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Vickrey-Clarke-Groves Mechanism

[Vickrey61, Clarke71, Groves73] (VCG or “Pivotal” mechanism.)

Def. [VCG mechanism] Implement efficient outcome,

k∗ = maxk

∑

j vj(k, θ̂j), and compute transfers

ti(θ̂) =
∑

j 6=i

vj(k
−i, θ̂j)−

∑

j 6=i

vj(k
∗, θ̂j)

where k−i = maxk

∑

j 6=i vj(k, θ̂j).

Thm. The VCG mechanism is strategyproof, efficient, and

interim IR.

Alternative description:

pvick,i(θ) = vi(k
∗, θi)− [V (I)− V (I \ i)]

where V (K) is the value of the efficient allocation in the

subproblem restricted to agents K ⊆ I.
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[Note 1:] given strategies θ̂−i, each agent’s adjusted

payment, vi(k
∗, θ̂i)− [V (I)− V (I \ i)], sets

vi(k
∗, θ̂i)− [V (I)− V (I \ i)] +

∑

j 6=i

vj(k
∗, θ̂j)

=V (I \ i)

i.e., this is the least value agent i could have bid for

outcome k∗.

[Note 2:] Each agent’s equilibrium utility is:

πvick,i = vi(k
∗, θi)− [vi(k

∗, θi)− V (I) + V (I \ i)]

= V (I)− V (I \ i)

i.e., equal to its marginal contribution to the welfare of the

system.
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Example: Shortest Path.
[Nisan 99]
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Biconnected graph, G = (N, E), cost cl ≥ 0 per edge

l ∈ E, edges srategic. Assume large value V to send

message.

Goal: route packets along the lowest-cost path from S to T .

VCG Payment edge e:

pvick,l = −cl −
[

(V − dG)− (V − dG/l)
]

= −cl − (dG/l − dG)
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Bayesian-Nash Implementation

Drop dominant-strategy implementation, try to achieve

budget-balance.

Bilateral trading problem: single seller, single buyer. One

good. Values drawn from v1 ∈ [0, 1], v2 ∈ [0, 1].

Thm. [Myerson-Satterthwaite 83] In the bilateral trading

problem, no mech. can implement an efficient, interim IR,

and ex post (weak) budget-balanced SCF, even in

Bayes-Nash eq.

Note: this is a negative result for a very simple problem,

therefore quite a “strong” negative result!
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The Centrality of VCG

[Krishna & Perry 98]

Thm. Among all efficient and interim IR mechanisms, the

VCG maximizes the expected transfers from agents.

Note: this is interesting, shows that the best mechanism

amongst all (Bayes-Nash), etc. is dominant strategy.

Thm. Given preferences, Θ, there exists a (weak) BB and

efficient mechanism, with interim IR, if and only if the VCG

has positive expected surplus.

. . . leads to quite direct proofs of Myerson-Satterthwaite,

other negative results.
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Expected Externality Mechanism

[Arrow79,d’Aspremont&Gerard-Varet79] Retain Bayes-Nash, and

relax interim IR to ex ante IR, and try to achieve BB.

The d’AGVA mechanism (or expected-Groves mechanism),

uses the same allocation as the Groves, but computes an

transfer term averaged across all possible types of agents.

[P.55, Parkes-Diss]

Thm. The d’AGVA mechanism is efficient, ex post

budget-balanced, but only ex ante IR.

Demonstrates: (wrt Eff. mech. des.):

(a) ex ante IR really does make mechanism design “easier” than

interim IR (compare Myerson-Satterthwaite with d’AGVA)

(b) Bayes-Nash implementation really does make mechanism

design “easier” than dominant-strategy equilibrium (compare

Green-Laffont impossibility with d’AGVA).
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Summary

Name Pref Solution Possible

Median no transfers dominant Parto opt.

single-peaked

Groves quasi-linear dominant Eff

dAGVA quasi-linear Bayesian-Nash Eff,BB,ex ante IR

Clarke quasi-linear dominant Eff & IR

Name Preferences Solution Impossible Environment

concept

GibSat general dominant Non-dictatorial general

(incl. Pareto Optimal)

HGL quasi-linear dominant Eff& BB simple-exchange

MyerSat quasi-linear Bayesian-Nash Eff& weak BB & IR simple-exchange

Eff: ex post efficiency; BB: ex post strong budget-balance; IR: interim IR.
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Cost-Sharing Problems
Choice set K, N buyers, 1 seller. Transfers t1, . . . , tN and

ts. Values vi(k) ≥ 0 for buyers, and cost cs(k) ≥ 0 for

seller. Quasi-linear utility functions, ui(k, ti) = vi(k)− ti,

and us(k, ti) = −cs(k)− ti.

Example: Multi-cast cost sharing.

Welfare=40+15-(20+10)=25

20 30 10 15 40

20 20

5

10 5

5 10

15
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Desirable Properties

[Assume the seller is truthful.] Compute outcome k∗(θ) and

transfers ti(θ), ts(θ).

Use revelation principle, focus on IC mechanisms.

• EFF. Select maxk

∑

i vi(k
∗(θ), θi)− cs(k

∗(θ)), for all

θ ∈ Θ.

• BB. Transfers
∑

i ti(θ) + ts(θ) = 0, for all θ ∈ Θ.

• No-profit. Transfers−cs(k
∗(θ))− ts(θ) = 0, for all

θ ∈ Θ.

• Buyer-SP. Satisfy: vi(k
∗
i (θi, θ−i), θi)− ti(θi, θ−i) ≥

vi(k
∗
i (θ̂i, θ−i), θi)− ti(θ̂i, θ−i) for all θ̂i 6= θi, θi, and

θ−i.

