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Abstract

Many auctions involve the sale of a variety of distinct assets. Exam-

ples are airport time slots, delivery routes, network routing and furni-

ture. Because of complementarities or substitution effects between the

different assets, bidders have preferences not just for particular items

but for sets of items. For this reason, economic efficiency is enhanced

if bidders are allowed to bid on bundles or combinations of different

assets. This paper surveys the state of knowledge about the design of

combinatorial auctions and presents some new insights.
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1. Introduction

Many auctions involve the sale of a variety of distinct assets. Examples

are the FCC spectrum auction (http://www.fcc.gov/wtb/auctions/) and

auctions for airport time slots (Rassenti et al. 1982), railroad segments

(Brewer 1999), delivery routes (Caplice 1996) and network routing (Hersh-

berger and Suri 2001). Because of complementarities or substitution effects

between different assets, bidders have preferences not just for particular

items but for sets of items, sometimes called bundles.

To illustrate, suppose you must auction off a dining room set consisting

of four chairs and a table. Would you wish to auction off the entire set or

run five separate auctions for each piece? The answer depends, of course, on

what bidders care about. If every bidder is interested in the dining room set

and nothing less, the first option is preferable. If some bidders are interested

in the set but others are interested only in a chair or two it is not obvious

what to do. If you believe that you can raise more by selling off the chairs

separately than the set, the second option is preferable. Notice, deciding

requires a knowledge of just how much bidders value different parts of the

ensemble. For this reason, economic efficiency is enhanced if bidders are

allowed to bid directly on combinations of different assets instead of bidding

only on individual items. Auctions where bidders are allowed to submit

bids on combinations of items are usually called combinatorial auctions.

‘Combinational auctions’ is more accurate, but in this survey we will comply

with convention.

Auctions where bidders submit bids on combinations have recently re-

ceived much attention. See for example Caplice (1996), Rothkopf et al.

(1998), Fujishima et al. (1999), and Sandholm (1999). However such auc-
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tions were proposed as early as 1976 (Jackson 1976) for radio spectrum

rights.1 Rassenti et al. (1982), a little later, propose such auctions to allo-

cate airport time slots. Srinivasan et al. (1998) have proposed a mechanism

for trading financial securities that allows buyers and sellers to offer bun-

dles of financial instruments; their mechanism treats financial securities as

divisible. Increases in computing power have made combinatorial auctions

more attractive to implement.

Perhaps the best known auction of heterogenous objects, has been the

1994 FCC auction of spectrum rights. Here bidders were interested in dif-

ferent collections of spectrum licences. The FCC decided against an auction

in which bidders would bid on subsets of licences as it was thought, at the

time, that such an auction would be cumbersome to run. Instead, the FCC

used a separate auction for each licence. However, the auctions were run in

parallel and bidders were allowed to participate in as many of them as possi-

ble. A more detailed description of these auctions can be found in Cramton

(2001). In the fall of 2001 the FCC plans to run its first auction (Auction

#31) in which bidders will be allowed to bid on combinations of spectrum

licences.

In contrast to the FCC, a number of large firms have actively embraced

combinatorial auctions to procure logistics services. Olson et al. (2000)

describes the design and use of a combinatorial auction that was employed

by Sears in 1993 to select carriers. Here the objects bid upon were delivery

routes (called lanes). Since a truck must return to its depot, it was more

profitable for bidders to have their trucks full on the return journey. Being

allowed to bid on bundles gave bidders the opportunity to construct routes
1We thank Dr. Jackson for bringing the reference to our attention.
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that utilized their trucks as efficiently as possible. In fact a number of

logistics consulting firms tout software to implement combinatorial auctions.

SAITECH-INC, for example, offers a software product called SBIDS that

allows trucking companies to bid on bundles of lanes. Logistics.com’s system

is called OptiBidTM. Logistics.com claims that more than $5 billion in

transportation contracts have been bid by January 2000 using OptiBidTM

by Ford Motor Company, Wal-Mart and K-Mart.2

Graves et al. (1993) describes the auction of seats in a course that is exe-

cuted regularly at the University of Chicago’s Business School. Strevell and

Chong (1985) describe the use of an auction to allocate vacation time slots.

Banks et al. (1989) propose a combinatorial auction for selecting projects

on the space shuttle. It was tested experimentally but never implemented

for political reasons.

Procurement auctions where bidders are asked to submit a collection

of price-quantity pairs, for example, $4 a unit for 100 units; $3.95 a unit

for 200 units etc. are also examples of combinatorial auctions. Here each

price-quantity pair corresponds to a bundle of homogenous goods and a bid.

If the goods are endowed with attributes like payment terms, delivery and

quality guarantees they become bundles of heterogenous objects. Davenport

and Kalagnanam (2001) describe a combinatorial auction for such a context

that is used by a large food manufacturer. Ausubel and Cramton (1998) and

Bikhchandani and Huang (1993) describe the auction for Treasury Securities
2Yet another firm called InterTrans Logistics Solutions, offers a software product called

Carrier Bid Optimizer that allows trucking companies to bid on bundles of lanes over

several bidding rounds. They appear to have been acquired by i2 and we have not been

able to find anything more about them. Two more companies have been formed to provide

software for combinatorial auctions. They are CombineNet and Trade Extensions.
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that is actually used by the US Department of Treasury and compare it with

other mechanisms.

In 1998 OptiMark Technologies (http://www.optimark.com/markets.

html) offered an automated trading system that allows bidders to submit

price-quantity-stock triples (along with a priority list). The Securities and

Exchange Commission (SEC) approved a proposal by the Pacific Stock Ex-

change to implement this electronic trading system. That same year the

NASDAQ market announced plans to introduce this technology to its deal-

ers and investors trading stocks listed on it. The system was adopted by the

Osaka Securities exchange, but suspended in June of 2001.

The designer of a combinatorial auction faces a surfeit of choices, some

of which we list below.

1. Should the collection of bundles on which bids are allowed be re-

stricted? If so, to what?

2. Should the auction involve a single round of bidding? If so, how should

the bundles be allocated as a function of the bids and what should the

payment rules be?

3. If the auction is to involve multiple rounds (call such auctions itera-

tive), what information should be revealed to bidders from one round

to the next?

The choice depends on the objectives of the auctioneer. For example, is it to

maximize revenue or economic efficiency? Other considerations also matter:

Speed, practicality, bidders preferences, the need to discourage collusion and

encourage competition amongst the bidders.

Nevertheless, no matter how one chooses there are three problems that
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every auction designer must resolve. The first has to do with bid expression.

The second is how to allocate bundles amongst bidders so as to optimize

some criterion. Third, what are the incentive implications of the solutions

offered to the first two. We discuss the first two issues in Sections 2 and 3.

In Section 4 we will disucss iterative auctions and conclude with a discussion

of the third major problem —incentive issues— in Section 5.

In the interests of space, a number of issues relevant to auction design in

general are omitted. These are interdependent values (Jehiel and Molodvanu

2001), privacy in bidding (Naor, Pinkas and Sumner 1999) and ‘false name’

bidding (Yokoo, Sakurai and Matsubara 2001).

2. Bid Expression

The first and most obvious difficulty an auction which allows bidders to bid

on combinations faces is that each bidder may have to determine a bid for

every bundle he is interested in. The second problem is how to transmit this

bidding function in a succinct way to the auctioneer.

In theory a bidder could be interested in every combination of items

possible. In practice resource constraints on the part of bidders will limit

the number of combinations they will submit bids on. For example, in the

auction of spectrum, estimating the value of a bundle of spectrum requires

putting together a business plan. Having decided on which combinations to

place a bid on, the next step is to communicate this to the auctioneer.

