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Abstract

Some important classical mechanisms considered in Microeconomics

and Game Theory require the solution of a diÆcult optimization prob-

lem. This is true of mechanisms for combinatorial auctions, which have

in recent years assumed practical importance, and in particular of

the gold standard for combinatorial auctions, the Generalized Vickrey
Auction (GVA). Traditional analysis of these mechanisms - in partic-

ular, their truth revelation properties - assumes that the optimization

problems are solved precisely. In reality, these optimization problems

can usually be solved only in an approximate fashion. We investigate

the impact on such mechanisms of replacing exact solutions by approx-

imate ones. Speci�cally, we look at a particular greedy optimization

method. We show that the GVA payment scheme does not provide for

a truth revealing mechanism. We introduce another scheme that does

guarantee truthfulness for a restricted class of players. We demon-

strate the latter property by identifying natural properties for combi-

natorial auctions and showing that, for our restricted class of players,
they imply that truthful strategies are dominant. Those properties

have applicability beyond the speci�c auction studied.
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1 Introduction

This articles concerns combinatorial auctions (also called combinational),
that is, auctions in which multiple goods are available and in which bidders
can post bids for subsets, i.e. bundles, of the goods. Such auctions have be-
come the object of increased interest recently, in part because of the general
interest in auctions, and in part because of speci�c auctions in which combi-
natorial bidding would seem natural, such as the series of the FCC spectrum
auctions [13, 2, 14]. 1

Combinatorial auctions (henceforth CAs) typically require the solution of
one or more diÆcult optimization problems. The computational complexity
of these problems threatens to render the traditional auction designs a mere
theoretical construct. One approach to meeting this threat is to replace
the exact optimization by an approximate one. This, however, gives rise to
a new challenge: traditional analysis of established CA mechanisms relies
strongly on the fact that the goods are allocated in an optimal manner, and
the properties guaranteed by the mechanism (such as truthful bidding, to be
de�ned later), disappear if the allocation is anything less than optimal. This
is true in particular of the Generalized Vickrey Auction (GVA), also de�ned
later, which is widely taken to be the gold standard for CAs. The primary
focus of this article is to present a simple approximate optimization method
for CAs that possesses two attractive properties:

� the method performs a reasonably e�ective optimization, and

� there exists a novel payment scheme which, when coupled with the
approximate optimization method, makes for a combinatorial auction
in which truth-telling is a dominant strategy.

In order to show the latter property we identify several axioms which are
suÆcient to ensure truth-telling for a restricted class of players, in any com-
binatorial auction; these axioms are interesting in there own right, as they
can be applied to auctions other than the one discussed here.

Note: Since we aim to make this article easily accessible to both computer
scientists and game theorists, we include some rather basic material.

1Up until now the FCC auctions have not in fact been combinatorial, due in part to the

complexity problem discussed below. However, the FCC is currently actively considering

a combinatorial auction.
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2 A brief introduction to combinatorial auc-

tions

In this section we brie
y cover the notions of complementarity and substi-
tutability, as motivating CAs; the two degrees of freedom in a sealed-bid
CA, namely allocation and payment policies; and why one needs to be care-
ful when applying the desiderata of eÆciency and revenue maximization to
CAs.

2.1 Complementarity and substitutability

Throughout this article we shall consider single-side CAs with a single seller
and multiple buyers. The reverse situation with a single buyer and multiple
sellers is symmetric; the two-sided case, with multiple buyers and sellers, is
more complex, and lies outside the scope of this article. Let us assume, then,
that an auctioneer is selling a number of di�erent goods. In such a situation,
a bidder may be willing to pay more for the whole than the sum of what
he is willing to pay for the parts: this is the case if the parts complement
each other well, e.g., a left shoe and a right shoe. This phenomenon is called
complementarity. In other cases, a bidder may be willing to pay for the whole
only less than the sum of what he is willing to pay for the parts, maybe only
as much as one of the parts. This is especially the case if the bidder has
a limited budget or if the goods are similar, or interchangeable, e.g., two
tickets to the same performance. This phenomenon is called substitutability.
In general, complementarity and substitutability can both play heavily in the
same auction.

In the absence of complementarity and substitutability, i.e. if every par-
ticipant values a set of goods at the sum of the values of its elements, one
should organize the multiple auction as a set of independent simple auctions,
but, in the presence of complementarity, organizing the multiple auction as
a set or even a sequence of simple auctions will lead to less than optimal
results: e.g, a participant ending up with a left shoe and another one with
the right shoe, or the left shoe auctioned for almost nothing because bidders
fear not to be able to get the right shoe and the right shoe then auctioned
for nothing to the buyer of the left shoe since no one is interested in just a
right shoe. The problem is particularly acute when the complementarity and
substitutability relations vary among the various bidders.
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2.2 Specifying a combinatorial auction

Several auction designs have been proposed to deal with complementarity
and substitutability. The Simultaneous Ascending Auction was devised in
connection with the FCC Spectrum Auction mentioned above, but its discus-
sion is beyond the scope of this paper. In this paper, we shall consider only
what is perhaps the most obvious approach, which is to allow combinatorial
bidding. For the history of combinatorial auctions, see [18]. What does it
take to specify a CA? In general, any auction must specify three elements:
the bidding rules (that is, what one is allowed to bid for and when), the
market clearing rules (that is, when is it decided who bought what and who
pays what), and the information disclosure rules (that is, what information
about the bid state is disclosed to whom and when).

We will be considering only one-stage, sealed-bid CAs; in these, each
bidder submits zero or more bids, the auction clears, and the results are
announced. The third element of the speci�cation is thus straightforward:
no information is released about other bidders' bids prior to the close of the
auction.

The �rst element of the speci�cation is almost as straightforward: each
bidder may submit one or more bids, each of which mentions a subset of the
goods and a price. One has to be precise, however, about the semantics of
the collection of bids submitted by a single bidder; if I bid $5 for a and $7 for
b, what does it mean about my willingness to pay for fa; bg? If I bid $10 for
fa; bg and $20 for fb; cg, what does it mean about my willingness to pay for
fa; b; cg? This is not a mysterious issue, but one needs to be precise about it.
We shall return to this issue later when we discuss the notion of a bidder's
type.

The scheme above allows one to express complementarity. Bidding for
$5 for a, $7 for b and $15 for fa; bg clearly indicates complementarity. On
the face of it, though, substitutability cannot be expressed, since bidding $8
for fa; bg, $5 for a and $7 for b does not preclude, under the usual market
clearing rules, one being allocated a and b separately. However, a simple
encoding trick presented in [3] allows the expression of substitutability, at
least partially.

Thus, so far the designer of a combinatorial auction has no discretion.
Only the second element of speci�cation, the clearing policy, provides choices.
There are two choices to be made here: which goods does every bidder receive,
and how much does every bidder pay? We address these below.
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2.3 Maximizing eÆciency and revenue

The standard yardsticks for auction design, which are sometimes at odds
with one another, are guaranteeing eÆciency and maximizing (in our case,
the seller's) revenue. We shall be concentrating primarily on eÆciency in
this article, but a very preliminary study of revenue is found in section 13.
EÆciency means that the allocation (of goods and money) resulting from the
auction is Pareto optimal: no further trade among the buyers can improve
the situation of some trader without hurting any of them. This is typically
achieved by ensuring that the clearing rules maximize the sum of the values
the various bidders place on the actual allocation decided on by the auc-
tioneer. On the whole, one can expect that an eÆcient auction, after which
the participants are globally satis�ed, allows the seller to extract a higher
revenue than an ineÆcient auction after which the level of social satisfaction
is lesser. EÆciency, therefore, which may be a goal in itself, may also be
a step in the direction of revenue maximization. In fact, this correlation
holds only in part and auctions that are maximizing revenue are not always
eÆcient [16]. Nevertheless, we shall seek eÆcient, at least approximately,
auction mechanisms.

