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Direct Revelation Mechanisms (DRM)

In a DRM, M = (Θ, g), the strategy space, S = Θ, and an

agent simply reports a type to the mechanism, with outcome

rule, g : Θ → O.

Def. [incentive-compatible] A DRM is (Bayes-)Nash

incentive-compatible if truth-revelation is a (Bayes-)Nash

equilibrium, i.e. s∗i (θi) = θi, for all θ ∈ Θ.

Def. [strategyproof] A DRM is strategyproof if

truth-revelation is a dominant strategy eq., for all θ ∈ Θ.

Note: The SCF implemented by an incentive-compatible

DRM is precisely the outcome function, g(θ).

“g(θ) is truthfully implementable...”
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The Revelation Principle

[Gibbard 73;Green & Laffont 77, Myerson 79]

Thm. For any mechanism, M, there is a direct, IC

mechanism with the same outcome.

“the computations that go on within the mind of any bidder in the

nondirect mechanism are shifted to become part of the mechanism

in the direct mechanism.” [McAfee&McMillan, 87]

Consider:

–the IC direct-revelation implementation of a first-price

sealed-bid auction

–the IC direct-revelation implementation of an English

(ascending-price) auction.
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Proof

Consider mechanism, M = (S, g), that implements SCF,

f(θ), in a dominant strategy equilibrium. In otherwords,

g(s∗(θ)) = f(θ), for all θ ∈ Θ, where s∗ is a dominant

strategy eq.

Construct direct mechanism, M′ = (Θ, f(θ)). By

contradicton, suppose:

∃θ
′
i 6= θi s.t. ui(f(θ′

i, θ−i), θi) > ui(f(θi, θ−i), θi)

for some θ′
i 6= θi, some θ−i. But, because

f(θ) = g(s∗(θ)), this implies that

ui(g(s∗i (θ
′
i), s

∗
−i(θ−i)), θi) > ui(g(s∗(θi), s

∗
−i(θ−i)), θi)

which contradicts the strategyproofness of s∗ in

mechanism, M.
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Theoretical Implications

• Focus goals. If M is the only DRM that implements

outcome function k(θ) with properties P then any

mechanism must implement the same transfers as M.

• Impossibility. If no DRM, M, can implement SCF,

f(θ), with properties P , then no mechanism can

implement SCF f(θ).

A modeler can limit the search for an optimal mechanism to

the class of direct, IC mechanisms. Useful, because the

number of mechanisms is huge.
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Math Programming Approach
[Myerson, “Optimal auction design”, Math. Oper. Res., 1981]

Consider a single-item allocation problem with N agents, let

pi(v1, . . . , vN ) denote the expected payment from agent i

to the mechanism and xi(v1, . . . , vN ) denote the probability

with which agent i is allocated the item. Let v0 denote the

value of the seller.

max
{pi,xi}

N
∑

i=1

E [pi(v1, . . . , vN )] −
N

∑

i=1

E [xi(v1, . . . , vN )] v0

s.t.
N

∑

i=1

xi(v1, . . . , vN ) ≤ 1, ∀v (feas)

Eui(vi) ≥ Eui(v̂i), ∀v̂i 6= vi,∀vi,∀i

(IC)

Eui(vi) ≥ 0, ∀vi (IR)

where

Eui(v̂i) = Ev
−i

[xi(v1, . . . , v̂i, . . . , vN )vi]−E [pi(v1, . . . , v̂i, . . . , vN )]
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Practical Implications?

• Incentive-compatibility is “free”

– any outcome implemented by mechanism, M, can be

implemented by incentive-compatible mechanism, M′.

• “Fancy” mechanisms are unneccessary

– any outcome implemented by a mechanism with

complex strategy space, S, can be implemented by a

DRM.

But, few procedures in practical use are direct & IC, perhaps

their are some unmodeled costs, computational problems?
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Gibbard-Satterthwaite Impossibility

[Arrow 51, Gibbard & Satterthwaite 73, 75]

Consider SCF, f(θ), and an outcome space O. Let

Rf ⊆ O denote the range of f , i.e.

Rf = {o ∈ O : ∃θ ∈ Θ s.t. o = f(θ)}.

Let o∗i ∈ O denote the outcome that maximizes the value,

ui(o, θi), over o ∈ Rf .

