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Abstract
Combinatorial auctions where bidders can bid
on bundles of items can lead to more econom-
ical allocations, but determining the winners is
NP-complete and inapproximable. We present
CABOB, a sophisticated search algorithm for
the problem. It uses decomposition techniques,
upper and lower bounding (also across compo-
nents), elaborate and dynamically chosen bid or-
dering heuristics, and a host of structural obser-
vations. Experiments against CPLEX 7.0 show
that CABOB is usually faster, never drastically
slower, and in many cases drastically faster. We
also uncover interesting aspects of the problem it-
self. First, the problems with short bids that were
hard for the first-generation of specialized algo-
rithms are easy. Second, almost all of the CATS
distributions are easy, and become easier with more
bids. Third, we test a number of random restart
strategies, and show that they do not help on this
problem because the run-time distribution does not
have a heavy tail (at least not for CABOB).

1 Introduction
Auctions are important mechanisms for resource and task

allocation in multiagent systems. In many auctions, a bidder’s
valuation for a combination of distinguishable items is not
the sum of the individual items’ valuations—it can be more
or less.Combinatorial auctions (CAs)where bidders can bid
on bundles of items allow bidders to expresscomplementarity
(and, with a rich enough bidding language, alsosubstitutabil-
ity among the items[Sandholm, 1999; Fujishimaet al., 1999;
Sandholm, 2000; Nisan, 2000]). This expressiveness can lead
to more economical allocations of the items because bidders
do not get stuck with partial bundles of low value. This
has been demonstrated, for example, in airport landing slot
allocation[Rassentiet al., 1982], and in transportation ex-
changes[Sandholm, 1993].

However, determining the winners in a combinatorial auc-
tions is computationally complex. There has recently been a
surge of research into addressing that[Rothkopfet al., 1998;
Sandholm, 1999; Fujishimaet al., 1999; Lehmannet al.,
1999; Sandholm and Suri, 2000; Anderssonet al., 2000;
Hoos and Boutilier, 2000; de Vries and Vohra, 2000]. In this
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paper we present a fast optimal search algorithm for the prob-
lem. Section 2 defines the problem. Our algorithm is pre-
sented in Section 3. Section 4 discusses bid ordering heuris-
tics. Experimental results are presented in Sections 5–7. Ran-
dom restart strategies are discussed in Section 8. Section 9
presents conclusions and future research directions.

2 The Winner Determination Problem
In this section we define the winner determination problem.

Definition 1 The auctioneer has a set of items,M =
f1; 2; : : : ;mg, to sell, and the buyers submit a set of bids,
B = fB1; B2; : : : ; Bng. A bid is a tupleBj = hSj ; pji,
whereSj � M is a set of items andpj � 0 is a price. The
binary combinatorial auction winner determination problem
is to label the bids as winning or losing so as to maximize the
auctioneer’s revenue under the constraint that each item can
be allocated to at most one bidder:

max

nX

j=1

pjxj s.t.
X

jji2Sj

xj � 1; i 2 f1::mg

xj 2 f0; 1g

This isNP-complete[Rothkopfet al., 1998], and it cannot
even be approximated to a ratio ofn1�� in polynomial time
(unlessP = NP) [Sandholm, 1999].

If bids could be accepted partially, the problem would be-
come a linear program (LP) which can be solved in polyno-
mial time. Here we present the LP-formulation and its dual
because we will use them in several ways in our algorithm.

LP

max

nX

j=1

pjxj

X

jji2Sj

xj � 1; i 2 f1::mg

xj 2 <

DUAL

min

mX

i=1

yi

X

i2Sj

yi � pj ; j 2 f1::ng

yi 2 <

In this continuous setting, theshadow priceyi gives the
price for each individual itemi.1 In the binary case individual
items cannot generally be given prices, but eachyi value from
DUAL gives an upper bound on the price of itemi.

1If there are some items that are not included in any bids, we have to
add to the DUAL the constraintyi � 0 for those items. Alternatively (and
preferably), such items can simply be removed as a preprocessing step.



