Combinatorial Auctions

David C. Parkes parkes@eecs.harvard.edu

Spring, 2002

Basics

Bids (p, S) for set $S \subseteq \mathcal{G}$ of items, "I only want A if I also get $B^{\prime \prime}$. Auction mechanism determines the allocation, and agent payments.

Variants:

- Bidding languages:
- OR-of-XORS, XOR-of-ORs, restricted bundles, etc.
- Iterative vs. Sealed-bid vs. Multi-round
- Linear, Non-linear, Non-anonymous ask prices
- First-price vs. Second-price (GVA)
- Reserve price

Application Domains

- Take-off/landing slot auction [RSB82].
- Sealed bid, one-round, single-item prices, secondary market to clean up the outcome.
- Chicago GSB course registration [GSS93].
- Multiple-round, combinatorial auction (limited expressivity). Computes linear item prices in each round. Fixed number of rounds.
- Collaborative planning application. Agents submit bids to perform combinations of sub-tasks, that are composed into an overall plan [HG00].
- San Francisco Housing Auction. Sealed-bid, constrained bids [Wired 2000].

FCC Spectrum Auction

- 51 Major Trading Areas (MTAs), 30 MHz spectrum per MTA. 492 Basic Trading Areas (BTAs), each with one 30 Mhz and four 10 MHz blocks.
$-51 \times 1+492 \times(1+4)=2511$ items
- Clear efficiencies to aggregating licenses.
- fixed cost of infrastructure, marketing, roaming synergies, etc.
- Simultaneous ascending-price auction.
- prices on items
- complex activity, and stopping rules, click-box bidding.
- 1994-2001, more than $\$ 40$ billion.

Auction 31: Combinatorial

- 700 MHz auction, 12 licenses (6 regions, 10 MHz and 20 MHz in each)
- Diverse preferences (30 MHz for high-speed data service; "fill holes"; build a "national footprint").
- Limited number of bundles, XOR-across rounds, OR within round, stopping rules, activity rules.
- Still debated, and still not happened.

Multicast Cost-Sharing

David C. Parkes parkes@eecs.harvard.edu

Spring, 2002

Multicast Cost-Sharing

[FPS01,JV01]
Network (N, E), cost $c_{e} \geq 0$ per-edge, $e \in E$, value v_{i} per-node, $i \in N$. Source node, $\alpha_{S} \in N$.

Task: Select receiver-set $R^{*} \subseteq N$, and multi-cast tree $T^{*} \subseteq E$, to maximize social welfare:

$$
\begin{equation*}
W(v)=\max _{R \subseteq N}\left[\sum_{i \in R} v_{i}-\min _{T \in T(R)} \sum_{e \in T} c_{e}\right] \tag{EFF}
\end{equation*}
$$

where $T(R)$ is the set of all trees that "touch" R.
Self-interested receivers, private information about values. Must collect payments to balance total cost to network.

Feigenbaum et al.: assume a Universal tree, propose decentralized algorithms to implement mechanisms.

Jain \& Vazirani: assume a general biconnected network, propose a centralized approximation mechanism.

Example: Universal Tree Multicast

Welfare $=40+15-(20+10)=25$

Example: General Multicast (Steiner)
Welfare $=30+20+5+10-(5+5+10+5)$

Mechanism Design Problem

Values, v_{i}, of receivers are private information. Agents announce $\hat{\mathbf{v}}=\left(\hat{v}_{1}, \ldots, \hat{v}_{|N|}\right)$. Propose a mechanism to compute receivers $r_{i}(\hat{\mathbf{v}}) \in\{0,1\}$, payments $x_{i}(\hat{\mathbf{v}}) \geq 0$, and tree $T(\hat{\mathbf{v}})$. Let $w_{i}(\hat{\mathbf{v}})=q_{i}(\hat{\mathbf{v}}) v_{i}-x_{i}(\hat{\mathbf{v}})$.

Desirable properties to achieve in equilibrium:
[BB] $\sum_{i \in N} x_{i}(\hat{\mathbf{v}})=\sum_{e \in T(\hat{\mathbf{v}})} c_{e}$
[EFF] implement eff. outcome $\left(R^{*}, T^{*}\right)$
$[\mathrm{VP}] x_{i}(\hat{\mathbf{v}}) \leq q_{i}(\hat{\mathbf{v}}) \hat{v}_{i}$
[NPT] $x_{i}(\hat{\mathbf{v}}) \geq 0$
[CS] $r_{i}(\hat{\mathbf{v}})=1$, if \hat{v}_{i} large enough
What about the solution concepts?