The difficulty now is to communicate this list, if it is particularly large, in

a way that will be computationally useful to the auctioneer. One approach,

not much explored, is to rely on an ‘oracle’. An oracle is a program (black

box) that, for example, given a bidder and a subset computes the bid for it.
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Thus bidders submit oracles rather than bids. The auctioneer can simply

invoke the relevant oracle at any stage to determine the bid for a partic-

ular subset.3 Effectiveness of this approach depends on the computational

efficiency of the oracle.

Alternatively, the auctioneer may specify a bidding language that all

bidders must use to encode their preferences. A discussion of various ways

in which bids can be restricted and their consequences can be found in

Nisan (1999). In that paper Nisan asks, given a language for expressing

bids, what preferences over subsets of objects can be correctly represented

by the language. What seems clear is that a computationally efficient oracle

or language relies on restricting the preferences of bidders, or combinations

that bidders can bid on.

Another way to overcome the complexity of communicating bids and

determining the winning bidders is to restrict the collection of bundles on

which bidders might bid. Different scenarios along this idea are developed

by Rothkopf et al. (1998), see also Subsection 3.4.

Even if this problem is resolved (in a non-trivial way) to the satisfaction

of the parties involved, it still leaves open the problem of deciding which

collection of bids to accept.

3. Winner Determination

The problem of identifying which set of bids to accept has usually been

dubbed the winner determination problem. The precise formulation will

depend on the objectives of the auctioneer. Here we focus on the formulation
3Sandholm (1999) points out that another advantage of oracles is that bidders need

not be present. Their application does rely on the probity of the auctioneer.
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described in Rothkopf et al. (1998) and by Sandholm (1999). To distinguish

it from other possible formulations we call it the Combinatorial Auction

Problem (CAP).4 CAP can be formulated as an Integer Program. We will

survey what is known about the CAP. It assumes a knowledge of linear

programming and familiarity with basic graph theoretic terminology.

3.1 The CAP

To formulate CAP as an integer program let N be the set of bidders and

M the set of m distinct objects. For every subset S of M let bj(S) be the

bid that agent j ∈ N has announced he is willing to pay for S.5 From the

formulation it will be clear that bids with bj(S) < 0 will never be selected.

So, without loss of generality we can assume that bj(S) ≥ 0. Let y(S, j) = 1

if the bundle S ⊆ M is allocated to j ∈ N and zero otherwise.

max
∑

j∈N

∑

S⊆M

bj(S)y(S, j)

s.t.
∑

S3i

∑

j∈N

y(S, j) ≤ 1 ∀i ∈ M

∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆ M, j ∈ N

The first constraint ensures that overlapping sets of goods are never assigned.

The second ensures that no bidder receives more than one subset. Call this

formulation CAP1. Problem CAP as formulated here is an instance of what

is known as the Set Packing Problem (SPP) which is described below.
4We assume that the auctioneer is a seller and bidders are buyers.
5Implicit is the assumption that bidders care only about the combinations they receive

and not on what other bidders receives.
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When bid functions are superadditive, a more succinct formulation is

possible. Let b(S) = maxj∈N bj(S) and set xS = 1 if the highest bid on the

set S is to be accepted and zero otherwise. Then CAP can be formulated

as:

max
∑

S⊂M

b(S)xS

s.t.
∑

S3i

xS ≤ 1 ∀i ∈ M

xS = 0, 1 ∀S ⊂ M

Here the constraint
∑

S3i xS ≤ 1 ∀i ∈ M ensures that no object in M is

assigned to more than one bidder. Call this formulation CAP2. It is also an

instance of the SPP.6

There is another interpretation of the CAP possible. If the bids submit-

ted are the actual values that bidders have for various combinations, then

the solution to the CAP is the economically efficient allocation of indivisible

objects in an exchange economy.

We have formulated CAP1 under the assumption that there is at most

one copy of each object. It is an easy matter to extend the formulation

to the case when there are multiple copies of the same object and bidders

may want more than one copy of the same unit. Such extensions, called

multi-unit combinatorial auctions, are investigated by Leyton-Brown et al.

(2000) as well as by Gonen and Lehman (2000).7

6In the absence of superadditivity, one must impose the additional constraints of CAP1

that prevent any bidder receiving more than one bundle in an optimal solution.
7If the number of units of each type is large, then one could approximate the problem

of selecting the winning set of bids using a linear program. The relevant decision variables

would be the percentage of each type allocated to a bidder.
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The formulation for winner determination just given is not flexible enough

to encompass some of the variations that have been considered in the liter-

ature. Here is a more comprehensive formulation:

max
∑

j∈N

∑

S∈Ωj

bj(q)y(q, j)

s.t.
∑

j∈N

∑

S∈Ωj

y(q, j)qi ≤ mi ∀i ∈ M (GCAP1)

yj ∈ PA
j ∀j ∈ N (GCAP2)

y ∈ PA (GCAP3)

yj ∈ PB
j ∀j ∈ N (GCAP4)

y(q, j) = 0, 1 ∀q ∈ Ωj ∀j ∈ N (GCAP5)

Here mi is the number of units of object i available and q is an integral vector

whose ith component represents the number of units of object i demanded.

If y(q, j) = 1 this means agent j is allocated the bundle represented by the

vector q.

The sets Ωj ⊆ NM ∩ [0,m1] × [0,m2] × · · · × [0,mm] model restrictions

on what bidders can bid on. They can be fixed by the auctioneer or she

might permit bidders to specify them (subject to some constraints as the

FCC-restrictions for auction #31 on the number of packages a bidder might

bid on).

The constraints (GCAP1) ensure that no more of an item is allocated

than the available supply. The constraints (GCAP2) are imposed by the

auctioneer and enforce capacity constraints on the bidders; for example no

bidder is supposed to win more than two items, no bidder is supposed to win

more than 40% of the total business, etc. Here PA
j denotes the polyhedron
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of feasible solutions to these constraints.8

Constraints (GCAP3) permit the auctioneer to restrict the overall allo-

cation. For example, the allocation must be edges that form a path or a tree.

Here PA denotes the polyhedron of feasible solutions to these restrictions. 9

Constraints (GCAP4) allow each bidder to restrict the allocations he

might win. The feasible solutions satisfying these bidder imposed restric-

tions are represented by the polyhedron PB
i . For example, if he has a sub-

additive valuation, he might put PB
i = {y ∈ RΩj |∑S∈Ωj

y(S, j) ≤ 1} to

ensure that he does not pay more than what he bid.

Finally, (GCAP5) ensures that we end with an integral allocation.

3.2 The Set Packing Problem

The SPP is a well studied integer program. Given a ground set M of el-

ements and a collection V of subsets with non-negative weights, find the

largest weight collection of subsets that are pairwise disjoint. To formulate

this problem as an integer program, let xj = 1 if the jth set in V with weight

cj is selected and xj = 0, otherwise. Define aij to be 1 if the jth set in V

contains element i ∈ M . Given this, the SPP can be formulated as:

max
∑

j∈V

cjxj

s.t.
∑

j∈V

aijxj ≤ 1 ∀i ∈ M

xj = 0, 1 ∀j ∈ V

8The auctioneer could choose P A
j that in effect restrict Ωj . To avoid this one could

require that P A
j ∩NΩj to be full dimensional.

9We assume that P A can not be described as the cartesian product of an interval on

the coordinate axis and a lower-dimensional polytope.
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As noted by Rothkopf et al. (1998) and Sandholm (1999) the CAP is an

instance of the SPP. Just take M to be the set of objects and V the set of

all subsets of M .