3 Description of the Algorithm
Our algorithm,CABOB (Combinatorial Auction Branch

On Bids), is a tree search algorithm that branches on bids.
The high-level idea of branching on bids was already pro-
posed by[Sandholm and Suri, 2000] in the BOB algorithm.
However, BOB was not implemented. CABOB incorporates
many of the techniques proposed in BOB and a host of addi-
tional ones. All of them have been implemented.

The skeleton of CABOB is a depth-first branch-and-bound
tree search that branches on bids. The value of the best solu-
tion found so far is a global variable~f�. Initially, ~f� = 0.

A data structure called thebid graph is maintained. We
denote it byG. The nodes of the graph correspond to bids that
are still available to be appended to the search path, i.e., bids
that do not include any items that have already been allocated.
Two vertices inG share an edge whenever the corresponding
bids share items.2 As vertices are removed fromG when
going down a search path, the edges that they are connected
to are also removed. As vertices are re-inserted intoG when
backtracking, the edges are also reinserted.

The following pseudocode of CABOB makes calls to sev-
eral special cases which will be introduced later. For readabil-
ity, we omit how the solution (set of winning bids) is updated
in conjunction with every update of~f�.

As will be discussed later, we use a technique for pruning
across independent subproblems (components ofG). To sup-
port this, we use a parameter,MIN , to denote the minimum
revenue that the call to CABOB must return (not including the
revenue from the path so far or from neighbor components)
to be competitive with the best solution found so far. The rev-
enue from the bids that are winning on the search path so far
is calledg. It includes the lower bounds (or actual values) of
neighbor components of each search node on the path so far.

The search is invoked by callingCABOB(G; 0; 0).

Algorithm 3.1 CABOB(G; g;MIN)

1. Apply special cases COMPLETE and NOEDGES
2. Run DFS onG; let c be number of components found,

and letG1; G2; :::; Gc be thec independent bid graphs
3. Calculate an upper boundUi for each componenti
4. If
Pc

i=1 Ui �MIN , then return0
5. Apply special case INTEGER
6. Calculate a lower boundLi for each componenti

7. � g +
Pc

i=1 Li �
~f�

8. If � > 0, then
~f�  ~f� +�

MIN  MIN +�

9. If c > 1 then goto (11)
10. Choose next bidBk to branch on (use articulating bids

first if any)
10.a.G G� fBkg

2SinceG can be constructed incrementally as bids are submitted, its con-
struction does not add to winner determination time after the auction closes.
Therefore, in the experiments, the time to constructG is not included (in al-
most all cases it was negligible anyway, but for instances with very long bids
it sometimes took almost as much time as the search).

10.b. For allBj s.t.Bj 6= Bk andSj \ Sk 6= ;,
G G� fBjg

10.c. ~f�old  
~f�

10.d.fin  CABOB(G; g + pk;MIN � pk)

10.e.MIN  MIN + ( ~f� � ~f�old)

10.f. For allBj s.t.Bj 6= Bk andSj \ Sk 6= ;,
G G [ fBjg

10.g. ~f�old  ~f�

10.h.fout  CABOB(G; g;MIN)

10.i.MIN  MIN + ( ~f� � ~f�old)

10.j.G G [ fBkg

10.k. Returnmaxffin; foutg

11. F �

solved  0

12. Hunsolved  
Pc

i=1 Ui, Lunsolved  
Pc

i=1 Li

13. For each componenti 2 f1; : : : ; cg do
13.a. IfF �

solved +Hunsolved �MIN , return0
13.b.g0i  F �

solved + (Lunsolved � Li)

13.c. ~f�old  ~f�

13.d.f�i  CABOB(Gi; g + g0i;MIN � g0i)

13.e.MIN  MIN + ( ~f� � ~f�old)

13.f.F �

solved  F �

solved + f�i
13.g.Hunsolved  Hunsolved � Ui
13.h.Lunsolved  Lunsolved � Li

14. ReturnF �

solved

We now discuss the techniques of CABOB in more length.

