
A Practical Liquidity-Sensitive Automated Market Maker

Abraham Othman, Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
{aothman,sandholm}@cs.cmu.edu

David M. Pennock, Daniel M. Reeves
Yahoo! Research New York

{dpennock,dreeves}@yahoo-inc.com

ABSTRACT
Current automated market makers over binary events suffer
from two problems that make them impractical. First, they
are unable to adapt to liquidity, so trades cause prices to
move the same amount in both thick and thin markets. Sec-
ond, under normal circumstances, the market maker runs at
a deficit. In this paper, we construct a market maker that is
both sensitive to liquidity and can run at a profit. Our mar-
ket maker has bounded loss for any initial level of liquidity
and, as the initial level of liquidity approaches zero, worst-
case loss approaches zero. For any level of initial liquidity
we can establish a boundary in market state space such that,
if the market terminates within that boundary, the market
maker books a profit regardless of the realized outcome. Fur-
thermore, we provide guidance as to how our market maker
can be implemented over very large event spaces through a
novel cost-function-based sampling method.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics

Keywords
Market Design, Automated Market Making, Prediction
Markets, Pricing Rules, Market Scoring Rules, Liquidity

1. INTRODUCTION
In liquid markets like the New York Stock Exchange

nearly every asset has open interest, providing two bene-
fits: (1) price takers can buy or sell at any time, and (2)
observers can continually monitor a precise value of every
asset. A prediction market, or market explicitly designed to
uncover the value of an asset, relies heavily on (2) holding
true. If an asset has poor price support (i.e., no open interest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’10, June 7–11, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-60558-822-3/10/06 ...$5.00.

or large bid-ask spread), then observers learn little or noth-
ing about its value, disabling the very purpose of the market.
For example, some popular contracts on intrade.com, one of
the largest prediction markets, attract millions of dollars in
trades. Yet still thousands of other Intrade contracts suf-
fer from low liquidity and thus reveal little in the way of
predictive information.

Prediction markets therefore benefit from automated mar-
ket makers, or algorithmic traders that maintain constant
open interest on every asset, providing liquidity that may
be hard to support organically. Combinatorial prediction
markets with vast numbers of outcomes to predict (e.g., a
64-team tournament with 263 or 9.2 quintillion outcomes)
almost seem nonsensical without some form of automated
pricing. Companies like WeatherBill and Bet365 (sports)
are beginning to use proprietary automated market mak-
ers to offer instantaneous price quotes across thousands or
millions of highly customizable assets.

Hanson’s logarithmic market scoring rule (LMSR) is an
automated market maker with particularly nice properties
and behavior (Hanson, 2003, 2007). LMSR is used by
a number of companies including Inkling Markets, Con-
sensus Point, Yahoo!, Microsoft, and the large-scale non-
commercial Gates Hillman Prediction Market at Carnegie
Mellon (Othman and Sandholm, 2010a). It is also the focus
of a number of academic studies about market microstruc-
ture (Ostrovsky, 2009; Othman and Sandholm, 2010b).
(Other companies like HSX.com and Crowdcast employ
their own automated market makers.)

The amount of liquidity in LMSR is a parameter set a
priori before the market maker knows what bets traders
will place. Setting the liquidity is more art than science—a
constant dilemma for almost everyone who has implemented
LMSR. Too little liquidity makes prices fluctuate wildly af-
ter every trade; too much makes prices barely budge even
following large bets. Exacerbating the problem, the amount
prices move for a fixed bet in LMSR is a constant. The
1,000,001st dollar moves the price as much as the first,
counter to intuitive notions of liquidity.

Higher liquidity is good for traders but comes at the cost
of increasing the market maker’s worst-case loss. In general,
an LMSR operator can expect to lose money in proportion
to the liquidity it provides (Pennock and Sami, 2007). The
cost is rationalized as payment for traders’ information. Yet
subsidized markets are the exception rather than the rule.
The vast majority of markets run at a profit. It’s no coin-
cidence that most examples of LMSR in practice are games
based on virtual currency rather than real money.

We present a variant of LMSR that is better suited for
practical use in two ways. First, our market maker auto-
matically adjusts how easily prices change according to how
much activity it sees: prices become less elastic as more dol-
lars flow in. The market operator need not somehow try to
anticipate traders’ level of interest to set liquidity manually.
Second, our market maker can ensure an arbitrarily small
loss in the worst case and a positive profit over a wide range
of final states. Unlike in LMSR, prices of disjoint assets
can sum to greater than $1. However, we prove that drop-
ping this arbitrage property is a theoretical requirement for
any liquidity sensitive and path independent market maker.
Moreover, relaxing the arbitrage property is precisely what
allows our market maker to expect a profit, more closely
resembling typical bookmaker policies.

In Section 2 we motivate the properties of pricing rules
from first principles using vector calculus. We show that no
market maker can satisfy three desirable properties: path
independence, no-arbitrage, and liquidity sensitivity.

With this motivation, in Section 3 we proceed to weaken
the least natural property, no-arbitrage, introducing a new
market maker that can run at a profit. We illustrate the
features of our market maker in detail, including obtaining
tight bounds on the sum of prices.

