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Shapley value, as the two solutions most appropriate in this context. We

prove that the former has a natural algorithm that uses only two messages

per link of the multicast tree, while we give evidence that the latter requires

a quadratic total number of messages. We also show that the welfare value

achieved by an optimal multicast tree is NP-hard to approximate within

any constant factor, even for bounded-degree networks. The lower-bound
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tion; this technique may prove useful in other contexts as well.
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1. INTRODUCTION

The traditional form of routing provided by the Internet is unicast routing; each
packet sent from a source is delivered to a single receiver. To send the same packet
to multiple sites, a source has to send a separate copy of this packet to each re-
ceiver. This results in many identical packets traversing the network links close to
the source. To avoid this waste of bandwidth, a different form of routing, called
multicast routing [4], has been developed. Multicast routing creates a directed tree
connecting the source to all the receivers; when a packet reaches a branch point in
the tree, the router duplicates the packet and then sends a copy over each down-
stream link. Thus, a source can reach multiple receivers without sending duplicate
copies of the packet over any link. Because of this increased transmission efficiency,
multicast routing will greatly facilitate the transmission of highly popular content
such as live concerts and movies.

Such applications are likely to be significant sources of revenue. However, multi-
casting high quality audio and video to a large population is likely to incur signifi-
cant costs. Unlike the unicast case, the bandwidth used by a multicast transmission
is not directly attributable to a single receiver.4 Thus, one must find a way to dis-
tribute the cost among the various receivers. A cost-sharing mechanism determines
which users receive the multicast transmission and how much they are charged. We
let xi ≥ 0 denote how much user i is charged and σi denote whether user i receives
the transmission; σi = 1 if the user receives the multicast transmission, and σi = 0
otherwise.

We consider a particular multicast transmission of, say, a movie and assume that
user i derives utility ui from the movie. A user’s individual welfare, her overall
happiness after seeing the movie (or not) and paying the resulting cost, is given
by wi = σiui − xi. The vectors σ and x are functions of the utility vector u;
a cost-sharing mechanism is defined by the functions x(u) and σ(u). However,
the network does not a priori know the ui, because they are properties of the
users, not of the network; it must rely on the users to report these values. In the
applications we are considering, such as the transmission of a movie, the users are
independent and have little reason to cooperate with each other or with the network.
Therefore, we cannot assume that a user will truthfully report her utility to the
network; instead, we assume that each user is selfish and will report the value that
maximizes her individual welfare wi. The network can discourage such deception
by using strategyproof cost-sharing mechanisms in which each user maximizes her
welfare by truthfully revealing ui; that is, wi(u) ≥ wi(u|ivi) for any vi and all i.
(Here, (u|ivi)j = uj , for j 6= i, and (u|ivi)i = vi.) Strategyproofness is a very
strong condition; with a few additional natural constraints described in Section 2,
it leads us to two natural strategyproof cost-sharing mechanisms: Marginal Cost
(MC) and Shapley Value (SH) (see [22]).

4There are many contexts in which it would be natural for the source to foot the bill (e.g., a
sales presentation) or for the bill to be shared in some fashion between source and receiver (e.g.,
a teleconference). However, we are restricting our attention here to cases in which the receiver is
responsible for paying for the transmission. This is the most challenging, if perhaps not the most
common, case. It may also be the case most appropriate for mass-market content.



A cost-sharing mechanism is merely a pair of formulas for x(u) and σ(u). How-
ever, computing these quantities is not a trivial task, because the ui (and the
network costs, as we describe in Section 2) are spread throughout the network, and
the results of the computation, the xi(u) and σi(u), must be delivered to the in-
dividual users. Therefore, once given a cost-sharing mechanism, we need to define
the distributed cost-sharing algorithm or protocol that implements that mechanism.
We do not require that the algorithm end with some network router knowing the
results of the entire computation, rather that all users are informed of their in-
dividual allocations xi and σi. Because these cost-sharing algorithms might deal
with extremely large user populations, it is crucial that they not impose significant
computational and communication burdens on the network. In particular, we care
about how these computational and communication burdens grow with the size of
the user population. If the computational burden on each network router is rea-
sonable, as it is for the algorithms we discuss, then there is little motivation to
reduce the computational complexity further, because the computing resources of a
router are not fungible. However, there is intense competition for link bandwidth;
thus, minimizing the communication burden of these distributed cost-sharing algo-
rithms is of great interest. In this paper, we focus on the communication burden
of algorithms for implementing the MC and SH cost-sharing mechanisms. We
prove a lower bound suggesting that any cost-sharing algorithm implementing the
Shapley-value mechanism must send a linear number of messages over each of a
linear number of links, a quadratic number of messages overall.5 By contrast, we
give a natural algorithm that implements the marginal-cost mechanism using only
two messages traversing each link (one in each direction).

This paper brings together two separate concerns. The incentive considerations
of strategyproofness restrict the class of cost-sharing mechanisms that can be em-
ployed. Similarly, complexity considerations constrain the set of algorithms that
can be used to implement these mechanisms. One must find mechanisms that both
have the desired incentive properties and also can be feasibly implemented. Our re-
sults suggest that, although both the Shapley-value and marginal-cost mechanisms
have the proper incentive properties (and are, in a well defined sense made clear in
the next section, the two most appropriate mechanisms for this problem), only the
marginal-cost mechanism can be feasibly implemented.

The remainder of this paper is organized as follows. Section 2 contains some
technical preliminaries and a brief discussion of related work. We present our results
on the marginal-cost mechanism in Section 3. Section 5 contains a lower bound (in
a restricted computational model) for algorithms implementing the Shapley-value
mechanism. In our model, we assume that the multicast tree is fixed and given to
us; if, instead, we are given a graph and the task of finding the tree that optimizes
welfare, we show in Section 4 that the welfare value achieved by an optimal multicast
tree is NP-hard to approximate within any constant. We conclude in Section 6 with
a brief summary and discussion of open problems.

5While we focus primarily on message (not bit) complexity, we do, in our lower-bound proof in
Section 5, prevent concatenation of messages and other tricks by requiring that the operations on
these messages be linear.



