
agents follow a myopic best-response bidding strategy, bidding for bundles that maximize

their utility given the prices in each round.

4.2 Linear Programming Theory

First, I provide a brief review of basic results in linear programming. See Papadimitriou

& Steiglitz [PS82] for a text book introduction, and Chandru's excellent survey papers

[CR99b, CR99a] for a modern review of the literature on linear programming and integer

programming.

Consider the linear program:

max cTx [P]

s:t: Ax � b

x � 0

where A is a m � n integer matrix, x 2 Rn is a n-vector, and c and b are n� and

m-vectors of integers. vectors are column-vectors, and notation cT indicates the transpose

of vector c, similarly for matrices. The primal problem is to compute a feasible solution

for x that maximizes the value of the objective function.

The dual program is constructed as:

min bT y [D]

s:t: AT y � c

y � 0

where y 2 Rm is a m-vector. The dual problem is to compute a feasible solution for y

that minimizes the value of the objective function.

Let VLP(x) = cTx, the value of feasible primal solution x, and VDLP(y) = bT y, the

value of feasible dual solution y.

The weak duality theorem of linear programming states that the value of the dual always

dominates the value of the primal:
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Theorem 4.1 (weak-duality). Given a feasible primal solution x with value VLP(x)

and a feasible dual solution y with value VDLP(y), then VLP(x) � VDLP(y).

Proof. Solution x is feasible, so Ax � b. Solution y is feasible, so AT y � c.
Therefore, x � AT b and y � Ac, and cTx � cTAT b = bTAC � bT y, and P � D.

The strong duality theorem of linear programming states that primal and dual solutions

are optimal if and only if the value of the primal equals the value of the dual:

Theorem 4.2 (strong-duality). Primal solution x� and dual solution y� are a pair of

optimal solutions for the primal and dual respectively, if and only if x� and y� are feasible

(satisfy respective constraints) and VLP(x
�) = VDLP(y

�).

The strong-duality theorem of linear programming can be restated in terms of

complementary-slackness conditions (CS for short). Complementary-slackness conditions

expresses logical relationships between the values of primal and dual solutions that are

necessary and su�cient for optimality.

Definition 4.1 [complementary-slackness] Complementary-slackness conditions con-

strain pairs of primal and dual solutions. Primal CS conditions state xT (AT y� c) = 0, or

in logical form:

xj > 0) Ajy = cj (P-CS)

where Aj denotes the jth column of A (written as a row vector to avoid the use of

transpose). Dual CS conditions state yT (Ax� b) = 0, or in logical form:

yj > 0) Aix = bi (D-CS)

where Ai denotes the ith row of A.

The strong-duality theorem can be restated as the complementary-slackness theorem:

Theorem 4.3 (complementary-slackness). A pair of feasible primal, x, and dual solu-

tions, y, are primal and dual optimal if and only if they satisfy the complementary-slackness

conditions.
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Proof. P-CS i� xT (AT y�c) = 0, and D-CS i� yT (Ax�b) = 0. Equating, and observ-

ing that xTAT y = yTAx, we have P-CS and D-CS i� xT c = yT b, or cTx = bT y. The LHS

is the value of the primal, VLP(x), and the RHS is the value of the dual, VDLP(y). By the

strong duality theorem, VLP(x) = VDLP(y) is a necessary and su�cient condition for the so-

lutions to be optimal.

4.2.1 Primal-Dual Algorithms

Primal-dual is an algorithm-design paradigm that is often used to solve combinatorial

optimization problems. A problem is �rst formulated both as a primal and a dual linear

program. A primal-dual algorithm searches for feasible primal and dual solutions that

satisfy complementary-slackness conditions, instead of searching for an optimal primal (or

dual) solution directly. Primal-dual can present a useful algorithm-design paradigm for

combinatorial optimization problems. Instead of solving a single hard primal solution, or

a single hard dual solution, a primal-dual approach solves a sequence of restricted primal

problems. Each restricted primal problem is often much simpler to solve than the full

primal (or dual) problem [PS82].

Primal-dual theory also provides a useful conceptual framework for the design of it-

erative combinatorial auctions. Prices represent a feasible dual solution, and bids from

agents allow a search for a primal solution that satis�es complementary-slackness con-

ditions. If the current solution is suboptimal there is enough information available to

adjust dual prices in the right direction. Complementary-slackness conditions provide the

key to understanding how it is possible to compute and verify optimal solutions with-

out complete information: it is su�cient to just verify that a feasible solution satis�es

CS conditions. Primal-dual algorithms are consistent with the decentralized information

inherent in distributed agent-based systems. Optimality reduces to a test of feasibility

and complementary-slackness, which is available from agent bids, rather than the direct

solution of a primal problem, which requires information about agent valuation functions.

A standard primal-dual formulation maintains a feasible dual solution, y, and computes

a solution to a restricted primal problem, given the dual solution. The restricted primal is

formulated to compute a primal solution that is both feasible and satis�es CS conditions

with the dual solution. In general this is not possible (until the dual solution is optimal),
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and a relaxed solution is computed. The restricted primal problem is typically formulated

to compute this relaxed solution in one of two ways:

1. Compute a feasible primal solution x0 that minimizes the \violation" of

complementary-slackness conditions with dual solution y.