Finally, in Section 4, we discuss how to implement our
market maker over very large event spaces. We describe how
current sampling techniques based around estimating prices
do not work well with our market maker, and introduce a
novel cost-function-based sampling method that makes very
large event spaces tractable.

2. PRICING RULES
In this section we derive from first principles the proper-

ties of pricing rules from vector calculus. This study will
allow us to explore the central tension behind automated
market making: that no market maker can be liquidity sen-
sitive, path-independent, and no-arbitrage. This axiomatic
characterization is distinct from the work of both Chen and
Pennock (2007), who explore utility-based market makers,
and Agrawal et al. (2009), who use convex optimization to
synthesize different strands of automated market making.

2.1 Vector calculus for pricing rules
We begin by partitioning the event space into n distinct

exhaustive events, exactly one of which will occur. The state
of the market is kept by the vector q, whose i-th element
determines the payout owed to traders if the i-th event oc-
curs. Pricing rules translate between this quantity vector
and prices.

Definition 1. A pricing rule is a differentiable function
p : Rn 7→ (0, 1)n that maps a vector of quantities to a vector
of prices.

For convenience we sometimes use the notation p(qi,q−i)
where we isolate one element, qi, of the quantity vector from
the other elements, q−i.

2.1.1 Three required properties
Regardless of further descriptions, all pricing rules should

have three properties: they should have a convex pre-image,
they should satisfy a monotonicity property, and they should
be appropriately surjective. We now proceed to discuss these

three properties and to explain why they are natural require-
ments.

The first required property of pricing rules is that they
have a convex pre-image. (However, we do not require that
the pre-image of the pricing rule encompasses the entire do-
main Rn.) Convexity is a natural property. Imagine a trader
holding a portfolio q. Convexity ensures that the trader can
sell any fraction of that portfolio back to the market maker
and still have defined prices. We now define this notion
formally.

Definition 2. A point in Rn is valid if it is in the pre-image
of the pricing rule p.

Definition 3. (Convex pre-image) Pricing rule p has a
convex pre-image if all convex combinations of valid vectors
are also valid.

The second required property of pricing rules is mono-
tonicity. The first part of the monotonicity definition below
is natural to require: the more demand there is, the higher
the price should be. The second part reflects the fact that
the events i and j are natural substitutes because the events
form an exhaustive and disjoint partition of the space: ex-
actly one event will occur.

Definition 4. (Monotonicity) A pricing rule is mono-
tonic if for every i, the price, pi, is monotonically increasing
in qi and monotonically decreasing in every qj , j 6= i.

The third requirement of pricing rules is surjection: the
rule always allows any final price vector to be reached in a
straightforward manner from any initial price vector.

Definition 5. (Surjection) A pricing rule is surjective if
for every i and q−i, there exists a qi such that pi(qi,q−i) = x
for all x ∈ (0, 1).

Throughout the rest of the paper we will assume these
three properties.

2.1.2 Three desired properties
We can also identify three additional properties we would

like a pricing rule to have: that it be path independent, that
it be no-arbitrage, and that it be liquidity sensitive.

Path independence means that any way the market moves
from one state to another state yields the same payment or
cost to the traders in aggregate (Hanson, 2003). We proceed
to give a technical definition.

Definition 6. (Path independence) Pricing rule p is
path independent if every piece-wise smooth closed curve of
transactions is budget-balanced.

Compared to convexity, path independence fits less
squarely with our traditional conception of how markets
work. For instance, consider a traditional continuous double
auction with a bid/ask spread. A trader who buys and then
sells a quantity of shares will incur a loss (which shrinks as
the bid/ask spread becomes smaller, i.e., for higher levels
of liquidity). But path dependence is not necessarily driven
only by a bid/ask spread. Consider a market maker that in-
corporates prior transactions into the prices that it presents
to traders, as in Das (2008). Since different trades will af-
fect these market makers’ internal state, they may be path
dependent.

Path independence offers three important benefits. First,
it is a sufficient condition for ensuring that there does not
exist a money pump in the market: a trader cannot place
a series of trades and profit without assuming some risk.
Second, it provides a minimum representation of state: we
only need to know the quantity vector. Finally, because a
trader gets the same odds from participating all at once as
in a set of small trades, traders do not need to strategize how
they make trades (e.g., making a series of small purchases
instead of a single large trade).

Now, an important connection follows immediately from
vector calculus:

Proposition 1. If a pricing rule p is path-independent
and has a convex pre-image, then p is the gradient of a scalar
potential field.

Tying this to convention in the prediction market literature,
we call this scalar field a cost function and denote it by
C(·). The cost function maps vectors of quantities to a sin-
gle scalar value, and prices are determined by the partial
derivatives with respect to each coordinate of the vector.

The cost function represents the (path-independent) in-
tegral over instantaneous prices, so it is a measure of how
much money has been paid into the system. To view this
another way, imagine that a set of traders, collectively, has
d dollars and the market is initially at state C(q0). After
all the traders invest all their money, the combined hold-
ings of the traders can be those vectors with non-negative
components q such that

C(q0 + q) = C(q0) + d

The second desired property is no-arbitrage (Agrawal
et al., 2009): that the cost of buying a guaranteed payout of
x always costs x.

