3) = 24" 4

and fair odds with respect to the (false) distribution

111
(r1,r2,r3) = (Z’ R 5)'

(01,02, 03) = (4,4, 2).

Thus, the odds are

(a) What is the entropy of the race?

(b) Find the set of bets (b1, by, b3) such that the compounded
wealth in repeated plays will grow to infinity.

Horse race. A three-horse race has win probabilities p =
(p1, p2. p3), and odds o = (1, 1, 1). The gambler places bets b =
(b1, by, b3), b; = 0,3 b; = 1, where b; denotes the proportion on
wealth bet on horse i, These odds are very bad. The gambler gets
his money back on the winning horse and loses the other bets.
Thus, the wealth S, at time # resulting from independent gambles
goes exponentially to zero.

(a) Find the exponent.
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6.7

6.8

6.9
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(b) Find the optimal gambling scheme b (i.e., the bet b* that max-
imizes the exponent). :

(c¢) Assuming that b is chosen as in part (b), what distribution p
causes S, to go to zero at the fastest rate?

Horse race. Consider a horse race with four horses. Assume that
each horse pays 4-for-1 if it wins. Let the probabilities of win-
ning of the horses be {1, 1. 3. §}. If you started with $100 and
bet optimally to maximize your long-term growth rate, what are
your optimal bets on each horse? Approximately how much money
would you have after 20 races with this strategy?

Lotto.  The following analysis is a crude approximation to the
games of Lotto conducted by various states. Assume that the player
of the game is required to pay $1 to play and is asked to choose
one number from a range 1 to 8. At the end of every day, the state
fottery commission picks a number uniformly over the same range.
The jackpot (i.e., all the money collected that day) is split among
all the people who chose the same number as the one chosen by the
state. For example, if 100 people played today, 10 of them chose
the number 2, and the drawing at the end of the day picked 2, the
$100 collected is split among the 10 people (i.e., each person who

- picked 2 will receive 310, and the others will receive nothing).

The general population does not choose numbers uni-
formly—numbers such as 3 and 7 are supposedly lucky and are
more popular than 4 or 8. Assume that the fraction of people choos-
ing the various numbers 1,2, ..., 8is (f1, fan ..., £z}, and assume
that n people play every day. Also assume that n is very large, so
that any single person’s choice does not change the proportion of
people betting on any number.

(a) What is the optimal strategy to divide your money among
the various possible tickets so as to maximize your long-term
growth rate? (Ignore the fact that you cannot buy fractional
tickets.)

(b) What is the optimal growth rate that you can achieve in this
game?

© If (fi, fr,..., fa) = (% 5 1 15 T6> 1+ 1 12)» and you start
with $1, how long will it be before you become a millionaire?

Horse race. Suppose that one is interested in maximizing the
doubling rate for a horse race. Let py, p2, ..., P denote the win
probabilities of the m horses. When do the odds (01, 02,...,0m)
yield a higher doubling rate than the odds (0, 05, ..., 0,,)?

6.10

6.11
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Horse race with probability estimates.

(a) Three horses race. Their probabilities of winning are (2, I 4)
The odds are 4-for-1, 3-for-1, and 3-for-1. Let W* be the opti-
mal doubhng rate. Suppose you believe that the probabilities
are (4 e 2 4) If you try to maximize the doubling rate, what
doubling rate W will you achieve? By how much has your dou-
bling rate decrease due to your poor estimate of the probabilities
(i.e., what is AW = W* — W)?

(b) Now let the horse race be among m horses, with probabil-
ities p = (p1, P2,.... pm) and odds o = (01,00, ..., 0,). If
you believe the true probabilities to be ¢ = (g1, g2, ..., gm)\
and try to maximize the doubling rate W, what is W* — W?