2. Compute a primal solution x0 that satis�es complementary slackness conditions with

dual solution y, and minimizes the \violation" of feasibility constraints.

Method (1) is more useful in the context of iterative auction design because it maintains

a feasible primal solution, which becomes the provisional allocation in the auction, i.e. a

tentative allocation that will be implemented only when the auction terminates. The

restricted primal problem can be solved as a winner-determination problem. I show that

computing the allocation that maximizes revenue given agent bids (the solution to winner-

determination) is a suitable method to minimize the violation of CS conditions between

the prices and the provisional allocation in each round iBundle. Prices in each round of

an auction de�ne the feasible dual solution, and agent best-response bids provide enough

information to test for complementary-slackness and adjust solutions towards optimality.

As discussed in the introduction to this chapter, I �rst assume myopic best-response,

but later justify this assumption with an extension to compute Vickrey payments at the

end of the auction in addition to the e�cient allocation (see Chapters 6 and 7).

Initial
Dual 
Solution
(prices)

Compute

NO

x’

Terminate
Bids

Receive

(allocation)

Adjust Dual 
Solution

y
(prices)

Feasible
SolutionPrimal

Do x’and

conditions?
satisfy CS

yYES

Figure 4.1: A primal-dual interpretation of an auction algorithm.

A primal-dual based auction method has the following form (see Figure 4.1):
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1. Maintain a feasible dual solution (\prices").

2. Compute a feasible primal solution (\provisional allocation") to minimize violations

with complementary-slackness conditions given agents' bids.

3. Terminate if all CS conditions are satis�ed (\are the allocation and prices in com-

petitive equilibrium?")

4. Adjust the dual solution towards an optimal solution, based on CS conditions and

the current primal solution (\increase prices based on agent bids")

4.3 Allocation Problems

Let us consider the particular form of an allocation problem, in which there are a set of

discrete items to allocate to agents, and the goal is to maximize value. We assume quasi-

linear preferences, and use utility to refer to the di�erence between an agent's value for a

bundle and the price. The primal and dual allocation problems can be stated as follows:

Definition 4.2 [allocation problem: primal] The primal allocation problem is to al-

locate items to agents to maximize the sum value over all agents, such that no item is

allocated to more than one agent.

Definition 4.3 [allocation problem: dual] The dual allocation problem is to assign

prices to items, or bundles of items, to minimize the sum of (i) each agents' maximum

utility given the prices, over all possible allocations; and (ii) the maximum revenue over

all possible allocations given the prices.

Clearly, without information on agents' values the auctioneer cannot compute an op-

timal primal or an optimal dual (because of term (i) in the dual). However, under a

reasonable assumption about agents' bidding strategies (myopic best-response) the auc-

tioneer can verify complementary-slackness conditions between primal and dual solutions,

and adjust prices and the allocation towards optimal solutions.

An auction interpretation of the complementary-slackness conditions can be stated as

follows:

Definition 4.4 [allocation problem: CS conditions] The CS between a feasible primal

solution to an allocation problem, x, and a feasible dual solution, prices p, are:
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(CS-1) Agent i receives bundles Si in the provisional allocation if and only if the bundle

maximizes its utility given the prices, and has non-negative utility.

(CS-2) The provisional allocation S = (S1; : : : ; SI) is the revenue-maximizing allocation

given the prices.

Left deliberately vague at this stage is the exact structure of the prices. In a combi-

natorial allocation problem these might need to be non-linear and non-anonymous prices

to support the optimal allocation. Similarly, the revenue-maximization concept must be

de�ned with respect to a particular linear program formulation. Note also that CS-2 is

not automatically satis�ed with a provisional allocation computed to maximize revenue

given agents' bids. CS-2 makes a stronger claim, that the provisional allocation must

maximize revenue over all possible allocations given the current ask prices, not just over

all allocations consistent with bids.

Primal-dual auction analysis requires the following assumption about agent strategies:

Definition 4.5 [myopic best-response] A myopic best-response bidding strategy is to

bid for all items or bundles of items that maximize utility at the current prices.

Best-response bids provide enough information to test CS-1, because the best-response

of an agent is precisely those bundles that maximize an agent's utility given the current

prices. For any feasible primal solution, the auctioneer can test CS-2 because that only

requires price information.

The restricted primal has a natural auction interpretation:

Definition 4.6 [auction restricted-primal problem] Given best response bids from each

agent allocate bundles to maximize revenue, breaking ties in favor of including more agents

in the provisional allocation.

Note well that a bundle is only allocated to an agent in the restricted primal prob-

lem if the agent bids for that bundle. This restriction ensures that CS-1 is satis�ed for

that agent, given the de�nition of myopic best-response. CS-2 is satis�ed with careful

price-adjustment rules, such that prices are increased \slowly enough" that the revenue-

maximizing allocation can always be computed from agent bids.