Note four problems here. We have already mentioned that bidders specify
bids, not their pro�le of preferences over bundles. This does not pose a real
challenge, so long as one is clear about the meaning of those bids. The
second one is that those pro�les of preferences over bundles do not allow
for a full speci�cation of preferences about the outcomes of the auction, i.e.
the resulting allocation. A bidder cannot express externalities, e.g. that he
would prefer, if he does not get a speci�c good, this good to be allocated
to bidder X and not to bidder Y . Third, we have an optimization problem
on our hand; as it turns out, it is an NP-hard optimization problem that
cannot be even approximated in a feasible way, in the worst case. This
means that for all practical purposes there does not exist a polynomial-time
algorithm for computing the optimal allocation, or even for computing an
allocation that is guaranteed to be o� from optimal by at most a constant,
any given constant. The fourth and deepest problem is that the optimization
is supposed to happen over the bidder's true valuations, as opposed to merely
their bid amounts, but that information is not available to the auctioneer and
the bidder will reveal this information only if it is in his/her best interest.

An ingenious method, discussed in the next section, has been developed
in game theory to overcome the fourth problem. The problem is that not
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only does it not address the second problem, it actually mildly exacerbates
it by requiring that the optimization be performed once for each bidder. The
primary goal of this paper is to devise a method which promises good (albeit
sub-optimal) eÆciency, while being computationally feasible. In a nutshell,
the goal is to simultaneously ensure economic and computational eÆciency.

3 Mechanism design for CA

In this section, we consider the design of combinatorial auctions as a problem
of designing a game of incomplete information for which the weakly-dominant
strategies present a good way of allocating the goods and paying for them.
The general setting is that of economic mechanism design: see [12, Chapter
23], for example, for an introduction to the �eld and [21] for a description
of auctions in this framework. Contrary to the latter, we shall restrict our
description to combinatorial auctions in which no externalities can be ex-
pressed. Informally, each bidder sends a message describing (truthfully or
not) his preferences, the auctioneer, then, computes the resulting allocation
of the goods and the payments, based on the bidders' messages but accord-
ing to rules known in advance. The mechanism is a truthful one if it is in
the best interest of the bidders to send messages that truthfully reveal their
preferences.

Formally, we consider a set P of n bidders. The indices i, j 1 � i; j � n,
will range over the bidders. Bidders are sel�sh, but rational, and trying
to maximize their utility in the �nal outcome. A bidder knows his own
utility function, i.e. his type, but this information is private and neither the
auctioneer nor the other players have access to it. The �nal result of an
auction consists of two elements: an allocation of the goods and a vector of
payments from the bidders to the auctioneer, both of which are functions
of the bidders' declarations, i.e. bids. Formally, we have a �nite set G of
k goods and an allocation is a partial function from G to P , i.e. a function
a : G! P 0, with P 0 = P [ funallocatedg, since we do not insist that all
goods be allocated. Notice that the allocations produced by the Generalized
Vickrey Auctions of section 4 and by our Greedy algorithm 7 are not always
total. The set of outcomes, i.e. allocations, is O = P 0G, the set of partial
functions from G to P . Since we do not allow for externalities, the set �i of
the possible types for bidder i isR+

2G , whereR+ is the set of all non-negative
real numbers. Notice that such a type allows for both complementarity and
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substitutability, but not for externalities. Since the set �i does not depend
on i, we shall write �. An element of � assigns a real non-negative valuation
to every possible bundle. The set � is also the set of messages that bidder
i may send. A bidder may send any element of �, irrespective of his (true)
type, i.e. a bidder may lie. We shall typically use t to denote a (true) type,
d to denote a message, T or D to denote vectors of n types and P for a
payment vector, i.e. a vector of n non-negative numbers.

Since we assume the Independent Value Model and Quasi-Linear utilities,
fairly standard assumptions in the �eld, the utility, for a bidder of type t, of
bundle s and payment x is:

u = t(s)� x (1)

De�nition 1 A (direct) mechanism for combinatorial auctions consists of

� an allocation algorithm f that picks, for each vector D (D is a vector
of declared types), an allocation f(D),

� a payment scheme p that determines, for each vector D a payment
vector p(D): pi(D) is paid by bidder i to the auctioneer.

Let us denote the bundle obtained by i as:

gi(D) = f(D)�1(i) (2)

Notation: In general gi depends on the allocation algorithm f , but when f
is clear from the context we shall abuse the notation and treat gi as a direct
function of the bid vector, D. Equation 1 implies that if bidder i has (true)
type t, his utility from the mechanism is:

ui = t(gi(D))� pi(D); (3)

where D = hd1; : : : ; dni is the vector of declarations.
The �rst term of this sum, t(gi(D)) is often called the valuation of i:

vi(f(D); t). The game-theoretic solution concept used throughout this paper
is that of a weakly-dominant strategy, that is a strategy that is as good as
any other for a given player, no matter what other players do. This is in
contrast with the weaker and more common notion of Nash equilibria. The
particular property we would like to ensure for our mechanism is that the
dominant strategy for each player is to bid his true valuation; in other words,
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no bidder can be better-o� by lying, no matter how other bidders behave.
This is obviously a very strong requirement.

A mechanism is truthful if no bidder can be better-o� by lying, even if
other bidders lie. This is a very strong requirement, making for a very sturdy
mechanism.

De�nition 2 A mechanism hf; pi is truthful if and only if for every i 2 P ,
t 2 � and any vector D of declarations, if D0 is the vector obtained from D by
replacing the i-th coordinate di by t, then: t(gi(D

0))� pi(D
0) � t(gi(D))� pi(D).

In the de�nition above, t is the true type of bidder i and D is a vector of
declared types. The term t(gi(D)) represents the true satisfaction i receives
from the allocation resulting from declarations D and t(gi(D

0)) represents
his true satisfaction from the allocation that would have been obtained had
i been truthful.

4 The generalized Vickrey auction

A very general method for design truthful mechanisms has been devised by
Clarke and Groves [1, 5]. Applied to combinatorial auctions it generalizes the
second price auctions of Vickrey [22]. We shall now describe those generalized
Vickrey auctions, prove that the mechanism described is truthful and then
discuss the complexity issues that render those auctions unfeasible when k,
the number of goods, is large. Generalized Vickrey Auctions (GVAs) appear
to be part of the folklore of mechanism design. A description of a more
general type may be found in [11, 21]; we adopt a special case of it, one
which does not allow for externalities.

In a GVA, the allocation chosen maximizes the sum of the declared val-
uations of the bidders, each bidder receives a monetary amount that equals
the sum of the declared valuations of all other bidders, and pays the auction-
eer the sum of such valuations that would have been obtained if he had not
participated in the auction. A way to describe such an auction, in which i
does not participate, is to consider the auction in which bidder i declares a
zero valuation for all possible bundles. A bidder with zero valuation for all
bundles has no in
uence on the outcome.

Formally, given a vector D of declarations, the generalized Vickrey auc-
tion de�nes the allocation and payment policies as follows (notice that a�1(i)
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is the bundle allocated to i by allocation a, and that gi is de�ned in Equa-
tion 2):

f(D) = argmaxa2O

nX
i=1

di(a
�1(i)); (4)

pj(D) = �
nX

i=1;i6=j

di(gi(D)) +
nX

i=1;i6=j

di(gi(Z)) (5)

where Zi = Di for any i 6= j and Zj(s) = 0 for any bundle s � G. Since
dj(gj(Z)) = 0, we may as well have written:

pj(D) = �
nX

i=1;i6=j

di(gi(D)) +
nX
i=1

di(gi(Z)) (6)

A proof of the truthfulness of the Clarke-Groves-Vickrey mechanism may be
found, for example in [12, Proposition 23.C.4]. We include the proof here
only to stress how easy it is.

Theorem 1 The generalized Vickrey auction is a truthful mechanism.

Proof: Assume j 2 P , t 2 �, D is a vector of declarations, and D0
i = Di for

any i 6= j and D0
j = t. By Equation 4,

nX
i=1

d0i(gi(D
0)) �

nX
i=1

d0i(gi(D)):

But, for E = D;D0 we have:

d0i(gi(E)) = di(gi(E)); if i 6= j and d0j(gj(E)) = t(gj(E)):

Therefore,

t(gj(D
0))� pj(D

0) +
nX

i=1;i6=j

di(gi(Z)) � t(gj(D))� pj(D) +
nX

i=1;i6=j

di(gi(Z))

and t(gj(D
0))� pj(D

0) � t(gj(D))� pj(D).

