

- Very flexible and expressive model for formulation of combinatorial optimization problems
 - combinatorial allocation problem
 - multicast routing problem
- Fast off-the-shelf solvers available
 - CPLEX, OSL, etc.
- Strong theoretical foundations
 - characterization of tractable special cases
- Connection to LP via relaxation/reformulation

Example

Assignment problem: n workers, n jobs. Each worker i has cost c_{ij} for performing job j. Problem is to assign jobs to workers to minimize the total cost.

$$\min_{x} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = 1, \quad \forall i$$
$$\sum_{i=1}^{n} x_{ij} = 1, \quad \forall j$$
$$x_{ij} \in \{0, 1\}$$

[this has n! feasible solutions!]

Special Structures

Def. An integral polytope has only integral extremal points.

Lemma. If an IP has an integral polytope, then the LPR of an IP computes an optimal solution.

$$P(A) = \{x : Ax \le b\}$$

- Look for a *useful geometric structure*:
 - totally unimodular 0, ± 1 matrix (condition on A)
 - totally dual integral (condition on A and b)
 - balanced 0,1 matrix (condition on A)
- Tractable problem classes:
 - assignment problem, network flows, matching problems, etc.

Total Unimodularity

Thm. The LP $\{\max c^T x : Ax \leq b, x \in \mathbb{R}^n_+\}$ has an integral optimal solution for all integer vectors *b* for which it has a finite optimal value if and only if *A* is totally unimodular.

[necessary] If matrix A is TU, $a_{ij} \in \{+1, -1, 0\}$, for all i, j.

[sufficient] Matrix A is TU if: (i) $a_{ij} \in \{+1, -1, 0\}$; (ii) each column has at most two non-zero coefficients; (iii) the set of rows, M, can be paritioned into (M_1, M_2) , s.t. each column j containing two nonzero coefficients satisfies $\sum_{i \in M_1} a_{ij} - \sum_{i \in M_2} a_{ij} = 0.$

e.g., the assignment problem.

Strengthening: Addition of Inequalities

It can be very useful to strengthen an IP formulation, with "valid inequalities", *before* using an LP relaxation to compute bounds (or solve the problem).

Def. Given formulation P_1 , $\max_x \{c^T x : x \in X\}$, then define a *stronger formulation*, P_2 , as $\max_x \{c^T x : x \in T\}$, where if x^* is optimal in P_1 then $x^* \in T$, but $T \subset X$.

Principle: introduce any valid inequalities that we know which might be active in an optimal solution.

note: cuts can be generated automatically, via combinatorial (Padberg) and/or geometric reasoning (Gomory).

Strengthening: Lifting Formulations

- Introduce additional variables (or "auxiliary variables"), typically a large number
- Geometrically, the original problem is viewed as the projection of a higher dimensional but simpler polyhedron

we see an example of this in the combiantorial allocation problem.

Strengthening is useful:

- Can allow the identification of tractable special cases, and/or efficient general purpose algorithms.
- With an integral LP formulation of an IP we can use primal-dual based methods to design iterative mechanisms.

Example: Combinatorial Allocation Problem

Given a set \mathcal{G} of items, and a valuation, $v_i(S) \ge 0$ for each $S \subseteq \mathcal{G}$, and each agent i, a straightforward IP formulation is:

$$\begin{aligned} \max_{x_i(S)} \sum_{S} \sum_i x_i(S) v_i(S) & \text{[CAP]} \end{aligned}$$
s.t.
$$\sum_{S} x_i(S) \leq 1, \quad \forall i$$

$$\sum_{S:j \in S} \sum_i x_i(S) \leq 1, \quad \forall j$$

$$x_i(S) \in \{0, 1\}, \quad \forall i, S$$

CAP is NP-hard because Weighted Set-Packing reduces to CAP.

Interesting directions: (a) identify tractable special cases; (b) introduce approximations; (c) lift the formulation and design primal-dual methods.

(a) Second-Order Formulation

(i) Introduce Π , the set of all possible partitions of items, and for any partition $k \in \Pi$, write $S \in k$ when bundle S is part of the partition.

(ii) Introduce variables $y(k) \ge 0$, where y(k) indicates the level with which partition k is selected in the solution.

$$\max_{x_i(S), y(k)} \sum_S \sum_i x_i(S) v_i(S)$$
 [LP₂]

s.t.
$$\sum_{S} x_i(S) \le 1$$
, $\forall i$ (LP₂-1)

$$\sum_{i} x_i(S) \le \sum_{k:S \in k} y(k), \quad \forall S \quad (LP_2-2)$$

$$\sum_{k \in \Pi} y(k) \le 1 \tag{LP_2-3}$$

 $x_i(S), y(k) \ge 0, \quad \forall i, S, k$

(b) Third-order Formulation

(i) Introduce Γ , the set of all allocations, such that $\gamma \in \Gamma$ defines both a partition and an assignment of bundles; write $[i, S] \in \gamma$ to indicate that S is assigned to agent *i*.