Given myopic best-response, the termination condition, which tests for complementary-

slackness between the provisional allocation and the prices, must check that CS-1 holds
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for every agent. This is achieved when every agent to submit a bid receives a bundle in

the provisional allocation, i.e. in competitive equilibrium.

Our interest is in solving the CAP, which is most immediately formulated as an integer

program (see Section 4.4). In order to apply primal-dual methods it is essential that we

have a linear program formulation of the CAP. We must be careful enough to use a strong

enough formulation, such that the optimal solution is integral (0-1) and not fractional. The

ideal situation is illustrated in Figure 4.2. The auction implements a primal-dual algorithm

for a linear program that is strong enough to compute the optimal integer solution.

VIP
*

VLP

VDLP

Auction Round

V
a

lu
e

(integral)

satisfied.
slackness conditions
Complementary-

Figure 4.2: An auction-based primal-dual algorithm in which the linear program formulation is
strong enough to eliminate all fractional solutions.

In comparison, consider Figures 4.3 (a) and (b), which illustrate a primal-dual algo-

rithm and iterative auction method for a linear program that is not strong enough, and

admits optimal fractional solutions. The primal-dual algorithm algorithm terminates with

a fractional primal solution and value greater than the value of the best possible inte-

ger solution. The auction always maintains an integral primal solution (solving winner-

determination to compute the provisional allocation), but can terminate with a primal

solution that does not satisfy complementary-slackness conditions. Although the primal

solution is perhaps optimal, its optimality cannot be assessed without CS information.

4.3.1 Price Adjustment

Left unde�ned at the moment, and the challenging part of primal-dual auction design, are

the precise rules used to de�ne price updates. The goal is to use information from agents'

bids, and the current provisional allocation, to adjust prices towards an optimal dual

solution| that will support an optimal primal solution. Primal-dual methods traditionally
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Figure 4.3: Primal-dual algorithm (a) and Primal-dual auction method (b) in which the linear
program relaxation is too weak, and V �

LPR
> V �

IP
.

use the dual of the restricted primal to adjust the dual solution across iterations. A simpler

method in allocation problems is to increase prices on over-demanded items, or bundles of

items. The method can be explained both in terms of its e�ect on complementary-slackness

conditions and in terms of its e�ect on the value of the dual solution.

The idea is to increase prices to: (a) maintain CS-2 in the next round and (b) move

towards satisfying CS-1 for all agents.

Proposition 4.1 (progress). Progress is made towards satisfying CS-1 and CS-2 with

the provisional allocation and the ask prices if: (1) the auctioneer increases prices on one

or more bundles that receive bids in each round; and (2) the auctioneer increases prices

by a small enough increment that best-response bids from agents continue to maximize

revenue in the next round.

CS-1 holds whenever every agent that bids receives a bundle in the provisional alloca-

tion. This is trivially achieved for high enough prices because no agent will bid, but we

need to achieve this condition in combination with CS-2. The trick is to increase prices

just enough to maintain revenue-maximization from bids CS-2 across all rounds. This is

achieved in iBundle by ensuring that myopic agents continue to bid for bundles at the new

prices, i.e. increasing price on over-demanded bundles.

An alternative interpretation is that increasing prices on over-demanded items will

reduce the value of the dual, making progress towards the optimal solution, see Figure 4.4.

Recall that the value of the dual is the sum of the auctioneer's maximal revenue and each
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agent's maximal utility at the current prices. A price increase will decrease the value of

the dual if the increase in maximal revenue from the price increase is less than the decrease

in total maximal utility summed across agents.

The auctioneer can achieve this e�ect of increasing revenue by less than the decrease in

agent utility by selecting over-demanded items, or bundles of items, on which to increase

the price. Suppose that two agents bid for bundle S1, and that both agents have at least

� > 0 more utility for that bundle than any other bundle at the current prices. Increasing

the price on over-demanded bundle S1 by � will decrease the maximal utility of both agents

by �, for a decrease in dual value of 2�. However, increasing the price on this one bundle

by � can increase the auctioneer's maximal revenue by at most �. The result is that the

net change in utility must a decrease of at least �.
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slackness holds
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*

Auction Round

V
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Figure 4.4: Primal-dual interpretation of an ascending-price auction.

4.3.2 Competitive Equilibrium

The optimal primal and dual solutions in an allocation problem correspond to a classic

statement of competitive equilibrium.

Definition 4.7 [competitive equilibrium] Allocation S and prices p are in competitive

equilibrium when:

(a) every agent receives a bundle in its best-response (utility maximizing) set

(b) the allocation maximizes the revenue for the auctioneer at the prices

The allocation in competitive equilibrium is e�cient, by equivalence between compet-

itive equilibrium and primal-dual optimality:

Theorem 4.4 (competitive equilibrium e�ciency). An allocation S is e�cient if and
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only if there exists competitive equilibrium prices p, for an appropriate type of prices (e.g.

linear, bundle, non-anonymous).

In the context of the combinatorial allocation problem Bikchandani & Ostroy [BO99]

have characterized the structure on prices required for the existence of competitive equi-

librium (and equivalently for integral solutions to linear program formulations of CAP).

