
Parkes Integer Programming 1

'

&

$

%

Integer Programming

David C. Parkes
Division of Engineering and Applied Science,

Harvard University

CS 286r–Spring 2002



Parkes Integer Programming 2

'

&

$

%

Motivation

• Very flexible and expressive model for formulation of

combinatorial optimization problems

– combinatorial allocation problem

– multicast routing problem

• Fast off-the-shelf solvers available

– CPLEX, OSL, etc.

• Strong theoretical foundations

– characterization of tractable special cases

• Connection to LP via relaxation/reformulation



Parkes Integer Programming 3

'

&

$

%

Basic Definition

A typical formulation:

max
x

cT x

s.t. Ax ≤ b

x ≥ 0, x integer

Note: a mixed-integer program has some integer variables

and some LP variables.

Almost all problems NP-hard in general, but can often solve

many large problems in practice.



Parkes Integer Programming 4

'

&

$

%

Example

Assignment problem: n workers, n jobs. Each worker i

has cost cij for performing job j. Problem is to assign jobs

to workers to minimize the total cost.

min
x

n∑

i=1

n∑

j=1

cijxij

s.t.
n∑

j=1

xij = 1, ∀i

n∑

i=1

xij = 1, ∀j

xij ∈ {0, 1}

[this has n! feasible solutions!]



Parkes Integer Programming 5

'

&

$

%

Special Structures

Def. An integral polytope has only integral extremal points.

Lemma. If an IP has an integral polytope, then the LPR of

an IP computes an optimal solution.

P (A) = {x : Ax ≤ b}

• Look for a useful geometric structure:

– totally unimodular 0,±1 matrix (condition on A)

– totally dual integral (condition on A and b)

– balanced 0,1 matrix (condition on A)

• Tractable problem classes:

– assignment problem, network flows, matching

problems, etc.



Parkes Integer Programming 6

'

&

$

%

Total Unimodularity

Thm. The LP {max cT x : Ax ≤ b, x ∈ R
n
+} has an

integral optimal solution for all integer vectors b for which it

has a finite optimal value if and only if A is totally

unimodular.

[necessary] If matrix A is TU, aij ∈ {+1,−1, 0}, for all i, j.

[sufficient] Matrix A is TU if: (i) aij ∈ {+1,−1, 0}; (ii)

each column has at most two non-zero coefficients; (iii) the

set of rows, M , can be paritioned into (M1, M2), s.t. each

column j containing two nonzero coefficients satisfies
∑

i∈M1
aij −

∑
i∈M2

aij = 0.

e.g., the assignment problem.



Parkes Integer Programming 7

'

&

$

%

Relaxing a Formulation

It can be very useful to solve a relaxed IP formulation, for

example to provide an upper-bound on the value of the

best-possible solution to a maximization problem. [we see

this in Branch and Bound.]

Def. Given maxx{c
T x : x ∈ X}, then define a relaxation

as maxx{c
T x : x ∈ T}, where X ⊂ T .

e.g. drop the integrality requirement, and formulate as an LP.



Parkes Integer Programming 8

'

&

$

%

Strengthening: Addition of Inequalities

It can be very useful to strengthen an IP formulation, with

“valid inequalities”, before using an LP relaxation to compute

bounds (or solve the problem).

Def. Given formulation P1, maxx{c
T x : x ∈ X}, then

define a stronger formulation, P2, as maxx{c
T x : x ∈ T},

where if x∗ is optimal in P1 then x∗ ∈ T , but T ⊂ X .

Principle: introduce any valid inequalities that we know

which might be active in an optimal solution.

note: cuts can be generated automatically, via combinatorial

(Padberg) and/or geometric reasoning (Gomory).



Parkes Integer Programming 9

'

&

$

%

Strengthening: Lifting Formulations

• Introduce additional variables (or “auxiliary variables”),

typically a large number

• Geometrically, the original problem is viewed as the

projection of a higher dimensional but simpler

polyhedron

we see an example of this in the combiantorial allocation

problem.