Before continuing with a discussion of the SPP we mention two of its

close relatives. The first is called the set partitioning problem (SPA)

and the second is called the set covering problem (SCP). Both would

be relevant had we cast the auction problem in procurement rather than

selling terms. The auctions used in the transport industry are of this set

covering type. In that setting, objects are origin-destination pairs, called

lanes. Bidders submit bids on bundles of lanes that represent how much

they must be offered to undertake the deliveries on the specified lanes. The

auctioneer wishes to choose a collection of bids of lowest cost such that all

lanes are served.10

While SPA and SPC are cosmetically similar to the SPP they have dif-

ferent computational and structural properties. The survey by Balas and

Padberg [1976] contains a bibliography on applications of the SPP, SCP and

SPA.

3.3 Complexity of the SPP

How hard is the SPP to solve? By enumerating all possible 0-1 solutions

we can find an optimal solution in a finite number of steps. If |V | is the

number of variables, then the number of solutions to check would be 2|V |,

clearly impractical for all but small values of |V |. For the instances of SPP

that arise in the CAP, the cardinality of V is the number of bids; possibly

a large number.
10In fact, one must specify not only lanes but volume as well, so this problem constitutes

an instance of a multi-unit combinatorial auction.
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No polynomial time algorithm for the SPP is known and is unlikely to

exist because SPP is NP-hard.11

For the CAP, this discussion of complexity may have little relevance. To

see why, suppose one takes the number of bids as a measure of the size of

the input and this number is exponential in |M |. Any algorithm for CAP

that is polynomial in the number of bids but exponential in the number

of items would, formally, be polynomial in the input size but impractial

for |M | large. Thus effective solution procedures for the CAP must rely

on two things. The first is that the number of distinct bids is not large

and is structured in computationally useful ways. The second is that the

underlying SPP can be solved reasonably quickly.

3.4 Solvable Instances of the SPP

The usual way in which instances of the SPP can be solved by a polyno-

mial algorithm is when the extreme points of the polyhedron P (A) = {x :
∑

j∈V aijxj ≤ 1 ∀i ∈ M ; xj ≥ 0 ∀j ∈ V } are all integral, i.e. 0-1. In these

cases we can simply drop the integrality requirement from the SPP and solve

it as a linear program. Linear programs can be solved in polynomial time.

It turns out that in most of these cases, because of the special structure

of these problems, algorithms more efficient than linear programming ones

exist. Nevertheless, the connection to linear programming is important be-

cause it allows one to interpret dual variables as prices for the objects being

auctioned. We will say more about this later in the paper.

A polyhedron with all integral extreme points is called integral. Iden-

tifying sufficient conditions for when a polyhedron is integral has been a
11More precisely, the recognition version of SPP is NP-complete.
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cottage industry in integer programming. These sufficient conditions in-

volve restrictions on the constraint matrix, which in this case amount to

restrictions on the kinds of subsets for which bids are submitted. We list

the most important ones here.

Rothkopf et al. (1998) covers the same ground but organizes the solvable

instances differently as well as suggesting auction contexts in which they may

be salient. An example of one such context is given below.

3.4.1 Total Unimodularity

The most well known of these sufficient conditions is total unimodularity,

sometimes abbreviated to ‘TU’. A matrix is said to be TU if the determinant

of every square submatrix is 0, 1 or -1. If the matrix A = {aij}i∈M,j∈V is TU

then all extreme points of the polyhedron P (A) are integral (see Nemhauser

and Wolsey 1988).

A special case of TU matrices are those with the consecutive ones prop-

erty (Nemhauser and Wolsey 1988). A 0-1 matrix has the consecutive

ones property if the non-zero entries in each column occur consecutively.

Rothkopf et al. (1998) offer the following to motivate the consecutive ones

property in the auction context. Suppose the objects to be auctioned are

parcels of land along a shore line. The shore line is important as it imposes

a linear order on the parcels. In this case it is easy to imagine that the most

interesting combinations (in the bidders eyes) would be contiguous. If this

were true it would have two computational consequences. The first is that

the number of distinct bids would be limited (to intervals of various length)

by a polynomial in the number of objects. Second, the constraint matrix A

of CAP2 would have the consecutive ones property in the columns.12

12If the valuation of each bidder is additive over sets of nonadjacent intervals and super-
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3.4.2 Balanced Matrices

A 0-1 matrix B is balanced if it has no square submatrix of odd order with

exactly two 1’s in each row and column. If the matrix B is balanced then

(see Schrijver 1986) the following linear program:

max





∑

j

cjxj :
∑

j

bijxj ≤ 1 ∀i, xj ≥ 0 ∀j




has an integral optimal solution whenever the cj ’s are integral.

One instance of balancedness that may be relevant to the CAP. Consider

a tree T with a distance function d. For each vertex v in T let N(v, r)

denote the set of all vertices in T that are within distance r of v. If you like,

the vertices represent parcels of land connected by a road network with no

cycles. Bidders can bid for subsets of parcels but the subsets are constrained

to be of the form N(v, r) for some vertex v and some number r. Now the

constraint matrix of the corresponding SPP will have one column for each

set of the form N(v, r) and one row for each vertex of T . This constraint

matrix is balanced. See Nemhauser and Wolsey (1988) for a proof as well

as efficient algorithms. In the case when the underlying tree T is a path the

constraint matrix reduces to having the consecutive ones property. If the

underlying network were not a tree then the corresponding version of SPP

becomes NP-hard.

additive over sets of adjacent intervals, then CAP2 models the situation correctly and the

problem is polynomially solvable. Otherwise one has to use CAP1 which adds constraints

that violate the consecutive ones property. Müller pointed out that it is a consequence of

Keil (1992) that this problem becomes NP-hard in general. For more efficiently solvable

subcases see van Hoesel and Müller (2000).
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3.4.3 Perfect Matrices

More generally, if the constraint matrix A can be identified with the vertex-

clique adjacency matrix of what is known as a perfect graph, then SPP can

be solved in polynomial time. The interested reader should consult Chapter

9 of the book by Grötschel et al. (1988) for more details. The algorithm,

while polynomial, is impractical.

We now describe one instance of perfection that may be relevant to the

CAP. It is related to the example on balancedness. Consider a tree T .

As before imagine the vertices represent parcels of land connected by a road

network with no cycles. Bidders can bid for any connected subset of parcels.

Now the constraint matrix of the corresponding SPP will have one column

for each connected subset of T and one row for each vertex of T . This

constraint matrix is perfect (Nemhauser and Wolsey 1988).

3.4.4 Graph Theoretic Methods

There are situations where P (A) is not integral yet the SPP can be solved in

polynomial time because the constraint matrix of A admits a graph theoretic

interpretation in terms of an easy problem. The most well known instance

of this is when each column of the matrix A contains at most two 1’s. In

this case the SPP becomes an instance of the maximum weight matching

problem in a graph which can be solved in polynomial time.

Each row (object) corresponds to a vertex in a graph. Each column

(bid) corresponds to an edge. The identification of columns of A with edges

comes from the fact that each column contains two non-zero entries. It is well

known that P (A) contains fractional extreme points. Consider for example

a graph which is a cycle on three vertices. A comprehensive discussion of
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the matching problem can be found in the book by Lovász and Plummer

(1986). The subclass of SPP where each column has at most K ≥ 3 non-zero

entries is NP-hard.

It is natural to ask what happens if one restricts the number of 1’s in

each row rather than column. The subclass of SPP with at most two non-

zero entries per row of A is NP-hard. These instances correspond to what

is called the stable set problem in graphs, a notoriously difficult problem.13

Another case is when the matrix A has the circular ones property. A

0-1 matrix has the circular ones property if the non-zero entries in each

column (row) are consecutive; first and last entries in each column (row)

are treated consecutively. Notice the resemblance to the consecutive ones

property. In this case the constraint matrix can be identified with what

is known as the vertex-clique adjacency matrix of a circular arc graph.14

The SPP then becomes the maximum weight independent set problem for

a circular arc graph. This problem can also be solved in polynomial time,

see Golumbic et al. (1988). Following the parcels of land on the seashore

example, the circular ones structure makes sense when the land parcels lie

on the shores of an island or lake.
13The instance of CAP produced by the radio spectrum auction in Jackson (1976)

reduces to just such a problem.
14Take a circle and a collection of arcs of the circle. To each arc associate a vertex. Two

vertices will be adjacent if the corresponding arcs overlap. The consecutive ones property

also bears a graph theoretic interpretation. Take intervals of the real line and associate

them with vertices. Two vertices are adjacent if the corresponding intervals overlap. Such

graphs are called interval graphs.