Upper Bounding
In step (3), CABOB uses an upper bound on the revenue

the unallocated items can contribute. If the current solution
cannot be extended to a new optimal solution under the op-
timistic assumption that the upper bound is met, CABOB
prunes the search path.

Any technique for devising an upper bound could be used
here. We solve the remaining LP, whose objective function
value gives an upper bound. CABOB does not make copies
of the LP table, but incrementally adds (deletes) rows from
the LP table as bids are removed (re-inserted) intoG as the
search proceeds down a path (backtracks). Also, as CABOB
moves down a search path, it remembers the LP solution from
the parent and uses it as a starting solution for the child’s LP.

It is not always necessary to run the LP to optimality. Be-
fore starting the LP, one could look at the condition in step
(4) to determine the minimum revenue the LP has to produce
so that the search branch would not be pruned.3 Once the LP
solver finds a solution that exceeds the threshold, it could be
stopped without pruning the search branch. If the LP solver
does not find a solution that exceeds the threshold and runs to
completion, the branch could be pruned. However, CABOB
always runs the LP to completion since it uses the solutions
from the LP and the DUAL in several ways.

3In the case of multiple components, when determining how high a rev-
enue one component’s LP has to return, the exact solution values from solved
neighbor components would be included, as well as the upper bounds from
the unsolved neighbor components.



Our experiments showed that the upper bound from LP is
significantly tighter than those proposed for previous combi-
natorial auction winner determination algorithms[Sandholm,
1999; Fujishimaet al., 1999; Sandholm and Suri, 2000]. The
time taken to solve the LP at every node is negligible com-
pared to the savings in search due to enhanced pruning.

The INTEGER special case
If the LP happens to return integer values (xj = 0 or

xj = 1) for each bidj (this occurs more often than we ex-
pected), CABOB makes the bids withxj = 1 winning, and
those withxj = 0 losing. This is clearly an optimal solution
for the remaining bids. CABOB updates~f� if the solution is
better than the best so far. CABOB then returns from the call
without searching further under that node.

It is easy to show that if some of thexj values are not in-
teger, we cannot simply accept the bids withxj = 1. Neither
can we simply reject the bids withxj = 0. Either approach
can compromise optimality.

Lower Bounding
In step (6), CABOB calculates a lower bound on the rev-

enue that the remaining items can contribute. If the lower
bound is high, it can allow~f� to be updated, leading to more
pruning and less search in the subtree rooted at that node.

Any lower bounding technique could be used here. We use
the following rounding technique. In step (3), CABOB solves
the remaining LP anyway, which gives an “acceptance level”
xj 2 [0; 1] for every remaining bidBj . We insert all bids
with xj > 0:5 into the lower bound solution. We then try to
insert the rest of the bids in decreasing order ofxj , skipping
bids that share items with bids already in the lower bound. It
is easy to prove that this method gives a lower bound.

While rounding techniques are known to provide reason-
ably good lower bounds on average, in the future we are plan-
ning to try other lower bounding techniques within CABOB
such as stochastic local search[Hoos and Boutilier, 2000].

Exploiting decomposition
In step (2), CABOB runs anO(jEj+ jV j) time depth-first-

search (DFS) in the bid graphG. Each tree in the depth-first
forest is a connected component ofG. Winner determination
is then conducted in each component independently. Since
search time is superlinear in the size ofG, this decomposi-
tion leads to a time savings. The winners are determined by
calling CABOB on each component separately. As the exper-
iments show, this can lead to a drastic speedup.