These formulations are introduced in Section 4.4 and discussed at length.

In some problems it is necessary that prices are both non-linear (bundle prices) and

non-anonymous (di�erent prices for the same bundle to di�erent agents) to support a

competitive equilibrium solution.

Wurman & Wellman [WW99, WW00] propose an alternative de�nition of competitive

equilibrium, which is essentially complementary slackness condition CS-1 without CS-2.

This relaxed condition is su�cient for the existence of equilibrium prices even without

non-anonymous prices, but too weak to be able to claim that equilibrium prices imply an

e�cient allocation.

4.3.3 Example: The English Auction

The standard English auction illustrates the primal-dual framework for auction design. The

English auction is an ascending-price auction for single items, where the price increases as

long as more than one agent bids at the current price.

Let vi denote agent i's value for the item. The single-unit resource allocation problem

is:

max
X
i

vixi [IPsingle]

s:t:
X
i

xi � 1

xi 2 f0; 1g

where xi = 1 if and only if agent i is allocated the item, i.e. the goal is to allocate the

item to the agent with the highest value. This can be solved as a linear program, [LPsingle],

relaxing the integral constraint
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max
X
i

vixi [LPsingle]

s:t:
X
i

xi � 1

xi � 0

and V �

LP = V �

IP, i.e. there is always an integral optimal solution to the relaxed problem.

The dual formulation, [DLPsingle], is

min � [DLPsingle]

s:t: � � vi; 8i

� � 0

The complementary-slackness conditions are

X
xi � 0 ) � = vi; 8i

� > 0 )
X

xi = 1

The complementary-slackness conditions can be interpreted in terms of competitive

equilibrium conditions on the allocation and the prices. An allocation and prices in a

single-item auction are in competitive equilibrium, and the allocation is e�cient, when:

(i) the item is sold to an agent, that agent bids for the item at the price, and no other

agent bids for the item at the price.

or (ii) the item is sold to no agent, the price is zero, and no agent bids for the item.

It is straightforward to understand e�ciency in these cases: in (i) the agent with the

highest value receives the item; in (ii) no agent has a positive value for the item.

The English auction maintains price p on the item, initially p = 0. Agent i bids

whenever p < vi, and the provisional allocation sets xj = 1 for one of the agents that bids

in each round, and increases the price p whenever more than one agent bids.

Let the provisional allocation de�ne a feasible primal solution, and the price de�ne

dual solution � =
P

imaxf0; vi � pg+ p. This is feasible, � � maxf0; vi � pg+ p � vi for

all agents i.
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Assume that agents follow a myopic best-response bidding strategy, bidding for the item

at the ask price whenever the price is below their value. The optimality of the English

auction can be understood in two di�erent ways:

� The English auction terminates with primal and dual solutions that satisfy CS-1 and

CS-2.

Clearly, CS-2 is satis�ed throughout the auction because the item is always allocated

to one of the agents. CS-1 is satis�ed when the auction terminates. Let j indicate

the only agent that bids at price p. Therefore vi � p � 0 for all agents i 6= j and

vj � p � 0 for agent j (because agents follow best-response bidding strategies), and

� =
P

imaxf0; vi � pg+ p = maxf0; vj � pg+ p = vj .

� The value of the dual strictly decreases in each round of the auction. Let m > 1

equal the number of agents that bid in each round of the auction except the �nal

round. For price increment �, the sum maximal utility to the agents decreases by m�

and the maximal revenue to the auctioneer increases by �, for a net change in � of

�(m� 1)�.

In fact, the �nal price in the English auction approaches the Vickrey payment (i.e. the

second-highest value) as the bid increment � ! 0. It follows that myopic-best response

is a rational sequential strategy for an agent, in equilibrium with myopic best-response

strategies from other agents (see Chapter 7 for a full discussion of the incentive properties

of iterative Vickrey auctions).

4.4 Linear Program Formulations for the Combinatorial Al-

location Problem

Primal-dual based auction methods require linear programming formulations of allocation

problems. Bikchandani & Ostroy [BO99] have formulated a hierarchy of linear programs for

the problem, introducing additional constraints to remove fractional solutions. Although

it is always possible to add enough constraints to a linear program relaxation to make the

optimal solution integral [Wol81a, Wol81b, TW81], the particular formulations proposed by

Bikchandani & Ostroy are interesting because the constraints have natural interpretations

as prices in the dual.
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The hierarchy of linear program formulations, [LP1], [LP2], and [LP3], all retain the

set of integer allocations but prune additional fractional solutions. Each formulation in-

troduces new constraints into the primal, with the dual problems [DLP1], [DLP2], and

[DLP3] containing richer price structures. For example, in [DLP1] the prices on a bundle

are linear in the price of items, i.e. p(S) =
P

j2S p(j), where p(j) is the price of item j

in bundle S. Moving to [DLP2], the price on a bundle can be non-linear in the price on

items, and in [DLP3] the price on a bundle can be di�erent to di�erent agents. Bikchan-

dani & Ostroy prove that LP3 solves all CAP instances, and demonstrate the existence of

competitive equilibrium prices, even though they must sometimes be both non-linear and

non-anonymous.