Strengthening is useful:

• Can allow the identification of tractable special cases,

and/or efficient general purpose algorithms.

• With an integral LP formulation of an IP we can use

primal-dual based methods to design iterative

mechanisms.



Parkes Integer Programming 10

'

&

$

%

Example: Combinatorial Allocation

Problem

Given a set G of items, and a valuation, vi(S) ≥ 0 for each
S ⊆ G, and each agent i, a straightforward IP formulation
is:

max
xi(S)

∑

S

∑

i

xi(S)vi(S) [CAP]

s.t.
∑

S

xi(S) ≤ 1, ∀i

∑

S:j∈S

∑

i

xi(S) ≤ 1, ∀j

xi(S) ∈ {0, 1}, ∀i, S

CAP is NP-hard because Weighted Set-Packing reduces to

CAP.

Interesting directions: (a) identify tractable special cases;

(b) introduce approximations; (c) lift the formulation and

design primal-dual methods.



Parkes Integer Programming 11

'

&

$

%

Lifting the Formulation

(Bikchandani & Ostroy 98)

Variables

Primal allocation of items to agents

Dual non-linear, possibly non-anonymous prices

LP1

STRONGER
FORMULATION

AB

AC AB,1

BC B,2 A,2

LP2 LP3

single-item conflict general conflict item & agent conflict

AB A

AC

prices on items bundle prices discriminatory
bundle prices



Parkes Integer Programming 12

'

&

$

%

(a) Second-Order Formulation

(i) Introduce Π, the set of all possible partitions of items, and

for any partition k ∈ Π, write S ∈ k when bundle S is part of

the partition.

(ii) Introduce variables y(k) ≥ 0, where y(k) indicates the

level with which partition k is selected in the solution.

max
xi(S),y(k)

∑

S

∑

i

xi(S)vi(S) [LP2]

s.t.
∑

S

xi(S) ≤ 1, ∀i (LP2-1)

∑

i

xi(S) ≤
∑

k:S∈k

y(k), ∀S (LP2-2)

∑

k∈Π

y(k) ≤ 1 (LP2-3)

xi(S), y(k) ≥ 0, ∀i, S, k



Parkes Integer Programming 13

'

&

$

%

(b) Third-order Formulation

(i) Introduce Γ, the set of all allocations, such that γ ∈ Γ

defines both a partition and an assignment of bundles; write

[i, S] ∈ γ to indicate that S is assigned to agent i.

(ii) Introduce variables, y(γ) ≥ 0, to indicate the level with

which allocation γ is selected.

max
xi(S),y(γ)

∑

S

∑

i

xi(S)vi(S) [LP3]

s.t.
∑

S

xi(S) ≤ 1, ∀i (LP3-1)

xi(S) ≤
∑

γ:[i,S]∈γ

y(γ), ∀i, S (LP3-2)

∑

γ∈Γ

y(γ) ≤ 1 (LP3-3)

xi(S), y(γ) ≥ 0, ∀i, S, γ



Parkes Integer Programming 14

'

&

$

%

CAP: Examples

A B AB

Agent 1 0 0 3

Agent 2 2∗ 0 2

Agent 3 0 2∗ 2

A B C AB BC AC ABC

Agent 1 60 50 50 200∗ 100 110 250

Agent 2 50 60 50 110 200 100 255

Agent 3 50 50 75∗ 100 125 200 250

A B AB

Agent 1 0 0 3∗

Agent 2 2 2 2



Parkes Integer Programming 15

'

&

$

%

CAP: Examples

prob 1 prob 2 prob 3

LP1 4 300

x1(AB) = 0.5

x2(BC) = 0.5

LP2 4 275 3.5

x1(AB) = 0.5

x2(A) = x3(B) = 0.5

LP3 4 275 3

opt 4 275 3

(A, B, ∅) (AB, ∅, C) (AB, ∅)

VLP,1 ≥ VLP,2 ≥ VLP,3 = VIP

Thm. [integrality] The optimal solution to LP3 is integral.