Upper and lower bounding across components
In addition to regular upper and lower bounding, somewhat

unintuitively, we can achieve further pruning, without com-
promising optimality, by exploiting information across the in-
dependent components. When starting to solve a component,
CABOB checks how much that component would have to
contribute to revenue in the context of what is already known
about bids on the search path so farand the neighboring com-
ponents. Specifically, when determining theMIN value for
calling CABOB on a component, the revenue that the current
call to CABOB has to produce (the currentMIN value), is
decremented by the revenues from solved neighbor compo-

nents and the lower bounds from unsolved neighbor compo-
nents.Our use of aMIN value allows the algorithm to work
correctly even if on a single search path there may be several
search nodes where decomposition occurred, interleaved with
search nodes where decomposition did not occur.

Every time a better global solution is found and~f� is up-
dated, allMIN values in the search tree should be incre-
mented by the amount of the improvement since now the bar
of when search is useful has been raised. CABOB handles
these updates without separately traversing the tree when an
update occurs. CABOB directly updatesMIN in step (8),
and updates theMIN value of any parent node after the re-
cursive call to CABOB returns.

CABOB also uses lower bounding across components. At
any search node, the lower bound includes the revenues from
the bids that are winning on the path, the revenues from the
solved neighbor components of search nodes on the path, the
lower bounds of the unsolved neighbor components of search
nodes on the path, and the lower bound on the revenue that the
unallocated items in the current search node can contribute.

Due to upper and lower bounding across components (and
due to updating of~f�), the order of tackling the components
can potentially make a difference in speed. CABOB currently
tackles components in the order that they are found in the
DFS. We plan to study more elaborate component ordering in
future research.

Forcing a decomposition via articulation bids
In addition to checking whether a decomposition has oc-

curred, CABOB strives for a decomposition. In the bid choice
in step (10), it picks a bid that leads to a decomposition, if
such a bid exists. Such bids whose deletion disconnectsG
are calledarticulation bids. Articulation bids are identified
in O(jEj + jV j) time by a slightly modified DFS inG, as
proposed in[Sandholm and Suri, 2000].

The scheme of always branching on an articulation bid,
if one exists, is often at odds with price-based bid ordering
schemes, discussed later. As proved in[Sandholm and Suri,
2000], no scheme from the articulation-based family domi-
nates any scheme from the price-based family, or vice versa,
in general. However, our experiments showed that in practice
it almost always pays off to branch on articulation bids if they
exist (because decomposition reduces search drastically).

Even if a bid is not an articulation bid, and would not lead
to a decomposition if the bid is assigned losing, it might lead
to a decomposition if it is assigned winning because that re-
moves the bid’s neighbors fromG as well. This is yet another
reason to assign a bid that we branch on to be winning before
assigning it to be losing (value ordering). Also, in bid or-
dering (variable ordering), one could give first preference to
articulation bids, second preference to bids that articulate on
the winning branch only, and third preference to bids that do
not articulate on either branch (among them, price-based bid
ordering could be used). One could also try to identifysetsof
bids that articulate the bid graph, and branch on all of the bids
in the set. However, to keep the computation linear time in the
size ofG, CABOB simply gives first priority to articulation
bids, and if there are none, uses other bid ordering schemes,
discussed later. If there are several articulation bids, CABOB



branches on the one that is found first (the others will be found
at subsequent levels of the search). One could also use a more
elaborate scheme for choosing among articulation bids.

The COMPLETE special case
In step (1), CABOB checks whether the bid graphG is

complete:jEj = jn(n�1)

2
j. If so, only one of the remaining

bids can be accepted. CABOB thus picks the bid with highest
price, updates~f� if appropriate, and prunes the search path.

The NO EDGES special case
In step (1), CABOB checks whether the bid graphG has

any edges (jEj > 0). If not, it accepts all of the remaining
bids, updates~f� if appropriate, and prunes the search path.

Preprocessing
Several preprocessing techniques have been proposed for

search-based winner determination algorithms[Sandholm,
1999], and any of them could be used in conjunction with
CABOB. However, in CABOB the search itself is fast, so we
did not want to spend significant time preprocessing (since
that could dwarf the search time). The only preprocessing that
CABOB does is that as a bidBx arrives, CABOB discards ev-
ery bidBy thatBx dominates (px � py andSx � Sy), and
discards bidBx if it is dominated by any earlier bid.