Solving the CAP with the high-level linear program formulations is likely to be less

e�cient computationally than direct search-based methods applied to the integer program

formulation. Formulations [LP2] and [LP3] introduce an exponential number of additional

primal constraints, and dual variables, e�ectively enumerating all possible solutions to the

CAP. In comparison, search methods, such as branch-and-bound with LP-based heuristics,

solve the problem with implicit enumeration and pruning.

However the formulations are very useful in the context of mechanism design and

decentralized CAP problems. In Section 4.6 I present CombAuction, a primal-dual

algorithm for the CAP, which

(a) computes optimal primal and dual solutions without complete information about

agent valuation functions.

(b) computes optimal primal and dual solutions without complete enumeration of all

primal constraints and/or dual variables.

In fact most of the computation withinCombAuction occurs in winner determination,

which solves the restricted primal problem in each round, and winner-determination itself

is solved with a branch-and-bound search algorithm.

4.4.1 Integer Program Formulation

Introducing xi(S) to indicate that agent i receives bundle S the straightforward integer

program, [IP], formulation of the combinatorial allocation problem is:

max
xi(S)

X
S

X
i

xi(S)vi(S) [IP]
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s:t:
X
S

xi(S) � 1; 8i (IP-1)

X
S3j

X
i

xi(S) � 1; 8j (IP-2)

xi(S) 2 f0; 1g; 8i; S

where S 3 j indicates a bundle S that contains item j. The objective is to compute the

allocation that maximizes value over all agents, without allocating more than one bundle

to any agent (IP-1) and without allocating a single item multiple times (IP-2). Let V �

IP

denote the value of the optimal allocation.

4.4.2 First-order LP Formulation

LP1 is a direct linear relaxation, which replaces the integral constraints xi(S) 2 f0; 1g with

non-negativity constraints, xi(S) � 0.

max
xi(S)

X
S

X
i

xi(S)vi(S) [LP1]

s:t:
X
S

xi(S) � 1; 8i (LP1-1)

X
S3j

X
i

xi(S) � 1; 8j (LP1-2)

xi(S) � 0; 8i; S

min
p(i);p(j)

X
i

p(i) +
X
j

p(j) [DLP1]

s:t: p(i) +
X
j2S

p(j) � vi(S); 8i; S (DLP1-1)

p(i); p(j) � 0; 8i; j

Prices p(j) on items j 2 G de�ne a feasible dual solution, with the substitution p(i) =

maxS

n
vi(S)�

P
j2S p(j)

o
.

Proposition 4.2 (�rst-order dual). The value of the �rst-order dual is the sum of the

maximal utility to each agent plus the total price over all items (this is the auctioneer's

maximal revenue).
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A B AB

Agent 1 0 0 3
Agent 2 2� 0 2
Agent 3 0 2� 2

Table 4.1: Problem 1.

A B C AB BC AC ABC

Agent 1 60 50 50 200� 100 110 250
Agent 2 50 60 50 110 200 100 255
Agent 3 50 50 75� 100 125 200 250

Table 4.2: Problem 2.

The dual variables de�ne linear prices, the price for bundle S � G is p(S) =
P

j2S p(j).

From De�nition 4.7 the optimal dual solution de�nes competitive equilibrium prices if and

only if a partition of items exists at the prices that allocates each agent a bundle in its

utility-maximizing set and allocates every item with positive price exactly once.

Problem 1 in Table 4.1 can be solved with [LP1]; V
�

LP1
= VIP = 4. The optimal

allocation is x2(A) = 1 and x3(B) = 1, indicated by �. To see that VLP1
� 4, notice that

dual prices p(A) = p(B) = 1:6 gives a dual solution with value VDLP1
= 0+0:4+0:4+3:2 =

4. Remember that V �

LP1
� VDLP1

for all dual solutions by the weak-duality theorem of

linear programming. These are one set of competitive equilibrium prices.

However, in general the value V �

LP1
> V �

IP and the optimal primal solution makes

fractional assignments to agents. As an example of when [LP1] fails, consider Problem 2

in Table 4.2. In this problem V �

LP1
= 300 > V �

IP = 275. The primal allocates fractional

solution x1(AB) = 0:5; x2(BC) = 0:5 and x3(AC) = 0:5, which satis�es constraints (LP1-

1) because
P

S 3 j
P

i xi(S) � 1 for all items j 2 G. Prices p(A) = p(B) = p(C) = 100

solve the dual problem DLP1.

Kelso & Crawford [KC82] prove that gross-substitutes (GS) preferences are a su�cient

condition for the existence of linear competitive equilibrium prices, such that V �

LP1
= V �

IP.

To de�ne gross-substitutes preferences, let Di(p) de�ne the demand set of agent i at

prices p, i.e. the set of bundles that maximize its utility (value - price).