2. TECHNICAL PRELIMINARIES
2.1. Network Model

Consider a user population P , a set of network nodes N , and a set of bidirectional
network links L. Each user i ∈ P resides6 at some network location α ∈ N . In
this paper, we restrict our attention to a particular multicast flow emanating from
a source located on network node αs ∈ N . The multicast routing infrastructure,
given any set of receivers R ⊆ P , constructs a tree (the multicast tree) T (R) ⊆ L

rooted at αs and connecting αs to the nodes at which users in R reside. In general,
the tree T (R) can depend arbitrarily on the subset R, but, for most of this paper
(the exception being Section 4), we shall assume that there is a universal tree T (P )
and that, for each subset R ⊆ P , the multicast tree T (R) is merely the minimal
subtree of T (P ) required to reach the elements in R. This assumption implies
that the multicast routing infrastructure chooses, for each user i, a fixed path T (i)
from the source to user i and that, for every set R of receivers, the delivery tree is
merely the union of these fixed paths: T (R) = ∪i∈RT (i). This approach of building
the multicast tree out of a nonlooping7 set of unicast paths is relatively simple to
implement and makes the multicast tree quite stable as receivers join and leave;
both of these properties – ease of implementation and stability – are extremely
important in practice. We adopt this approach for the bulk of our paper, because
it represents the design philosophy embedded in essentially all current multicast
routing proposals (see, for example, [1, 4, 5, 13, 27]). However, this approach does
impose significant limitations on the structure of T (R), because it forces the data
path from the source to a particular user to be independent of which other users are
present; in particular, this approach precludes the use of more theoretically familiar
structures like Steiner trees. The form of multicast routing we consider here may
thus lead to suboptimal trees. We address the possibility of using optimal trees in
Section 4.

Each link l ∈ L has an associated cost c(l) ≥ 0 that is known by the nodes on
each end. The cost of the tree T (R) reaching a set of receivers R is c(T (R)), and
the overall welfare, or net worth, is NW (R) = uR − c(T (R)), where uR =

∑
i∈R ui

and c(T (R)) =
∑

l∈T (R) c(l). Note that the overall welfare is not the sum of the
individual welfares and does not depend on the cost shares. The overall welfare
measures the total benefit of providing the multicast transmission (the sum of the
utilities minus the cost); the cost shares are merely transfers between the receivers
and the network but do not change the overall level of welfare. The fact that
T (R) = ∪i∈RT (i) ensures that the cost c(T (R)) is a nondecreasing and submodular
function of the set R: c(T (R + i)) ≥ c(T (R)) and c(T (R1)) + c(T (R2)) ≥ c(T (R1 ∪
R2)) + c(T (R1 ∩ R2)), for all R, R1, R2 ⊆ P . In Section 4 below, we examine the
effect of dropping the restriction T (R) = ∪i∈RT (i).

2.2. Cost-Sharing Mechanisms

6The nodes represent routers, and a user’s being resident at a node means that the node is the
first-hop router for that user.

7We say that a set of unicast paths is nonlooping if the union of any subset of those paths forms
a tree.



Cost-sharing mechanisms are defined by the functions xi(u) and σi(u). For a
given cost-sharing mechanism, define R(u) = {i ∈ P |σi(u) = 1}, the receiver set,
to be the set of users selected to receive the transmission at a given utility profile
u. Similarly, let W (u) ≡ NW (R(u)) be the welfare resulting from the mechanism
at utility vector u. We consider only strategyproof cost-sharing mechanisms, and
so we must have wi(u) ≥ wi(u|ivi), for all u, i, and vi. We also impose several
additional basic requirements:

• No Positive Transfers (NPT): xi(u) ≥ 0. This precludes paying receivers to
receive the transmission. We are only considering situations in which the users pay
for the right to participate.
• Voluntary Participation (VP): wi(u) ≥ 0. Users are always free to not receive

the transmission and not be charged, which would result in an individual welfare of
zero; the network can’t force a user to be worse off than this baseline option. Note
that this implies that xi = 0 whenever σi = 0, i.e., that the set of users who pay is
a (not necessarily proper) subset of the set who actually receive the transmission.
• Consumer Sovereignty (CS): For all u, σ(u|ivi) = 1 for sufficiently large vi.

The cost-sharing algorithm cannot arbitrarily exclude any users; the network has
to allow users to receive the transmission if they are willing to pay a sufficiently
high cost.

There are many strategyproof cost-sharing mechanisms that satisfy the above
requirements, some of them quite impractical. For instance, one could send to
the highest bidder (breaking ties arbitrarily), deny all other users, and charge the
chosen user the second highest reported utility; this would result in all users but one
having zero welfare and could result in negative overall welfare if the network costs
were sufficiently high. To exclude such alternatives, we find it useful to consider
two other requirements:

• Budget-balance:
∑

i∈P xi(u) = c(T (R(u))). This requires that the revenue
raised from the receivers cover the cost of the transmission exactly.
• Efficiency: NW (R(u)) ≥ NW (R), for all R ⊆ P . This requires that the

receiver set maximize the overall benefit of the network. A set that maximizes
NW (R) is called an efficient set.

It is a classical result in game theory [9, 28] that, in this context, these two
requirements are mutually exclusive; there are no strategyproof cost-sharing mech-
anisms that are both budget-balanced and efficient. It is easy to see, and is shown
in [22], that there is essentially only one strategyproof cost-sharing mechanism that
both satisfies NPT and VP and is efficient: the marginal-cost mechanism.8 The
MC mechanism is a special case of a more general class, the Vickrey-Clarke-Groves
[2, 10, 11, 36] mechanisms, and is defined as follows. Let R∗(u) denote the largest
efficient set; this is well defined, because submodularity of the cost function guar-
antees that the union of two efficient sets is also an efficient set. Let σi(u) = 1, for

8More precisely, all such strategyproof mechanisms are welfare-equivalent to the MC mechanism
in that the resulting individual welfares wi are the same. The only degree of freedom in deviating
from the MC mechanism is that one can exclude users who do not change the overall welfare and
whose own individual welfare is zero.



all i ∈ R∗(u), and σi(u) = 0, for all i 6∈ R∗(u); thus, W (u) = NW (R∗(u)). The
cost shares are given by:

xi = uiσi(u)−
(
W (u)−W (u|i0)

)
(1)

This mechanism gives user i a welfare wi = W (u) −W (u|i0) that represents the
marginal contribution to the overall welfare provided by her having nonzero utility
for the transmission. Unfortunately, this mechanism is not budget-balanced. It
never runs a budget surplus but can run a budget deficit; in fact, in many cases, it
raises no revenue at all [22].