Def. [Dictatorial] SCF f(θ) is dictatorial if there is an

agent, h, s.t. f(θ) = o∗
h, for all θ.

[Gibbard-Satterthwaite Impossibility] Suppose that the

types include all possible strict orderings over O. A SCF,

f(θ), with |Rf | > 2, is implementable in dominant

strategies (strategyproof) if and only if it is dictatorial.

Implications: collaborative filtering (Pennock et al.), web

query aggregation (Kumar et al.), voting systems (Cranor).
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Single-Peaked Preferences

[Moulin 80] [special case in which non dictatorial strategproof

implementation is possible]

Def. [single-peaked] Suppose O ⊆ R, then preferences

are single-peaked, if for every i, with utility, ui(k, θi), there

exists a peak, p(θi) ∈ O, s.t. for any d, d′ ∈ O, s.t.

p(θi) ≥ d > d′, or d′ > d ≥ p(θi), then

ui(d, θi) > ui(d
′, θi).

Def. [median rule] Ask agents to declare their peaks, and

select the median peak.

Thm. This “median rule” mechanism is Pareto efficient and

strategy proof.

all orderings ⊃ Single-peaked

−→

easier
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Introducing Transfers (Side-payments)

Define the outcome space, O = K × R
N , such that an

outcome rule, o = (k, t1, . . . , tN ), defines a choice,

k(s) ∈ K, and a transfer, ti(s) ∈ R from agent i to the

mechanism, given strategy profile s ∈ S.

Assume quasilinear preferences,

ui(o, θi) = vi(k, θi) − ti

, with valuation function, vi(k, θi) for agent i.

General/No-transfer ⊃ Quasi-linear/Transfer

−→

easier
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Budget Balance
Introduce constraints over the total transfers made from

agents to the mechanism. Let s∗(θ) denote the equilibrium

strategy of a mechanism.

• weak BB (or feasible)

· ex post:
∑

i
ti(s

∗(θ)) ≥ 0, for all θ

· ex ante: Eθ∈Θ

[
∑

i
ti(s

∗(θ))
]

≥ 0

• strong BB

· ex post:
∑

i
ti(s

∗(θ)) = 0, for all θ

· ex ante: Eθ∈Θ

[
∑

i
ti(s

∗(θ)) = 0
]

ex ante weak ⊃ ex post weak

∪ ∪

ex ante strong ⊃ ex post strong

−→

harder



























y

harder
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Efficiency & Budget-balance Tension

[Hurwicz 75;Green & Laffont 79]

Def. [Efficiency] A choice rule, k∗ : Θ → K, is (ex post)

efficient if for all θ ∈ Θ, k∗(θ) maximizes
∑

k∈K vi(k, θi).

Thm. [Green-Laffont Impossibility] If Θ allows all valuation

functions from K to R, then there no mechanism can

implement an efficient and ex post budget-balanced SCF in

dominant strategy.

Approaches: (a) restrict space of preferences; (b) drop

budget-balance; (c) drop efficiency; (d) drop dominant

strategy.
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Groves Mechanisms

[Groves 73] Drop: budget-balance.

Def. A Groves mechanism, M = (Θ, k, t1, . . . , tN ) is

defined with choice rule,

k
∗(θ̂) = arg max

k∈K

∑

i

vi(k, θ̂i)

, and transfer rules

ti(θ̂) = hi(θ̂−i) −
∑

j 6=i

vj(k
∗(θ̂), θ̂j)

where hi(·) is an (arbitrary) function that does not depend

on the reported type, θ̂i, of agent i.

Thm. [Groves 73] Groves mechanisms are strategyproof

and efficient.
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Proof. Agent i’s utility for strategy θ̂i, given θ̂−i from agents

j 6= i, is:

ui(θ̂i) = vi(k
∗(θ̂), θi) − ti(θ̂)

= vi(k
∗(θ̂), θi) +

∑

j 6=i

vj(k
∗(θ̂), θ̂j) − hi(θ̂−i)

Ignore hi(θ̂−i), and notice

k
∗(θ̂) = arg max

k∈K

∑

i

vi(k, θ̂i)

⇒Strategyproofness, and efficiency immediately follow.

In fact, [Green&Laffont 77], Groves mechanisms are unique,

in the sense that any mechanism that implements efficient

choice, k∗(θ), in truthful dominant strategy must implement

Groves transfers.


