Proper Scoring Rules

Yiling Chen

September 17, 2012

Logistics

- Let's introduce ourselves!
- Find a partner for paper presentation
- Email your paper preferences to Mike by 5pm tomorrow (Sep. 18)
- Paper presentations
 - Read the "Presentation Notes" on course website
 - Meet with us roughly one week before your presentation
 - Prepare reading questions
 - Present the paper(s) and lead class discussion

Probabilistic Forecasts

▶ A random variable with n mutually exclusive and exhaustive outcomes (e.g. Rain, Sun, Snow)

▶ A probabilistic forecast $\mathbf{p} = (p_1, p_2, \dots, p_n)$

Calibration

- Ask an expert to predict the daily weather for a year
- ► If the expert predicts Rain with probability 0.8 for 100 days, what do you expect to observe for these 100 days (assuming the expert is a "good" forecaster)?
- Does good calibration mean accurate forecasts?

Scoring Rules

- ▶ A random variable with n mutually exclusive and exhaustive outcomes (e.g. Rain, Sun, Snow)
- ▶ A probabilistic forecast $\mathbf{p} = (p_1, p_2, \dots, p_n)$
- A scoring rule rewards an expert

$$S(\mathbf{p},\omega)$$

when his prediction is $\, {f p} \,$ and the realized outcome is ω

Scoring Rules

Let's consider a linear scoring rule

$$S(\mathbf{p},\omega)=p_{\omega}$$

► If a risk-neutral expert believes the probabilities for Rain, Sun, and Snow are

$$\mathbf{q} = (0.7, 0.2, 0.1)$$

what should the expert predict?

Strictly Proper Scoring Rules

► A scoring rule is strictly proper iif

$$\mathbf{q} = \arg\max_{\mathbf{p} \in \Delta_n} \sum_{\omega} q_{\omega} S(\mathbf{p}, \omega)$$

for all $\mathbf{q} \in \Delta_n$.

Examples of Strictly Proper Scoring Rules

Quadratic scoring rule (Brier score):

$$S(\mathbf{p},\omega) = -(p_{\omega} - 1)^2 - \sum_{\omega' \neq \omega} p_{\omega'}^2$$

Logarithmic scoring rule:

$$S(\mathbf{p},\omega) = a_{\omega} + b \log p_{\omega}$$

Affine transformation of a strictly proper scoring rule does not change the incentives ▶ If the expert does not have incentives to lie, would you still use a strictly proper scoring rule? Why or why not?

What are possible applications?

► How many strictly proper scoring rules do we have?

► How to construct a strictly proper scoring rule?

Savage Characterization

lacktriangle A proper scoring rule $S(\mathbf{p},\omega)$ is strictly proper iif

$$S(\mathbf{p}, \omega) = G(\mathbf{p}) - \sum_{\omega'} G'_{\omega'}(\mathbf{p}) p_{\omega'} + G'_{\omega}(\mathbf{p})$$

where $G(\mathbf{p})$ is a strictly convex function, $G'(\mathbf{p})$ is a subgradient of G at \mathbf{p} , and $G'_{\omega}(\mathbf{p})$ is its ω -th component.

Savage Characterization

Expected score function

$$\sum_{\omega} p_{\omega} S(\mathbf{p}, \omega) = G(\mathbf{p})$$

So far, we have discussed strictly proper scoring rules for eliciting a probability mass function

What if we have a continuous random variable?

Predicting Continuous Random Variables

- Continuous random variable X
- ightharpoonup Expert has a subjective CDF F(x)
- ightharpoonup Expert reports a CDF R(x)
- Are there strictly proper scoring rules that incentivize the expert to report R(x) = F(x)?

Construct Strictly Proper Scoring Rules for CDF

- Take a strictly proper scoring rule for binary random variables
- Pick a random divider u that discretizes the continuous space
- ▶ Take the prediction (R(u), 1 R(u)) and apply the scoring rule for binary random variables
- Get rid of the dependency on u

Can we	elicit the	mean of	f a rando	m variabl	e?

Predicting Mean of Random Variables

- Random variable X
- ightharpoonup Expert has a subjective belief E(X)
- Expert reports a predicted mean r
- Are there strictly proper scoring rules that incentivize the expert to report r = E(X)?

Construct Strictly Proper Scoring Rules for Eliciting the Mean

- Consider a random variable over [0, 1]
- Take a strictly proper scoring rule for binary random variables
- ▶ Take (r, 1 r) as a prediction
- Construct a scoring rule
- Savage'71 provides a characterization using convex functions