17



3.4.5 Using Preferences

The solvable instances above work by restricting the sets of objects over

which preferences can be expressed. Another approach would be to study

the implications of restrictions in the preference orderings of the bidders

themselves.

One common restriction that is placed on bj(·) is that it be non-decreasing

(that is, bj(S) ≤ bj(T ) for S ⊆ T ) and supermodular (that is, bj(S)+bj(T ) ≤
bj(S ∪ T ) + bj(S ∩ T )). Suppose now that bidders come in two types. The

type one bidders have bj(·) = g1(·) and those of type two have bj(·) = g2(·)
where gr(·) are non-decreasing, integer valued supermodular functions. Let

N r be the set of type r bidders.

Consider now the dual to the linear programming relaxation of CAP1:

min
∑

i∈M

pi +
∑

j∈N

qj

s.t.
∑

i∈S

pi + qj ≥ g1(S) ∀S ⊆ M, j ∈ N1

∑

i∈S

pi + qj ≥ g2(S) ∀S ⊆ M, j ∈ N2

pi, qj ≥ 0 ∀i ∈ M, j ∈ N

This problem is an instance of the polymatroid intersection problem and is

polynomially solvable; see Theorem 10.1.13 in the book by Grötschel et al.

(1988). More importantly it has the property of being totally dual inte-

gral, which means that its linear programming dual, the linear relaxation

of the original primal problem, has an integer optimal solution. This last

observation is used in Bikhchandani and Mamer (1997) to establish the ex-

istence of competitive equilibria in exchange economies with indivisibilities.

Utilizing the method to solve problems with three or more types of bidders
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is not possible because it is known in those cases that the dual problem

above admits fractional extreme points. In fact the problem of finding an

integer optimal solution for the intersection of three or more polymatroids

is NP-hard.

Another restriction on bids/preferences that has been studied is the gross

substitutes property (Kelso and Crawford 1982). To describe it let the value

that bidder j assigns to the set S ⊂ M of objects be vj(S). Given a vector

of prices p on objects let the collection of subsets of objects that maximize

bidder j’s utility be denoted Dj(p), defined as follows.

Dj(p) = {S ⊂ M : vj(S)−
∑

i∈S

pi ≥ vj(T )−
∑

i∈T

pi ∀T ⊂ M}.

The gross substitutes condition requires that for all price vectors p, p′ such

that p′ ≥ p, and all A ∈ Dj(p), there exists B ∈ Dj(p′) such that {i ∈
A : pi = p′i} ⊂ B. A special case of the gross substitutes condition is

when bidders are interested in multiple units of the same item and have

diminishing marginal utilities.

In the case when each of the bj(·) have the gross substitutes property,

the linear programming relaxation of CAP1 has an optimal integer solution.

This is proved in Kelso and Crawford (1982) as well as Gul and Stachetti

(1997). In both cases a primal-dual algorithm for the linear relaxation of

CAP1 is offered and interpreted as an auction.

3.5 Exact Methods

An exact method for solving the SPP and the CAP is one that is guaranteed

to return a solution that is both feasible and optimal. They come in three

varieties: branch and bound, cutting planes and a hybrid called branch and
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cut. Fast exact approaches to solving the SPP require algorithms that gener-

ate both good lower and upper bounds on the maximum objective function

value of the instance. In general, the upper bound on the optimal solu-

tion value is obtained by solving a relaxation of the optimization problem.

There are two standard relaxations for SPP: Lagrangean relaxation (where

the feasible set is usually required to maintain 0-1 feasibility, but many if

not all of the constraints are moved to the objective function with a penalty

term) and the linear programming relaxation (where only the integrality

constraints are relaxed—the objective function remains the original func-

tion). Lagrangean relaxation will be discussed in greater detail in Section 5

on iterative auctions.

Because even small instances of the CAP1 may involve a huge number of

columns (bids) the techniques described above need to be augmented with

another method known as column generation. Introduced by Gilmore and

Gomory (1961) it works by generating a column when needed rather than

all at once. An overview of such methods can be found in the article by

Barnhart et al. (1994). Later in this paper we illustrate how this idea could

be implemented in an auction.

One sign of how successful exact approaches are can be found in the

article by Hoffman and Padberg (1993). They report being able to find an

optimal solution to an instance of SPA with 1,053,137 variables and 145

constraints in under 25 minutes. In auction terms this corresponds to a

problem with 145 items and 1,053,137 bids. A major impetus behind the

desire to solve large instances of SPA (and SPC) quickly has been the airline

industry. The problem of assigning crews to routes can be formulated as an

SPA. The rows of the SPA correspond to flight legs and the columns to a

sequence of flight legs that would be assigned to a crew. Like the CAP, in
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this problem the number of columns grows exponentially with the number

of rows.15 For the SPP, the large instances that have been studied have

usually arisen from relaxations of SPA’s. Given the above we believe that

established integer programming methods will prove quite successful when

applied to the solution of CAP.

Logistics.com’s OptiBidTM software has been used in situations where

the number of bidders is between 12 to 350 with the average being around

120. The number of lanes (objects) has ranged between 500 and 10,000. Ad-

ditionally, each lane bid can contain a capacity constraint as well as a budget

capacity constraint covering multiple lanes. The typical number of lanes is

3000. OptiBidTM does not limit the number of distinct subsets that bidders

bid on or the number of items allowed within a package. OptiBidTM is based

on an integer program solver with a series of proprietary formulations and

starting heuristic algorithms.16

SAITECH-INC’s bidding software, SBID, is also based on integer pro-

gramming. They report being able to handle problems of similar size as

OptiBidTM.17

Exact methods for CAP2 have been proposed by Rothkopf et al. (1998),

Fujishima et al. (1999), Sandholm (1999) and Andersson et al. (2000).

The first uses straight dynamic programming, while the second and third

use refinements by substantially pruning the search tree and introducing

additional bounding heuristics. Andersson et al. use integer programming.

In the second, the method is tested on randomly generated instances the
15However, these crew scheduling problems give rise to instances of SPA that have a

large number of duplicate columns in the constraint matrix. In some cases as many as

60% of them. We thank Dr. Márta Eső for alerting us to this.
16We thank Dr. Christopher Caplice of Logistics.com for providing this information.
17We thank Dr. Yoshiro Ikura of SAITECH-INC for providing us with this information.
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largest of which involved 500 items (rows) and 20,000 bids (variables). The

third also tests the method on randomly generated instances, the largest of

which involved 400 items (rows) and 2000 bids (variables). In these tests the

number of bids examined is far less than the number of subsets of objects.

The last uses integer programming methods on the test problems generated

by the second and third.

By comparison, a straightforward implementation on a commercially

available code for solving linear integer programs (called CPLEX) runs into

difficulties for instances of CAP involving more than 19 items if one puts

nonzero bids on all subsets. There will be more than 219 variables. This al-

ready requires one giga-byte of memory to store. CPLEX can handle in this

straight forward approach on the order of 219 variables and 19 constraints

before running out of resident memory. Notice that this is large enough to

handle the test problems considered by Sandholm (1999), Fujishima et al.

(1999).