Notice that the second term in the payment of j does not depend on j's
declaration and is therefore irrelevant to his decision on what to declare. A
feature of the GVA is that no truthful bidder's utility can be negative.

Proposition 1 If j is truthful, his utility uj in the GVA is non-negative.
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Proof: By Equation 3, since j is truthful, by Equation 6 and �nally by
Equation 4:

uj = dj(gj(D))+
nX

i=1;i6=j

di(gi(D))�
nX
i=1

di(gi(Z)) =
nX
i=1

di(gi(D))�
nX
i=1

di(gi(Z)) � 0

Since bidders truthfully declare their type and the allocation maximizes the
sum of the declared utilities, in a GVA, the allocation maximizes the sum of
the true valuations of the bidders, i.e. the social welfare. In a quasi-linear
setting, this is equivalent to Pareto optimality. Therefore a GVA is Pareto
optimal. The mechanism to be presented in section 10 only approximately
maximizes the sum of the true valuations of the bidders, and is not Pareto
optimal.

As we discuss in the following sections, it is known that algorithmic com-
plexity considerations imply that Pareto optimality cannot be feasibly at-
tained. Speci�cally, ensuring Pareto eÆciency requires solving an intractable
optimization problem. This is true even if we restrict the class of bidders
severely, as we propose in section 5.

5 Single-minded bidders

As is customary, we shall consider that any algorithm whose running-time is
polynomial in k and n is feasible, but any algorithm whose running-time is
not polynomial in k or in n is unfeasible. The size of the set O of allocations
is exponential in k, if there are at least two bidders, and the set � of possible
types is doubly-exponential in k. Since, in a direct mechanism (we consider
no others), the message that a bidder sends describes one speci�c element
(type) of �, a bidder needs an exponential number of bits to describe his type:
the length of the messages sent in any such mechanism, and in a generalized
Vickrey auction, is exponential in k, therefore unfeasible. The design of a
feasible version of the GVA must begin, therefore, by reducing the set of
possible types to some set of singly-exponential size. All implementations of
auctions assume that the bidders express their preferences by a small set of
bids. We shall start with a most sweeping restriction: in Section 11 we shall
consider relaxing this restriction.

We shall assume that bidders are single-minded and care only about one
speci�c (bidder-dependent) set of goods: if they do not get this set they value
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the outcome at the lowest possible value: 0. In other words, our bidders are
restricted to one single bid.

De�nition 3 Bidder i is single-minded if and only if there is a set s � G of
goods and a value v 2 R+ such that its type t can be described as: t(s0) = v
if s � s0 and t(s0) = 0 otherwise.

We shall denote by hs; vi the type just described. Note that a single-minded
bidder enjoys free disposal. We shall assume, in most of this paper, that all
bidders are single-minded, i.e. there are sets of goods si and non-negative
real numbers vi such that bidder i is of type hsi; vii. We shall denote by �
the set of all single-minded types. The size of the set �, contrary to the size
of �, is singly-exponential in k. A string of polynomial size will be enough
to code the declarations of the bidders: it will describe a set of goods and a
value. In this setting, we identify bids and bidders.

Note that in a simple auction, i.e. k = 1, a bidder is single-minded if he
values at 0 all allocations in which he does not obtain the good and at some
non-negative value the allocation in which he gets the good. So, essentially,
in a simple auction, a single-minded bidder is a bidder who does not care
who gets the object if he does not get it, i.e. has no externalities.

We shall design a feasible truthful mechanism for combinatorial auctions
among single-minded bidders. It may at �rst seem that this is a futile exer-
cise, but at least anecdotal evidence suggests that this single-mindedness is
not an uncommon situation. Indeed, R. Wilson [23] reports that, in the GVA
used for selling timber harvesting rights in New Zealand, the bidders were
almost single-minded: they were typically interested in all of the locations
in a speci�c geographical area. It might also seem that this restriction does
away with the computational issue; however, as we see in the next section,
GVAs are unfeasible even with the restriction to single-minded bidders. In
Section 11, we shall discuss the generalization of our results to larger families
of bidders.

6 Unfeasibility of the GVA

Let us now assume that all bidders are single-minded, i.e. the set of all
possible types is now �. It follows easily from Proposition 1 that, in a GVA,
a single-minded bidder of type hs; vi never pays more than v and pays nothing
if he is not allocated the whole set s.
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In a GVA, the allocation is the one de�ned in Equation 4. Computing
this allocation requires optimizing

Pn
i=1 di(a) over all a's in the set O that is

of exponential size. One may suspect that this an unfeasible task. Indeed,
the problem of �nding the allocation of Equation 4 has been shown in [19]
to be unfeasible. We remark that the restriction to single-minded bidders
does nothing to alleviate the problem. Some care is needed in describing
the NP-hardness result because we have two parameters to deal with: k, the
number of goods and n, the number of bidders.

Theorem 2 Let a single-minded type di = hsi; vii, si � G, vi 2 R+ be given
for each bidder i 2 P . Let j G j= k and j P j= n. If k and n grow in a poly-
nomially related way, the problem of �nding an allocation a that maximizesPn

i=1 di(a) is NP-hard. Moreover, the existence of a polynomial time algo-
rithm guaranteed to �nd an allocation whose value is at least k�1=2+� times
the value of the optimal solution would imply that NP = ZPP.

A short note on complexity classes: in the above, NP is the class of sets
for which membership can be decided non-deterministically in polynomial
time and ZPP is the class of sets for which there is some constant c and
a probabilistic Turing machine M that on input x runs in expected time
O(j x jc) and outputs 1 if and only if x 2 L. The question of whether NP =
ZPP is a deep open question in theoretical computer science, related with the
famous P = NP question. NP = ZPP is not known to imply P = NP, but does
imply NP = RP = co-RP = co-NP. P = NP obviously implies NP = ZPP.
RP is the class of sets for which membership can be decided in polynomial
time by a randomizing algorithm. The class co-RP is the class of sets whose
complements are in RP: non-membership can be decided polynomially by a
randomizing algorithm. Similarly for co-NP. (end of short note).
Proof: The problem at hand may be described as the weighted version of
the Set Packing problem of [8]. Karp shows that Set Packing is NP-hard by
reducing the Clique problem to it. The k used in this reduction is of the order
of n2. A direct reduction of Clique to our allocation problem is obtained in
the following way. Given a graph G, let the goods be the edges and the bids
be the vertices. Each vertex requests the edges it is adjacent to for a price
of 1. An optimal allocation is a maximal independent vertex set. H�astad [7]
has shown that Clique cannot be approximated within j V j1�� unless NP =
ZPP. The reduction mentioned above shows our claim.

In Theorem 2, we required k and n to grow in a polynomially related way.
This restriction is needed. On one hand, if n � log k, an optimal allocation
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may be found in time linear in k. On the other hand, if k � logn, then
dynamic programming provides an optimal allocation in time quadratic in
n, as shown in [19].

Let us now consider the signi�cance of Theorem 2. Even if (single-
minded) bidders declare their type truthfully, we cannot always attain an
eÆcient allocation. Global restrictions on the structure of the set of bidders
are considered in [19] and shown to allow a polynomial search for the eÆcient
allocation. They restrict the possible types of the bidders to a small subset of
�, based on some inherent structure of G. It does not seem those restrictions
can be met in practice.

If the number of goods is large, we may either �nd an algorithm that
computes the eÆcient allocation but may, in the worst cases, never termi-
nate (for all practical purposes) or settle for an algorithm that provides a
sub-eÆcient allocation. Both ideas have been proposed in [3, 20]. But the
impact of such an approximation on the quality of the mechanism, i.e. its
truthfulness, or the revenue it generates, has not been studied. A pioneering
study of the properties of approximate mechanisms, but not for combinato-
rial auctions, may be found in [17]. In section 7, we shall provide a feasible
approximation algorithm that appears to be very e�ective in practice and,
in section 10, we shall describe a payment scheme, di�erent from the GVA's,
that guarantees truthfulness. The payment scheme is carefully tailored to
the speci�c approximation algorithm.