• IR. Satisfy: vi(k
∗
i (θi, θ−i), θi)− ti(θi, θ−i) ≥ 0, for all

θ ∈ Θ.
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Dominant Strategy BB & EFF

Impossibility

[Green&Laffont 79]

Thm. SP, EFF, and BB with No-Profit are impossible.

Proof. By contradiction. SupposeM is SP, EFF, BB, and

No-Profit. Consider a problem in which cs(k) = 0, for all

k ∈ K. Then, we must have
∑

i ti = cs(k
∗) = 0 by BB and

No-Profit, and k∗ = arg maxk

∑

i vi(k) by Eff; this violates

the Green-Laffont imposs. theorem.

[SP and EFF:] VCG mechanism: Given receiver set R ⊆ I,

let c∗s(R) denote the minimal cost tree. Select R to

maximize W (v) =
∑

i∈R vi − c∗s(R), and charge each

user i ∈ R, pvick,i = vi − [W (v)−W (v−i)].
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Group Strategyproofness

[this comes for “free” when we worry about BB]

• Buyer-GSP. For all coalitions S ⊆ I , θ̂S 6= θS , θS , θ−S ,

either ui(θ̂S , θ−S , θi) ≤ ui(θS , θ−S , θi), ∀i ∈ S, or

∃i ∈ S s.t. ui(θ̂S , θ−S , θi) < ui(θS, θ−S , θi).

No coalition of agents can manipulate the outcome of the

mechanism without making one of the agents in the coalition

worse off.
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Simplifying: A Binary Choice Model

[Moulin&Shenker 99]

Suppose I agents, either receive the service or not (binary

choice). Let R ⊆ I denote the receiver set. Define C(R) as

the cost of providing service to R agents.

Eff: R(θ) = arg maxR

∑

i∈R vi − C(R), ∀θ

BB,No-Profit:
∑

i∈R(θ) ti(θ) = C(R(θ)), ∀θ.

GSP, IP.

Def. MechanismM = (Θ, R, ti) satisfies the core property

if and only if
∑

i∈Q

ti(θ) ≤ C(Q), ∀Q ⊆ I

i.e., there is no incentive for a subset of agents to break from

the grand coalition.
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Cost-Sharing Methods

Let ξ(Q, i) ≥ 0 define the payment made by agent i

whenever Q ⊆ I that receiver service. Let C(Q) ≥ 0

denote the cost of providing service to Q.

Def. Cost-sharing method, ξ(Q, i), is a well-formed cost

sharing method if and only if

i 6= Q⇒ ξ(Q, i) = 0
∑

i∈Q

ξ(Q, i) = C(Q)

Use ξ(Q, i) to define transfers ti = ξ(R∗, i), will satisfy

BB,No-Profit,and IR.
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Cross-monotonic Cost Sharing

Def. Cost sharing method, ξ(Q, i) is cross-monotonic if and

only if

ξ(Q, i) ≥ ξ(R, i), ∀Q ⊆ R

Note: this is also weak cross-monotonic, satisfying:
∑

i∈Q

ξ(Q, i) ≥
∑

i∈Q

ξ(R, i), ∀Q ⊆ R

Prop. A mechanism that implements transfers,

ti = ξ(R∗, i), for some weak cross-mononotic, ξ(·),

implements a core allocation for each subset of users.
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Coalitional StrategyProof Cost-Sharing

Mechanisms
[Moulin& Shenker, 99]

Given cross-monotonic cost-sharing method, ξ(Q, i),

mechanismM(ξ) computes the receiver set R∗ and

transfers ti = ξ(R∗, i) as follows:

Def. MechanismM(ξ):

Agents report values, v̂; initialize R∗ ← I.

Select an agent i ∈ R∗ at random, if v̂i < ξ(R∗, i) then

drop i from R∗.

Continue until v̂i ≥ ξ(R∗, i) for all i ∈ R∗.

Implement R∗ and transfers ξ(R∗, i).

Thm. Given cross-monotonic, ξ(Q, i), thenM(ξ) is BB and

GSP.
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Shapley Value

[Moulin & Shenker, 99]

Def. Submodular: C(i ∪ T )− C(T ) ≤ C(i ∪ S)− C(S),

for all S ⊆ T ⊆ I , and i /∈ S.

Thm. If the cost function C(S) is submodular, then all GSP

and BB mechanisms can be characterized byM(ξ), for

some cross-monotonic cost-sharing method ξ(Q, i).

Thm. If costs are submodular, then the Shapley Value,

ξShapley(Q, i) defines a cross-monotonic cost-sharing

method, andM(ξShapley) defines the GSP and BB

mechanism that maximizes the worst-case eff. loss.



Parkes Mechanism Design 19

'

&

$

%

Example: Shapley Mechanism

Jain & Vazirani: assume a general biconnected network, propose a

centralized approximation mechanism; not submodular and

Shapely does not apply.
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Additional Implementation Concepts

• Repeated implementation: can begin to implement

more [Kalai 97]

– if the planner learns and is more patient than the

agents, and agents in a multi-round game, then can

achieve dom. strategy implementation (in limit if center

has no time discounting)

– reduce to a one-shot revelation game

• Large societies:

– can get approx. EFF and approx. balance in large

double auctions [McAfee92, Satterthwaite&Williams89, Rustichini

et al.95]



Parkes Mechanism Design 21

'

&

$

%

What is Missing?

• No computational constraints

• Focus on efficiency (social-welfare), little considerations

of alternative objectives (e.g. fairness, max-min,

make-span, etc.)

• Little discussion of special preference structure in

resource allocation (beyond quasilinear preferences,

some concavity assumptions)

• No use of randomization in the mechanism itself

• Revelation principle is the central paradigm, and there is

no attention to indirect mechanisms