Andersson et al. (2000)18 point out that CPLEX dominates (in terms

of run times) the algorithms of Sandholm (1999) and appear competitive

with Fujishima et al. (1999). As pointed out by Andersson et al. (2000)

and de Vries and Vohra (2001), solution times can be sensitive to problem

structure. For this reason Leyton-Brown et al. (2000a) are compiling a suite

of test problems.

3.6 Approximate Methods

One way of dealing with hard integer programs is to give up on finding the

optimal solution. Rather one seeks a feasible solution fast and hopes that it
18We reported in earlier versions of this survey about our own experiments. This part

became now an independent report, see de Vries and Vohra (2001).
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is near optimal. This raises the obvious question of how close to optimal the

solution is. There have traditionally been three ways to assess the accuracy

of an approximate solution. The first is by worst-case analysis, the second

by probabilistic analysis and the third empirically.

Before proceedings it is important to say that probably every heuristic

approach for solving general integer programming problems has been applied

to the SPP. Unfortunately, there has not been a comparative testing across

such methods to determine under what circumstances a specific method

might perform best. We think it safe to say that anything one can think

of for approximating the SPP has probably been thought of. In addition,

one can embed approximation algorithms within exact algorithms so that

one is attempting to get a sharp approximation to the lower bound for the

problem at the same time that one iteratively tightens the upper bound.

3.6.1 Worst-Case Analysis

The SPP is difficult to approximate in a worst-case sense. A major result by

H̊astad (1999) is that unless ZPP = NP (this assumption is actually weaker

than P=NP, but as well believed to be unlikely), there is no polynomial time

algorithm for the SPP that can deliver a worst case ratio larger than nε−1

for any ε > 0.19 On the positive side polynomial algorithms that have a

worst case ratio of O(n/(log n)2), see Boppana and Halldórsson (1992) are

known.20 Bounds that are a function of the data of the underlying input

problem are also known. A recent example of this motivated by CAP1 is

given by Akcoglu et al. (2000). The reader interested in a full account
19Recall that in CAP1, n would be the number of bids.
20In contrast, SPC can be approximated to within a factor of log n. In this sense SPC

is ‘easier’ than SPP.
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of what is known about approximating the SPP should consult Crescenzi

et al. (1998) where an updated list of what is known about the worst-case

approximation ratio of a whole range of optimization problems is given.

When interpreting these worst case results it should be remembered that

they shed little light on the ‘typical’ accuracy of an approximation algorithm.

3.6.2 Probabilistic Analysis

Probabilistic analysis is an attempt to characterize the typical behavior of an

approximation algorithm. A probability distribution over problem instances

is specified. This induces a distribution over the value of the optimal as

well as approximate solution. The goal is to understand how close these

two distributions might be. Since the results are asymptotic in nature,

attention must be paid to the convergence results when interpreting the

results. A problematic feature is that the distributions over instances that

are chosen (because of ease of analysis) do not necessarily coincide with the

distributions that actual instances will be drawn from.21 This issue arises

also in the empirical testing of approximation algorithms.

3.6.3 Empirical Testing

Many approximation algorithms will be elaborate enough to defy theoretical

analysis. For this reason it is common to resort to empirical testing. Further

empirical testing allows one to consider issues not easily treated analytically.

A good guide to the consumption of an empirical study of approximation

algorithms is given by Ball and Magazine (1981). They list the following

evaluation criteria:
21Results that assert that ‘typical’ instances are hard are very rare.
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1. Proximity to the optimal solution.

2. Ease of implementation (coding and data requirements).

3. Flexibility; ability to handle changes in the model.

4. Robustness; ability to provide sensitivity analysis and bounds.

This is not the forum for an extensive discussion of the issues associated

with the empirical testing of heuristics. However, some points are worth

highlighting.

The most obvious is the choice of test problems. Are they realistic? Do

they exhibit the features that one thinks one will find in the environment?

Interestingly, probabilistic analysis has a role to play here in eliminating

some schemes for randomly generating test problems. For example it is

known that certain generation schemes give rise to problems that are easy

to solve; for example, a randomly generated solution is with high probability

close to optimal. Success on a collection of problems generated in this way

conveys no information. Is the accuracy due to the approximation algorithm

or the structure of the test problems?

Some approximation algorithms involve a number of parameters that

need to be fine tuned. Comparing their performance with heuristics whose

parameters are not fine tuned becomes difficult because it is not clear wheth-

er one should include the overhead in the tuning stage in the comparison.

4. Iterative Auctions

Iterative auctions come in two varieties (with hybrids possible). In the first,

bidders submit, in each round, prices on various allocations. The auctioneer
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makes a provisional allocation of the items that depends on the submitted

prices. Bidders are allowed to adjust their price offers from the previous

rounds and the auction continues. Such auctions come equipped with rules

to ensure rapid progress and encourage competition. Iterative auctions of

this type seem to be most prevalent in practice.

In the second type, the auctioneer sets the price and bidders announce

which bundles they want at the posted prices. The auctioneer observes the

requests and adjusts the prices. The price adjustment is usually governed

by the need to balance demand with supply.

Call auctions of the first type quantity setting, because the auctioneer

sets the allocation or quantity in response to the prices/bids set by bidders.

Call the second price setting because the auctioneer sets the price. Quantity

setting auctions are harder to analyze because of the freedom they give to

bidders. Each bidder determines the list of bundles as well as prices on same

to announce. In price setting auctions, each bidder is limited to announcing

which bundles meet their needs at the announced prices.

In many simple environments price setting and quantity setting auctions

can be viewed as being ‘dual’ to one another. The simplest example is the

auction of a single object. The popular English ascending auction is an

example of a quantity setting auction. Bidders submit prices in succession,

with the object tentatively assigned to the current highest bidder. The

auction terminates when no one is prepared to top the current high bid.

The ‘dual’ version to this auction has the auctioneer continuously raising

the price. Bidders signal their willingness to buy at the current price by

keeping their hands raised. The auction terminates the instant a single

bidder remains with his hand raised. In fact this dual version of the English

auction is used as a stylized model of the English auction itself for the
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purposes of analysis (see for example Klemperer 2000). We believe that

price setting auctions are useful stylized models of quantity setting auctions

and that insights from one apply to the other.

Our discussion of iterative auctions is motivated by this ‘duality’. We will

point out that price setting auctions can be viewed as primal-dual algorithms

for the underlying winner determination problem. The reverse will also be

true. Primal dual algorithms for CAP1 (or CAP2) can be given a price

setting auction interpretation. Dantzig (1963), specifically offers an auction

interpretation for the decomposition algorithm for linear programming. A

more recent example is Bertsekas (1991), who has proposed a collection of

dual based algorithms for the class of linear network optimization problems.

These algorithms he dubs auction algorithms. Auction interpretations of

algorithms for optimization problems go back at least as far as Walras (see

Chapter 17H of the book by Mas-Collel et al. 1995) and all have the same

flavor. Dual variables are interpreted as prices and the updates on their

value that are executed in these algorithms can be interpreted as a form of

myopic best response on the part of bidders.

What are the advantages of iterative auctions over, say, single round

sealed bid auctions? The first is that they save bidders from specifying

their bids for every possible combination in advance. Second, such methods

can be adapted to dynamic environments where bidders and objects arrive

and depart at different times. Third, in settings where bidders have private

information that is relevant to other bidders, such auctions (with appropriate

feedback) allow that information to be revealed.

Examples of iterative approaches for solving the CAP are given by Fu-

jishima et al. (1999), Rassenti et al. (1982), Parkes (2000a), and Bikhchan-

dani et al. (2001). In the same spirit, Brewer (1999), Wellman et al. (1998)
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and Kutanoglu and Wu (1998) propose decentralized scheduling procedures

in different contexts. In their set up the auctioneer chooses a feasible so-

lution and ‘bidders’ are asked to submit improvements to the solution. In

return for these improvements, the auctioneer agrees to share a portion of

the revenue gain with the bidder.

