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/ Vickrey-Clarke-Groves Mechanism \

[Vickrey61, Clarke71, Groves73] (VCG or “Pivotal” mechanism.)

Def. [VCG mechanism] Implement efficient outcome,
k* = max ) v;(k, 0), and compute transfers

ti(0) = vi(k™",0;) = > v (K", 6;)

JFi JF1

where k' = max;, > i Vi (K, 0;).

Thm. The VCG mechanism is strategyproof, efficient, and

interim IR.

Alternative description:
Pvick,i(0) = vi(k™,0:) — [V(Z) — V(T \ 7)]

where V' (K) is the value of the efficient allocation in the

\subproblem restricted to agents C C 7. /
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[Note 1:] given strategies é_i, each agent’s adjusted
payment, v; (k*, 0;) — [V(Z) — V(Z \ ©)], sets
vi(k™,0:) = [V(T) = V(Z\ )]+ > v; (K", 0;)
JFi
=V(Z\1)

i.e., this is the least value agent 2 could have bid for

outcome k™.

[Note 2:] Each agent’s equilibrium utility is:

Tvick,i = Vi(k",0;) — [vi(k™,0;) — V(I) 4+ V(T \ 1)]
V() - VT )

i.e., equal to its marginal contribution to the welfare of the

system.

-
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/ Example: Shortest Path. \

[Nisan 99]

50
20
40\‘ 60 o 109 T

Biconnected graph, G = ), cost ¢; > 0 per edge
[ € E, edges srategic. Assume /arge value V' to send

message.

Goal: route packets along the lowest-cost path from S to 7'

VCG Payment edge e:
Dvick,l = —Cl — [(V —dg) — (V — dG/z)]

\ = —c; — (dg/1 — da) /
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Bayesian-Nash Implementation

Drop dominant-strategy implementation, try to achieve
budget-balance.

Bilateral trading problem: single seller, single buyer. One
good. Values drawn from v; € [0, 1],v2 € [0, 1].

Thm. [Myerson-Satterthwaite 83] In the bilateral trading
problem, no mech. can implement an efficient, interim IR,
and ex post (weak) budget-balanced SCF, even in
Bayes-Nash eq.

Note: this is a negative result for a very simple problem,
therefore quite a “strong” negative result!

- /
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The Centrality of VCG

[Krishna & Perry 98]

Thm. Among all efficient and interim IR mechanisms, the
VCG maximizes the expected transfers from agents.

Note: this is interesting, shows that the best mechanism
amongst all (Bayes-Nash), etc. is dominant strategy.

Thm. Given preferences, ©, there exists a (weak) BB and
efficient mechanism, with interim IR, if and only if the VCG

has positive expected surplus.

. . . leads to quite direct proofs of Myerson-Satterthwaite,

other negative results.

. /
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/ Expected Externality Mechanism \

[Arrow79,d’Aspremont&Gerard-Varet79] Retain Bayes-Nash, and
relax interim IR to ex ante IR, and try to achieve BB.

The d’AGVA mechanism (or expected-Groves mechanism),
uses the same allocation as the Groves, but computes an
transfer term averaged across all possible types of agents.
[P.55, Parkes-Diss]

Thm. The d’AGVA mechanism is efficient, ex post
budget-balanced, but only ex ante IR.

Demonstrates: (wrt Eff. mech. des.):

(a) ex ante IR really does make mechanism design “easier” than

interim IR (compare Myerson-Satterthwaite with d’AGVA)

(b) Bayes-Nash implementation really does make mechanism

design “easier” than dominant-strategy equilibrium (compare

\Gureen—Laffont impossibility with d’AGVA). /
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Name Pref Solution Possible
Median no transfers dominant Parto opt.
single-peaked
Groves quasi-linear dominant Eff

dAGVA quasi-linear Bayesian-Nash Eff,BB,ex ante IR

Clarke quasi-linear dominant Eff & IR
Name Preferences Solution Impossible Environment
concept
GibSat  general dominant Non-dictatorial general

(incl. Pareto Optimal)

HGL quasi-linear  dominant Eff& BB

MyerSat quasi-linear Bayesian-Nash Eff& weak BB & IR simple-exchange

simple-exchange

(ﬁ‘: ex post efficiency; BB: ex post strong budget-balance; IR: interim IR. /
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Choice set IC, /N buyers, 1 seller. Transfers t1, . .
ts. Values v; (k) > 0 for buyers, and cost cs (k) > 0 for
seller. Quasi-linear utility functions, u;(k,t;) = vi(k) — ts,

and us(k,tq;) = —Cs(k) — ;.

/

O

20

Cost-Sharing Problems

Example: Multi-cast cost sharing.

30 10 15 40 15

Welfare=40+15-(20+10)=25

.,tn and

~

/

10
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Desirable Properties

[Assume the seller is truthful.] Compute outcome k™ () and
transfers ¢;(0), ts(0).

Use revelation principle, focus on IC mechanisms.

e EFF. Select maxy Y, vi(k*(0),0;) — cs(k™(0)), for all
0 € O.

e BB. Transfers ) . t;(60) + ts(6) =0, forall 0 € ©.

e No-profit. Transfers —cs(k*(0)) — ts(8) = 0, for all

0 cO.

e Buyer-SP. Satisfy: v;(k ,L( _i),0:) —ti(0:,0_;) >
vi (kX (0;,0_5),0;) — t:(0s, )for all 0; # 0, 05, and
0_;.

e IR. Satisfy: ’Uz(k,zk ((91, 9_2‘), 91) — ti(Qi, 9_2) Z O, for all
0 € 0.