While the requirement of efficiency picked out a single natural cost-sharing mech-
anism, the requirement of budget balance leaves many possible mechanisms. By
imposing the stronger condition of group strategyproofness (no group of users can
increase their welfares by lying about their utilities), one can completely character-
ize the class of possible cost-sharing mechanisms [21, 22]. Each mechanism is de-
fined by a function f : 2P 7→ <|P |≥0 with the properties that

∑
i fi(R) = c(T (R)) and

fi(R+j) ≤ fi(R), for all i, j ∈ P . One can use the function f to define x(u) and σ(u)
in an iterative fashion. First, set σ

(1)
i (u) = 1, for all i ∈ P , and R(1)(u) = P . At

each step k ≥ 2, let R(k)(u) = {i|σ(k−1)
i (u) = 1}, x

(k)
i (u) = fi(R(k)(u)), σ

(k)
i (u) = 1

if ui ≥ x
(k)
i (u), and σ

(k)
i (u) = 0 if ui < x

(k)
i (u). The sets R(k) form a monotonic

sequence, R(k) ⊆ R(k−1), and thus converge after a finite number of steps to some
set R̂(u); the resulting values for x(u) and σ(u) define the cost-sharing mechanism,
and R̂(u) is the receiver set. The Shapley-value mechanism uses the Shapley value
[31, 35] for the function f ; the general definition of the Shapley value [31] applied
to our network cost-sharing problem yields the following formula:

fi(R) =
∑

R̃⊆R−i

|R̃|!(|R| − |R̃| − 1)!
|R|! [c(T (R̃ ∪ i))− c(T (R̃))]

This formula is quite forbidding, but it has a simple intuitive explanation: The cost
of a link l is shared equally by all receivers who are downstream of the link.

None of these budget-balanced mechanisms maximizes the overall welfare. Out
of all of them, the Shapley-value mechanism minimizes the worst-case welfare loss;
that is, the quantity Maxu[NW (R∗(u)) − NW (R(u))] produced by the Shapley-
value mechanism is strictly smaller than the corresponding quantity produced by
other mechanisms in this class [22]. If we insist on budget balance as a requirement,
it seems natural to choose the mechanism that minimizes the resulting loss of
efficiency; the Shapley Value is thus a natural choice in this class of budget-balanced
cost-sharing mechanisms.

2.3. Computational Model and Costs
For a cost-sharing algorithm to be practical, both communication and local com-

putation should require only modest resources, because cost sharing is not the raison
d’être of the network —it is done only to support the primary goal of transmitting
content to receivers in a financially viable manner. Hence, analyzing the complexity
of algorithms for implementing cost sharing, especially in terms of the communi-
cation burden they impose on the network, is important. By “communication



burden,” we mean messages transmitted over links in L, not local communication
among users resident at the same node. In each round of the algorithm, a node
α ∈ N may receive one message from each of its neighbors in T (P ), compute one or
more functions of these messages, values supplied by its resident users, and values
stored in previous rounds, and then send one message to each of its neighbors in
T (P ). The resident users may have to execute a local-area network algorithm to
accomplish a round of computation, but the algorithm-design problem this raises
is orthogonal to the problem we consider here, and its communication burden is
taken to be zero.

An instance of a cost-sharing problem has size n + p + m, where n = |T (P )|,
p = |P |, and m is the total size of the numerical input {c(l)}l∈L ∪ {ui}i∈P . Ideally,
the total number of messages sent by a cost-sharing algorithm should be O(n),
and the maximum, over all l ∈ L, of the number of messages sent over l should
be O(1). Note that we care about “hot spots” in bandwidth utilization as well as
total bandwidth utilization; for example, an algorithm in which the total number
of messages is O(n) but Ω(n) of the messages “bunch up” on one or a few links is
unsatisfactory.

In this paper, our primary focus is communication, rather than local computation,
but we do not completely disregard local computation. For example, a mechanism
that is NP-hard even to approximate closely is obviously impractical; it could not be
implemented efficiently even if communication costs associated with the distributed
nature of the inputs and outputs were zero and a fortiori cannot be implemented
efficiently if these costs are nonzero, as they are in our model.

Similarly, while we focus primarily on the number of messages that an algorithm
sends, we also require that message size be reasonable. It would not be satisfac-
tory, for example, to implement a polynomial-time mechanism as follows: Each
node, after receiving a message from each of its children, concatenates all of the
received messages, all of the utilities of players resident at it, and the cost of the
link connecting it to its parent and then sends the result to its parent; when the
root αs of T (P ) has received all of the utilities and link costs, it computes σ and x

and sends them to its children so that the needed values can be “peeled off” as they
reach the appropriate nodes, and the remaining values can be sent further down
the tree. This trivial algorithm would achieve the goal of O(1) messages per link,
but the maximum size of a message would be Ω(m), which is too big. Message size
is not a major issue in this paper, but we revisit it in context where appropriate in
what follows.