Definition 4.8 [gross-substitutes (GS)] For all price vectors p; p0 such that p0 � p, and

all S 2 Di(p), there exists T 2 Di(p
0) such that fj 2 S : pj = p0jg � T .
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In words, an agent has GS preferences if an agent continues to demand items with the

same price as the price on other items increases. If preferences are also monotonic, such

that vi(S
0) � vi(S) for all S

0 � S, then GS implies submodular preferences.

Definition 4.9 [submodular preferences] Valuation function vi(S) is submodular if for

all S; T � G,

vi(S) + vi(T ) � vi(S [ T ) + vi(S \ T )

Submodularity is equivalent to a generalized statement of decreasing returns:

Definition 4.10 [decreasing returns] Valuation function vi(S) has decreasing marginal

returns if for all S � T � G and all j 2 G,

vi(T )� vi(T n fjg) � vi(S)� v(S n fjg)

In other words, the value of an item increases as it is introduced to larger sets of items.

Subadditivity implies that the value for any bundle is no greater than the minimal sum of

values for a partition of the bundle.

In fact, gross-substitutes preferences de�ne the largest set of preferences that contain

unit-demand preferences (see De�nition 4.14) for which the existence of linear competitive

equilibrium prices can be shown [GS99].

The rest of this section introduces two alternative linear program formulations of CAP,

[LP2] and [LP3], due to Bikchandani & Ostroy [BO99].

4.4.3 Second-order LP Formulation

Introducing new constraints to the �rst-order linear program relaxation [LP1] of [IP] gives

a second-order linear program [LP2] with dual [DLP2]. The corresponding dual variables

to the new primal constraints are interpreted as bundle prices within an auction-based

primal-dual algorithm.
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max
xi(S);y(k)

X
S

X
i

xi(S)vi(S) [LP2]

s:t:
X
S

xi(S) � 1; 8i (LP2-1)

X
i

xi(S) �
X
k3S

y(k); 8S (LP2-2)

X
k

y(k) � 1 (LP2-3)

xi(S); y(k) � 0; 8i; S; k

min
p(i);p(S);�

X
i

p(i) + � [DLP2]

s:t: p(i) + p(S) � vi(S); 8i; S (DLP2-1)

� �
X
S2k

p(S) � 0; 8k (DLP2-2)

p(i); p(S); � � 0; 8i; S

where k 2 K is a partition of items in set K, and k 3 S indicates that bundle S is repre-

sented in partition k. A partition is a feasible \bundling" of items, e.g. [A;B;C] or [AB;C],

etc., and K is the set of all possible partitions, e.g. K = f[A;B;C]; [AB;C]; [A;BC]; : : : ;

[ABC]g in Problem 2 (Table 4.2).

Constraints (LP2-2) and (LP2-3) replace constraints (LP1-1), and ensure that no more

than one unit of every item is allocated. The dual [DLP2] has variables p(i), p(S) and �,

which correspond to constraints (LP2-1), (LP2-2) and (LP2-3), and constraints (DLP2-1)

and (DLP2-2) correspond to primal variables xi(S) and y(k).

Dual variables p(S) can be interpreted as bundle prices, and with substitution p(i) =

max
S
fvi(S)� p(S)g, i.e. the maximal utility to agent i at prices p(S), and

� = maxk2K
P

S2k p(S), i.e. the maximal revenue to the auctioneer at prices p(S).

Proposition 4.3 (second-order dual). The value of the dual is the sum of the maximal

utility to each agent with bundle prices p(S) plus the auctioneer's maximal revenue over

all feasible (and non-fractional) allocations at the prices.
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A B AB

Agent 1 0 0 3�

Agent 2 2 2 2

Table 4.3: Problem 3.

The dual variables correspond to bundle prices, p(S), and the optimal dual solution

de�nes competitive equilibrium prices (by De�nition 4.7) if there is an allocation that gives

each agent a bundle in its utility-maximizing set at the prices, and maximizes revenue to

the auctioneer over all possible allocations.

With the additional constraints [LP2] solves Problem 2. Allocation x1(AB) = x2(BC)

= x3(AC) = 0:5 is not feasible in [LP2] because it is not possible to allocate y(k1) =

y(k2) = y(k3) = 0:5 for k1 = [AB;C]; k2 = [AC;B] and k3 = [AB;C] without violating

constraint (LP2-3) and without this we violate constraints (LP2-2). [LP2] solves Problem

2, with V �

LP2
= V �

IP = 275. An optimal dual solution is given by bundle prices p =

(50; 60; 75; 190; 200; 200; 255), with total agent maximal utility 10 + 0 + 0 and maximal

auctioneer revenue 75 + 190 = 265, i.e. V �

DLP2
= 275.

However, Problem 3 is an example that [LP2] does not solve. The value of the optimal

primal solution is V �

LP2
= 3:5, which is greater than the value of the optimal feasible

allocation, V �

IP = 3. The primal allocates fractional bundles x1(AB) = 0:5 and x2(A) =

x2(B) = 0:5, which satis�es constraints (LP2-2) and (LP2-3) with y(k1) = y(k2) = 0:5 for

partitions k1 = [AB; ;] and k2 = [A;B]. Prices p(A) = 1:5; p(B) = 1:5; p(AB) = 3 solves

the dual problem DLP2.

