



subproblem restricted to agents  $\mathcal{K} \subseteq \mathcal{I}$ .

[Note 1:] given strategies 
$$\hat{\theta}_{-i}$$
, each agent's adjusted  
payment,  $v_i(k^*, \hat{\theta}_i) - [V(\mathcal{I}) - V(\mathcal{I} \setminus i)]$ , sets  
 $v_i(k^*, \hat{\theta}_i) - [V(\mathcal{I}) - V(\mathcal{I} \setminus i)] + \sum_{j \neq i} v_j(k^*, \hat{\theta}_j)$   
 $= V(\mathcal{I} \setminus i)$ 

i.e., this is the least value agent i could have bid for outcome  $k^*$ .

[Note 2:] Each agent's equilibrium utility is:

$$\pi_{\text{vick},i} = v_i(k^*, \theta_i) - [v_i(k^*, \theta_i) - V(\mathcal{I}) + V(\mathcal{I} \setminus i)]$$
$$= V(\mathcal{I}) - V(\mathcal{I} \setminus i)$$

i.e., equal to its marginal contribution to the welfare of the system.



Parkes



# **Bayesian-Nash Implementation**

**Drop** dominant-strategy implementation, try to achieve budget-balance.

**Bilateral trading problem**: single seller, single buyer. One good. Values drawn from  $v_1 \in [0, 1], v_2 \in [0, 1]$ .

**Thm.** [Myerson-Satterthwaite 83] In the bilateral trading problem, no mech. can implement an efficient, interim IR, and *ex post* (weak) budget-balanced SCF, even in Bayes-Nash eq.

**Note:** this is a negative result for a very simple problem, therefore quite a "strong" negative result!



**Thm.** Given preferences,  $\Theta$ , there exists a (weak) BB and efficient mechanism, with interim IR, if and only if the VCG has positive expected surplus.

... leads to quite direct proofs of Myerson-Satterthwaite, other negative results.

#### **Expected Externality Mechanism**

[Arrow79,d'Aspremont&Gerard-Varet79] **Retain** Bayes-Nash, and **relax** interim IR to ex ante IR, and try to achieve BB.

The d'AGVA mechanism (or *expected-Groves* mechanism), uses the same allocation as the Groves, but computes an transfer term averaged across all possible types of agents. [P.55, Parkes-Diss]

**Thm.** The d'AGVA mechanism is efficient, *ex post* budget-balanced, but only *ex ante* IR.

Demonstrates: (wrt Eff. mech. des.):

(a) *ex ante* IR really does make mechanism design "easier" than *interim* IR (compare Myerson-Satterthwaite with d'AGVA)

(b) Bayes-Nash implementation really does make mechanism design "easier" than dominant-strategy equilibrium (compare Green-Laffont impossibility with d'AGVA).

| Name                  | Pref                                   | Solution                                    | Possible                                                           |                                               |
|-----------------------|----------------------------------------|---------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|
| Median                | no transfers                           | dominant                                    | Parto opt.                                                         |                                               |
| :                     | single-peaked                          |                                             |                                                                    |                                               |
| Groves                | quasi-linear                           | dominant                                    | Eff                                                                |                                               |
| dAGVA                 | quasi-linear                           | Bayesian-Nash                               | Eff,BB, <i>ex ante</i> IR                                          |                                               |
| Clarke                | quasi-linear                           | dominant                                    | Eff & IR                                                           |                                               |
|                       |                                        |                                             |                                                                    |                                               |
| Name                  | Preferences                            | Solution                                    | Impossible                                                         | Environment                                   |
| Name                  | Preferences                            | Solution<br>concept                         | Impossible                                                         | Environment                                   |
| Name<br>GibSat        | Preferences<br>general                 | Solution<br>concept<br>dominant             | Impossible<br>Non-dictatorial                                      | Environment<br>general                        |
| Name<br>GibSat        | Preferences<br>general                 | Solution<br>concept<br>dominant             | Impossible<br>Non-dictatorial<br>(incl. Pareto Optimal)            | Environment<br>general                        |
| Name<br>GibSat<br>HGL | Preferences<br>general<br>quasi-linear | Solution<br>concept<br>dominant<br>dominant | Impossible<br>Non-dictatorial<br>(incl. Pareto Optimal)<br>Eff& BB | Environment<br>general<br>)<br>simple-exchang |



### **Desirable Properties**

[Assume the seller is truthful.] Compute outcome  $k^*(\theta)$  and transfers  $t_i(\theta), t_s(\theta)$ .

Use revelation principle, focus on IC mechanisms.