We use the term “network complexity” to capture these four aspects of a cost-
sharing algorithm’s worst-case performance: the local computational complexity,
the total number of messages sent, the maximum number of messages sent over any
one link, and the maximum message size. For an algorithm to be practical, all four
of these burdens must be modest. Because the study of cost-sharing algorithms
(and of algorithmic mechanism design generally) is quite new, we will not give a
precise definition of “modest”; we believe that more examples of prima facie good
algorithms than we have at this early stage should inform such a definition. It



may turn out that polynomial-time local computation,9 O(n) messages total, O(1)
messages over any one link, and maximum message size that is polylogarithmic in
n and p and polynomial in the size of the largest c(l) or ui is the right definition
of “feasible network complexity.” This is achieved by the algorithm in Section 3
below. On the other hand, there may be mechanism-design problems in which
the best that can be achieved is n · polylog(n) messages total, and this may be
acceptable in context. Our main goal in this paper is to point out that all four
aspects of network complexity are important and that, in our particular problem,
there is an algorithm in which all are acceptable.

We do not address any details of message transmission in this model. We assume
that messages arrive reliably, within a small bounded time, and arrive in order.
It is an open question whether one would obtain fundamentally different network
complexity results for the mechanisms considered here if one assumed an unreliable
network.

2.4. Related Work
This work lies in the intersection of game theory, theoretical computer science,

and networking. Questions of incentives have long been central to game theory,
and there is a vast literature on the mechanism-design or implementation paradigm
in which resource-allocation mechanisms are designed to achieve the socially de-
sirable outcomes in spite of user selfishness. (See [12] for a review and [26] for an
introduction.) Many of these approaches use Nash equilibria (or other notions of
noncooperative behavior) rather than strategyproofness: That is, they assume that
simultaneous selfish play leads to a self-consistent equilibrium, called a Nash equilib-
rium, in which no agent can improve her lot by deviating. The Nash-implementation
approach [3, 19] involves designing resource-allocation mechanisms with Nash equi-
libria that yield the socially desirable outcome (such as an efficient and/or budget-
balanced and/or fair allocation). In contrast, strategyproofness ensures that no
matter how other agents behave – whether selfish, spiteful, or stupid – truthful rev-
elation is the optimal (dominant) strategy for each user. Strategyproofness is much
more exacting than Nash implementation, and so Nash implementation can achieve
a much wider variety of outcomes. However, [7] argues that strategyproofness may
be the only viable approach in the Internet, because one cannot ensure that simul-
taneous selfish play will reach the traditionally defined notions of equilibrium.

There is a long history of applying game-theoretic techniques to networking prob-
lems. Some use incentives as a metaphor for distributed-protocol design (e.g., [17]);
the elements in the protocol are not selfish, but microeconomic principles are used
to achieve coordination between the elements. Others analyze the impact of selfish
users on current designs (e.g., [14]), determining the resource allocations achieved
at Nash equilibrium. Still others adopt the mechanism-design approach and modify

9More precisely, each round of local computation at a node α should take time polynomial in
the sizes of its local inputs; these inputs may be supplied by users resident at α, may be received
as messages from neighbors of α in T (P ), or may have been computed and stored in previous
rounds. The total time complexity of the computation done at α will obviously also depend on
the total number of rounds of computation done by α during the execution of the whole algorithm;
ideally, this number will be O(1), with each round of computation triggered by a round of incoming
messages.



network designs to cope with user selfishness (e.g., [6, 16, 30, 32, 33]). There is
also significant use of mechanism design in distributed artificial intelligence (e.g.,
[29, 34]) and in market-based computation (e.g., [37])

Despite their increasing role in some of the more applied areas in computer sci-
ence, incentives have rarely been an important consideration in traditional theoret-
ical computer science. Typically, users are assumed either to be cooperative (i.e., to
follow the prescribed algorithm) or to be adversaries who attempt to harm other
users. In contrast, the selfish users of game theory are neither cooperative nor
spiteful; instead they attempt to optimize their own individual welfare. While one
cannot assume selfish users will cooperate, one can assume that they will respond
to incentives. Thus, one need not cope with the worst-case behavior of a byzantive
adversary – only with predictably selfish behavior.

In short, the game-theoretic literature stresses incentives with (usually) little
regard for network complexity, while the theoretical computer science literature
(usually) focuses on complexity without much consideration of incentives. In one
of the first works to merge these two concerns, Nisan and Ronen [23, 24, 25] pose
noncooperative allocation problems such as routing and load balancing and analyze
the computational complexity of the relevant strategyproof mechanisms. Our work
is very much in the same spirit as theirs, except that they consider a centralized
setting for the computation, and we address the network complexity in a distributed
setting, for the concrete application of multicast cost sharing. The mechanisms we
consider would not be interesting in Nisan and Ronen’s model. Because their model
allows all of the users to send their data to one node, the receiving node could just
compute SH or MC cost shares, both of which are polynomial-time computable.
SH and MC computations are interesting only when the computational model is
distributed and network complexity matters.

3. MARGINAL-COST MECHANISM

Theorem 3.1. MC cost sharing requires exactly two messages per link. There is
an algorithm that computes the cost shares by performing one bottom-up traversal
of T (P ), followed by one top-down traversal, and this algorithm is optimal with
respect to number of messages sent.

Proof. In order to describe the algorithm, we need the following notation. Let
uα denote the sum of the utilities of the users resident at node α, cα the cost of
the link from α to its parent p(α) in the tree T (P ), Ch(α) all the child nodes of α

in the tree T (P ), V (P ) all nodes in the tree T (P ), res(α) the set of users at node
α, and Tα(P ) the union of the subtree rooted at α and the link from α to p(α).
With this, we can compute Wα(u), which is the welfare (i.e., utilities minus cost)
of Tα(P ), as follows:

Wα(u) = uα +


 ∑

β∈Ch(α)|W β(u)≥0

W β(u)


− cα.



Note that these values can be computed by the bottom-up traversal given in Figure
1 below.10 Naturally, σ(i) = 1 (that is, user i is included in the multicast) if
Wα(u) ≥ 0 for all nodes α in the path from user i to the root.

Once the Wα(u)’s have been computed, the values of the σi(u)’s – that is, the
bits that indicate whether a user i is a member of the efficient set R∗(u) – can be
propagated in a top-down traversal.