4 Bid Ordering Heuristics
In step (10) of CABOB, there are potentially a large num-

ber of bids on which CABOB could branch on. We developed
severalbid ordering heuristicsfor making this choice.4

� Normalized Bid Price (NBP):[Sandholm and Suri,
2000]. Branch on a bid with the highestwj =

pj
(jSj j)�

.

It was conjectured[Sandholm and Suri, 2000] that �
slightly less than 0.5 would be best (since� = 0:5
gives the best worst-case bound within a greedy algo-
rithm [Lehmannet al., 1999]), but we determined exper-
imentally that� 2 [0:8; 1] yields fastest performance.

� Normalized Shadow Surplus (NSS):The problem with
NBP is that it treats each item as equally valuable. It
could be modified to weight different items differently
based on static prices that, e.g., the seller guesses before
the auction. We propose a more sophisticated method
where the items are weighted by their “values”in the re-
maining subproblem. We use the shadow priceyj from
the remaining DUAL problem as a proxy for the worth
of an item. We then branch on the bid whose price gives
the highest surplus above the worth of the items (nor-
malized by the worths so the surplus has to be greater if

the bid uses valuable items):wj =
pj�
P

i2Sj
yi

(
P

i2Sj

yi)�
. Next

4This corresponds to variable ordering. Choosing between the IN-branch
(xj = 1) and the OUT-branch (xj = 0) first corresponds to value ordering.
In the current version of CABOB, we always try the IN-branch first. The
reason is that we try to include good bids early so as to find good solutions
early. This enables more pruning through upper bounding. It also improves
the anytime performance. CPLEX, on the other hand, uses value ordering as
well in that it sometimes tries the OUT-branch first. In future research we
plan to experiment with that option in CABOB as well.

we showed experimentally that the following modifica-
tion to the normalization leads to faster performance:

wj =
pj�
P

i2Sj
yi

log(
P

i2Sj
yi)
: We call this scheme NSS.

� Bid Graph Neighbors (BGN):Branch on a bid with the
largest number of neighbors in the bid graphG. The
motivation is that this will allow CABOB to exclude the
largest number of still eligible bids from consideration.

� Number of Items (NI):Branch on a bid with the largest
number of items. The motivation is the same as in BGN.

� One Bids (OB):Branch on a bid whosexj-value from
LP is closest to 1. The idea is that the more of the bid is
accepted in the LP, the more likely it is to be competitive.

� Fractional Bids (FB):Branch on a bid withxj closest to
0.5. This strategy is advocated in the operations research
literature[Wolsey, 1998]. The idea is that the LP is least
sure about these bids, so it makes sense to resolve that
uncertainty rather than to invest branching on bids about
which the LP is “more certain”. More often than not,
the bids whosexj values are close to 0 or 1 tend to get
closer to those extreme values as search proceeds down
a path, and in the end, LP will give an integer solution.
Therefore those bids never end up being branched on.

4.1 Choosing Bid Ordering Heuristics Dynamically
We ran experiments on several distributions (discussed

later) using each one of the heuristics as the primary heuristic,
while using each of the other heuristics as a tie-breaker. We
also tried using a third heuristic to break remaining ties, but
that never helped. The best composite heuristic (OB+NSS)
used OB first, and broke ties using NSS.

We noticed that on certain distributions, OB+NSS was best
while on distributions where the bids included a large num-
ber of items, NSS alone was best. The selective superiority of
the heuristics led us to the idea of choosing the bid ordering
heuristicdynamically based on the characteristics of the re-
maining subproblem. We determined that the distinguishing
characteristic between the distributions was LP density:

density=
number of nonzero coefficients in LP

number of LP rows� number of LP columns

OB+NSS was best when density was less than 0.25 and NSS
was best otherwise. Intuitively, when the LP table is sparse,
LP is good at “guessing” which bids to accept. When the table
is dense, the LP makes poor guesses (most bids are accepted
to a small extent). In those cases the price-based scheme NSS
(that still uses the shadow prices from the LP) was better.