Parkes Integer Programming 16

'

&

$

%

min
πi,pj

∑

i

πi +
∑

j

pj [DLP1]

s.t. πi +
∑

j∈S

pj ≥ vi(S), ∀i, S (DLP1-1)

πi, pj ≥ 0, ∀i, j

min
πi,p(S),πs

∑

i

πi + πs [DLP2]

s.t. πi + p(S) ≥ vi(S), ∀i, S (DLP2-1)

πs −
∑

S∈k

p(S) ≥ 0, ∀k (DLP2-2)

πi, p(S), πs ≥ 0, ∀i, S

min
πi,pi(S),πs

∑

i

πi + πs [DLP3]

s.t. πi + pi(S) ≥ vi(S), ∀i, S (DLP3-1)

πs −
∑

[i,S]∈γ

pi(S) ≥ 0, ∀γ (DLP3-2)

πi, pi(S), πs ≥ 0, ∀i, S



Parkes Integer Programming 17

'

&

$

%

Analysis

• LP3 is integral

• CE prices always exist (perhaps non-linear,

non-anonymous)

• CE prices support Vickrey payments at least

seller-preferred outcome

• Leads to iBundle, Extend & Adjust, which is an

ascending-price Generalized Vickrey Auction [Parkes&

Ungar, 02]



Parkes Integer Programming 18

'

&

$

%

Solving Integer Programs

• Partial-enumeration

• LP relaxation

• Heuristics

• Lagrangian relaxations; primal-dual; etc.



Parkes Integer Programming 19

'

&

$

%

Partial Enumeration Techniques:

Branch and Bound

Thesis. LPR retains enough structure of IP to be a useful

weak representation.

1. Maintain a queue of subproblems [initialized to the masterproblem],

and a current best solution.

2. At each stage, select a subproblem and fix the value of one of the

variables.

3. Branch on one variable, b, that is undefined in the subproblem:

generate two subproblems, one with xb = 0 and one with xb = 1.

4. Bound the value of each subproblem [typically via. an LPR].

– If the LPR is integral then no further enumeration is required, update

the current best solution.

– Otherwise: if the bound is less than the current best solution, prune;

else add the subproblem to the queue.

5. Whenever the feasible solution changes, prune the queue.

6. Stop when there are no problems left in the queue.



Parkes Integer Programming 20

'

&

$

%

Partial Enumeration Techniques:

Branch and Cut

Essentially the same as branch-and-bound, except at each

stage of the search tree, generate valid inequalities (cuts) to

strengthen the LPR of the subproblem.

1. Branch on a variable in a subproblem.

2. For a child problem, introduce cuts to strengthen the

bound computed with a LPR, and generate cuts that are

valid everywhere in the tree.

3. Introduce the cuts to all current subproblems in the

queue.

Note: there are general methods (e.g. Gomory& Chvatal) to

generate cuts; and also a “cottage industry” in indentifying

useful cuts for particular classes of problems.



Parkes Integer Programming 21

'

&

$

%

Multi-cast Steiner Tree Example

[Vazirani& Jain]

• Prize-collecting Steiner tree problem is NP-hard

– model for multi-cast routing in a general network

• MCST is a 2-approx

• Dual provides a method to compute a cross-monotonic

cost-sharing method

• Implement a group-strategyproof, budget-balanced,

approximation mechanism for multi-cast routing in a

general network.



Parkes Integer Programming 22

'

&

$

%

Summary

• Very fast methods exist to solve integer programs.

• Introducing sufficient valid inequalities into an IP to solve

as an LP is useful because:

– it permits the use of primal-dual methods

– the constraints provide “price information”

• The geometry of integer program formulations provides

a rich mathematical structure to design approximation

algorithms for combinatorial optimization problems.