7 The greedy allocation

Since an eÆcient solution seems out of reach, we shall look for an approxi-
mately eÆcient solution. We shall propose a family of algorithms that pro-
vide such an approximation. Each of those algorithms runs in almost linear
time in n, the number of single-minded bidders. One algorithm of the family
guarantees an approximation ratio of k�1=2.

A single-minded bidder declaring hs; ai, with s � G and a 2 R+ will be
said to put out a bid b = hs; ai. We shall use s(b) and a(b) to denote the
components of b and call a(b) the amount of the bid b. As explained in
section 5, we identify bids and bidders. Two bids b = hs; ai and b0 = hs0; a0i
con
ict if s \ s0 6= ;.

The algorithms we consider execute in two phases.

� in the �rst phase, the bids are sorted by some criterion. The algorithms
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of the family are distinguished by the di�erent criteria they use. Since
there are n bids, this phase takes time of the order of n logn. We
assume a criterion, i.e. a norm is de�ned and the bids are sorted in
decreasing order following this norm. Since we shall have, in Theorem 5,
to compare the sorted lists of bids of slightly di�erent auctions, we
also assume a consistent treatment of ties, i.e., bids with equal norms.
Formally, we shall assume that no two di�erent bids have the same
norm, i.e., there are no ties.

� in the second phase, a greedy algorithm generates an allocation. Let
L be the list of sorted bids obtained in the �rst phase. The �rst bid
of L, say b = hs; ai is granted, i.e. the set s will be allocated to b and
then the algorithm examines each bid of L, in order, and grants it if it
does not con
ict with any of the bids previously granted. If it does, it
denies, i.e. does not grant, the bid. This phase requires time linear in
n.

The use of such a greedy scheme is very straightforward and speedy. We
shall now discuss its eÆciency: how eÆcient is the allocation generated? The
eÆciency of the allocation generated depends obviously both on the criterion
used in the �rst phase and on the types of the bidders, or on the distribution
with which the bidders are generated. It is clear that, to obtain allocations
close to eÆciency, one should use a norm that pushes bids that have a good
chance to be part of an eÆcient allocation toward the beginning of the list
L. The amount of a bid is a good criterion in this respect: we want bids
with higher amounts to have a larger norm than bids with lower amounts,
at least when the bids are for the same set of goods. Similarly, leaving the
amount of a bid unchanged but making its bundle a smaller set (inclusion-
wise), should also increase the norm. We shall require that changing s to s0

with s0 � s or changing v to v0 with v0 > v increase the norm of a bid. Let
us call this property bid-monotonicity. This is the only requirement we shall
make. Many criteria satisfy it.

In real-life situations, one can typically �nd a suitable natural norm re-
lated to the economic parameters of the bundle that measures the a-priori
attractiveness of the bid (for the auctioneer). In the FCC auction, goods
(licenses) are characterized by the population they cover. The (inverse of
the) sum of those populations is a good indicator. In the abstract, if we
know nothing concrete about the goods, our best bet is to use the size of
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the set of goods mentioned in a bid. We shall look in particular at the
average-amount-per-good measure.

De�nition 4 The average amount per good of a bid b = hs; ai is a
jsj
.

Sorting the list L by descending average amount per good is a very reason-
able idea. But many other possibilities may be considered. Sorting L by
descending amounts for example, or, more generally sorting L by a criterion
of the form a

jsjl
for some number l, l � 0, possibly depending on k. All such

criteria satisfy bid-monotonicity.
How good is the greedy allocation in comparison with the optimal one?

For l = 1, the worst case may be analyzed without much diÆculty. The ratio
between the total value of the optimal allocation and that of the allocation
found by the greedy algorithm cannot be larger than k, and this bound
is tight. As usual in this sort of situations, on the average, on realistic
distributions of bids, the performance of the greedy allocation scheme is
much better than the lower bound above. We have been able to perform a
full analysis of the worst case performance of those norms for di�erent l's
and found out that l = 1=2 is best: it guarantees an approximation ratio
of at least

p
k and, by Theorem 2, this is, up to a multiplicative constant,

essentially, the best approximation ratio one can hope for a polynomial-time
algorithm. The

p
k upper-bound improves on the previously best known

result of [6] by a factor of 2. The following has, since, been generalized to
multi-unit combinatorial auctions in [4].

Theorem 3 The greedy allocation scheme with norm a

jsj1=2
approximates the

optimal allocation within a factor of
p
k.

Proof: Assume the bids (i.e., bidders) are hsi; aii for i = 1; : : : ; n. Let
wi =j si j. Our norm is: ri = ai=

p
wi. Let OP be the optimal solution, i.e.,

the set of bids contained in the optimal solution. The value of the optimal
solution is � =

P
i2OP ai. Let GR be the solution obtained by the greedy

allocation and � its value: � =
P

i2GR ai. We want to show that:

� � �
p
k: (7)

Notice, �rst, that we may, without loss of generality, assume that the sets
OP and GR have no bid in common. Indeed, if they have, one considers the
problem in which the common bids and all the units they request have been
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removed. The greedy and optimal solutions of the new problem are similar
to the old ones and the inequality for the new smaller problem implies the
same for the original problem.

Let us consider �. By elementary algebraic considerations:

� =
X
i2GR

ai �
sX

i2GR

ai2 =
sX

i2GR

ri2 wi

Consider �. By the Cauchy-Schwarz inequality:

� =
X
i2OP

ri
p
wi �

s X
i2OP

ri2
s X

i2OP

wi:

The expression
P

i2OP wi represents the total number of goods allocated in
the optimal allocation OP and is therefore bounded from above by k, the
number of goods available. We conclude that:

� �
s X

i2OP

ri2
p
k:

To prove (7), it will be enough, then, to prove that:

X
i2OP

ri
2 � X

i2GR

ri
2 wi:

Consider the optimal solution OP . By assumption, the bids of OP did
not enter the greedy solution GR. This means that, at the time any such
bid i is considered during the execution of the greedy algorithm, it cannot
be entered in the partial allocation already built. This implies that there is
a good l 2 si that has already been allocated in the partial greedy solution,
i.e., there is a bid j in GR, with rj � ri and l 2 sj.

A number of di�erent bids from OP may, in this way be associated with
the same bid j of GR, but at most wj di�erent bids of OP may be associated
with bid j of GR, since the sets of goods requested by two di�erent bids of
OP have an empty intersection. If OPj is the set of bids of OP that are
associated with bid j: X

i2OPj

ri
2 � rj

2 wj:
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In other words, the greedy scheme does not guarantee any �xed ratio of
approximation, but guarantees the best achievable ratio (assuming NP 6=
ZPP). Experiments reported about in [4] have con�rmed that, on average for
a speci�c distribution, the greedy algorithm using the norm of Theorem 3
performs extremely well, much better than the lower bound described in the
Theorem. More experiments are necessary to study the average case perfor-
mance of di�erent norms. In the sequel, all examples will use the average
amount per good criterion but it is not diÆcult to �nd similar examples for
any criterion of the form a

jsjl
.

Example 1 Assume there are two goods a and b and three bidders Red,
Green and Blue. Red bids 10 for a, Green bids 19 for the set fa; bg and
Blue bids 8 for b. We sort the bids by decreasing average amount and obtain:
Red's bid for a (average 10), Green's bid for fa; bg (average 9:5) and Blue's
bid for b (average 8). The greedy algorithm grants Red's bid for a, denies
Green's bid for fa; bg since it con
icts with Red's and grants Blue's bid for
b. The allocation is not eÆcient. The eÆcient allocation grants Green's bid
for fa; bg and denies both other bids.

Our goal is to devise truthful mechanisms for combinatorial auctions
among single-minded bidders. Given a suitable greedy allocation, can one
�nd a payment scheme that makes the pair a truthful mechanism?

