crowdsourcing workflow control

- Nate Tucker and Perry Green
barriers to effective crowdsourcing

- Last time:
 - Ensure proper incentives:
 - Positive and negative
 - Social and economic

- This time:
 - How can we help people answer the question correctly?
 - How can we aggregate lots of responses into a single answer?

- Sound familiar? It’s all about information aggregation.
Motivation: why would two workflows be better than one (even if, on average, one is known to yield more accurate results)?
- Workers have different skillsets
- Different errors in different workflows

Examples?
how should we change the model?

- Before: Learn the best workflow. Use it.

 \[a(d, \gamma_w) = \frac{1}{2} \left[1 + (1 - d)\gamma_w \right] \]

- After: Dynamically choose workflows to maximize certainty of your answer.

 \[a(d^k, \gamma^k_w) = \frac{1}{2} \left(1 + (1 - d^k)\gamma^k_w \right) \]
decision-theoretic agent

- So far we have a model for accuracy, but not how to actually decide what task to use/when to return an answer.

- We need to:
 - Given initial difficulty/error parameters, decide whether to make a new task, or return an answer
 - If we made a new task and got new information, update our parameters and repeat
_decision given parameters - POMDP

- Partially observable Markov decision process:
 - Markov decision process:
 - Given states, actions, transition probabilities, and rewards, find the best policy (action to take in each state)
 - Partially observable:
 - You don’t know what state you are in

- For our purposes, we have some black box to approximately solve POMDPs
POMDP – AgentHunt details

- Each state is \((d_1, d_2, ..., d_k, v)\), where \(v\) is the correct answer.
- Each action is either to make a new job for one of the workflows, or submit one of the two answers.
- Reward function assigns some fixed cost for making a new task, and another (large) fixed cost for submitting the wrong answer.
- Each transition involves updating all parameters.
learning parameters

- Offline:
 1. Collect training data
 2. EM-algorithm, alternatively treating parameters and true value as fixed
 3. Use this to find average error parameter, initial estimate for d’s

- Online:
 1. Start with uniform priors for d
 2. After some number of responses, update all parameters to define a new POMDP
 3. Exploration v Exploitation: randomly takes a suboptimal action with some small probability to explore
results
Problem: hard to apply existing probabilistic models to open questions

What do they want in a solution:
- Given a correct answer and a difficulty, whether workers get it right is uncorrelated (i.e. no collusion)
- If two workers get it wrong, their answers are correlated (i.e. there are common mistakes)
- There is a single correct answer
With some probability, determined by difficulty and error parameter for worker, correct answer is given.

If incorrect, they pick a table:
- New table with probability $\frac{\Theta}{\Theta + N}$, where N is the number of people in restaurant, and Θ is the bandwagon parameter
- Old table t with probability $\frac{f(t)}{\Theta + N}$, where $f(t)$ is the number of people at t
LazySusan:
- Decides whether to produce a new task, depending on the costs and predicted benefits.
- Predicts answer based on chinese table model

Results: