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Introduction

• LP is the problem of optimizing a linear function subject

to linear inequality constraints.

• Provides the foundation for the theory and

computational methods of mathematical optimization.

• Today (e.g. Vazirani 02) provides a unified framework for

the construction of approximation algorithms to

combinatorial optimization problems.

In addition, for our purposes, LP duality provides an

important connection via primal-dual algorithms to the

design of iterative auctions.
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A Simple Example
Consider the following minimization problem:

min7x1 + x2 + 5x3

s.t. x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

x = (7/4, 0, 11/4); value 26 optimal.

Def. A feasible solution satisifes the constraints. [e.g.

x = (4, 4, 4)]. A feasible problem has a feasible solution.

Def. The optimal solution is the solution with the minimal

objective value from all feasible solutions.

Def. An unbounded problem has a feasible solution with

unbounded value.
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Computing a Good Lower-Bound

(a) can take the first bound. Since

7x1 + x2 + 5x3 ≥ x1 − x2 + 3x3 ≥ 10, then 10 is one

lower-bound;

(b) can take the sum of the first two bounds. Since

7x1+x2+5x3 ≥ (x1−x2+3x3)+(5x1+2x2−x3) ≥ 16,

then 16 is a stronger lower-bound.

Generalize: determine positive multipliers, s.t. coeff. xi in
sum is dominated by the coeff. in the obj. fun; choose
multipliers to maximize the RHS.

max 10y1 + 6y2

s.t. y1 + 5y2 ≤ 7

− y1 + 2y2 ≤ 1

3y1 − y2 ≤ 5

y1, y2 ≥ 0

This is the dual program to the first LP; y = (2, 1), value 26

optimal.
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Basic LP Duality Results

• Systematic method to construct the dual of any linear

program; and dual of the dual is the primal.

• Weak duality. Every feasible dual solution provides a

lower bound on the optimum value of the primal. (c.f. for

primal) [provide bounds]

• Optimality. Feasible primal and dual solutions with the

same value are both optimal.

• Strong duality. Feasible primal and dual solutions are

optimal if and only if they have the same value.

[stopping criteria]
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Duality

min

n∑

j=1

cjxj [P]

s.t.

n∑

j=1

aijxj ≥ bi, ∀i = 1, . . . , m

xj ≥ 0, ∀j = 1, . . . , n

max

m∑

i=1

biyi [D]

s.t.

m∑

i=1

aijyi ≤ cj , ∀j = 1, . . . , n

yi ≥ 0, ∀i = 1, . . . , m

Equivalently:

min
x

{cT x : Ax ≥ b, x ≥ 0} (P)

max
y

{bT y : AT y ≤ c, y ≥ 0} (D)
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Weak Duality

Thm. If x is a feasible solution to (P) and y is a feasible

solution to (D) then

cT x ≥ bT y

Proof. Follows immediately from feasibility of the solutions.

Dual feasibility implies cT x ≥ (AT y)T x, and primal

feasibility implies bT y ≤ (Ax)T y. Then, observe that

(AT y)T x = (Ax)T y.
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Optimality Property

Thm. If x is a feasible primal solution and y is a feasible

dual solution, and cT x = bT y then x and y are optimal.

Proof. Immediate from the weak duality property, since a

dual feasible solution is a lower bound on the optimal primal

solution and this bound is attained by the given feasible

primal solution; c.f. for the dual problem.
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Unboundedness Property

Thm. If the primal (dual) problem has an unbounded

solution then the dual (primal) problem is infeasible.

Proof. Immediate from the weak duality property, this must

be true for the primal since any feasible solution to the dual

would provide a lower bound on the optimal primal solution;

c.f. for the dual.

Thm. (P) has a finite optimal solution if and only if (D) does.
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Example

primal feasible and unbounded:

min − 4y1 + 2y2

s.t. − y1 + y2 ≥ 2

− y1 + y2 ≥ 1

y1, y2 ≥ 0

dual infeasible:

max2x1 + x2

s.t. − x1 − x2 ≤ −4

x1 + x2 ≤ 2

x1, x2 ≥ 0
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Strong-Duality Property

Thm. Feasible primal, x, and dual, y, solutions are optimal if

and only if cT x = bT y.

Proof. The proof is constructive, via the Simplex algorithm.