The cost share xi(u) for user i ∈ R∗(u), given by Equation 1, does not require
a from-scratch recomputation of W (u|i0). For each node α and user i ∈ R∗(u) at
α, let yi(u) be the smallest W β(u) of any node β in the path from α to the root.
(This minimum welfare value might occur at α.) Then there are two cases:

• If ui ≤ yi(u), then, without user i, the efficient set is the same as it is with user
i. That is, R∗(u) = R∗(u|i0), and the difference W (u)−W (u|i0) is ui. Therefore,
user i must pay xi(u) ≡ ui − (W (u)−W (u|i0)) = 0.
• If, however, ui > yi(u), then dropping user i results in the elimination from

R∗(u) of a subtree of total welfare yi(u), and thus user i must pay exactly xi(u) =
ui − yi(u).

To see this, note that dropping user i decreases Wα(u) by ui. If ui > yi(u),
then there is some lowest (furthest from the source) ancestor α′ of α for which
dropping user i causes Wα′

(u) to become negative and all users resident at nodes
in Tα′

(P ) to be dropped from the receiver set. Dropping Tα′
(P ) may in turn result

in a negative welfare value for some ancestor α′′ of α′, which would cause Tα′′
(P )

to be dropped, and so forth. This “chain reaction” stops after the removal of a
minimum-welfare subtree T β(P ). On the other hand, if ui < yi(u), then the tree
used to reach R∗(u|i0) is the same as that used to reach R∗(u).

Observe that this propagation of yi(u) can be combined with the propagation of
σi(u), as shown in Figure 2 below.

In the top-down traversal given in Figure 2, we assume that each node α has the
“state” from the (earlier) execution of the bottom-up traversal; this consists of the
messages that it received from its children, the message that it sent to its parent,
and the values σi for users i at α (some of which were erroneously, but temporarily,
set to 1 and will be corrected in the top-down traversal). The top-down traversal
has to convey enough information to allow nodes to compute cost shares using
Equation 1 and to correct erroneous σi values.

Finally, note that two messages must in fact travel over each link in T (P ) if cost
shares are to be computed correctly. There are instances in which, for all α ∈ V (P ),
cost shares at α depend on utilities at every descendant of α and on utilities and/or
link costs between α and the root αs of T (P ). In our model, α can only compute
such a share after receiving some information from its parent and each of its children
(although perhaps not as many bits of information as our algorithm sends). Exam-
ples of such instances include those in which R∗(u) = P but setting ui = 0 for any
i would cause all users in a subtree rooted at some β ∈ Ch(αs) not to receive the
transmission (because each link joining αs to one of its children has a very high
cost).

10Johnson, Minkoff, and Phillips [15] use essentially the same formula in their (independently
discovered) strong-pruning algorithm for the prize-collecting Steiner-tree problem.



FIG. 1. Bottom-Up Traversal: Computing Welfare Values

At node α ∈ V (P )
After receiving a message Aβ from each child β ∈ Ch(α)

Wα ← uα + (
∑

β∈Ch(α) Aβ)− cα

If Wα ≥ 0 then
{

σi ← 1 for all i ∈ res(α)
Send Wα to parent p(α)

}
Else
{

σi ← 0 for all i ∈ res(α)
Send 0 to parent p(α)

}

FIG. 2. Top-Down Traversal: Computing Membership Bits and Cost Shares

Initialize: Root αs sends Wαs to each of its children.
For each α ∈ V (P )− {αs}

After receiving message A from parent p(α)
//Case 1: Tα(P ) ∩ T (R∗(u)) = ∅.
//Set σi’s properly at α and propagate non-membership downward.
If σi = 0, for all i ∈ res(α), or A < 0 then
{

xi ← 0 and σi ← 0 for all i ∈ res(α)
send −1 to β for all β ∈ Ch(α)

}
//Case 2: Tα(P ) ∩ T (R∗(u)) 6= ∅.
//Compute cost shares and propagate minimum welfare value downward.
Else
{

A← min(A, Wα)
For each i ∈ res(α)

If ui ≤ A, then xi ← 0, else xi ← ui −A

For each β ∈ Ch(α)
Send A to β

}

4. WELFARE-MAXIMIZING MULTICAST TREE

The form of routing used in this paper requires that the actual delivery tree be a
subtree of the given universal tree that connects the source to all users. While this
accurately models the current design philosophy of multicast routing, which empha-



sizes simplicity and stability over optimization, there are other contexts involving
tree-like delivery structures in which optimality would become the dominant con-
sideration. One such example is that of installing communication lines connecting
several institutions;11 the situation is static once installed, and thus stability is not
an issue, but minimizing cost can be quite important.

In such settings, it is natural to consider the following generalization of the MC
mechanism. The node set N and link set L form a general digraph; the source
αs is an element of N . Any subtree T of (N, L) that is rooted at αs can be a
delivery tree; because, in this extension, we are identifying nodes with “players,”
such a T defines a receiver set V (T ) and a total welfare value that is just the sum
of the utilities of nodes in T minus the sum of the costs of links in T . The question
is whether, without the restriction used in Section 3 that the delivery tree be a
subtree of the universal T (P ), it is computationally feasible to find a delivery tree
of maximum total welfare.

More formally, let T (R) denote the set of all trees connecting the source to a
receiver set R. Given a receiver set R, we choose the tree T ∈ T (R) that minimizes
c(T ); define C(R) = MinT∈T (R)c(T ). Then, an efficient set R∗ ⊆ N is one that
maximizes uR − C(R). There is no longer a unique largest efficient set, because
the cost function C(R) is not submodular (unlike c(T (R)) in our original problem,
which is submodular). Let W (N, L, c, u, r) = MaxR⊆N−{r}(uR − C(R)) be the
optimal efficiency. For a given selection of efficient sets R∗(u), Equation 1 defines
the cost shares for an MC-like strategyproof mechanism satisfying NPT, VP, and
CS. The question is whether we can find a feasible algorithm to implement this
mechanism.

Because computing W () is equivalent to the net-worth maximization version of
the Prize-Collecting Steiner-Tree problem [15], it is NP-hard. We now show that
W () is NP-hard to approximate within any constant factor, even if (N, L) is a
bounded-degree graph.12 Therefore, the natural generalization of the MC mecha-
nism that we have defined in this section is apparently computationally infeasible.