- /
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Dominant Strategy BB & EFF

Impossibility

[Green&Laffont 79]

Thm. SP, EFF, and BB with No-Profit are impossible.

Proof. By contradiction. Suppose M is SP, EFF, BB, and
No-Profit. Consider a problem in which ¢, (k) = 0, for all

k € K. Then, we must have ) . t; = cs(k™) = 0 by BB and
No-Profit, and k* = arg maxy, ), v;(k) by Eff; this violates
the Green-Laffont imposs. theorem.

[SP and EFF:] VCG mechanism: Given receiver set R C 7,
let ¢; (R) denote the minimal cost tree. Select R to

maximize W (v) = >, vi — c5(R), and charge each
user: € R, Dvick,i = V; — [W(’U) — W(?}_i)].

- /

12
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Group Strategyproofness

[this comes for “free” when we worry about BB]

e Buyer-GSP. For all coalitions S C 7, GAS #+ 0g,0s,0_g,
either ui(0s, 0_s, 0;) < us(0s,0_s,0;),Vi € S, or
di € S s.t. ui(és,e_s, 0;) < ui(0s,0_5,0,).

No coalition of agents can manipulate the outcome of the
mechanism without making one of the agents in the coalition

worse off.

- /
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Simplifying: A Binary Choice Model
[Moulin&Shenker 99]

Suppose Z agents, either receive the service or not (binary
choice). Let R C 7 denote the receiver set. Define C'(R) as

the cost of providing service to R agents.

Eff: R(0) = argmaxgr ) ;. pvi — C(R), V0
BB,No-Profit: 3, t:(0) = C(R(9)), V9.
GSP, IP.

Def. Mechanism M = (O, R, t;) satisfies the core property
if and only if

i.e., there is no incentive for a subset of agents to break from

/

the grand coalition.

N
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Cost-Sharing Methods

Let £(Q,7) > 0 define the payment made by agent i
whenever Q C 7 that receiver service. Let C'(Q) > 0

denote the cost of providing service to ().

Def. Cost-sharing method, £(Q, ©), is a well-formed cost
sharing method if and only if

i £ Q= €(Q,i) =0
3 €(Q.4) = CQ)

1€Q

Use £(Q, ) to define transfers ¢, = £(R™, 1), will satisfy
BB,No-Profit,and IR.

15
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only if

Note:

Prop.

-

Cross-monotonic Cost Sharing

§(Q,1) 2 &(R,i), VQCR

this is also weak cross-monotonic, satisfying:

> €@.i) =D &(Ri), VQCR

1€Q 1eQ

A mechanism that implements transfers,

t; = £(R™, 1), for some weak cross-mononotic, £(-),

implements a core allocation for each subset of users.

~

Def. Cost sharing method, £(Q, 7) is cross-monotonic if and

16
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/Coalitional StrategyProof Cost-Sharing\

Mechanisms

[Moulin& Shenker, 99]

Given cross-monotonic cost-sharing method, £(Q, ),
mechanism M (&) computes the receiver set R* and
transfers t; = £(R™, 1) as follows:

Def. Mechanism M (§):
Agents report values, v; initialize R* «— 7.

Select an agent¢ € R* at random, if 0; < £(R", %) then
drop 7 from R™.

Continue until v; > £(R*,i) foralli € R*.

Implement R* and transfers £ (R*, 7).

17

Thm. Given cross-monotonic, £(@Q, i), then M (&) is BB and

o y
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Shapley Value

[Moulin & Shenker, 99]

Def. Submodular: CGUT) — C(T) < C>iuUS)— C(S),
foral SCT CI,andi & S.

Thm. If the cost function C'(.S') is submodular, then all GSP
and BB mechanisms can be characterized by M (&), for
some cross-monotonic cost-sharing method £(Q, 7).

Thm. If costs are submodular, then the Shapley Value,
Esnhapley (@, ©) defines a cross-monotonic cost-sharing
method, and M (€shapley ) defines the GSP and BB

mechanism that maximizes the worst-case eff. loss.

. /

18
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Example: Shapley Mechanism

Jain & Vazirani: assume a general biconnected network, propose a
centralized approximation mechanism; not submodular and

Shapely does not apply.

- /
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Additional Implementation Concepts

e Repeated implementation: can begin to implement
Mmore [Kalai 97]
— if the planner learns and is more patient than the
agents, and agents in a multi-round game, then can
achieve dom. strategy implementation (in limit if center
has no time discounting)
— reduce to a one-shot revelation game

e Large societies:
— can get approx. EFF and approx. balance in large
double auctions [McAfee92, Satterthwaite&Williams89, Rustichini
et al.95]

- /
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What is Missing?
No computational constraints

Focus on efficiency (social-welfare), little considerations
of alternative objectives (e.g. fairness, max-min,

make-span, etc.)

Little discussion of special preference structure in
resource allocation (beyond quasilinear preferences,

some concavity assumptions)
No use of randomization in the mechanism itself

Revelation principle is the central paradigm, and there is

no attention to indirect mechanisms

21
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