Definition 7. (No-arbitrage) A pricing rule is no-
arbitrage if prices always sum to unity. Formally:X

i

pi(q) = 1

for all valid q.

Most prediction markets in use do not preserve no-
arbitrage, and with good reason: a no-arbitrage pricing rule
ensures that the market maker will take a loss as long as
the final market prices are better than the initial market
prices, a condition that is essentially tautological (if it were
false, there would be little need to run a market in the first
place). The simplest way to see this is to characterize the
way market makers function in standard, familiar markets.
A market maker takes on a risk when setting prices: if the
prices are not the actual expected final prices, the market
maker has a negative expectation. Market makers counter
this risk by charging different prices on both market sides
so that they are both more expensive than unity. Then, the
market maker profits from traders purchasing on both sides
of the market, leaving a cut (aka the “spread” or “vig”) for
the market maker. A no-arbitrage rule shrinks the size of
the spread to zero, leaving the market maker exposed to the
negative downside risk of offering prices without any upside.

Conversely, the no-arbitrage condition guarantees that no
trader can arbitrage (exploit without risk) the market maker
by taking on a guaranteed payout for less than the payout.

The most direct benefit of a no-arbitrage pricing rule is
that it preserves the direct translation between the price of
an event and the probability of that event occurring. Both
prices and probabilities will be non-negative and (when ex-
haustively partitioned) will sum to unity.

No-arbitrage rules also guarantee the“law of one price”, so
that if two bets offer the same payouts in all states, they will
have the same price. Put another way, imagine the Yankees
and Red Sox are playing a baseball game. The law of one
price asserts that placing a bet of a certain amount towards
the Yankees winning will be priced equivalently to placing
a bet of the same amount on the Red Sox losing. While
logically straightforward, this condition does not necessarily
hold in practice in traditional continuous double auctions,
as the administrators of the Iowa Electronic Markets have
discussed (Berg et al., 2001; Oliven and Rietz, 2004). This
condition can thus also be viewed as a necessary condition
for efficient information aggregation in a market. If the law
of one price is not satisfied, there are opportunities for un-
sophisticated traders to pay too much or get paid too little.

As the third desired property, we would like market mak-
ers to adjust the elasticity of their pricing response based on
the volume of activity in the market. We call market makers
that are unable to adjust in this way liquidity insensitive.

Definition 8. (Liquidity sensitivity) Define the n-di-
mensional vector 1 ≡ (1, 1, . . . , 1). A pricing rule is liquidity
insensitive if

pi(q + α1) = pi(q)

for all valid q and all α.

Sensitivity to liquidity is desirable because it squares in-
tuitively with the way we would want markets to function:
small investments move prices less in thick (liquid) markets
than in thin (illiquid) markets.

One can also think about sensitivity from a Bayesian per-
spective. The 1000th flip of a coin moves the posterior es-
timate of that coin’s probability of coming up heads much
less than the first flip. This is because, after 1000 flips, we
already have a great deal of information about the proba-
bility of the coin coming up heads. Similarly, if we have a
lot of information about the objective price of a contract (a
deep market), small bets in the market should not impact
prices much.

2.1.3 Tension among the desired properties
In this section we show that no market maker can satisfy

all three of the desired properties.

Definition 9. Any market maker that satisfies no-
arbitrage and path-independence is a Hanson market maker.

This name is inspired by Robin Hanson, who provided an ap-
proach to building such market makers from strictly proper
scoring rules. All of the example market makers given by
Hanson and subsequent authors (Agrawal et al., 2009) are
liquidity insensitive. We now show why: liquidity sensitivity
is in fact impossible to achieve in the Hanson context.

Proposition 2. No pricing rule is no-arbitrage, path-
independent, and liquidity sensitive.

Proof. We prove this result by showing that a Hanson
market maker, which is by definition no-arbitrage and path-
independent, has constant prices along 1 and is therefore
liquidity insensitive.

Because Hanson market makers are path independent,
prices are given by the gradient of a scalar field, the cost
function. Consider the Hessian of that cost function

∇2C(·) =

2664
∂p1
∂q1

· · · ∂pn
∂q1

...
. . .

∂p1
∂qn

· · · ∂pn
∂qn

3775
This matrix has strictly positive values along its diagonal,
and strictly negative values everywhere else. Denoting a
positive entry by a “+” and a negative entry by a “−”, this
matrix has the form26664

+ − · · · −
− + · · · −
...

. . .

− · · · − +

37775
The sum of the entries of the i-th row of this matrix rep-

resents the change in sum of prices from adjusting qi. Since
prices always sum to 1, the rows of the matrix sum to 0. By
the symmetry of second derivatives, the Hessian matrix is
symmetric, so the entries in each column also sum to 0. The
sum of the entries of the i-th column of this matrix repre-
sents the directional derivative along 1 of pi, and thus prices
are constant along 1. �

2.2 The LMSR
Our pricing rule is derived from the logarithmic market

scoring rule (LMSR) (Hanson, 2003). The LMSR uses the
following cost function:

C(q) = b log

 X
i

exp(qi/b)

!
where b > 0 is some constant. This function’s pre-image
is the entire space Rn. The function’s gradient, the pricing
rule, is

pi(q) =
exp(qi/b)P
j exp(qj/b)

This cost function has worst-case loss b logn for the mar-
ket maker. (This loss is achieved by starting from identical
prices on all events.)