8 Greedy allocation and Clarke's payment scheme

do not make a truthful mechanism, even for

single-minded bidders

In section 10, a mechanism based on the greedy allocation will be built and
shown to be truthful if all bidders are single-minded. In this section, we show
that the use of Clarke's payment scheme, used in the GVA and described in
Equation 5, in conjunction with the greedy allocation does not make for a
truthful mechanism, even if bidders are single-minded. In other terms, if
the greedy allocation and Clarke's payment scheme are used, a bidder may
have an incentive to lie about his valuation. The payment scheme used in
the truthful mechanism of section 10 is di�erent from Clarke's. This is in
stark contrast with the almost universal use of Clarke's scheme for devising
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mechanisms that are truthful in dominant strategies. Even in [17] where
approximate mechanisms are shown to be truthful, the payment schemes are
Clarke's scheme.

A very simple example will suÆce.

Example 2 As in Example 1, there are two goods a and b and three bidders
Red, Green, and Blue. Red bids 10 for a, Green bids 19 for the set fa; bg
and Blue bids 8 for b. The greedy algorithm grants Red's and Blue's bids and
denies Green's bid, i.e. f(D)(a) = Red and f(D)(b) = Blue. We shall now
compute Red's payment. For this allocation we have the following declared
valuations: vBlue = 8 and vGreen = 0. If Red had bid zero, the greedy algo-
rithm would have granted Green's bid and denied Blue's bid. Therefore, the
allocation f(Z) is de�ned by: f(Z)(a) = f(Z)(b) = Green, where vBlue = 0
and vGreen = 19. Clarke's payment scheme gives to Red: 8� 0 for Blue and
0�19 for Green, i.e. Red pays 11. Red ends up paying more than the amount
he declared. If Red has been truthful and his valuation is indeed 10, his utility
is �1. He would have been better o� lying, under-bidding at, say 9, or 0. In
such a case the greedy algorithm would have granted Green's bid and denied
Blue's and Red's bids and the payment to Red would have been zero, making
his utility 0, better than �1.
Since this example is very simple and can be embedded in many more com-
plex situations, we may conclude that, typically, the use of a method that
is only approximately eÆcient is incompatible with the use of a Clarke's
payment scheme. The next sections present a positive result: there is a pay-
ment scheme (necessarily di�erent from Clarke's) that makes truth-telling a
dominant strategy.

9 A suÆcient condition for a truthful mech-

anism for single-minded bidders

We shall describe in this section a number of properties of allocation schemes
and of payment schemes for combinatorial auctions. Those properties seem
natural properties to expect from a truthful mechanism and they are sat-
is�ed by the GVA. We shall then show that any mechanism that satis�es
those properties is truthful. In the literature, incentive-compatibility (i.e.,
truthfulness) seems to have been considered only in connection with eÆ-
cient mechanisms, i.e., mechanisms that allocate the goods in an optimal
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way (see [10, 15] for example). The conditions presented here are remark-
able in that they apply to non-eÆcient mechanisms too. In section 10, we
shall describe a payment scheme and show that the greedy allocation scheme,
together with this new payment scheme, satisfy those properties. The prop-
erties we are about to describe concern combinatorial auctions among single-
minded bidders. The question of generalizing those conditions to a more
general setting is an intriguing one. Independently of this work, such a
setting has been proposed in [9]. Their setting is rich enough to encom-
pass combinatorial auctions among single-minded bidders, but not among
arbitrary bidders. Our mechanism does not satisfy their Axiom 2 and its
payment scheme is not of the Clarke's type they propose. The properties
below are suÆcient conditions for truthfulness and we do not claim they are
necessary. Some of them are obviously not necessary. Nevertheless many of
those properties can be shown to be necessary in the presence of others and
for some others one can show that given any truthful mechanism one can
easily describe another similar truthful mechanism that satis�es them. We
leave to further work the exact characterization of truthful mechanisms for
combinatorial auctions among single-minded bidders.

The general structure of the properties of interest is that they consider a
given set of single-minded types and vary one of those types. They restrict
the changes that can appear in the allocation or the payments as a result of
such a change. Let declarations be �xed, but arbitrary, for all bidders except
j. Consider two possible declarations for j: hs; vi and hs0; v0i. Given an
allocation scheme f and a payment scheme p, we shall consider the allocations
and payments generated by both declarations of j. Let gi be the set of goods
obtained by bidder i if j declares hs; vi, and g0i the set he obtains if j declares
hs0; v0i. Similarly denote by pi and p0i the payments of i.

Our �rst property requires that the allocation, among single-minded bid-
ders, be exact, i.e. a single-minded bidder either gets exactly the set of goods
he desires, nothing added, or he gets nothing. He never gets only part of
what he requested. This is a very natural property, when dealing with single-
minded bidders: the valuation of the bidder does not increase by giving him
part of what he requested instead of nothing or by giving him more than
what he requested instead of just the bundle he requested.

Exactness Either gj = s or gj = ;
In an exact allocation, we shall say that j's bid is granted in the �rst case,
and denied in the second case. In such a scheme, the allocation may be
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viewed as a set of bids (or bidders) that is con
ict-free, i.e. the s coordinates
have pairwise empty intersections. A GVA, as we de�ned it, does not in fact
always satisfy Exactness. If nobody is interested in a, an optimal allocation
could still allocate it to one of the bidders. An obvious modi�cation of the
GVA for single-minded bidders can ensure Exactness.

Our next property, Monotonicity, also concerns only the allocation scheme.
It requires that, if j's bid is granted if he declares hs; vi, it is also granted
if he declares hs0; v0i for any s0 � s, v0 � v. In other words: proposing more
money for fewer goods cannot cause a bidder to lose his bid. It follows that,
similarly, o�ering less money for more goods cannot cause a lost bid to win.
Formally:

Monotonicity s � gj; s
0 � s; v0 � v ) s0 � g0j

The GVA's allocation scheme picks the eÆcient allocation, i.e. the allocation
that maximizes the sum of the amounts of a con
ict-free subset of bids. If a
bid is included in the optimal allocation and its amount increases then the
same allocation's total amount increases by the same amount and therefore
stays optimal. Similarly, if the amount stays unchanged but the set of goods
requested becomes smaller (inclusion-wise), the previous allocation, after the
obvious change, is still con
ict-free and its total amount has not changed.
Any allocation not containing the new bid was a suitable allocation before
the change and therefore is not better. Similarly, if a bid is denied and its
amount decreases, the optimal allocation's value stays �xed but the value of
any allocation including the bid decreases, and similarly when varying the
set s. We conclude that, assuming that there is a unique optimal allocation,
the GVA's allocation scheme satis�es Monotonicity. In general, when many
allocations could be tied for optimality, a GVA scheme may not be monotonic,
but one may may modify the GVA scheme to ensure Monotonicity.

We must immediately consider the consequences of Monotonicity, since
we shall need them in stating the upcoming Critical property.

Lemma 1 In a mechanism that satis�es Exactness and Monotonicity, given
a bidder j, a set s of goods and declarations for all other bidders, there exists
a critical value vc such that

8v; v < vc ) gj = ;;
8v; v > vc ) gj = s;
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We allow vc to be in�nite if f(As;v)�1(j) = ; for every v. Note that we do
not know whether j's bid is granted or not in case v = vc.
Proof: By Monotonicity, the set of v's for which gj = ; is empty (in which
case take vc = 0), of the form [0; vc[, of the form [0; vc] or equal to R+.

Our third property deals with a satis�ed bidder: a satis�ed bidder pays
exactly the critical value of Lemma 1, i.e. the lowest value he could have
declared and still be allocated the goods he desires.

Critical s � gj ) pj = vc

Notice that Critical says, �rst, that the payment for a bid that is granted
does not depend on the amount of the bid, it depends only on the other bids.
Then it says that it is exactly equal to the critical value below which the bid
would have lost.

Critical is a necessary property for a truthful mechanism that satis�es Ex-
actness, Monotonicity and the Participation property below. If the payment
p is smaller than vc, any bidder with real value between p and vc looses if he
declares truthfully but wins and pays less than his true value if he declares
just above vc. If the payment p is larger than vc, any bidder with real value
between vc and p wins but gets negative utility if he declares truthfully and
would be better o� declaring a value below vc and loosing. Since a GVA
is truthful and satis�es Exactness, Monotonicity and Participation, it also
satis�es Critical.