(ii) Introduce variables, $y(\gamma) \ge 0$, to indicate the level with which allocation γ is selected.

$$\max_{x_i(S), y(\gamma)} \sum_S \sum_i x_i(S) v_i(S)$$
 [LP₃]

s.t.
$$\sum_{S} x_i(S) \le 1, \quad \forall i$$
 (LP₃-1)

$$x_i(S) \leq \sum_{\gamma:[i,S] \in \gamma} y(\gamma), \quad \forall i, S \tag{LP_3-2}$$

$$\sum_{\gamma \in \Gamma} y(\gamma) \le 1 \tag{LP_3-3}$$

$$x_i(S), y(\gamma) \ge 0, \quad \forall i, S, \gamma$$

		CAP: Examples						
	:			A	В	AB	=	
		Agent 1		0	0	3	_	
		Agent 2		2^{*}	0	2		
		Ager	nt 3	0	2^*	2	_	
	A	В	С	1	AB	BC	AC	ABC
Agent 1	60	50	50	2	00*	100	110	250
Agent 2	50	60	50		110	200	100	255
Agent 3	50	50	75*		100	125	200	250
				A	В	AB	:	
		Agent 1		0	0	3*	-	
		Agent 2		2	2	2		

CAP: Examplesprob 1prob 2prob 3LP14300 $x_1(AB) = 0.5$ $x_2(BC) = 0.5$ LP242753.5

LP_2	4	275	3.5		
			$x_1(AB) = 0.5$		
			$x_2(A) = x_3(B) = 0.5$		
LP_3	4	275	3		
opt	4	275	3		
	(A,B,\emptyset)	(AB, \emptyset, C)	(AB, \emptyset)		

 $V_{\mathrm{LP},1} \ge V_{\mathrm{LP},2} \ge V_{\mathrm{LP},3} = V_{\mathrm{IP}}$

Thm. [integrality] The optimal solution to LP_3 is integral.

Parkes

$$\begin{split} \min_{\pi_i, p_j} \sum_i \pi_i + \sum_j p_j \qquad \text{[DLP_1]}\\ \text{s.t.} \quad \pi_i + \sum_{j \in S} p_j \geq v_i(S), \quad \forall i, S \qquad \text{(DLP_1-1)}\\ \pi_i, p_j \geq 0, \quad \forall i, j \qquad \qquad \text{(DLP_2]}\\ & \\ \min_{\pi_i, p(S), \pi^S} \sum_i \pi_i + \pi^S \qquad \text{[DLP_2]}\\ \text{s.t.} \quad \pi_i + p(S) \geq v_i(S), \quad \forall i, S \qquad \text{(DLP_2-1)}\\ & \\ \pi^s - \sum_{S \in k} p(S) \geq 0, \quad \forall k \qquad \text{(DLP_2-2)}\\ & \\ & \\ \pi_i, p(S), \pi^S \geq 0, \quad \forall i, S \qquad \qquad \text{(DLP_2-2)}\\ & \\ & \\ & \\ \pi_i, p(S), \pi^S \geq 0, \quad \forall i, S \qquad \qquad \text{(DLP_3-1)}\\ & \\ & \\ & \\ & \\ & \\ \pi^s - \sum_{[i,S] \in \gamma} p_i(S) \geq 0, \quad \forall \gamma \qquad \qquad \text{(DLP_3-2)} \end{split}$$

$$\pi_i, p_i(S), \pi^s \ge 0, \quad \forall i, S$$

Partial Enumeration Techniques: Branch and Bound

Thesis. LPR retains enough structure of IP to be a useful weak representation.

- 1. Maintain a queue of subproblems [initialized to the masterproblem], and a *current best solution*.
- 2. At each stage, select a subproblem and *fix* the value of one of the variables.
- 3. *Branch* on one variable, b, that is undefined in the subproblem: generate two subproblems, one with $x_b = 0$ and one with $x_b = 1$.

4. Bound the value of each subproblem [typically via. an LPR].
– If the LPR is integral then no further enumeration is required, update the current best solution.

Otherwise: if the bound is less than the current best solution, *prune*;
else add the subproblem to the queue.

- 5. Whenever the feasible solution changes, prune the queue.
- 6. Stop when there are no problems left in the queue.

Partial Enumeration Techniques: Branch and Cut

Essentially the same as branch-and-bound, except at each stage of the search tree, *generate valid inequalities* (cuts) to strengthen the LPR of the subproblem.

- 1. Branch on a variable in a subproblem.
- 2. For a child problem, introduce *cuts* to strengthen the bound computed with a LPR, *and generate cuts that are valid everywhere* in the tree.
- Introduce the cuts to all current subproblems in the queue.

Note: there are general methods (e.g. Gomory& Chvatal) to generate cuts; and also a "cottage industry" in indentifying useful cuts for particular classes of problems.

Summary

- Very fast methods exist to solve integer programs.
- Introducing sufficient valid inequalities into an IP to solve as an LP is useful because:

- it permits the use of primal-dual methods

- the constraints provide "price information"
- The geometry of integer program formulations provides a rich mathematical structure to design approximation algorithms for combinatorial optimization problems.