The LMSR is the most well-studied rule and most widely
used in practice for prediction markets. It is used by a
number of startup companies including Inkling Markets and
Consensus Point. It is used internally at Microsoft and has
been used in online games run by Yahoo! and at Carnegie
Mellon University. Before its demise, Tradesports, a large
sports-betting site, was beginning to incorporate a discrete
version of the logarithmic rule into some of its markets.

3. OUR MARKET MAKER
In this section we will derive our automated market maker.

Since we cannot satisfy all three desiderata simultaneously,
we should consider which of them to loosen. Of the three
desiderata, the least natural constraint is no-arbitrage, be-
cause it does not match how we would expect a market to
function in the real world. In particular, we would like our
market maker to be able to derive a profit from transact-
ing with traders. So, rather than enforcing the no-arbitrage

condition X
i

pi(q) = 1

for all valid q, we would actually preferX
i

pi(q) ≥ 1

That way, if traders cannot take on negative quantities, the
prices they face always sum to at least one.

3.1 Imposing a transaction cost and subsidiz-
ing liquidity

One approach to make a Hanson rule more practical is
to directly impose a transaction cost on each trade. That
is, bets are calculated from the regular Hanson rule, but an
additional charge (e.g., 3%) is added to every transaction
presented to a potential bettor. For instance, if we present a
trader with a bet that would normally cost 1 dollar according
to the Hanson rule, it would instead cost 1.03. The market
maker can then keep 0.03.

Imposing a transaction cost enables a market maker to
potentially run at a profit, assuming a sufficient level of
market activity. However, this scheme is still not liquidity
sensitive—prices respond identically to bets at all different
volumes.

A second and more complex idea is to break the transac-
tion fee between increasing liquidity and pocketing a fee. For
instance, a market maker can charge a 3% fee, but only keep
1%, putting the other 2% towards increasing the b param-
eter (i.e., increasing the parameter so that the worst-case
loss is larger by the amount of this 2% subsidy). Such a
market maker would be liquidity sensitive and can run at a
profit, but it has two shortcomings. First, increasing b in
this manner distorts prices towards the mean, bringing the
price of each contract towards 1/n. Second, it breaks path
independence, because a series of smaller orders will result
in more updates to b than a single large order.

The market maker we introduce in the next section can
be thought of as a way of adapting this scheme continuously
with order volume, so that prices are not distorted and so
that path independence is maintained.

3.2 Our cost function
The conventional LMSR cost function can be written as

C(q) = b(q) log

 X
i

exp(qi/b(q))

!
,

where b(q) = b is an exogenously set constant. Instead,
our market maker uses the LMSR cost function, but with a
variable b(q) that increases with market volume as follows:

b(q) = α
X
i

qi,

where α > 0 is a constant. The valid region for our mar-
ket maker is the set of n-dimensional vectors with all non-
negative components, excepting the origin.

3.3 Theoretical properties
This simple change results in a host of intriguing proper-

ties.

3.3.1 Prices
In a path-independent market maker, the price of state i

is given by the partial derivative of the cost function along
i. With constant b, this expression is simply

pi(q) =
exp(qi/b)P
j exp(qj/b)

When b(q) = α
P
i qi, however, the expression becomes

much more complex:

pi(q) = α log

 X
j

exp(qj/b(q))

!
+P

j qj exp(qi/b(q))−
P
j qj exp(qj/b(q))P

j qj
P
j exp(qj/b(q))

Figure 1 illustrates the liquidity sensitivity of these prices
in a 2-event market. As the number of shares of the com-
plementary event increases, the market’s price response for
a fixed-size investment becomes less pronounced.

Figure 1: In a 2-event market with α = .05, this
plot illustrates the relationship between qx and px
for qy = 250, 500, and 750, respectively. The liquidity
sensitivity of our market maker is evident in the
decreasing slope of the price response for increasing
qy.

3.3.2 Tight bounds on the sum of prices
In this section, we establish tight bounds on the sum of

prices. In particular, we show that

1 ≤
X
i

pi(q) ≤ 1 + αn logn,

where the prices achieve the upper bound only when q = k1
for k > 0, and prices achieve the lower bound as qi → ∞.
(Recall that 1 is the vector where each element is a 1, so the
product k1 yields a vector where each element is a k.)

Proposition 3. Prices at k1, for all k > 0, sum to 1 +
αn logn.

Proof. For q = k1, we have qi = qj for all i and j, which

allows us to simplify considerably.X
i

pi(k1) =
X
i

α log

 X
j

exp(qj/b(q))

!

= nα log

 X
j

exp(qj/b(q))

!

= nα log

„
n exp

„
1

αn

««
= nα log

„
exp

„
1

αn

««
+ nα logn

= 1 + αn logn

�

Proposition 4. The maximum of the sum of prices is
obtained at every point of the form k1, where k > 0. Fur-
thermore, these are the only points that achieve the maxi-
mum.