Two-envelope problem. One envelope contains b dollars, the other
2b dollars. The amount & is unknown, An envelope is selected at
random. Let X be the amount observed in this envelope, and let ¥
be the amount in the other envelope. Adopt the strategy of switch-
1ng to the other envelope with probability p(x), where p(x) =
Let Z be the amount that the player receives. Thus,

(e‘x+6")
. vy l
(X.¥) = (b, 2b) w?th probab?lfty 2 (6.56)
(2b, b) with probability 5
_ | X with probability 1 — p(x)
Z= { Y with probability p(x). ©.57)

(a} Show that E(X) = E(Y) = 3

(b) Show that E(¥/X) = %. Since the expected ratio of the
amount in the other envelope is '%, it seems that one should
always switch. (This is the origin of the switching paradox.)
However, observe that E(Y) # E(X)E(Y/X). Thus, although
E(Y/X) > 1, it does not follow that E(Y) > E(X).

(¢) Let J be the index of the envelope containing the maximum
amount of money, and let J be the index of the envelope
chosen by the algorithm. Show that for any b, I(J; J') > 0.
Thus, the amount in the first envelope always contains some
information about which envelope to choose. ‘

{(d) Show that E(Z) > E(X). Thus, you can do better than always
staying or always switching. In fact, this is true for any mono-
tonic decreasing switching function p(x)., By randomly switch-
ing according to p(x), you are more likely to trade up than to
trade down,
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6.12

6.13

6.14

6.15
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] i i bilities p1, P2s .-+ Pm’
Gambling. Find the horse win proba :
(a) Maximizing the doubling rate W* for given fixed known odds

01,02, ... 0n. .
(b} Minimizing the doubling rate for given fixed odds 01,02, ...,
O+

Dutch book. Consider a horse race with m = 2 horses,

X =1, 2
P=3 3
odds (for one) = 10, 30
bets =56, 1 —b.

The odds are superfair. ' . s of
i ar
a) There is a bet b that guarantees the same payoll regarc :
® which horse wins. Such a bet is called a Dutch book. Find this
b and the associated wealth factor S(X). |
(b) What is the maximum growth rate of the wealth for the optimal
choice of »#7 Compare it to the growth rate for the Dutch book.

Horse race. Suppose that one is interested in maximizing the

doubling rate for a horse race. Let pi, p2,..., pm denote the wn;
probabilities of the m horses. When do the odds (01,02,....9m

yield a higher doubling rate than the odds_ (0], 05, .-+, 0)?

ir horse race. Let X ~p(x), x=1,2,....m,
dE:;;izytlfg \iiﬁf;r hof a horse race. Suppose1 that the odds o(x)
are fair with respect to p(x) [i.e., o(x) = F(—x_)]‘ Let b(x) be 'the
amount bet on horse x, b(x) > 0, Z’f’ b(x)= 1 'Then the resulting
wealth factor is S(x) = b(x)o(x), with probability p(x).
(a) Find the expected wealth ES(X).
(b) Find W*, the optimal growth rate of wealth.

(¢) Suppose that

l, X=1lor2
V= 0, otherwise.

If this side information is available before the bet, how much
does it increase the growth rate W*?
(d) Find 71(X;Y).

6.16 Negative horse race.

6,17
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Consider a horse race with m horses with
win probabilities pi, pj, +++» Pm. Here the gambler hopes that a
given horse will lose. He places bets (b, b,, .. ., bum), > by =1,
on the horses, loses his bet #; if horse i wins, and retains the rest of
his bets. (No odds.) Thus, § = Zhﬁ bj, with probability p;, and
one wishes to maximize > piln(l — b)) subject to the constraint
dobi=1.

(a) Find the growth rate optimal investment strategy £*. Do not
constrain the bets to be positive, but do constrain the bets to
sum to 1. (This effectively allows short selling and margin.)

{(b) What is the optimal growth rate?

St. Petersburg paradox. Many years ago in ancient St. Petersburg

the following gambling proposition caused great consternation. For

an entry fee of ¢ units, a gambler receives a payoff of 2* units with
probability 2% k=1,2,....

(a) Show that the expected payoff for this game is infinite. For this
reason, it was argued that ¢ = oo was a “fair” price to pay to
play this game. Most people find this answer absurd.