4.4.4 Third-order LP Formulation

Introducing new constraints to the second-order linear program relaxation [LP2] of [IP]

gives a third-order linear program [LP3] with dual [DLP3]. The corresponding dual vari-

ables to the new primal constraints are interpreted as non-anonymous, or discriminatory

bundle prices, with di�erent prices for the same bundle to di�erent agents.
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max
xi(S);y(k)

X
S

X
i

xi(S)vi(S) [LP3]

s:t:
X
S

xi(S) � 1; 8i (LP3-1)

xi(S) �
X

k3[i;S]

y(k); 8i; S (LP3-2)

X
k

y(k) � 1 (LP3-3)

xi(S); y(k) � 0; 8i; S; k

min
p(i);pi(S);�

X
i

p(i) + � [DLP3]

s:t: p(i) + pi(S) � vi(S); 8i; S (DLP3-1)

� �
X

[i;S]2k

pi(S) � 0; 8k (DLP3-2)

p(i); pi(S); � � 0; 8i; S

where k 3 [i; S] indicates that agent-partition k 2 K 0 contains bundle S designated

for agent i. Variable y(k) in [LP3] corresponds to an agent-partition k, where the set

of agent-partitions in Problem 3 is K 0 = f[(1; A); (2; B)]; [(1; B); (2; A)]; [(1; AB); (2; ;)];

[(1; ;); (2; AB)]. It is important to note that each agent can receive at most one bundle in

a particular agent-partition.

The dual variables pi(S) that correspond to primal constraints (LP3-2) are interpreted

as non-anonymous bundle prices, price pi(S) is the price to agent i for bundle S. As before,

substitutions p(i) = max
S
fvi(S)� pi(S)g, i.e. the maximal utility to agent i at individual

prices pi(S), and � = maxk2K0

P
[i;S]2k pi(S), i.e. the maximal revenue to the auctioneer

at prices pi(S) given that it can allocate at most one bundle at prices pi(S) to each agent

i.

Proposition 4.4 (third-order dual). The value of the dual to [LP3] is the sum of

the maximal utility to each agent with bundle prices pi(S) plus the auctioneer's maximal

revenue over all feasible allocations at the prices. In this case an allocation is feasible if it

allocates no more than one bundle to each agent.
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The dual variables correspond to non-anonymous bundle prices, pi(S), and the optimal

dual solution de�nes competitive equilibrium prices if there is an allocation of items that

simultaneously gives each agent a bundle in its utility-maximizing set and maximizes the

auctioneer's revenue, over all possible allocations that sell at most one bundle to each

agent.

Bikchandani & Ostroy [BO99] prove this important theorem:

Theorem 4.5 (integrality). The optimal solution to linear program [LP3] is always

integral, and therefore an optimal solution to CAP, with V �

LP3
= V �

DLP3
= V �

IP.

Therefore, there are always competitive equilibrium bundles prices for CAP, although

these prices must be non-anonymous in some problems.

Consider Problem 3. Allocation x1(AB) = 0:5 and x2(A) = x3(B) = 0:5 is not feasible

in [LP3] because y(k1) = y(k2) = y(k3) = 0:5 for k1 = [(1; AB); (2; ;)]; k2 = [(1; A); (2; B)]

and k3 = [(1; B); (2; A)] violates constraint (LP3-3), but without this constraints (LP3-

2) are violated. In this problem V �

LP3
= V �

IP = 3. To see this, consider bundle prices

p1 = (0; 0; 2:5) and p2 = (2; 2; 2), for which the value of the dual is 0:5 + 0+ 2:5 = 3. This

proves that VLP3
� 3 by the weak-duality theorem of linear programming.

I will return to this hierarchy of linear-program formulations of the CAP in Section

4.6, when I introduce the CombAuction primal-dual algorithm. CombAuction con-

structs feasible primal and dual solutions to an appropriate linear program formulation,

and adjusts the solution until complementary-slackness conditions are also satis�ed.

4.5 Tractable Combinatorial Allocation Problems

The CAP is equivalent to the maximum weighted set packing problem (SPP), a well-

studied problem in the operations research literature. In SPP there are a set of items,

and a set of subsets each with non-negative weights, and the goal is to pack the items

into sets to maximize total value, without using any item more than once. CAP can

be reduced to SPP by introducing an additional \dummy item" for the XOR bids from

each agent. de Vries & Vohra [dVV00] also note two closely related problems, the set

partitioning problem (SPA), in which the goal is to select a set of subsets with minimal
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cost that include all items at most once, and the set covering problem (SCP), in which

the goal is to select a set of subsets with minimal cost that include all items at least once.

Set covering problems �nd applications in railway crew-scheduling and airline scheduling,

where items are ights/trains, and bundles represent possibility sets for individual workers.

A considerable amount is known about the complexity of this class of problems.