Theorem 4.1. Let G = (N, L) be a digraph, r ∈ N a distinguished root node,
c : L→ <≥0 a cost function on links, and u : N → <≥0 a utility function on nodes.
For R ⊆ N − {r}, let C(R) be the cost of a minimum-cost tree, the node set of
which contains r and R. Then, for any constant ε, 0 < ε < 1, the function

W (N, L, c, u, r) = max
R⊆N−{r}

(uR − C(R))

is NP-hard to approximate13 within ratio ε. Moreover, this hardness result holds
even if (N, L) is a bounded-degree digraph.

11In this context, there is no notion of a “player” that is resident at a node: Each institution
corresponds to a single node, and it has a single utility (or “prize”) value; either this node will be
connected to the delivery tree by the routing infrastructure, or it won’t be.

12This easy result had been absent from the extensive literature on this problem.
13Recall that algorithm A “approximates f within ratio ε, 0 < ε < 1,” if, for all x, ε ≤

A(x)/f(x) ≤ 1/ε.



Proof. Let (x1, . . . , xn, C1, . . . , Cm) be a SAT instance. Assume without loss of
generality that the formula contains a clause (xi ∨ x̄i), for all 1 ≤ i ≤ n.

The equivalent digraph has four levels:

• The first level contains the root r, with utility ε3.
• The second level contains a node r′, with utility zero, connected to r via a link

of cost m ·K − n− 1, where K � m.
• The third level contains 2n nodes, one for each xi and x̄i, all with utility zero,

and all connected to r′ via unit-cost links.
• Finally, the fourth level contains m nodes, one for each clause, each of utility

K, and each connected via zero-cost links to the level-3 nodes corresponding to the
literals it contains.

Any digraph of this form has a trivial solution of welfare ε3, containing only the
root node r.

To get a solution of welfare greater than ε3, we must include the link (r, r′),
which in turn forces the inclusion of all of the level-4 nodes. At most n links from
r′ to level-3 nodes can be included, because n + 1 such links would put us back to
welfare ε3. For each i, one of the xi-node or the x̄i-node must be included, in order
to reach the level-4 node corresponding to clause (xi ∨ x̄i). Therefore, a solution
of welfare greater than ε3 corresponds to a satisfying assignment; in fact, such a
solution will have welfare exactly 1 + ε3.

Unsatisfiable formulas correspond to graphs of maximum welfare ε3, on which an
ε-approximation algorithm for W () would return a value less than or equal to ε2.
Satisfiable formulas correspond to graphs of maximum welfare 1+ε3, on which an ε-
approximation algorithm would return a value greater than or equal to ε(1+ε3) > ε.
Thus ε-approximating W () is NP-hard.

To obtain a hardness result for bounded-degree graphs, we modify the reduction
as follows. First, replace the 2n links that connect r′ to the level-3 “literal nodes”
with a binary tree whose root is r′ and whose leaves are the 2n literal nodes. All of
the nodes in this binary tree have utility zero, and all of the links have cost zero,
except for the links that connect the literal nodes to their parents; each of these
2n links has cost one. Next, assume without loss of generality that each clause
Cj either is the disjunction of three literals or is of the form (xi ∨ x̄i). For each
literal y, use a binary tree to connect the literal node corresponding to y to all of
the nodes corresponding to clauses in which y appears. All of the links in these
trees have cost zero, and all of the nodes have utility zero, except for the “clause

nodes” themselves, each of which has utility K, as it did in the original reduction.

5. SHAPLEY-VALUE MECHANISM
SH cost shares can be computed by a brute-force algorithm involving, in the

worst case, the exchange of Θ(n · p) messages total and at least p messages over
certain links. We conjecture that this complexity is the best possible and present
some evidence for this below. We first, however, explain the brute-force algorithm.

The simplest case of the SH cost-share problem is the one in which all ui are
sufficiently large to guarantee that all of P receives the transmission. (For example,
ui > c(T (P )), for all i, would suffice.) In this case, the SH cost-shares can be



computed as follows.14 Do a bottom-up traversal of the tree that determines, for
each node α, the number pα of users in the subtree rooted at α. Then, do a top-
down traversal, which the root initiates by sending the number md = 0 to each of
its children. After receiving message md, node α computes md′ ≡

(
c(l)
pα

)
+ md,

where l is the network link between α and its parent, assigns the cost share md′ to
each of its resident users, and sends md′ to each of its children. Thus, each user
ends up paying a fraction of the cost of each link in its path from the source, where
the fraction is determined by the number of users sharing this link.

To apply the brute-force algorithm to the general case, we must proceed in an
iterative fashion. We initially start, as before, with R = P and compute the cost
shares as above. However, in the general case, we cannot assume that ui ≥ md′,
for all i, and so some users may prefer not to receive the transmission. Therefore,
after an iteration, we update R by omitting all users i such that ui < md′ and
repeat. The algorithm terminates when no more users need to be dropped. In the
worst case, one user will be dropped after each iteration, resulting in a total of p

iterations and Ω(n · p) messages.

Theorem 5.1. The brute-force algorithm implements the SH mechanism with
Θ(n · p) message exchanges.

We next show a result strongly suggesting that the brute-force algorithm is es-
sentially optimal, i.e., that such quadratic dependence is inherent.

Lower Bound
We prove our lower bound for a particular class of distributed algorithms. These

algorithms start with real variables stored locally at the nodes and proceed by
exchanging messages between nodes, interleaved with local computations. Each
message is a real number, a linear combination of the variables at the sending site
and the messages received at the sending site at previous steps.15 If the coefficients
involved in these linear combinations are constant and fixed in advance, then the
algorithm is called an oblivious linear distributed algorithm.