Our last property concerns the payment scheme. Together with Critical,
it implies that the utility of no truthful bidder is negative. It concerns unsat-
is�ed bidders, i.e. bids that are denied. We require that an unsatis�ed bidder
pay zero. The utility of an unsatis�ed bidder is then zero. This is simply
tuning the utility scales of the di�erent bidders, or, ensuring that bidders
may not loose by participating in the auction.

Participation s 6� gj ) pj = 0

A GVA satis�es Participation. In fact the second term of Equation 5 is
precisely tuned to satisfy Participation.

Any mechanism that satis�es the conditions above is truthful. A number
of preliminary lemmas are needed.

Lemma 2 In a mechanism that satis�es Exactness and Participation, a bid-
der whose bid is denied has utility zero.
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Proof: By Exactness, the bidder gets nothing and his valuation is zero. By
Participation his payment is zero.

Lemma 3 In a mechanism that satis�es Exactness, Monotonicity, Partici-
pation and Critical a truthful bidder's utility is non-negative.

Proof: If j's bid is denied, we conclude by Lemma 2. Assume j's bid
is granted and his type is hs; vi. Since he is truthful, his declaration is
dj = hs; vi. We conclude that j is allocated s and his valuation is v. By
Lemma 1, since j's bid is granted, v � vc. By Critical, j's payment is vc, and
his utility is v � vc � 0.

The next lemma shows that a bidder cannot bene�t from lying just about
his value (he truthfully declares the set of goods he is interested in).

Lemma 4 In a mechanism that satis�es Exactness, Monotonicity, Partic-
ipation and Critical, a bidder j of type hs; vi is never better o� declaring
hs; v0i for some v0 6= v than by being truthful.

Proof: Compare the case j bids, truthfully, hs; vi and the case he bids
hs; v0i. Let gj be the bundle he gets in the �rst case and g0j the bundle he
gets in the second case. If j's bid is denied in the second case, i.e. if g0j 6= s,
then, by Lemma 2 his utility is zero in the second case and by Lemma 3 his
utility in the �rst case is non-negative. The claim holds.

Assume therefore that g0j = s. If both bids are granted, j has the same
valuation (v) and pays the same payment, vc (by Critical). If g0j = s but
gj = ;, it must be the case that v � vc � v0. Being truthful gives j, by
Lemma 2, zero utility. Lying gives him utility v � vc � 0.

Lemma 5 In a mechanism that satis�es Exactness, Monotonicity and Crit-
ical, a bidder j declaring type hs; vi whose bid is granted, i.e. gj = s, pays a
price pj that is at least the price p0j that he would have paid had he declared
his type as hs0; vi for any s0 � s.

Proof: By Monotonicity, the bid hs0; vi would have been granted and by
Critical, the price p0j paid for such a bid satis�es: for any x < p0j the bid
hs0; xi would not have been granted. By Monotonicity, for any such x the bid
hs; xi would not have been granted. By Critical, for any x such that x > pj,
the bid hs; xi would have been granted. We conclude that p0j � pj.

Finally we may prove a central result.
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Theorem 4 If a mechanism satis�es Exactness, Monotonicity, Participa-
tion and Critical, then it is a truthful mechanism.

Proof: Suppose j's type is hs; vi. Could j have any interest in declaring
his type as hs0; v0i? By Lemma 3 the only case we have to consider is when
declaring hs0; v0i j gets a positive utility, and by Lemma 2 this means that
j's bid is granted. Assume, therefore that g0j = s0. If s 6� s0, the valuation of
j is zero. Since, by Critical, his payment is non-negative, his utility cannot
be positive. Assume then s � s0. Since j's valuation for s0 is the same as for
s, Lemma 5 implies that, instead of declaring hs0; v0i, j would not have been
worse-o� by declaring hs; v0i. Lemma 4 implies that declaring hs; v0i cannot
be better than being truthful.

10 A truthful mechanism with greedy alloca-

tion

We shall now describe the payment mechanism that we propose to be used
in conjunction with the greedy allocation of section 7. The description of the
payments is tightly linked with that of the greedy algorithm. The computa-
tion of the payment is performed in parallel with the execution of the greedy
algorithm and takes time linear in the number of bidders for each payment.
On the whole computing the allocation and the payments takes time at most
quadratic in the number of bids.

We assume that the criterion used is average amount per good, the adap-
tation to most other suitable greedy allocations is obvious. Informally, a
bidder pays, per good, the average price proposed by the �rst bid in the list
L that is denied because of this bid. Consider a bid j in L. Let c(j) be
the average amount per good of j. We shall denote by n(j) the �rst bid
following j (bids are sorted in decreasing order, i.e. c(j) � c(n(j))) that has
been denied but would have been granted were it not for the presence of j.
Assume that such a bid exists. Notice that such a bid necessarily con
icts
with j, and therefore:

n(j) = minfi j j < i; s(j)\s(i) 6= ;; 8l; l < i; l 6= j; l granted ) s(l)\s(i) = ;g:

De�nition 5 (Greedy Payment Scheme) Let L be the sorted list obtained
in the �rst phase.
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� j pays zero if his bid is denied or if there is no bid n(j),

� if there is an n(j) and j's bid hs; vi is granted he pays j s j � c(n(j)).

We may now state the main result of this paper.

Theorem 5 The mechanism composed of the greedy allocation and payment
schemes is truthful for single-minded bidders.

Proof: We shall prove that greedy mechanism satis�es Exactness, Mono-
tonicity, Participation and Critical and use Theorem 4. The description of
the greedy allocation scheme makes it clear that every bid is either granted or
denied. The greedy allocation satis�es Exactness. For Monotonicity, assume
that s � s0 and that v � v0 and let c be the norm of hs; vi and c0 the norm of
hs0; v0i. By our assumption concerning norms we have c � c0. If we compare
the list L and L0 obtained respectively, we see that, since there are no ties by
assumption, they di�er only in that j's bid may have been moved backwards
by the change from hs; vi to hs0; v0i. The greedy allocation algorithm per-
forms, i.e. grants or denies bids, in exactly the same way on L and L0 until
it gets to j's bid in L. Assume j's bid is denied in L: there is some bid that
con
ict with it that has been granted already. The same bid also con
icts
with j's bid in L0 since s � s0 and this bid will also be denied. Similarly if j's
bid in L0 is granted, no bid granted before con
icts with it and therefore no
bid granted before j's in L con
icts with it either and j's bid is also granted
in L. We have shown that the greedy allocation satis�es Monotonicity. It
is clear from the �rst part of De�nition 5 that it satis�es Participation. For
Critical, notice that the second part of De�nition 5 de�nes the payment for
a bid granted at exactly the minimal declared value that would have allowed
it to be granted, vc. Any declared value above j s j � c(n(j)) leaves j before
n(j). If there was a bid i, j < i < n(j) that would prevent the granting of
j displaced in such a way, i would have to be granted and con
ict with j.
It is therefore a bid denied in the original allocation, that would have been
granted were it not for j, contradicting the fact that n(j) is the �rst such bid.
Any declared value below j s j � c(n(j)) guarantees the denial of j because
n(j) is granted.

Let us now describe this payment scheme on two examples.

Example 3 Consider the bidders of Example 2. The goods are a and b and
the bidders are Red, Green, and Blue. Red bids 10 for a, Green bids 19 for
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the set fa; bg and Blue bids 8 for b. We have seen that Red's and Blue's
bids are granted, Green's bid is denied. This is not the eÆcient solution. If
Red had not participated, Green's bid would have been the one with highest
average price and would have been granted. Red pays Green's average price.
Red pays 9:5. Green pays 0, since his bid is denied. Blue pays 0 since he is
not keeping any other bid from being granted.

Note that a GVA would have allocated both goods to Green and made him
pay 18.

Example 4 Assume, as usual, two goods and three bidders. Red bids 20 for
a, Green bids 15 for for b and Blue bids 20 for the set fa; bg. Red's and
Green's bids are granted. Blue's bid is denied. If Red had not participated,
Blue's bid would still have been denied, because of Green's. Therefore Red
pays zero. Similarly Green pays zero. Notice that, in this case, the allocation
is the eÆcient allocation, as in a GVA, but the GVA's payments are di�erent:
Red pays 5 and Green pays 0.