A classic technique in combinatorial optimization theory is to relax an integer program

to a linear one. Many tractable special cases follow by considering the conditions on the

natural relaxation of the integer program that provide integer solutions. For example, one

su�cient condition is that the linear program is integral, such that all extremal feasible

points are integral, i.e. 0-1. In this case the integrality requirement can be dropped and

the problem solved as a linear program in polynomial time. Restrictions on the constraint

matrix, corresponding to restrictions on the kinds of subsets permitted in CAP, can provide

this integrality property [dVV00].

Additional restrictions, for example on the size of bids, or on the valuation structure of

bids, can also lead to tractable special cases. Given the connection with linear programming

relaxations this is a good place to review known tractable special-cases in the literature.

The results here are drawn from Rothkopf et al. [RPH98], de Vries & Vohra [dVV00],

Nisan [Nis00], and earlier work due to Kelso & Crawford [KC82].

It is important to understand the characteristics of tractable special-cases of CAP

because this knowledge can be leveraged within mechanism design, achieving tractable

and strategy-proof solutions (see Section 3.2.1 in Chapter 3).

Restrictions on Structure of Bundles

Table 4.4 presents tractable instances of CAP that follow from restrictions on the types

of bundles on which agents can submit bids. de Vries & Vohra note that the linear-

ordering (or consecutive ones) condition implies that the constraint matrix satis�es total

unimodularity,1 and that the nested-hierarchical structure implies that the constraint ma-

trix is balanced.2 Nisan [Nis00] provides a proof-by-induction that the linear program has

integral solutions in these cases, and also describes a method to combine two bid structures

with the integral property into a single structure that retains the property.

1A matrix satis�es total unimodularity if the determinant of every square submatrix is 0, 1, or -1.
2A 0-1 matrix is balanced if it has no square submatrix of odd order with exactly two 1's in each row

and column.
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linear-order ordering G = (g1; g2; : : : ; gn) [RPH98]
every bid is for a contiguous sequence

circular ones also allow bids of form gng1g2, etc. [RPH98]
nested-hierarchical for every two subsets of items S1; S2 [RPH98]

that appear as part of any bid they are either
disjoint or one contains the other

or-singletons bids for single-items -
single-item bids one item -
bids for pairs of items cardinality constraint on size of bids [RPH98]
multi-unit, decreasing returns identical items, each agent has decreasing value for [Nis00]

each additional item

Table 4.4: Tractable structure on bids

non-decreasing and supermodular \increasing returns" [dVV00]
two-types of agents
gross-substitutes \decreasing-returns" [KC82]
unit-demand agents only want one item [Kuh55]
linear-additive agents have linear values across items [CK81]

Table 4.5: Constraints on valuation functions

Restrictions on Values on Bundles

Table 4.5 presents tractable instances of CAP that follow from restrictions on the value

structure of agents bids. de Vries & Vohra [dVV00] note that the non-decreasing and su-

permodular preferences condition again provides the linear program relaxation of the CAP

with integral solutions. Gross-substitutes were de�ned earlier in De�nition 4.8 and have

an intuitive interpretation as decreasing-returns, and also imply submodular preferences.

Definition 4.11 [supermodular preferences] Bid function bi(S) is supermodular if for

all S; T � G,

bi(S) + bi(T ) � vi(S [ T ) + vi(S \ T )

The equivalence of supermodularity and increasing returns is well-known in the litera-

ture [GS99].

Definition 4.12 [increasing returns] Bid function bi(S) has increasing marginal returns

if for all S � T � G and all j 2 G,

bi(T )� vi(T n fjg) � bi(S)� v(S n fjg)
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Note carefully that we can have any number of di�erent types of submodular valua-

tion functions, one from each agent, but only at most two di�erent types of supermodular

functions if the CAP problem is to be tractable. It is easier to solve a maximization prob-

lem, such as the CAP, with submodular (convex) objective functions than supermodular

(concave) objective functions.

Exact Solutions

Rothkopf et al. [RPH98] also suggest a dynamic programming algorithm for CAP, which

has run-time complexity independent of the number of bids actually placed, but quickly

becomes intractable for large numbers of items, with scaling property O(3m) in the number

of items m. Branch-and-bound search methods, either with AI-based heuristics [San99,

FLBS99], or with linear-program based heuristics [ATY00] have also been studied for

general CAP instances.

Approximate Solutions

The CAP is di�cult to approximate, at least within a worst-case multiplicative factor.

There is no polynomial time algorithm with a reasonable worst-case guarantee [Has99].

Approximation algorithms in the literature without this guarantee include a local-

search approach [HB00], a simple \relax and round" method [Nis00], and iterative methods

[FLBS99]. CombAuction can itself be viewed as an approximate algorithm for CAP.

CombAuction provides a worst-case bound on the di�erence between the value of its

solution and the value of the optimal solution. This error-term increases linearly with the

minimal bid increment, which de�nes the rate at which prices are increased across rounds,

while the number of rounds in the auction is inversely-proportional to the minimal bid

increment. A larger bid increment reduces the number of rounds in the auction, reducing

the number of winner-determination problems the auction must solve, in return for a loss

in worst-case e�ciency. Experimental results in Section 5.5.1 show the e�ectiveness of this

approach.
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