Proof. Consider the set of all quantity vectors that sum
to b > 0. We will show that the quantity vector where each
event has equal quantity (each one having b/n) maximizes
the sum of prices.

The sum of prices at quantity vector q is given byX
i

pi(q)

Without loss of generality, take
P
i qi = 1/α, so that the

space of vectors we consider are those for which b(q) = 1.
So without loss of generality we can rewrite the sum of

prices as

1 + nα

"
log

 X
j

exp(qj)

!
−
P
j qj exp(qj)P
j exp(qj)

#
We will show that

log

 X
j

exp(qj)

!
−
P
j qj exp(qj)P
j exp(qj)

≤ logn,

with equality occurring only when q = k1. We can rewrite
the above expression asX

j

qj exp(qj) ≥

 X
j

exp(qj)

!
log

 P
j exp(qj)

n

!
Take pj ≡ exp(qj). The expression then becomesX

j

pj log(pj) ≥
X
j

pj log

 P
j pj

n

!
Without loss of generality, we can scale the pj to define a

probability distribution, to getX
j

pj log(pj) ≥ log

 P
j pj

n

!
≥ − log(n)

This is a result from basic information theory, which es-
tablishes that the uniform distribution has maximum en-
tropy over all possible probability distributions (Cover and
Thomas, 1991). Therefore, equality holds only in the case
of a uniform distribution, which corresponds to the quantity
vector having equal components (q = k1). �

Figure 2: Sum of prices where n = 2 and α = 0.05.
The sum is bounded between 1 and 1+αn logn ≈ 1.07,
achieving its maximum where qx = qy.

Proposition 5. At any valid q,
P
i pi(q) ≥ 1.

Proof. Once again, without loss of generality we can
rewrite the sum of prices as

1 + nα

"
log

 X
j

exp(qj)

!
−
P
j qj exp(qj)P
j exp(qj)

#
We will show that

log

 X
j

exp(qj)

!
−
P
j qj exp(qj)P
j exp(qj)

≥ 0

Rewriting with pj ≡ log qj this expression becomes

log

 X
j

pj

!X
j

pj ≥
X
j

pj log pj

Without loss of generality we can normalize so that the pj
form a probability distribution. The expression then simpli-
fies to X

j

pj log pj ≤ 0,

which holds because the entropy of a distribution is never
positive. Here, equality holds only in the limit as the prob-
ability distribution becomes a point mass on a single point.
In our original q space, this is equivalent to q having a com-
ponent approaching infinite quantity. �

Figure 2 is a plot of the sum of prices in a simple two-
quantity market. Prices achieve their highest sum when
qx = qy and are bounded below by 1.

3.3.3 Selecting α

A possible complaint about our scheme is that we have re-
placed one a priori fixed value, b, of the LMSR with another
a priori fixed value, our α. In this section, we discuss how
the α parameter has a natural interpretation that makes its
selection relatively straightforward.

The α parameter can be thought of as the commission
taken by the market maker. Higher values of α correspond

to larger commissions, which leads to more revenue. At the
same time, setting α too large discourages trade.

As we have shown, the sum of prices with our market
maker is bounded by 1 +αn logn, and this value is achieved
only when all quantities are equal. This insight provides a
guide to help set α.

How large should administrators set α within our market
maker? We can look to existing market makers (and book-
ies) for an answer. Market makers generally operate with
a commission of somewhere between 5 and 20 percent. To
emulate a commission that does not exceed v in our market
maker, one can simply set

α =
v

n logn

So, the larger the event space (larger n), the smaller α should
be set to maintain a given percentage commission.

3.3.4 Bounded loss
One concern with any pricing rule is whether the mar-

ket maker’s loss is bounded. Of course, every non-trivial1

pricing rule has some monetary loss in the worst case, but
it is highly undesirable for a pricing rule to lose an infinite
amount in some cases.

The condition that the pricing rule not lose an infinite
amount is stricter than surjection and monotonicity together
(which imply that the price of an event approaches 1 as the
quantity of that event gets large). For instance, if prices
approach 1 as 1− 1

qi
, then loss, log qi, is unbounded as qi →

∞. We now formally define loss and boundedness of the
loss.

Definition 10. The loss of a market maker that starts in
state q0 and ends in state q, with the realization of event i,
is

C(q0)− C(q) + qi

Recall that here C(·) is the cost function and qi is the
amount the market maker has to pay out in the end upon
event i occurring.

Definition 11. A pricing rule has bounded loss if for all
initial states q0 and all states q,

C(q0)− C(q) + qi <∞

Proposition 6. Our pricing rule has bounded loss.
Specifically, it loses at most C(q0).

Proof. We will show that the term qi − C(q) is non-
positive and is zero in the limit as one of the qi grow large.
By inspection,

qi = b(q) log
“
eqi/b(q)

”
≤ b(q) log

 X
j

eqj/b(q)

!
= C(q)

Therefore our market maker has bounded loss, because the
term C(q0) is finite. Now consider the limit as one of the qi
gets large. Without loss of generality, consider the market
starting from 1. Then let

b(qi) ≡ b(qi, 1−qi) = α(qi + n− 1)

1Agrawal et al. (2009) present a market maker that never
incurs a loss, but it is not practical since it charges for every
bet at least the amount the trader would win in any state,
and therefore traders never have incentive to participate.