In order to understand the behavior of price setting auctions it is im-

portant to identify what properties prices must have in order to produce

an allocation that solves CAP1 (or CAP2). Such an understanding can be

derived from the duality theory of integer programs.

4.1 Duality in Integer Programming

To describe the dual to SPP let 1 denote the m-vector of all 1’s and aj the jth

column of the constraint matrix A. The (superadditive) dual to SPP is the

problem of finding a superadditive, non-decreasing function F : Rm → R1

that solves

minF (1)

s.t. F (aj) ≥ cj ∀j ∈ V

F (0) = 0

We can think of F as being a non-linear price function that assigns a price

to each bundle of goods (see Wolsey 1981).

If the primal integer program has the integrality property, there is an

optimal integer solution to its linear programming relaxation, the dual func-

tion F will be linear i.e. F (u) =
∑

i yiui for some y and all u ∈ Rm. The

dual becomes:

min
∑

i

yi
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s.t.
∑

i

aijyi ≥ cj ∀j ∈ V

yi ≥ 0 ∀i ∈ M

That is, the superadditive dual reduces to the dual of the linear programming

relaxation of SPP. In this case we can interpret each yi to be the price of

object i. Thus an optimal allocation given by a solution to the CAP can be

supported by prices on individual objects.

Optimal objective function values of SPP and its dual coincide (when

both are well defined). There is also a complementary slackness condition:

Theorem 4.1 (Nemhauser and Wolsey 1988) If x is an optimal solu-

tion to SPP and F an optimal solution to the superadditive dual then

(F (aj)− cj)xj = 0 ∀j.

Solving the superadditive dual problem is as hard as solving the original

primal problem. It is possible to reformulate the superadditive dual problem

as a linear program (the number of variables in the formulation is exponen-

tial in the size of the original problem). For small or specially structured

problems this can provide some insight. The interested reader is referred to

Nemhauser and Wolsey (1988) for more details. In general one relies on the

solution to the linear programming dual and uses its optimal value to guide

the search for an optimal solution to the original primal integer program.

One way to do it is with a technique known as Lagrangean Relaxation.

4.2 Lagrangean Relaxation

The basic idea is to ‘relax’ some of the constraints of the original problem

by moving them into the objective function with a penalty term. That is in-

feasible solutions to the original problem are allowed, but they are penalized
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in the objective function in proportion to the amount of infeasibility. The

constraints that are chosen to be relaxed, are selected so that the optimiza-

tion problem over the remaining set of constraints is in some sense easy.

We describe the bare bones of the method first and then give a ‘market’

interpretation of it.

Recall the SPP:

Z = max
∑

j∈V

cjxj

s.t.
∑

j∈V

aijxj ≤ 1 ∀i ∈ M

xj = 0, 1 ∀j ∈ V

Let ZLP denote the optimal objective function value to the linear program-

ming relaxation of SPP. Note that Z ≤ ZLP . Consider now the following

relaxed problem:

Z(λ) = max
∑

j∈V

cjxj +
∑

i∈M

λi(1−
∑

j∈V

aijxj)

s.t. 1 ≥ xj ≥ 0 ∀j ∈ V

For a given λ, computing Z(λ) is easy. To see why note that

∑

j∈V

cjxj +
∑

i∈M

λi(1−
∑

j∈V

aijxj) =
∑

j∈V

(cj −
∑

i∈M

λiaij)xj +
∑

i∈M

λi.

Thus, to find Z(λ), simply set xj = 1 if (cj −
∑

i∈M λiaij) > 0 and zero

otherwise. It is also easy to see that Z(λ) is piecewise linear and convex. A

basic result that follows from the duality theorem of Linear Programming

is:

Theorem 4.2

ZLP = min
λ≥0

Z(λ).
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Evaluating Z(λ) for each λ is a snap, if one can find a fast way to determine

the λ that solves minλ≥0 Z(λ) one would have a fast procedure to find ZLP .

The resulting solution (values of the x variables) while integral need not be

feasible. However it may not be ‘too infeasible’ and so could be fudged into

a feasible solution without a great reduction in objective function value.

Finding the λ that solves minλ≥0 Z(λ) can be accomplished using the

subgradient algorithm. Suppose the value of the lagrange multiplier λ at

iteration t is λt. Choose any subgradient of Z(λt) and call it st. Choose the

lagrange multiplier for iteration t + 1 to be λt + θts
t, where θt is a positive

number called the step size. In fact if xt is the optimal solution associated

with Z(λt),

λt+1 = λt + θt(Axt − 1).

Notice that λt+1
i > λt

i for any i such that
∑

j aijx
t
j > 1. The penalty term

is increased on any constraint currently being violated.

For an appropriate choice of step size at each iteration, this procedure

can be shown to converge to the optimal solution. Specifically, θt → 0

as t → ∞ but
∑

t θt diverges. Ygge (1999) describes some heuristics for

determining the multipliers in the context of winner determination.

Here is the auction interpretation. The auctioneer chooses a price vector

λ for the individual objects and bidders submit bids. If the highest bid, cj ,

for the jth bundle exceeds
∑

i∈M aijλi, this bundle is tentatively assigned

to that bidder. Notice that the auctioneer need not know what cj is ahead

of time. This is supplied by the bidders after λ is announced. In fact, the

bidders need not announce bids, they could simply state which individual

objects are acceptable to them at the announced prices. The auctioneer can

randomly assign objects to bidders in case of ties. If there is a conflict in the
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assignments, the auctioneer uses the subgradient algorithm to adjust prices

and repeats the process.

Now let us compare this auction interpretation of Lagrangean relaxation

with the simultaneous ascending auction (SAA) proposed by P. Milgrom, R.

Wilson and P. McAfee (see Milgrom 1995). In the SAA, bidders bid on in-

dividual items simultaneously in rounds. To stay in the auction for an item,

bids must be increased by a specified minimum from one round to the next

just like the step size. Winning bidders pay their bids. The only difference

between this and Lagrangean relaxation, is that the bidders through their

bids adjust their prices rather than the auctioneer. The adjustment is along

a subgradient. Bids increase on those items for which there are two or more

bidders competing.

One byproduct of the SAA is called the exposure problem. Bidders pay

too much for individual items or bidders with preferences for certain bundles

drop out early to limit losses. As an illustration consider an extreme example

of a bidder who values the bundle of goods i and j at $100 but each separately

at $0. In the SAA, this bidder may have to submit high bids on i and j to

be able to secure them. Suppose that it loses the bidding on i. Then it is

left standing with a high bid j which it values at zero. The presence of such

a problem is easily seen within the Lagrangean relaxation framework. While

Lagrangean relaxation will yield the optimal objective function value for the

linear relaxation of the underlying integer program, it is not guaranteed to

produce a feasible solution. Thus the solution generated may not satisfy

the complementary slackness conditions. The violation of complementary

slackness is the exposure problem associated with this auction scheme. To
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see why, notice that a violation of complementary slackness means

∑

i∈M

aijλi > cj and xj = 1.

Hence the sum of prices exceeds the value of the bundle that the agent

receives. Notice that any auction scheme that relies on prices for individual

items alone will face this problem.