So, at every search node in CABOB, the density is com-
puted, and the bid ordering scheme is chosen dynamically
(OB+NSS if density is less than 0.25, NSS otherwise).

As a fundamentally different bid ordering methodology, we
observe that stochastic local search—or any other approxi-
mate algorithm for the problem—could be used to come up
with a good solution fast, and then that solution could be
forced to be the left branch (IN-branch) of CABOB (with the
“most sure” bids nearest the root) so as to give CABOB a
more global form of guidance in bid ordering.



5 Design Philosophy of CABOB vs. CPLEX
We benchmarked CABOB against a general-purpose in-

teger programming package, CPLEX 7.0. It was recently
shown[Anderssonet al., 2000] that CPLEX 6.5 is faster (or
comparable) in determining winners in combinatorial auc-
tions than are the first-generation special-purpose search al-
gorithms[Sandholm, 1999; Fujishimaet al., 1999]. CPLEX
7.0 is about 1.6 times faster than CPLEX 6.5, so when we
compare CABOB against CPLEX 7.0, to our knowledge, we
are comparing it against the state-of-the-art.

There are some fundamental differences between CABOB
and CPLEX that we want to explain to put the experiments
in context. CPLEX uses best-bound search (A*)[Wolsey,
1998] which requires exponential space (it also has an option
to force depth-first search, but that makes CPLEX somewhat
slower), while CABOB uses depth-first branch-and-bound
(DFBnB) which runs in linear space. Thus, on some hard
problems, CPLEX ran out of virtual memory. In our experi-
ments we only show cases where CPLEX was able to run in
RAM. DFBnB puts CABOB at a disadvantage when it comes
to reaching the optimal solution fast since it does not allow
CABOB to explore the most promising leaves of the search
tree first. At the same time, we believe that the memory is-
sue make A* unusable for combinatorial auctions in practice.
Like CABOB, CPLEX uses LP to obtain upper bounds.

CPLEX uses a “presolver” to manipulate the LP table al-
gebraically[Wolsey, 1998] to reduce it before search. In the
experiments, we ran CABOB without any presolving. Natu-
rally, that could be added to CABOB as a preprocessing step.

Put together, everything else being equal, CPLEX should
find an optimal solution and prove optimality faster than DF-
BnB, but one would expect the anytime behavior to be worse.

6 Experimental Setup
We tested CABOB and CPLEX on the common combi-

natorial auction benchmarks distributions: those of[Sand-
holm, 1999], and the CATS distributions[Leyton-Brownet
al., 2000]. In addition, we tested them on new distributions.

The distributions from[Sandholm, 1999] are:

� Random: For each bid, pick the number of items ran-
domly from 1; 2; :::;m. Randomly choose that many
items without replacement. Pick a price from[0; 1].

� Weighted random: As above, but pick the price be-
tween 0 and the number of items in the bid.

� Uniform: Draw the same number of randomly chosen
items for each bid. Pick the prices from[0; 1].

� Decay: Give the bid one random item. Then repeatedly
add a new random item with probability� until an item
is not added or the bid includes allm items. Pick the
price between 0 and the number of items in the bid. In
the tests we used� = 0:75 since the graphs in[Sand-
holm, 1999] show that this setting leads to the hardest
instances on average (at least for that algorithm).

We tested the algorithms on all of the CATS distributions:
paths, regions, matching, scheduling, andarbitrary . For
each one of them, we used the default parameters in the CATS
instance generators, and varied the number of bids.

We also tested the algorithms on the following new bench-
mark distributions:
� Bounded: For each bid, draw the number of items ran-

domly between a lower bound and an upper bound. Ran-
domly include that many distinct items in the bid. Pick
the price between 0 and the number of items in the bid.

� Components:A number of independent problems, each
from the uniform distribution.