A more general class of algorithms is the one in which the computation of the
next message to be sent from a node is a decision tree with comparisons of linear
combinations of the local variables and the messages received; the leaves of the tree
then compute linear combinations of the local variables and the previously received
messages. We call these the non-oblivious linear distributed algorithms, or simply
linear distributed algorithms, a class that includes all algorithms described in this
paper. In such algorithms, the space of all possible variable values of the initial
variables is subdivided into convex polytopes, and particular values for the constant
coefficients of the linear combinations prevail at each polytope.

14This simple case is essentially a distributed version of the linear-time algorithm given in [20].
15Synchronization is, of course, crucial in such algorithms. However, as will soon become

apparent, we shall be interested in distributed algorithms over two sites, in which message exchange
can be assumed to proceed in an orderly alternating fashion. Notice also that we assume that each
message is a real number with no bounds on size, precision, or other computational attributes,
in the spirit of algebraic complexity —a framework that excludes encoding tricks but includes all
algorithms presented in this paper and enables our algebraic lower-bounding argument.



We can show the following result, suggesting that, up to constant factors, the
brute-force algorithm is optimal with respect to the number of messages sent:

Theorem 5.2. There is an infinite family of multicast computations, with n

nodes and O(n) users, such that any linear distributed algorithm that implements
the SH mechanism requires in the worst case Ω(n2) message exchanges.

Proof. Consider a tree that is a path with nodes α0 through αn. The source is
α0, the cost of the link [αi, αi+1] is ci+1, each of the nodes αi, i = 1, . . . , n−1, has an
agent with utility ui, while there are n agents at αn, with utilities unj , j = 1, . . . , n.
For reasons of purely notational simplicity, we assume here that the cost ci is known
only by node αi−1 (and not by node αi); this assumption increases the number of
messages that need to be exchanged across each link by at most one. We shall show
that Ω(n2) messages are necessary. In particular, we shall show that i messages
must be exchanged across link [αi, αi+1], i = 0, . . . , n− 1.

Consider the last link [αn−1, αn]. (The general case is very similar and is ex-
plained below.) Suppose that the utilities ui are very large, while all n agents at
αn are excluded one by one at each iteration of the brute-force algorithm. Consider
the task of actually checking that the link costs and the utilities unj fall into this
case. When the unj are in decreasing order, this is tantamount to checking the
inequalities

unj <

n∑
i=1

ci

n + j − i
. (2)

Because we are only interested in the messages across link [αn−1, αn], we can regard
the network as two nodes, αn and another node α that is formed by merging all
the rest. The variables unj , j = 1, . . . , n, are local to node αn, while the variables
ci, i = 1, . . . , n, are known to the node α. The assertion of the Theorem follows
from the following general result about distributed computation:

Lemma 5.1. Any linear distributed algorithm by two nodes for checking the in-
equalities Ax+By > a (assumed to have a feasible solution), where x is an n-vector
known to node I, y is an n-vector known to node II, A, B are n × n nonsingular
matrices known to both, and a is an n-vector known to both, requires n message
exchanges.

Proof of the Lemma: Because we are assuming that linear operations are free and
that the matrices A and B are nonsingular, it is not a loss of generality to assume
that the inequalities to be checked are x < y. It is quite obvious that testing these
inequalities requires n messages; the careful proof follows.

Consider an oblivious distributed algorithm checking this with fewer than n mes-
sages. We shall identify a polytopal subdivision P of <2n as follows: Initially,
P = <2n, and we also set P0 = {(x, y) ∈ <2n : x = y}. Whenever a decision of
the two decision trees splits P , we select from among the two pieces of P the one
that (a) has a nonempty intersection with {(x, y) ∈ <2n : x < y} and (b) among
those, the one that contains the highest-dimensional piece of P0. Then the new P0



is defined as the intersection of the old P0 and the new P . Let P be the polytopal
subdivision at the end of the algorithm.

We call a step in which the dimension of P0 decreases a separation; at a separa-
tion, the dimension of P0 decreases by 1, because an inequality xi < yi was checked,
for some i. If the separation (that is, the test of the decision tree that caused it)
happened at node I, we call it a I-separation, otherwise a II-separation. Let sI and
sII denote the total number of I-separations and II-separations, respectively.

Case 1: Suppose that sI + sII < n. In this case, P contains a nontrivial P0, and
thus a point with xi = yi, for some i, and hence P is a polytope that contains a
point that satisfies x < y and one that does not. Therefore, it witnesses that the
algorithm is wrong.

Case 2: sI + sII ≥ n. Let mI be the number of messages received by I in this
branch of the algorithm and mII the number received by II. Recall that mI+mII <

n. It follows that either sI > mI or sII > mII; without loss of generality, assume
the former. Consider the sI steps at which I suffers its separations; at these steps,
the linear tests of I’s decision tree were x̂− ŷ, where x̂ and ŷ are x and y restricted
to sI indices. Now, these linear forms are linear combinations of x, plus the mI
messages received by I, and these latter messages are linear combinations of x and
y, say Cx + Dy for some mI × n matrices C and D. Thus, x̂ − ŷ can be written
as x̂ − ŷ = E(Cx + Dy) + Fx, for some sI ×mI matrix E and sI × n matrix F.
It follows from this equation that −ŷ = EDy, which is impossible, because matrix
ED has rank mI < sI. This contradiction completes the proof. 2

We would like to prove two extensions of this lower bound: The first deals with
nonlinear algebraic operations and the second with the case in which the costs ci

are known in advance. The first extension should be provable by exploiting some
algebraic-geometric understanding of the local structure of the high-dimensional
variety that would now be the analogue of Cx + Dy = b. The second seems to be
true but may require more sophisticated lower-bound techniques.

6. SUMMARY AND OPEN PROBLEMS

In this paper, we considered the problem of sharing the cost of a multicast trans-
mission. We assumed that multicast transmissions incurred per-link network costs
and that the strategyproof cost-sharing mechanisms had to satisfy the NPT, CS,
and VP conditions described in Section 2.2. Based on the characterization in [22]
of such mechanisms that are either budget-balanced or efficient, we focused on two
cost-sharing mechanisms: Marginal Cost and Shapley Value. The treatment in [22]
focused solely on the game-theoretic aspects of these two mechanisms, and our goal
here was to determine whether they could be feasibly implemented on a network.
We were thus led to analyze their network complexity, and the apparent gap be-
tween the network complexity of MC and that of SH was the topic of our main
results.