11 Complex bidders

Our assumption that bidders are single-minded seems very restrictive, is there
a way to extend our results to more complex players? Why not view a player
as a collection of single-minded agents, or, equivalently, view the type of a
player as a collection of bids? In such a setting, the game played becomes
much richer in strategies and players may be better-o� lying on some of their
bids to obtain an advantage on others. Our discussion will, by necessity, be
sketchy.

In section 5, we presented single-minded bidders as an answer to the
combinatorial explosion in bidders' types triggered by a growth in the number
of goods, k. The set of types is doubly-exponential in k, but the set of single-
minded types is only exponential in k. In trying to overcome the limitation to
single-minded bidders one could consider any super-set of the single-minded
types that grows only exponentially with k. A very natural idea is to consider
players that send o� single-minded agent bidders to do their work. The agents
play rationally, but individually, and bring the goods and the payments due
to the player. In the �nal analysis, a player gets all the goods obtained by
each of his agents and pays all the payments imposed on each of his agents.
A player's strategy is then a small, i.e. polynomial in k, set of single-minded
agents, i.e. bids.
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Such an idea �ts very well with ideas popular in the Distributed Arti�cial
Intelligence community concerning the role of Intelligent Agents. In the
setting of combinatorial auctions, AI authors ([20, 3]) like to consider bidders
as placing bids. Each bid is then adjudicated separately. Our proposal is a
formalization of this idea and enables us to raise fundamental game-theoretic
questions about this setting. This setting is by no means a trivial restriction.
Notice, for example, that, even though a GVA may be described in terms of
bids placed by the players, a player placing one bid for each subset of the
goods, the allocation and payment schemes require knowledge of the identity
of the player who placed the bid: a player can have at most one of his bids
granted and his payment is not a function only of the bids but also of their
owners.

One may ask the following questions: given a type t, not necessarily
single-minded, what is a truthful description of t as a small set of single-
minded bidders? For which types is there such a description? Given a
mechanism, what is the declaration, i.e. small set of single-minded bidders,
that a player of type t should use to get the most out of the mechanism? Is
there a mechanism for which a truthful declaration is a dominant strategy?
The sequel will show that, if the mechanism uses any reasonable variation on
the greedy allocation, the answer is negative for any reasonable de�nition of
a truthful description.

First, let us remark that one positive result has been obtained. Theorem 5
shows that a single-minded bidder has, in our mechanism, a weakly-dominant
strategy that is to tell the truth, even if the other players are complex players
represented by a collection of single-minded agents. But what is the optimal
strategy of a complex player, i.e. which agents should he send o�?

It is not clear what are the mechanisms we should consider in this setting.
One could assume a blind mechanism, in which the auctioneer has to allocate
the goods between the single-minded agents without knowing which agents
are owned by the same player. But one could also provide the auctioneer
with this information. This would allow him, for example, to avoid making
the payment for a bid depend on another bid from the same player, which
is certainly a step toward truthfulness. One could also require the auction-
eer does not grant more than one bid from each bidder, but the literature
does not seem to favor this policy. As noticed in section 2.1, a player may
naturally express complementarity by the bids he puts out, but expressing
substitutability is more diÆcult. To this e�ect, one could allow the players to
declare not only a set of bids but also an incompatibility list describing which
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of his bids may not be granted simultaneously. This is the policy proposed
in [3] under the name dummy goods.

A further discussion of these issues can be left for a future paper since our
result, concerning the greedy allocation's properties, is negative and based
on a simple situation that can be embedded in any of the proposals above.
In section 12, a strong result will be presented but it is necessarily formal,
and general. Here, we shall present a concrete example.

Example 5 The mechanism we consider is the greedy mechanism. Red
is a single-minded bidder and his type is hfag; 12i, i.e. he bids 12 for a
alone. Green is a complex bidder. His type tG is described by: tG(fag) = 10,
tG(fbg) = 10 and tG(fa; bg) = 30. Notice that Green exhibits complementar-
ity: he values the set fa; bg at more than the sum of his values for a and
b. Whatever stance one takes about the way a set of single-minded bidders
can, in general, represent a type, in this case, the set of three bids: hfag; 10i,
hfbg; 10i and hfa; bg; 30i is a truthful representation of Green's type. Even
if the rules of the auction allow the auctioneer to grant Green both his bid
for a and his bid for b, Green cannot complain, in such a case, about his bid
for the set fa; bg being denied since he will, under any reasonable payment
scheme, pay less for a and b separately than for his bid for the whole set.
Suppose Green bids truthfully. The greedy mechanism grants Green's bid for
the set fa; bg and denies all other bids. Green pays 24 (in a GVA he would
pay only 12), and therefore his utility is 6. To eliminate all doubts about
the legitimacy of the payment scheme here, notice that Green's payment is
determined by Red's bid, not by Green's other bids.

But consider what would have happened if Green had under-bid and de-
clared: hfag; 10i, hfbg; 10i and hfa; bg; 23i. The greedy mechanism now allo-
cates a to Red (he pays 11:5) and b to Green. Green pays zero. His utility is
10. Green is better o� lying. Notice that, by lying on his valuation for the set
fa; bg, Green loses (6) on this bid: considered in isolation, this bid had no
incentive to lie, but this lie favors the bid for b which happens to be Green's
also.

Example 5 above exhibits a situation in which a gang of single-minded
players may be globally better o� under-bidding and losing utility on one of
its bids, in order to have another of the gang's bid granted and making up
for the loss, and more. A similar situation can arise in which a gang may be
better o� over-bidding on a bid b1 to ensure that it is granted, even at a loss,
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in order to keep another bidder from getting goods included in another bid
of the gang.

The greedy mechanism is not truthful for complex players. In the next
section we shall show that the fault does not lie with the payment scheme:
no payment scheme can make the greedy allocation algorithm truthful. The
problem lies with the allocation scheme. Nevertheless, the greedy mecha-
nism has some truthfulness in it. If a player's bidding is decided in a myopic
way by his single-minded agents they will bid truthfully. It is only global
considerations that can induce a society of agents to require its agents not
be truthful. We think we have here some kind of myopic, limited or bounded
truthfulness that may be a very useful ingredient in certain types of mech-
anisms. Situations in which the players have too little information and too
few resources to be able to analyze intelligently the global strategic situation
may induce them to delegate their strategy to myopic agents. In such situa-
tions one may be content with a mechanism that exhibit this kind of limited
truthfulness.

12 No payment scheme makes the greedy al-

location a truthful mechanism for com-

plex bidders

In section 11, we showed that the greedy scheme, i.e. greedy allocation +
greedy payment, cannot be extended to a truthful mechanism for complex
players. We shall now show that no payment scheme can complement the
greedy allocation.

If a bidder is not single-minded, but double-minded, i.e. interested in two
di�erent sets of two goods, there may be no payment scheme that, combined
with the greedy allocation algorithm, will make for a truthful mechanism.
We shall consider a very simple situation: two goods, two bidders, one of
them single-minded, the other one double-minded. The search for a family of
bidders that is signi�cantly larger than the single-minded ones and a suitable
payment scheme is open, but it starts with a negative result. Notice the result
does not only show that our payment scheme is unsuitable, it shows that no
payment scheme exists (to be used in conjunction with the greedy allocation
scheme).

Assume there are two goods a and b and two bidders Green and Red.
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Red is single-minded and his type is hfag; 10i. Red truthfully declares his
type. Green is interested in both b and the set fa; bg. His valuation is 0
for any allocation in which he does not get b. It is vb for any allocation in
which he gets b but not a, and it is vab if he gets both a and b, vab > vb.
Green's declaration is 0 for all allocations that do not give him b, gb for all
allocations that give him b but not a and gab for the allocation in which
he gets both a and b. Notice that four parameters describe the auction:
gab, gb, vab and vb. Assume, furthermore, that 0 � gb < 10. We reason by
contradiction and assume there is a payment scheme that makes truth-telling
a dominant strategy for Green. Let us consider two cases.