Essentially, one shows that at the solution to the Simplex algorithm

(which computes an optimal primal solution whenever the problem

is feasible and unbounded) there is also enough information to

construct a feasible dual solution with the same value.
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Complementary Slackness
Thm. Feasible primal, x and dual, y, are optimal if and only if

yi > 0 ⇒
n∑

j=1

aijxj = bi (P-CS)

xj > 0 ⇒
m∑

i=1

aijyi = cj (D-CS)

Proof. via the Strong duality property.
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Auction Context

• Present an iterative mechanism design paradigm:

– CS conditions can be checked by agents

– dual and primal feasibility is easy; one set of CS

conditions is easy

– announce a dual and primal solution, and have agents

confirm that the rest of the CS conditions hold

• The challenge is to make this incentive compatible

– propose mechanisms that, (a) terminate with efficient

allocations, and (b) agents have simple “truth-revealing”

strategies

• Connections with VCG mechanism can be leveraged

⇒ primal-dual algorithms, that terminate with Vickrey

outcomes, and elicit incremental preference elicitation from

agents to compute solutions.
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Vickrey Connections

• In special cases, the Vickrey payments are supported in

an optimal dual solution

– at the CE prices that maximize the total payoff to the

agents

• [centralized computation] permits the Vickrey

payments to be computed as the solution to a pair of LP

formulations; instead of N formulations.

• [iterative mechanism design] adjust dynamically

towards CE prices, asking agents for “best-response” in

each round, terminate with Vickrey outcome

– best-response is an ex post Nash eq.

⇒ one interesting challenge in comp. MD is to provide LP

formulations (perhaps approximations) for combinatorial

optimization problems that support Vickrey payments.
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Example: Simple Allocation Problem
(a) from the Integer program

max
∑

i

vixi [IP1]

s.t.
∑

i

xi ≤ 1

xi ∈ {0, 1}

(b) construct the LP relaxation

max
∑

i

vixi [LP1]

s.t.
∑

i

xi ≤ 1

xi ≥ 0

(has the “integrality property”) (c) construct the dual problem

min π [DLP1]

s.t. π ≥ vi, ∀i

π ≥ 0

and notice that optimal dual, π∗ = max vi (∗).
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(d) construct complementary-slackness conditions:

xi > 0 ⇒ π = vi, ∀i (CS1)

π > 0 ⇒
∑

xi = 1 (CS2)

Consider whether a feasible dual solution, π, and feasible

primal solution, x, are optimal.

(i) by (CS2), we must allocate the item to exactly one agent if

π ≥ maxi vi > 0

(ii) by (CS1), and dual feasibility (π ≥ vi, ∀i), the item

must be allocated to the agent with the greatest value.
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A Useful Reformulation
(a) Introduce redundant constraints into the primal, that
provide economic content.

max
∑

i

vixi [LP2]

s.t.
∑

i

xi ≤ 1

xi ≤ 1

xi ≥ 0, ∀i

(b) Construct the dual problem

min
p,πi

p +
∑

i

πi [DLP2]

s.t. p + πi ≥ vi, ∀i

p, πi ≥ 0

Notice that π∗
i = max[vi − p, 0] (∗∗), and that price,

p ≥ 0, defines a feasible dual solution.

Interpret p as price, and πi as agent surplus.
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(c) construct complementary-slackness conditions

xi > 0 ⇒ p + πi = vi (CS1)

p > 0 ⇒
∑

xi = 1 (CS2)

πi > 0 ⇒ xi = 1 (CS3)

Question: given prices p, is there an x, πi, that satisfies CS

conditions?

First, (dual feas.) π ≥ max[0, vi − p], so (CS3), if vi > p

then xi = 1, which with primal feas., requires that p ≥ v(2).

Second, by (CS2), whenever the price, p, is positive, the

item must be allocated to some agent. Third, by (CS1), as

long as vi ≥ p then πi = vi − p is dual feasible.
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Primal-Dual Algorithms

1. Maintain a feasible dual, y.

2. Compute a solution to a restricted primal problem, given

the dual y; find a x that is feasible and satisfies CS

conditions.

3. Either: (a) compute some x that minimizes the

“violation” of CS conditions; or (b) compute some x that

satisfies CS and minimizes violation of feasibility.

4. Adjust dual solution, based on dual of restricted primal.

In the auction context, variation (a) is more useful, and agent

bids provide suff. information to solve restricted primal and

adjust the dual across rounds.
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Primal-Dual Methodology

Initial
Dual 
Solution
(prices)

Compute

NO

x’

Terminate Bids
Receive

(allocation)

Adjust Dual 
Solution

y
(prices)

Feasible
SolutionPrimal

Do x’and

conditions?
satisfy CS

yYES
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Example: English Auction

1. initial price, p = 0.

2. In each round, announce price p, and let B ⊆ I denote

set of agents that bid.

3. If |B| > 1, allocate item to some i ∈ B, and increase

price to p + ε.