In contrast to the SAA outlined above is the Adaptive User Selection

Mechanism (AUSM) proposed by Banks et al. (1989). AUSM is asyn-

chronous in that bids on subsets can be submitted at any time and so is

difficult to connect to the Lagrangean ideas just described. An important

feature of AUSM is an arena which allows bidders to aggregate bids to ex-

ploit synergies. DeMartini et al. (1999) propose an iterative auction scheme

that is a hybrid of the SAA and AUSM that is easier to connect to the

Lagrangean framework. In this scheme, bidders submit bids on packages

rather than on individual items. Like the SAA, bids on packages must be

increased by a specified amount from one round to the next. This minimum

increment is a function of the bids submitted in the previous round. In addi-

tion, the number of items that a bidder may bid on in each round is limited

by the number of items s/he bid on in previous rounds. The particular im-

plementation of this scheme advanced by DeMartini et al. (1999) can also

be given a Lagrangean interpretation. They choose the multipliers (which

can be interpreted as prices on individual items) so as to try to satisfy the

complementary slackness conditions of linear programming. Given the bids

in each round, they allocate the objects so as to maximize revenue. Then

they solve a linear program (that is essentially the dual to CAP1) that finds

a set of prices/multipliers that approximately satisfy the complementary

slackness conditions associated with the allocation.
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Wurman and Wellman (2000) propose an iterative auction that allows

bids on subsets but uses anonymous, non-linear prices to ‘direct’ the auction.

Bidders submits bids on bundles and using these bids, an instance of CAP2 is

formulated and solved. Then, another program is solved to impute prices to

the bundles allocated that will satisfy a complementary slackness condition.

In the next round, bidders must submit a bid that is at least as large the

imputed price of the bundles.

Kelly and Steinberg (2000) also propose an iterative scheme for combi-

natorial auctions.22 The auction has two phases. The first phase is an SAA

where bidders bid on individual items. In the second phase an AUSM-like

mechanism is used. The important difference is that each bidder submits

a (temporary) suggestion for an assignment of all the items in the auction.

Here a temporary assignment is comprised of previous bids of other players

plus new bids of his own.23

In Parkes (1999) an iterative auction, called iBundle, that allows bidders

to bid on combinations of items and uses non-linear prices is proposed.

Bidders submit bids for subsets of items. At each iteration the auctioneer

announces prices for those subsets of items that receive unsuccessful bids

from agents. For a bid on a subset to be ‘legal’ it must exceed the price

posted by the auctioneer. Given the bids, the auctioneer solves an instance

of CAP1 and tentatively assigns the objects. For the next iteration, the

prices on each subset are either kept the same or adjusted upwards. The

upward adjustment is determined by the highest losing bid for the subset in
22The description is tailored to the auction for assigning carrier of last resort rights in

telecommunications.
23We thank Professor Steinberg for alerting us to an earlier inaccuracy in the description

of the procedure.
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question plus a user specified increment. The auction terminates when the

bids from one round to the next do not show sufficient change. The scheme

can be given a Lagrangian interpretation as well, however the underlying

formulation is different from CAP1 or CAP2. We discuss the underlying

formulation in Section 4.4.

By relaxing on a subset of the constraints as opposed to all of them

we get different relaxations, some of which give upper bounds on Z that

are smaller than ZLP . Details can be found in the book by Nemhauser

and Wolsey (1988). Needless to say there have been many applications

of Lagrangean relaxation to SPP, SPA and SPC and hybrids with exact

methods have also been investigated. See Balas and Carrera (1996) and

Beasley (1990) for recent examples.

4.3 Column Generation

Column generation is a technique for solving linear programs with an ex-

ceedingly large number of variables. Each variable gives rise to a column in

the constraint matrix, hence the name column generation. A naive imple-

mentation of a simplex type algorithm for linear programming would require

recording and storing every column of the constraint matrix. However, only

a small fraction of those columns would ever make it into an optimal basic

feasible solution to the linear program. Further, of those columns not in

the current basis, one only cares about the ones whose reduced cost will

be of the appropriate sign. Column generation exploits this observation

in the following way. First an optimal solution is found using a subset of

the columns/variables. Next, given the dual variable implied by this pre-

liminary solution, an optimization problem is solved to find a non-basic
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column/variable that has a reduced cost of appropriate sign. The trick is

to design an optimization problem to find this non-basic column without

listing all non-basic columns.

Here we propose that the column generation idea can be implemented

in an auction setting. In the first step the auctioneer chooses an extreme

point solution to the CAP. It does not matter which one, any one will do.

Note that this initial solution could involve fractional allocations of objects.

This extreme point solution together with the reduced costs is reported

to all bidders. Each bidder, looking only at how they value the allocation

proposes a column/variable/subset to enter the basis (along with its value

to the bidder). The proposed column and its valuation must satisfy the

appropriate reduced cost criterion for inclusion in the basis. In effect each

bidder is being used as a subroutine to execute the column generation step.

In the worst case, the bidder’s pricing problem might be NP-complete how-

ever the the bidder knows how his valuation is structured. So to the bidder

it might be computationally simpler to solve the pricing problem knowing

the underlying structure than for the auctioneer who does not. Further, this

eases the communication requirements between bidder and auctioneer and

permits bidders to reveal only as little of their valuation as is necessary to

determine whether they win anything.

The auctioneer now gathers up the proposed columns (along with their

valuations) and using these columns and the columns from the initial basis

only (and possibly previously generated nonbasic columns), solves a linear

program to find a revenue maximizing (possibly fractional) allocation. The

new extreme point solution generated is handed out to the bidders who are

asked to each identify a new column (if any) to be added to the new basis

that meets the reduced cost criterion for inclusion. The process is then

36



repeated until an extreme point solution is identified that no bidder wishes

to modify. To avoid cycling, the auctioneer can always implement one of

the standard anti-cycling rules for linear programming.

This auction procedure eliminates the need to transmit and process long

lists of subsets and their bids. Bids and subsets are generated only as needed.

Second, the bidders are provided an opportunity to challenge an allocation

provided they propose an alternative that increases the revenue to the seller.

If the bids might lead to a nonintegral allocation, then this column genera-

tion has to be imbedded into a branch and cut/price scheme to produce an

integer solution.24

Notice that the ellipsoid method provides a way to solve the fractional

CAP to optimality in polynomial time while generating only a polynomially

bounded number of columns. So if the fractional CAP turns out to be

integral, CAP itself can be solved in polynomial time. On the other hand,

Nisan (2001) showed, that even for submodular valuations the computation

of the efficient outcome requires exponential communication.

4.4 Cuts, Extended Formulations and Non-linear Prices

The decentralized methods described above work by conveying ‘price’ in-

formation to the bidders. Given a set of bids and an allocation, prices for

individual items that ‘support’ or are ‘consistent’ with the bids and alloca-

tions are derived and communicated to the bidders. Such prices, because

they are linear cannot hope to fully capture the interactions between the

parties. Here we show, with an example, how cutting plane methods can

be used to generate prices that more closely reflect the interactions between
24We thank Dr. Márta Eső for suggesting this last refinement. See Eső (1999) for an

example of such a branch and cut scheme.
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bids on different sets of objects.

In the example we have 6 objects with highest bids on various subsets

of objects shown below; subsets with bids of zero are not shown:

b({1, 2}) = b({2, 3}) = b({3, 4}) = b({4, 5}) = b({1, 5, 6}) = 2, b({6}) = 1.

Formulation CAP2 for this example (ignoring the integrality constraints) is:

max 2x12+ 2x23+ 2x34+ 2x45+ 2x156+ x6

s.t. x12+ x156 ≤ 1

x12+ x23 ≤ 1

x23+ x34 ≤ 1

x34+ x45 ≤ 1

x45+ x156 ≤ 1

x156+ x6 ≤ 1

x12, x23, x34, x45, x156, x6 ≥ 0

The optimal fractional solution is to set all variables equal to a half. The

optimal dual variables are yi = 1/2 for i = 1, . . . , 5 and y6 = 1. So, for

example, the imputed price of the set {1, 2} is y1 + y2 = 1.

Consider now the following inequality:

x12 + x23 + x34 + x45 + x156 ≤ 2.