First, assume that gab > 20. In this case, the greedy algorithm will al-
locate both goods to Green. The payment mechanism will make Green pay
pab. Notice that this payment pab cannot depend on:

� gab (as long as gab > 20): otherwise, Green would have an interest in
declaring the gab most favorable to him, irrespective of his vab,

� gb: otherwise, similarly, Green would have an interest in declaring the
gb most favorable to him irrespective of his vb,

� vab: since payments cannot depend on private values,

� vb: similarly.

Therefore, pab is simply a number. The utility of Green, in this �rst case, is:
vab � pab.

Consider, now, a second case: gab < 20. In this case, the greedy algorithm
allocates a to Red and b to Green. Let us denote by pb the payment of
Green. For the same reasons as above, pb cannot be a function of any of the
parameters. The utility of Green, in this second case, is: vb � pb.

Assume that, in fact, Green is bidding his true valuation on b, i.e. gb = vb.
Since truth-telling is a dominant strategy for Green, it must be the case that,

� if vab > 20, Green gets from case 1 not less than from case 2, i.e.
vab � pab � vb � pb = gb � pb

� if vab < 20, Green gets from case 2 not less than from case 1, i.e.
gb � pb = vb � pb � vab � pab.

By considering the case vab is just greater than 20 and gb is just less than
10, the �rst inequality gives us 20� pab � 10� pb, i.e. pab � pb � 10. By
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considering the case vab is just less than 20 and gb is 0, the second inequality
gives us �pb � 20� pab, i.e. pab � pb � 20. A contradiction.

Let us try, now, to discuss the reasons for the negative result just pre-
sented. Why is there a scheme for single-minded bidders and no scheme for
more complex bidders? The impossibility to devise a truth-conducing pay-
ment scheme around the greedy allocation stems from the richness of the
strategic possibilities o�ered to a complex bidder. Let us explain why the
obvious extension of our payment scheme does not work. Bidder i, in order
to get good a against the competition of another bidder interested in fa; b; cg,
may have an interest in over-bidding on c and get it at a loss, just to keep
his opponent from getting the whole set. Similarly, i under-bidding on a and
loosing it, may give fa; bg to another bidder, which in turn may keep a third
bidder from getting fb; cg and cause i to get much coveted fcg.

The discussion just above is, in fact, very similar to Vickrey's discussion
in section 5 of [22] of the reasons why his scheme for an auction of identical
objects is truth-revealing only if one assumes buyers of a very simple type:
interested in at most one item.

13 Revenue considerations

We have described a feasible mechanism for combinatorial auctions that is
truthful when bidders are single-minded. Should a seller use it for selling
goods? It is very diÆcult to say anything general about the revenue gen-
erated by this mechanism. We shall compare the revenue generated by our
mechanism to the revenue generated by a GVA. Since a GVA allocates the
goods in an eÆcient way but our mechanism does not, one can fear that
the revenue generated by our mechanism will be signi�cantly smaller in all
those cases in which the allocation is not eÆcient. This does not seem to be
the case. There are cases in which our algorithm generates a higher revenue
than a GVA and there are cases in which a GVA is preferable. The compar-
ison does not seem to be tightly correlated to the relative eÆciency of the
allocations. We shall present four simple situations. All examples assume
single-minded bidders Green, Red, Black and sometimes Blue. The �rst two
examples are typical of purely combinatorial situations.

Example 6 Assume there are four goods, a, b, c and d. Green is interested
in fa; bg, Red in fc; dg and Black in fa; cg. All bids are for the same amount:
1.
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Let us �rst consider a GVA. A GVA allocates the eÆcient way: Green
gets fa; bg and Red gets fc; dg. Green and Red pay nothing: if they had not
participated only one bid could have been granted. The revenue generated by
a GVA is zero.

Because of the tie our greedy scheme may end in one of three possible
situations, up to symmetry between Green and Red. First scenario: the order
is Green, Red, Black. The allocation is eÆcient and nobody pays anything, as
for a GVA. Second scenario: the order is Green, Black, Red. The allocation
is eÆcient, but this times Green pays 1, Red pays nothing. Third scenario:
the order is Black, Green, Red. The allocation is not eÆcient: Black gets
fa; cg and b and d are unallocated. Black pays 1.

In this case, our scheme generates, on average, 2=3, whereas a GVA
generates 0.

Example 7 Four goods, a, b, c and d. Green is interested in fa; bg, Red in
fc; dg, Black in fa; cg and Blue in fb; dg. All bids are for the same amount:
1.

A GVA allocates the eÆcient way: either to Green and Red or to Black
and Blue. In any case each successful bidder pays 1: the revenue is 2 and the
full surplus is extracted.

Because of the tie our greedy scheme may end in one of three possible
situations, up to symmetry. First scenario: the order is Green, Red, Black,
Blue. The allocation is eÆcient (to Green and Red) and nobody pays any-
thing. Second scenario: the order is Green, Black, Red, Blue. The allocation
is eÆcient (to Green and Red), but this times Green pays 1, Blue pays noth-
ing. Third scenario: the order is Green, Black, Blue, Red. The allocation is
eÆcient (to Green and Red). Green pays 1 and Red pays nothing.

In this case, our scheme generates, on average, 2=3, whereas a GVA
generates 2.

Our next example is typical of strong complementarity.

Example 8 Red bids 20 for the set fa; bg, Green bids 9 for a and Black bids
1 for b. Both our greedy algorithm and a GVA allocate a and b to Red. With
our scheme Red pays 18, with a GVA he pays 10.

Example 9 Green bids 20 for a, Red bids 37 for the set fa; bg and Black bids
18 for b. Both our greedy algorithm and the eÆcient allocation of the GVA
give a to Green and b to Black. With us, Green pays 18:5 and Black pays
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nothing. With a GVA, Green pays 19 and Black pays 17. Our mechanism
generates 18:5 to the GVA's 36.

Example 10 Green bids 10 for a and Red bids 19 for the set fa; bg. Our
greedy scheme allocates a to Green and leaves b unallocated. The eÆcient
allocation of the GVA gives both a and b to Red. In our scheme Green pays
9:5. In a GVA, Red pays 10.

More work is needed to assess the revenue generated by the mechanism pro-
posed.

14 Conclusion and future work

To overcome the complexity of computing the eÆcient allocation in combi-
natorial auctions, we propose to use a greedy approximation together with
a payment scheme tailored to �t it. The combination provides a truthful
mechanism. This mechanism admits dominant strategies and is therefore
very sturdy.

A number of additions, modi�cations or extensions should be considered.
Reserve prices are a necessary feature of real-life auctions. Adding reserve
prices to our scheme poses no problem: reserve prices are bids put out by
the auctioneer and truthfulness is still a dominant strategy for the bidders.
In a combinatorial auction, the reserve prices can, very naturally, express
the complementarity of the seller. In particular, a seller who does not want
to sell too large sets of goods to the same buyer, to avoid monopolies for
example, will put high reserve prices for large sets of goods.

Before one can apply the ideas presented here to auctions of identical
items, and to such double auctions, those ideas need to be adapted to this
setting. This is the topic of further research.

A combinatorial auction that features a number of di�erent types of
goods, a number of items of each type of goods being for sale, represent
the ultimate combinatorial auction. The ideas presented in this paper may
provide a computationally feasible solution for such auctions.

The revenue generated by the mechanism proposed should be studied in
depth.

The approximation scheme presented in this paper: greedy, is quite rudi-
mentary. Even though it attains the theoretically optimal (worst-case) ratio,
it should, probably, in practice, be either iterated with di�erent criteria or be
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included in some more complex scheme with some sort of backtracking. The
main avenue for further research is probably the consideration such better
approximation schemes and the design of suitable payment schemes. The
properties described in section 9 are a clear guide on how to do that. Note,
in particular, that Critical leaves no freedom in the design of the payment
scheme.

The properties of section 9 are suÆcient for truthfulness, among single-
minded bidders, but some of them also seem to be necessary, at least in the
presence of others. A full characterization of truthful schemes for combina-
torial auctions should be attempted.
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