4. If |B| = 1, then allocate to agent and terminate.

Terminates with CE price, p∗ = pvick, and the efficient

allocation.
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Proof: (a) Efficiency

Assume MBR, and show terminates with feasible primal and

dual that satisfy CS conditions.

xi > 0 ⇒ p + πi = vi (CS1)

p > 0 ⇒
∑

xi = 1 (CS2)

πi > 0 ⇒ xi = 1 (CS3)

Lemma. If agents follow MBR, then (CS1) and (CS2) hold in

any round.

Lemma. If agents follow MBR, the auction terminates.

Thm. If agents follow MBR, the auction terminates with the

efficient allocation.

Proof. Termination implies just one bidder left, now (CS3)

holds.
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Proof: (b) Incentives

Now, show that MBR is an ex post Nash eq. of the auction.

Lemma. The minimal price across all optimal dual solutions

equals the Vickrey payment.

Prop. If agents follow MBR, the auction terminates with the

Vickrey payment.

Prop. MBR is an ex post Nash eq. of the auction.

Proof. W.o.l.g. suppose other agents follow truthful MBR. Consider agent

1. Suppose 1 follows some strategy s′, and auction terminates with

xi′ = 1 and price p′. By case analysis, show this outcome is always

consistent with an outcome of the auction for MBR for some value v̂1.

Therefore, agent 1 “selects” the Vickrey outcome for some (perhaps

untruthful) bid, v̂1, and (weakly) prefers the actual Vickrey outcome.
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Comp. Equil. Interpretation

Def. Price p and allocation x are in competitive equilibrium

(CE) if (p, x) satisfy:

(1) the allocation, x, maximizes the surplus of every bidder

at the price, p [from (CS1) and (CS3)]

(2) the allocation, x, maximizes the surplus of the seller at

the price, p [from (CS2)]

Thm. An allocation is efficient if and only if there exist CE

prices to support the allocation.

Note. This, with non-linear and non-anonymous prices,

extends to combinatorial allocation problems; however not

then the case that CE prices support Vickrey outcome.
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Convex Polytopes

Def. A polytope, Q, is the convex hull of a finite set of points.

CH({xi}) = {x : x =
∑

i

αixi,
∑

i

αi = 1, αi ≥ 0}

Def. A convex polytope is one in which CH(Q) = Q.

Def. Consider that the set of points at the boundary of a system of

linear inequalities and consistent with all inequalities, define a

polyhedron, P .

Lemma. A system of linear inequalities define a convex polytope.

Def. A supporting hyperplane of polyhedron, P , is a hyperplane

H that touches P s.t. all of P is contained in a halfspace of H .

Def. A face is a subset of a polyhedron P that is the intersection of

P with a supporting hyperplane of P .

Def. A vertex is a face that intersects P at exactly one place.
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Simplex Method

Thm. If a LP has an optimal solution, then it has an optimal

extremal solution. [from convexity, linearity]

but, there are many extremal points; e.g. the Upper Bound

Thm. states that the number of vertices can be as large as

O(kbd/2c), given d + 1 variables and k constraints.

Simplex: “walk” the extremal vertices, terminate when there

is no local improving direction. [“veritable workhorse” of

linear programming.]

Although there is no known implementation of simplex with

polynomial time complexity (in k, d), both empirical and

probabilistic analyses indicate that the number of iterations

in the simplex method is just slightly more than linear in the

dimension of the primal polyhedron.
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Ellipsoid Method

• Ellipsoid (Shor 70; Khachiyan 79)

– given a “strong separation oracle” can determine a

solution to a system of linear inequalities in polynomial

number of calls.

Def. Strong Sep((Q, y) Given vector y ∈ R
d, decide

whether y ∈ Q, and if not find a hyperplane that separates

y from Q.

But, disappointing gap in practice between theoretical

promise and practical speed.
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Interior Point Methods

Closed the gap between a method that was good in a

theoretical sense but poor in practice (ellipsoid), and another

that was good in practice (and average) but poor in

theoretical worst-case sense (simplex).

• Karmarkar, 1984; closed the door with a “breathtaking

new scaling algorithm”

• Identified with a class of nonlinear prog. methods known

as “logarithmic barrier methods”

• Ideas is to move in middle of feasible region, in the

direction of gradient of obj. function, but bias towards

center to avoid “jamming” into corners

– in high dimensions, corners make up most of the

interior of a polyhedron.
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Summary

• Large LP’s can be solved quickly

• LP duality provides a mathematical framework to

implement efficient allocations with incomplete

information about agent preferences.

• Primal-dual algorithms provide a constructive method to

design iterative mechanisms.

• Terminating with Vickrey payments inherits useful

incentive properties from the VCG.