The MC mechanism is implementable with an algorithm that only requires a
single message sent in each direction on each link in the tree T (P ). Note that MC
has the following property, which we call “nonseparability”: The cost shares of an
agent can depend on those of every other agent with which it shares a link; that is,



for every i, j with T (i)∩T (j) 6= ∅, there are a set {c(l)}l∈L of link costs and utility
vectors u and v, uk = vk for all k 6= j, such that xi(u) 6= xi(v) or σi(u) 6= σi(v). For
example, the instances described at the end of the proof of Theorem 3.1 illustrate
the nonseparability of MC. Implementing a nonseparable mechanism requires that
at least one message traverse each link in T (P ). Our results thus imply that,
up to constant factors, the marginal-cost mechanism, which requires exactly two
messages to traverse each link (one in each direction), is as easy to implement as any
other nonseparable mechanism. Informally, we use the term “minimal” to describe
mechanisms that can be implemented with O(1) messages traversing each link.

By contrast, there is an infinite family of cases in which the SH mechanism
requires (in the limited computational model we considered) a linear number of
messages on a linear number of links. Note that this is roughly the same amount
of communication used by the centralized approach of sending all the ui and cj

values to a designated node, computing the resulting cost shares at that designated
node, and then sending the xi and σi values back to each node. This centralized
approach can be applied to all polynomial-time cost-sharing mechanisms; thus, at
least in the limited computational model we considered, no cost-sharing mechanisms
impose qualitatively higher communication burdens than SH. Informally, we use the
term “maximal” to describe mechanisms that require a linear number of messages
to traverse a linear number of links.

Therefore, the two mechanisms we considered are at the opposite ends of the
feasibility spectrum. Although the purely game-theoretic analysis in [22] gave little
guidance as to which might be more appropriate in practice, the network-complexity
analysis here leaves little doubt that only the MC cost-sharing mechanism is feasible
for large user populations. This example suggests that network complexity may be
an important factor in evaluating candidate cost-sharing mechanisms in distributed
systems.

Our study leaves many open questions. We divide them into four categories.
First, we know very little about minimal and maximal cost-sharing mechanisms

in general. Natural questions include:

• Are all nonseparable budget-balanced mechanisms (satisfying group strate-
gyproofness, CS, VP, and NPT) maximal? “Nonseparability” as we have defined it
here is not necessarily the only requirement to consider. One idea we are trying to
capture is that there may be budget-balanced mechanisms that achieve low network
complexity trivially by computing outputs σi(u) and xi(u) for user i that simply
don’t depend on most of the inputs c(l) and uj , j 6= i. Some form of “nontriviality”
requirement may thus be needed to make the question interesting; “nonseparabil-
ity” is one form that this requirement can take but not necessarily the only one.
In general, the question is whether the budget-balance requirement leads naturally,
with a few additional restrictions, to the infeasibility of the mechanism.

• Are there any efficient and strategyproof mechanisms besides Marginal Cost
that are minimal? Recall that MC was essentially the only efficient strategyproof
mechanism satisfying VP and NPT; thus, this question asks whether relaxing the
VP and/or NPT requirements would lead to mechanisms that were less easily im-
plementable than MC.



• What are the game-theoretic properties of strategyproof, minimal mechanisms?
Are there game-theoretic properties that are especially compatible with ease of
implementation?

Second, the current model is, in many ways, unrealistic; we should move beyond
the current model to see which factors significantly change the nature of the re-
sults. For example, it is doubtful that network providers would charge per-link for
transmissions. While it is not clear what a more realistic charging model would be,
it would be of interest to know how the results here would change as the charging
model changed. In addition, the NPT requirement – that users are not paid for
participating – does not apply to all real-world businesses, particularly e-businesses;
as noted above, we would like to determine the network-complexity properties of
cost-sharing mechanisms that do not have the NPT requirement.

In a similar vein, we can broaden the class of mechanisms considered by address-
ing different goals. Our treatment, following [22], only considered budget-balance
and efficiency as the two natural goals (in addition to our basic requirements of
strategyproofness, CS, VP, and NPT). However, profit maximization is also an im-
portant goal for economic mechanisms. While budget-balance and efficiency are
compatible with strategyproofness, the naive definition of maximal profit is not; all
profit-maximizing mechanisms are equivalent to the one that charges each agent in
the efficient coalition ui and excludes all agents not in the efficient coalition; this
is clearly not strategyproof. The open question is how to define a standard for
profit maximization that is compatible with strategyproofness. Goldberg et al. [8]
address this issue quite elegantly for the case in which there are no costs. Their ap-
proach does not appear to generalize easily to the case in which users incur different
network costs.

Third, one can try to develop a general theory of the network complexity of
mechanism-design problems, as Nisan and Ronen [23, 24, 25] have done for the
centralized complexity of these problems. It would be useful to be able to prove
that particular mechanisms are “complete” or “hard” for the relevant network com-
plexity classes. This will require formal computational models, appropriate notions
of “reduction,” and other basic ingredients of complexity theory. For all of the
Nash-implementation and strategyproof mechanisms in the literature, one can ask
whether they would be feasibly implementable if the users were on a network. In
this paper, the network setting is intrinsic to the statement of the problem, but
there will doubtless be situations in which agents involved in some other mecha-
nism interact via the network rather than being centrally located. The question
is whether network complexity is likely to be an important issue for these mecha-
nisms, and that will depend greatly on the particular setting. One problem domain
in which this might be important is distributed auctions; what class of strategyproof
auctions have low network complexity?

Fourth, and last, we can leave the game-theoretic considerations behind and focus
solely on the network complexity of various distributed functions. Viewing the ui

as general inputs and the xi as general outputs, one can ask which functions xi(u)
can be feasibly computed on a network. In particular, which other functions xi(u)
are minimal, which are maximal, and which are in between?
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