(b} Suppose that the gambler can buy a share of the game. For
example, if he invests ¢/2 units in the game, he receives % a
share and areturn X/2, where Pr(X = 2%) = 2%k = 1,2, ..
Suppose that X, X,, ... are i.i.d. according to this distribution
and that the gambler reinvests all his wealth each time., Thus,
his wealth S, at time # is given by

i
X
Sn = 1—! ?[
=

Show that this limit is oo or 0, with probability 1, accordingly
as ¢ < ¢* or ¢ > ¢*. Identify the “fair” entry fee c*.
More realistically, the gambler should be allowed to keep a pro-
portion b =1 — % of his money in his pocket and invest the rest
in the St. Petersburg game. His wealth at time 7 is then

Sn 2\1_[ (E“f- E?)

i=]

(6.58)

{6.59)

Let

_ . o
Wb, c) = 27log (1 — b+ ﬁf_) . (6.60)
k=1
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We have
S, = 2", - (6.61)
Let
W*(c) = max Wb, ). (6.62)

Here are some questions about W*(c).

(a) For what value of the entry fee ¢ does the optimizing value &*
drop below 1?7

(b) How does b* vary with ¢?

(c¢) How does W*(c) fall off with ¢?

Note that since W*(c) > 0, for all ¢, we can conclude that an

entry fee ¢ is fair., ‘

6.18 Super St. Petersburg. Finally,kwe have the super St. Peters-
burg paradox, where Pr(X = 22%y=2"%k=1,2,.... Here the
expected log wealth is infinite for all » > 0, for all c, .and the
gambler’s wealth grows to infinity faster than exponenpally for
any b > (. But that doesn’t mean that all investment ratios b are
equally good. To see this, we wish to maximize the relaltlvle growth
rate with respect to some other portfolio, say, b = (3, 3). Show
that there exists a unique b maximizing

b+bX/c

Eln———
1+iX/c

and interpret the answer.

HISTORICAL NOTES

The original treatment of gambling on a horse race is due to Kelly [308],
who found that AW = [. Log-optimal portfolios go back to the work
of Bernoulli, Kelly [308], Latané [346], and Latané and Tuttle [347].
Proportional gambling is sometimes referred to as the Kelly gafnblf'ng
scheme. The improvement in the probability of winning by switching
envelopes in Problem 6.11 is based on Cover [130]. -

Shannen studied stochastic models for English in his original paper
[472]. His guessing game for estimating the entropy rate of Engl%sh is
described in [482]. Cover and King [131] provide a gambling estimate
for the entropy of English. The analysis of the St. Petersburg paradox
is from Bell and Cover {39]. An altemnative analysis can be found in
Feller [208].

I CHAPTER 7

CHANNEL CAPACITY

What do we mean when we say that A communicates with 8? We mean
that the physical acts of A have induced a desired physical state in B. This
transfer of information is a physical process and therefore is subject to the
uncontrollable ambient noise and imperfections of the physical signaling
process itself. The communication is successful if the receiver B and the
transmitter A agree on what was sent.

In this chapter we find the maximum number of distinguishable signals
for n uses of a communication channel. This number grows exponen-
tially with n, and the exponent is known as the channel capacity. The
characterization of the channel capacity (the logarithm of the number of
distinguishable signals) as the maximum mutual information is the central.
and most famous success of information theory.

The mathematical analog of a physical signaling system is shown
in Figure 7.1. Source symbols from some finite alphabet are mapped
into some sequence of channel symbols, which then produces the out-
put sequence of the channel. The output sequence is random but has a
distribution that depends on the input sequence. From the output sequence,
we attempt to recover the transmitted message.

Each of the possible input sequences induces a probability distribution -
on the output sequences. Since two different input sequences may give rise
to the same output sequence, the inputs are confusable. In the next few
sections, we show that we can choose a “nonconfusable” subset of input
sequences so that with high probability there is only one highly likely input
that could have caused the particular output. We can then reconstruct the
input sequences at the output with a negiigible probability of error. By
mapping the source into the appropriate “widely spaced” input sequences
to the channel, we can transmit a message with very low probability of
error and reconstruct the source message at the output, The maximum rate
at which this can be done is called the capaciry of the channel.

Definition We define a discrete channel to be a systemn consisting of an
input alphabet ¥ and output alphabet Y and a probability transition matrix
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