Solution Concepts

- Strategy-proof [SP]

$$
w_{i}\left(v_{i}, \mathbf{v}_{-i}\right) \geq w_{i}\left(\hat{v}_{i}, \mathbf{v}_{-i}\right), \quad \forall \mathbf{v}_{-i}, \forall \hat{v}_{i}
$$

- Group Strategy-proof [GSP] for all coalitions $S \subseteq N$, we have:

$$
\forall \mathbf{v}_{-S}, \forall \hat{\mathbf{v}}_{S}
$$

$w_{i}\left(\mathbf{v}_{S}, \mathbf{v}_{-S}\right)=w_{i}\left(\hat{\mathbf{v}}_{S}, \mathbf{v}_{-S}\right), \quad \forall i \in S$
or $\exists i \in S$ s.t. $w_{i}\left(\mathbf{v}_{S}, \mathbf{v}_{-S}\right)>w_{i}\left(\hat{\mathbf{v}}_{S}, \mathbf{v}_{-S}\right)$

Impossibility Results

[BB] and [Eff] impossible to achieve (Moulin \& Shenker, 01).

- Can achieve (VP), (EFF), (SP), with Groves mechanisms (with "truthful" network costs). - VCG unique amongst EFF, SP, and VP, NPT, \& CS.
- Can achieve (VP), (BB), (GSP), with cross-monotonic sharing methods.
- for submodular cost functions, $C(T)$, always exist, and Shapley minimizes worst-case eff. loss.

Def. Submodular:
$C\left(e \cup T_{2}\right)-C\left(T_{2}\right) \leq C\left(e \cup T_{1}\right)-C\left(T_{1}\right)$, for all
$T_{1} \subseteq T_{2} \subseteq N$, and $e \notin T_{1}$.

Distributed Implementations

[Feigenbaum et al. 01]

- VCG, or "marginal cost". (SP) and (EFF).
$-p_{\text {gva }, i}=r_{i}(\hat{v}) \hat{v}_{i}-\left(W(\hat{v})-W\left(\hat{v}_{-i}\right)\right)$
- propose a mechanism to compute with 2 messages per-link (tree-traversal).
- Shapley. (GSP) and (BB).
- cost-sharing function $\xi(R, i)$ to share cost of multicast to receivers R, with $\sum_{i} \xi(R, i)=C(R)$
- select maximal number of receivers that can stand the cost-share
- any implementation has worst-case linear number of messages per-link

Network complexity: total \# msgs, max \# msgs. on any link, max size msg, local comput. burden on agents.

Budget-Balanced Mechanisms for General Multicast Tree Problem

Moulin\&Shenker, 01
Class of (GSP), (BB) mechanisms defined by cross-monotone cost-sharing methods, $\xi(Q, i)$, with properties:

$$
\begin{gathered}
\xi(Q, i)=0, \forall i \neq Q \\
\sum_{i} \xi(Q, i)=C(Q) \\
\xi(Q, i) \geq \xi(R, i) \forall Q \subseteq R
\end{gathered}
$$

$M(\xi)$ mechanism:

- Agents report values, \hat{v}; initialize $R \leftarrow N$.
- Select an agent $i \in R$ at random, if $\hat{v}_{i}<\xi(R, i)$ then drop i from R.
- Continue until $\hat{v}_{i} \geq \xi(R, i)$ for all $i \in R$.

Computational Considerations

Steiner tree problem is not feasible, unless $P=N P$. In addition, there are no weak cross-monotone cost-sharing methods, and so no GSP \& BB mechanisms.

- Minimum Cost Spanning Tree (MCST) is a 2-approximation to optimal Steiner tree.
- not submodular cost function, cannot use Shapley.
- propose a linear-program formulation of MCST, and demonstrate that the dual solution provides a cross-monotone cost-sharing method.
- Leads to a (GSP), (BB), (VP) 2-approximation to the (EFF) multi-cast solution.

Open problems: decentralized implementations, better efficiency outcomes, etc.