Then

lim
qi→∞

qi − C(qi, 1−qi)

= lim
qi→∞

qi − b(qi) log

0@e qi
b(qi) +

X
i 6=qi

e
1

b(qi)

1A
= lim
qi→∞

qi − α(qi + n− 1) log

0@e qi
α(qi+n−1) +

X
i 6=qi

e
1

b(qi)

1A
= qi − αqi log(exp(1/α))

= 0

Since this limit is zero, the market maker suffers zero worst-
case loss from the qi − C(q) term in the loss expression.
Therefore, our market maker has worst-case loss equal to
the amount of the initial subsidy, C(q0). �

Since

lim
q→0

C(q) = 0,

setting the initial market quantities close to 0, worst-case
loss becomes arbitrarily small. Reducing the initial vector
too much comes at a cost, however, because

lim
q→0

b(q) = 0

so the market becomes arbitrarily sensitive to small bets in
its initial stage.

In contrast, to get near-zero loss in the LMSR, one would
have to set b near zero, which would cause arbitrary sensi-
tivity to small bets throughout the duration of the market.
Since other Hanson market makers are not liquidity sensi-
tive either, they suffer from the same problem. In our mar-
ket maker, by setting the initial quantities close to zero, we
achieve near-zero loss while containing the high sensitivity
to the initial stage only.

3.3.5 Worst-case revenue
In addition to always having bounded loss (and near-zero

loss if desired), under broad conditions on the final state of
the market, we can guarantee that our market maker actu-
ally makes a profit (regardless of which event gets realized).
The worst-case revenue is

R(q) ≡ C(q)−max
i
qi − C(q0)

If R(q) > 0 when the market closes, the market maker will
book a profit regardless of the outcome that is realized. Fig-
ures 3 and 4 show the set of market states for which R(q) > 0
for various values of α and initial quantity vectors q0. Fig-
ure 3 shows varying values of α. Figure 4 shows varying ini-
tial quantity vectors. It might appear that large portions of
the state space will result in our market maker losing money.
However, prices and quantities have a highly non-linear re-
lationship: prices quickly approach 1 as quantities become
imbalanced. The straight black rays on the plane represent
a price of .95 for one of the two events. Therefore, the plots
indicate that as long as markets are terminated while events
have reasonable levels of uncertainty, the market maker can
easily book a profit even in the worst case.

3.3.6 Homogeneity
In this section we examine and explore the implications of

our cost function being homogeneous.

Proposition 7. Our cost function is positive homoge-
neous of degree one.

Proof. Let γ > 0 be a scalar and q be some valid
quantity vector. Without loss of generality, we can assumeP
i qi = 1. Then

C(γq) = b(γq) log

 X
i

exp(γqi/b(γq))

!

= γα log

 X
i

exp

„
γqi
γα

«!
= γC(q)

�

It is crucial that the cost function be homogeneous of de-
gree one because that allows the price response to scale ap-
propriately in response to increased quantities. In fact, only
homogeneous cost functions provide this price response.

Definition 12. Prices scale proportionately if

pi(q) = pi(γq)

for all i, q and scalar γ > 0.

Proposition 8. Prices scale proportionately if and only
if the cost function is positive homogeneous of degree one.

Proof. Proportional scaling is equivalent to the price
functions being homogeneous of degree zero. Recalling that
the the k-th derivative of a suitably smooth homogeneous
function of degree d is itself a homogeneous function of de-
gree d − k and since γ > 0, if and only if the cost function
is positive homogeneous of degree one will prices scale pro-
portionately. �

What would happen if the cost function were not homo-
geneous of degree one?

• If the cost function increased at a slower pace, so that

C(γq) < γC(q),

then the worst-case loss is unbounded. It is easy to see
that in this case, the quantity

lim
γ→∞

max
i
γqi − C(γq)

diverges, implying we have unbounded worst-case loss
as the quantity vector grows large.

• If the cost function increased at a more rapid pace, so
that

C(γq) > γC(q),

then prices would change with larger proportion at
larger quantity vectors. So the price response at
suitably large q would become very brittle, changing
rapidly in proportion to input quantities. For large
enough q, prices would resemble an indicator function,
so that the price of all but one index would be close to
zero.

Figure 3: The shaded regions show where the market maker’s worst-case revenue is greater than zero in a
two-outcome market with initial quantity vector (1, 1) and various values of α. The top black ray represents
py = .95 and the bottom black ray represents px = .95.

Figure 4: The shaded regions show where the market maker’s worst-case revenue is greater than zero in a
two-outcome market with α = .03 and various initial quantity vectors. The top black ray represents py = .95
and the bottom black ray represents px = .95.

4. MAKING LARGE MARKETS
We have explored a new market maker that scales prices

proportionally and has desirable revenue properties. How-
ever, inherent in our exposition is the idea that we can op-
erate on a vector of size n. In some settings, however, this
is not feasible. Consider, for instance, the annual NCAA
men’s basketball tournament held each March. This tourna-
ment features 63 games, so a complete state space account-
ing would have n = 263 (even if we only care, for each game,
about the win versus loss rather than the score). This is a
number far larger than can be reasonably operated upon.

In this section, we discuss how to deal with large liquidity-
sensitive market makers. We show that the fast Gibbs-style
sampling used by Chen et al. (2008) is not suitable for this
setting, but we give a direct-sampling price-function-based
method that can be used. We argue, however, that the best
way to deal with large liquidity-sensitive markets is a cost-
function-based method which we will introduce.

4.1 Price-based sampling
In price-based sampling, we use the price function to cal-

culate the odds we offer traders. Since prices are given by
the gradient of the cost function, if we can calculate price es-
timates accurately, then we can calculate the cost function,
allowing us to calculate bets. Ideally, this would be done in
closed form (Chen et al., 2008), but numerical quadrature
techniques can also be used (Judd, 1998).

4.1.1 Gibbs-style sampling
The most compelling description of a very large-scale mar-

ket maker is featured in the appendix of Chen et al. (2008).
That approach uses sampling the Gibbs measure, a tech-
nique with roots in statistical mechanics, to estimate prices.
We will briefly summarize that approach here. It uses the
LMSR rule; recall that their b is a fixed constant.

Their sampling approach works as follows. Select a set of
outcomes S from a generative prior g : Ω 7→ R+. For state
si, initialize log-likelihood lli = log g(si). The market maker

then sets qi = b · lli. Weights are then calculated by

wi = exp(qi/b− lli)

and we can use these weights to calculate instantaneous
prices. Let a bet a come in which applies to the set of states
A ⊂ S. We price the bet as

pa =

P
j∈A wjP
i wi

When we change the quantities qi, we update the set of
weights.

We call this technique price-based Gibbs-style sampling.

Definition 13. A price-based Gibbs-style sampling method
solves for prices based on indicator sampling over weights w
on the set of states. Given a bet a that applies to sampled
states A ⊆ S, we price the bet as

P (a) =

P
j∈A wjP
i wi

One might hope that a price-based Gibbs-style sampling
method would be effective in our setting as well. Unfortu-
nately, it is straightforward to see that no Gibbs-style sam-
pling method can return a price of greater than unity for
any bet. Since our liquidity-sensitive market maker should
have prices that sum to more than 1 (for instance, on a bet
that encompasses the entire space of outcomes), price-based
Gibbs-style methods are incapable of producing an engine
to handle bets in our new liquidity-sensitive framework.

4.1.2 Direct price sampling
Instead, a market maker could use what we call direct

sampling : directly calculating prices from the price function
using sampled states. Recall that prices are given byX
si∈A

pi(q) =
X
si∈A

α log

 X
j

exp(qj/b(q))

!
+

P
j qj exp(qi/b(q))−

P
j qj exp(qj/b(q))P

j qj
P
j exp(qj/b(q))

(1)

This rule is complex enough that it requires two phases
to sample. Assume that we have drawn the states ωi. Then
we can estimate b as

b̂ = α
X
i

qi

With that value we can then estimate the price of the bet
by evaluating Equation 1 with b(q) = b̂:

X
si∈A

pi(q) =
X
si∈A

α log

 X
j

exp(qj/b̂))

!
+

P
j qj exp(qi/b̂))−

P
j qj exp(qj/b̂)P

j qj
P
j exp(qj/b̂)

Chen et al. (2008) were able to use price estimates in
closed form by using a clever observation to estimate costs.
We see no similar technique for this situation. Of course,
if we can estimate instantaneous prices, we can also solve
for costs using numerical techniques, but such techniques
amplify the flaws of sampling at an individual state. That
is, if estimating a single price is slow and inaccurate, then

numerical integration techniques will also be slow and inac-
curate. And since direct price sampling as described here is
an unwieldy two-stage process, it is unlikely to be able to
serve as the core of a robust market maker.

4.2 Cost-function-based sampling
To circumvent these problems, instead of using price-

based sampling, we can use cost-function-based sampling to
price bets within our market maker.

4.2.1 Initial setup
First, develop a generative prior g : Ω 7→ R+. This prior

maps states to their prior probability of occurring. The bet-
ter the prior is, the better the price predictions will be.

Generate a set of states S ⊂ Ω according to the prior g,
where |S| << n is as large as possible but still small enough
to work with (e.g., 220 ≈ 1 million states). For each state
s ∈ S, fix its initial quantity, qs, to

qs = g(s)

4.2.2 Pricing bets
Let the current quantity vector over the states in S be q,

and let bet a arrive, which wagers cA dollars and applies to
states A ⊆ S. Denote by 1A the pointwise indicator vector
for state A, i.e.,

1Ai =

(
1 if Si ∈ A,
0 otherwise.

Then, solve for the reward r that satisfies

C
“
q + r1A

”
= C(q) + cA

Offer the bet to the trader to win reward r for risking cA.
Though the vectors in question are large, r is just a scalar

and the problem is therefore analogous to finding the root
of a well-behaved single-variable function. Consequently, it
can be solved quickly in practice; test examples with |S| =
1 million solved in less than a second in MATLAB on a
standard commodity PC.