- EFF. Select  $\max_k \sum_i v_i(k^*(\theta), \theta_i) c_s(k^*(\theta))$ , for all  $\theta \in \Theta$ .
- **BB**. Transfers  $\sum_{i} t_i(\theta) + t_s(\theta) = 0$ , for all  $\theta \in \Theta$ .
- No-profit. Transfers  $-c_s(k^*(\theta)) t_s(\theta) = 0$ , for all  $\theta \in \Theta$ .
- **Buyer-SP**. Satisfy:  $v_i(k_i^*(\theta_i, \theta_{-i}), \theta_i) t_i(\theta_i, \theta_{-i}) \ge v_i(k_i^*(\hat{\theta}_i, \theta_{-i}), \theta_i) t_i(\hat{\theta}_i, \theta_{-i})$  for all  $\hat{\theta}_i \neq \theta_i, \theta_i$ , and  $\theta_{-i}$ .
- **IR**. Satisfy:  $v_i(k_i^*(\theta_i, \theta_{-i}), \theta_i) t_i(\theta_i, \theta_{-i}) \ge 0$ , for all  $\theta \in \Theta$ .

# Dominant Strategy BB & EFF Impossibility

[Green&Laffont 79]

Thm. SP, EFF, and BB with No-Profit are impossible.

**Proof.** By contradiction. Suppose  $\mathcal{M}$  is SP, EFF, BB, and No-Profit. Consider a problem in which  $c_s(k) = 0$ , for all  $k \in \mathcal{K}$ . Then, we must have  $\sum_i t_i = c_s(k^*) = 0$  by BB and No-Profit, and  $k^* = \arg \max_k \sum_i v_i(k)$  by Eff; this violates the Green-Laffont imposs. theorem.

[SP and EFF:] VCG mechanism: Given receiver set  $R \subseteq \mathcal{I}$ , let  $c_s^*(R)$  denote the minimal cost tree. Select R to maximize  $W(v) = \sum_{i \in R} v_i - c_s^*(R)$ , and charge each user  $i \in R$ ,  $p_{\text{vick},i} = v_i - [W(v) - W(v_{-i})]$ .



## Simplifying: A Binary Choice Model

[Moulin&Shenker 99]

Suppose  $\mathcal{I}$  agents, either receive the service or not (binary choice). Let  $R \subseteq \mathcal{I}$  denote the *receiver set*. Define C(R) as the cost of providing service to R agents.

**Eff:**  $R(\theta) = \arg \max_R \sum_{i \in R} v_i - C(R), \quad \forall \theta$ 

**BB,No-Profit:** 
$$\sum_{i \in R(\theta)} t_i(\theta) = C(R(\theta)), \quad \forall \theta.$$

GSP, IP.

**Def.** Mechanism  $\mathcal{M} = (\Theta, R, t_i)$  satisfies the *core property* if and only if

$$\sum_{i \in Q} t_i(\theta) \le C(Q), \quad \forall Q \subseteq \mathcal{I}$$

i.e., there is no incentive for a subset of agents to break from the grand coalition.

## **Cost-Sharing Methods**

Let  $\xi(Q, i) \ge 0$  define the payment made by agent iwhenever  $Q \subseteq \mathcal{I}$  that receiver service. Let  $C(Q) \ge 0$ denote the cost of providing service to Q.

**Def.** Cost-sharing method,  $\xi(Q, i)$ , is a well-formed cost sharing method if and only if

$$i \neq Q \Rightarrow \xi(Q, i) = 0$$
  
$$\sum_{i \in Q} \xi(Q, i) = C(Q)$$

Use  $\xi(Q, i)$  to define transfers  $t_i = \xi(R^*, i)$ , will satisfy BB,No-Profit,and IR.



# Coalitional StrategyProof Cost-Sharing Mechanisms

```
[Moulin& Shenker, 99]
```

Given cross-monotonic cost-sharing method,  $\xi(Q, i)$ , mechanism  $\mathcal{M}(\xi)$  computes the receiver set  $R^*$  and transfers  $t_i = \xi(R^*, i)$  as follows:

**Def.** Mechanism  $\mathcal{M}(\xi)$ :

Agents report values,  $\hat{v}$ ; initialize  $R^* \leftarrow \mathcal{I}$ .

```
Select an agent i \in R^* at random, if \hat{v}_i < \xi(R^*, i) then drop i from R^*.
```

Continue until  $\hat{v}_i \geq \xi(R^*, i)$  for all  $i \in R^*$ .

Implement  $R^*$  and transfers  $\xi(R^*, i)$ .

**Thm.** Given cross-monotonic,  $\xi(Q, i)$ , then  $\mathcal{M}(\xi)$  is BB and GSP.





#### **Additional Implementation Concepts**

• **Repeated implementation**: can begin to implement more [Kalai 97]

 if the planner learns and is more patient than the agents, and agents in a multi-round game, then can achieve dom. strategy implementation (in limit if center has no time discounting)

- reduce to a one-shot revelation game

#### • Large societies:

– can get approx. EFF and approx. balance in large
double auctions [McAfee92, Satterthwaite&Williams89, Rustichini
et al.95]



- No computational constraints
- Focus on efficiency (social-welfare), little considerations of alternative objectives (e.g. fairness, max-min, make-span, etc.)
- Little discussion of special preference structure in resource allocation (beyond quasilinear preferences, some concavity assumptions)
- No use of randomization in the mechanism itself
- Revelation principle is the central paradigm, and there is no attention to **indirect** mechanisms