We generate bids so no two bids have the same set of items.
The experiments were conducted on a 933 MHz Pentium III
PC with 512MB RAM. Each point in each plot is the median
run time for 100 instances. CABOB and CPLEX both use
the default LP solver that comes with CPLEX (dual simplex).
CABOB and CPLEX were tested on the same instances.

7 Experimental Results
On the random distribution (Fig 1 left), CABOB is faster

than CPLEX and the difference grows with the number of
bids. The preprocessor of CABOB eliminates a large number
of bids. CABOB always resorted to search while CPLEX’s
presolve+LP solved the problem without search on 47% of
the instances. On the weighted random distribution (Fig 1
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Figure 1: Run times on therandom andweighted random
distributions.

right), the performance of CABOB and CPLEX is almost
identical. However, they achieve this very differently. With
2,000 bids, CPLEX’s presolve+LP solves the problem 95%
of the time while CABOB resorts to search 88% of the time.

Interestingly, on the decay distribution (Fig. 2 left)—which
is perhaps the most realistic distribution of those of[Sand-
holm, 1999], and was reported to be difficult for the earlier
winner determination algorithms—both algorithms solve the
problem using LP in almost all cases. CPLEX goes to search
2% of the time while CABOB resorts to search only 1% of the
time. CABOB is faster than CPLEX, mainly because CPLEX
uses presolve while CABOB does not.

On the uniform distribution (Fig. 2 right), both algorithms
resort to search. The speeds are comparable, but CPLEX
is faster. For the first-generation winner determination al-
gorithms[Sandholm, 1999; Fujishimaet al., 1999], the in-
stances with small numbers of items per bid were much
harder than instances with long bids. For both CABOB and
CPLEX, complexity is almost invariant to the number of
items per bid, except that complexitydropssignificantly as
the bids include less than 5 items each! This is because LP
can handle cases with short bids well, both in terms of upper
bounding and finding integer solutions. (If each bid contains
only oneitem, LPalwaysfinds an integer solution).

The components distribution demonstrates the power of
CABOB’s decomposition technique and pruning across com-
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ponents. CABOB’s run-time increases linearly with the
number of components while CPLEX’s time is exponential
(Fig. 3). Already at 5 components, CPLEX ran out of virtual
memory. The same performance would be observed even if
there were a “glue” bid that included items from each compo-
nent, since CABOB would identify that bid as an articulation
bid.
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On the bounded distribution (Fig. 4)—which is a more re-
alistic version of the uniform distribution—the relative per-
formance of CABOB and CPLEX depended on the bounds.
For short bids, CPLEX was somewhat faster, but therelative
speed difference decreased with the number of bids. For long
bids, CABOB was much faster (mainly due to checking for
completeness of the bid graphG), and the difference grew
dramatically with the number of bids.
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Surprisingly, the CATS distributions were very easy. LP
solved them in almost all cases. Interestingly, even the rare
cases where the algorithms resorted to search disappeared
as the number of bidsincreased(except for CATS arbitrary
where the complexity did not vary much with the number
of bids). As Fig. 5 shows, CABOB was faster than CPLEX
(mainly because the preprocessor discards a large number of
bids). The difference grows with the number of bids.
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7.1 Anytime Performance
As expected from their designs, CABOB has better any-

time performance than CPLEX. Fig. 6 shows a run that is typ-
ical in the sense of anytime performance, but which was care-
fully selected so that CABOB and CPLEX take equal time to
prove that an optimal solution has been reached. CABOB
dominates CPLEX throughout, and finds the optimal solution
in 40% of the time it takes CPLEX to find it.
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Figure 6: Solution quality on the bounded distribution, re-
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8 Random Restarts
Random restarts have been widely used in local search al-

gorithms, but recently they have been shown to speed up tree
search algorithms as well[Gomeset al., 1998]. We conjec-
tured that random restarts, combined with randomized bid or-
dering, could avoid the perils of unlucky bid ordering. To see
whether we could improve CABOB using random restarts,
we implemented the random restarts methods that are best (to
our knowledge) and improved them further to try to capitalize
on the special properties of the problem.