4.3 Sampling concerns
The primary concern with sampling is that, because we

are only covering a tiny fraction of the actual state space, it
might be possible for a trader to arbitrage the market. Say
the trader placed a bet that does not apply to any of the
states in our sample. Then, if we were using a cost-function-
based scheme, we would tell the trader they could purchase
an infinite payout for nothing!

Two ideas protect us from this possibility:

• We modify the scheme so that we never offer a trader
odds, on any bet, greater than some value (e.g.,
10,000:1).

• Only offer bets that cover relatively large chunks of the
state space. This is in order to improve the accuracy
of bets by making it more likely that multiple sam-
pled states will be relevant to the bet in question. For
example, consider bets on the outcome of the NCAA
Men’s Basketball tournament. A bet on a particu-
lar outcome of the tournament (all 63 games at once)
will either have no coverage by samples or relatively
too much coverage (in case that a sample happens to

match that event exactly). In contrast, a bet on the re-
sult of a single game will likely have accurate coverage
by samples.

5. CONCLUSIONS
Two of the main practical hurdles to more widespread use

of Hanson’s LMSR market maker are (1) the liquidity level
b is set manually and never changes, and (2) the operator
can expect to lose money in proportion to b. We present a
new automated market maker design that overcomes both
while retaining path independence, thus ensuring the mar-
ket maker cannot be exploited and greatly simplifying the
implementation. We prove that if we want sensitivity to
liquidity and path independence, then we must relax the
arbitrage condition that constrains prices of disjoint and ex-
haustive assets to sum to exactly one dollar. In our case,
prices can sum to more than one, but this turns out to be
a practical benefit, enabling the market maker to extract
a profit if the entropy of final prices is sufficiently high.
With LMSR, the market operator must ante a larger subsidy
to obtain reasonable liquidity. With our liquidity-sensitive
market maker, the subsidy can be set arbitrarily low with-
out harming liquidity (except in the initial stage). We also
show that for a broad range of terminal market states, our
market maker actually makes a profit regardless of the event
that gets realized. We discuss sampling-based methods to
approximate prices in combinatorial settings with outcome
spaces too large for exact computation, including a new cost-
function-based method.

We plan to experiment with our liquidity-sensitive market
maker with real traders to see how they react and how the
market performs. Though the LMSR converts nicely to a
liquidity-sensitive form, we find that the quadratic scoring
rule (Pennock and Sami, 2007) does not; we’d like to say
something more general about the class of market scoring
rules. Some open questions include: how an epsilon-subsidy
market behaves at its open before liquidity builds, how to in-
corporate prior information or learning, how to handle per-
sistent limit orders, and how to mix sequential and batch
order processing.

Acknowledgments
We thank Vincent Conitzer, Ivan Corwin, Sharad Goel, and
Alex Grubb for helpful discussions and suggestions. Othman
and Sandholm are supported by NSF grant IIS-0905390.

References
S. Agrawal, E. Delage, M. Peters, Z. Wang, and Y. Ye. A

unified framework for dynamic pari-mutuel information
market design. In Proceedings of the 10th ACM Confer-
ence on Electronic Commerce (EC), pages 255–264, 2009.

J. Berg, R. Forsythe, F. Nelson, and T. Rietz. Results from a
Dozen Years of Election Futures Markets Research. Hand-
book of Experimental Economics Results, 2001.

Y. Chen and D. Pennock. A utility framework for bounded-
loss market makers. In Proceedings of the 23rd Conference
on Uncertainty in Artificial Intelligence (UAI), pages 49–
56, 2007.

Y. Chen, S. Goel, and D. M. Pennock. Pricing combinatorial
markets for tournaments. In Proceedings of the 40th An-

nual ACM Symposium on Theory of Computing (STOC),
pages 305–314, 2008.

T. M. Cover and J. A. Thomas. Elements of Information
Theory. John Wiley & Sons, 1991.

S. Das. The effects of market-making on price dynamics. In
Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
pages 887–894, 2008.

R. Hanson. Combinatorial information market design. In-
formation Systems Frontiers, 5(1):107–119, 2003.

R. Hanson. Logarithmic market scoring rules for modular
combinatorial information aggregation. Journal of Pre-
diction Markets, 1(1):1–15, 2007.

K. Judd. Numerical Methods in Economics. The MIT Press,
1998.

K. Oliven and T. Rietz. Suckers are born but markets are
made: Individual rationality, arbitrage, and market effi-
ciency on an electronic futures market. Management Sci-
ence, 50(3):336–351, 2004.

M. Ostrovsky. Information aggregation in dynamic markets
with strategic traders. In Proceedings of the 10th ACM
Conference on Electronic Commerce (EC), pages 253–254,
2009.

A. Othman and T. Sandholm. Automated market making
in the large: The Gates Hillman Prediction Market. In
Proceedings of the 11th ACM Conference on Electronic
Commerce (EC), 2010a.

A. Othman and T. Sandholm. When do markets with simple
agents fail? In Proceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS), 2010b.

D. Pennock and R. Sami. Computational aspects of predic-
tion markets. In Algorithmic Game Theory, chapter 26,
pages 651–674. Cambridge University Press, 2007.