We implemented the following restart strategies:
� Double:Double the execution time between restarts.
� Constant:Restart after everyÆ backtracks[Gomeset al.,

1998].
� Luby-Sinclair-Zuckerman:[Luby et al., 1993] showed

that the constant scheme above is optimal ifÆ is tailored
to the run-time distribution, which is, unfortunately, usu-
ally not known in practice. Therefore, they constructed
a scheme that suffers only an asymptotically logarithmic
time penalty, independent of the run-time distribution.
In the scheme, each run time is a power of 2. Each time
a pair of runs of the same length has been executed, a
run time of twice that length is immediately executed:
1; 1; 2; 1; 1; 2; 4; 1; 1; 2; 1; 1; 2; 4; 8; 1; : : :.

We implemented the following bid ordering techniques to
use with the restart strategies:
� Random:Randomly pick a remaining bid.

� Boltzmann:Pick a bid with probabilitypi = e
qi
TP
j
e

qj

T

,

whereqi = xi +
wj

LPUB
. The valuewj is from the NSS

bid ordering heuristic, andLPUB is the objective func-
tion value from LP. Higher values ofT result in more
randomness.
� Bound:Each bid whosexj value is within a boundb of

the highestxj value is equally probable.



We tried every bid ordering with every restart strategy, and
varied the initial time allotment and the parametersÆ, T , and
b. CABOB was always faster than CABOB with restarts!

It turns out that this is not just a facet of our restart
schemes or parameters settings. Random restarts tend to
lead to speedup when the run-time distribution has a heavy
tail [Gomeset al., 1998]. We decided to test whether CABOB
exhibits heavy-tailed run-times on the winner determination
problem. We chose the distribution on which CABOB’s run-
time varied the most so as to increase the chance of finding a
heavy tail. This was the uniform distribution with 5 items per
bid. If a distribution has a heavy tail, the variance and usually
also the mean are unbounded[Gomeset al., 1998]. As can be
seen in Fig. 7, our mean and variance are not only bounded,
but constant. This means that the run-time distribution does
not have a heavy tail. This explains our negative results with
restarts, and suggests that random restarts are not a fruitful
avenue for future improvement in this setting.
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9 Conclusions and Future Research
Combinatorial auctions where bidders can bid on bundles

of items can lead to more economical allocations, but de-
termining the winners isNP-complete and inapproximable.
We presented CABOB, a sophisticated search algorithm for
the problem. It uses decomposition techniques, upper and
lower bounding (also across components), a host of struc-
tural observations, elaborate and dynamically chosen bid or-
dering heuristics, and other techniques to increase speed—
especially on problems with different types of special struc-
ture, which we expect to be common in real combinatorial
auctions. Experiments against the fastest prior algorithm,
CPLEX 7.0, show that CABOB is usually faster, never dras-
tically slower, and in many cases drastically faster. Overall,
this makes CABOB, to our knowledge, the currently fastest
optimal algorithm for the problem. CABOB’s search runs in
linear space while CPLEX takes exponential space. CABOB
also has significantly better anytime behavior than CPLEX.

We also uncovered interesting aspects of the problem it-
self. First, the problems with short bids that were hard for the
first-generation of specialized algorithms are easy. Second,
almost all of the CATS distributions are easy, and become
easier with more bids. Third, we tested a number of random
restart strategies, and showed that random restarts do not help
on this problem because the run-time distribution does not
have a heavy tail (at least not for CABOB).

We are currently working not only on designing faster al-

gorithms for winner determination in combinatorial auctions,
but also on winner determination in combinatorial reverse
auctions and exchanges[Sandholmet al., 2001], as well as in
combinatorial markets with additional side constraints[Sand-
holm and Suri, 2001]. We are also developing methods for in-
telligent, selective elicitation of combinatorial bids from the
market participants[Conen and Sandholm, 2001].
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