Every feasible integer solution to the formulation above satisfies this inequal-

ity but not all fractional solutions do. In particular the optimal fractional

solution above does not satisfy this inequality. This inequality is an example

of a cut. Classes of cuts for the SPP are known, the one above belongs to

the class of odd-cycle cuts.
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Now append this cut to our original formulation:

max 2x12+ 2x23+ 2x34+ 2x45+ 2x156+ x6

s.t. x12+ x156 ≤ 1

x12+ x23 ≤ 1

x23+ x34 ≤ 1

x34+ x45 ≤ 1

x45+ x156 ≤ 1

x156+ x6 ≤ 1

x12+ x23+ x34+ x45+ x156 ≤ 2

x12, x23, x34, x45, x156, x6 ≥ 0

The optimal solution to this linear program is integral. It is x12 = 1, x34 = 1

and x6 = 1. There are now 7 dual variables. One for each of the six

objects (yi) and one more for the cut (µ). One optimal dual solution is

y1 = y5 = y6 = 0, y2 = y3 = y4 = 1 and µ = 1. The imputed price for the

set {1, 2} is now y1 + y2 + µ = 2. In general the price of a set S will be

the sum of the item prices,
∑

i∈S yi plus µ if the ‘x’ variable associated with

the set S appears with coefficient 1 in the cut. Notice that pricing sets of

objects in this way means that the price function will be superadditive.

It is instructive to compare the imputed price of the set {1, 2} in the

two formulations. The first formulation assigns a price of one to the set.

The second a higher price. The first formulation ignores the fact that if

the set {1, 2} is assigned to a bidder, the sets {1, 5, 6} and {2, 3} cannot be

assigned to anyone else. This fact is captured by the cut. The dual variable

associated with the cut can be interpreted as the associated opportunity

cost of assigning the set {1, 2} to a bidder. Thus the actual price of the set

{1, 2} is the sum of the prices of the objects in it plus the opportunity cost
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associated with its sale.

Cuts can be derived in one of two ways. The first is by purely combinato-

rial reasoning (see Padberg (1973, 1975 and 1979), Cornuejols and Sassano

(1989) and Sassano (1989)) and the other through an algebraic technique

introduced by Ralph Gomory (see Nemhauser and Wolsey (1988) for the

details). For CAP1 or CAP2, given a fractional extreme point, one can use

the Gomory method to generate a cut involving only the variables that are

basic in the current extreme point. This is useful for computational purposes

as one does not have to lug all variables around to identify a cut. Second,

the new inequality will be a non-negative linear combination of the current

basic rows less equal than a non-negative number. Thus the dual variable

associated with this new constraint will have an additive effect on the prices

of various subsets as in the example.

The reader will notice that by picking an extreme point dual solution, the

imputed prices for some sets are zero. Since there is some flexibility in the

choice of dual variables, one can choose an interior (to the feasible region)

dual solution. Other choices are possible. Incentive considerations suggest

choosing the one that minimizes the prices bidders pay (see for example

Bikhchandani and Ostroy 1998).

Yet another way to get non-linear prices is by starting with a stronger

formulation of the underlying optimization problem. One formulation is

stronger than another if its set of feasible (fractional) solutions is strictly

contained in the other. In the example above, the second formulation is

stronger than the first. Both formulations share the same set of integer

solutions, but not fractional solutions. The set of fractional solutions to the

second formulation is a strict subset of the fractional solutions to the first

one.
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Stronger formulations can be obtained, as shown above, by the addition

of inequalities. Yet another, standard way, of obtaining stronger formu-

lations is through the use of additional or auxiliary variables, typically a

large number of them. Geometrically, one is treating the problem formu-

lated in the original set of variables as the projection of a higher dimensional

but structurally simpler polyhedron. Formulations involving such additional

variables are called extended formulations and developing these extended

formulations is called lifting. Using lifting one can develop a hierarchy of

successively stronger formulations of the underlying integer program.

There is a close connection between lifting, extended formulations and

cutting planes. Perhaps the most accessible introduction to these matters

is Balas et al. (1993).

In the auction context, Bikhchandani and Ostroy (1998), propose a num-

ber of extended formulations for the problem of selecting the winning set of

bids. To describe the first of their extended formulations, let Π be the set

of all possible partitions of the objects in the set M . If π is an element of

Π, we write S ∈ π to mean that the set S ⊂ M is a part of the partition

π. Let zπ = 1 if the partition π is selected and zero otherwise. These are

the auxiliary variables. Using them Bikhchandani and Ostroy (1998) can

reformulate CAP1 as follows:

max
∑

j∈N

∑

S⊆M

bj(S)y(S, j)

s.t.
∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N

∑

j∈N

y(S, j) ≤
∑

π3S

zπ ∀S ⊂ M

∑

π∈Π

zπ ≤ 1
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y(S, j) = 0, 1 ∀S ⊆ M, j ∈ N

zπ = 0, 1 ∀π ∈ Π

Call this formulation CAP3. In words, CAP3 chooses a partition of M and

then assigns the sets of the partition to bidders in such a way as to maximize

revenue. It is easy to see that this formulation is stronger than CAP1 or

CAP2. Fix an i ∈ M and add over all S 3 i the inequalities

∑

j∈N

y(S, j) ≤
∑

π3S

zπ ∀S ⊂ M

to obtain:
∑

S3i

∑

j∈N

y(S, j) ≤ 1 ∀i ∈ M

which are the inequalities that appear in CAP1. While stronger than CAP1,

formulation CAP3 still admits fractional extreme points (Bikhchandani and

Ostroy 1998).

The dual of the linear relaxation of CAP3 involves one variable for every

constraint of the form:

∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N,

call it sj , which can be interpreted as the surplus that bidder j obtains. The

dual involves one variable for every constraint of the form:

∑

j∈N

y(S, j) ≤
∑

π3S

zπ ∀S ⊂ M

which we will denote pS . It can be interpreted as the price of the subset S.

In fact the dual will be:

min
∑

j∈N

sj + µ

s.t. sj ≥ bj(S)− pS ∀j S ⊂ M
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µ ≥
∑

S∈π

pS ∀π ∈ Π

sj , pS , µ ≥ 0

and has the obvious interpretation: minimizing the bidders surplus plus µ.

Thus one can obtain non-linear prices from the extended formulation. These

prices do not support the optimal allocation since CAP3 is not integral.

Further they do not depend on the bidders, that is all bidders pay the same

price for a given subset. The catch of course is this formulation involves

many more variables than CAP1 or CAP2.

In Parkes and Ungar (2000) a condition on bidders preferences is iden-

tified that ensures that the linear relaxation of CAP3 has an integral solu-

tion. The condition, called bid safety, is difficult to interpret but has the

effect of forcing complementary slackness to hold for an integer solution of

CAP3. Under this condition any algorithm for solving CAP3’s dual (or

its lagrangean relaxation) will generate an optimal solution of CAP3 itself.

Since many dual algorithms can be given an auction interpretation with the

iterations being identified as adjustments in bids that a myopic best reply

agent might execute, one can generate auction schemes that are arguably

optimal. This is precisely the tack taken in Parkes and Ungar (2000) to

support the adoption of the iBundle auction scheme of Parkes (1999).

Bikhchandani and Ostroy (1998) introduce yet another formulation stronger

than CAP3 which is integral. The idea is to use a variable that represents

both a partition of the objects and an allocation. Essentially one variable for

every solution. The dual to this formulation gives rise to non-linear prices

with the twist that they are bidder specific. Different bidders pay different

prices for the same subset. Bikhchandani et al. (2001) propose and investi-

gate another extended integral formulation with significantly fewer variables
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than the one in Bikhchandani and Ostroy (1998).

5. Incentive Issues

Thus far we have focused on the problem of choosing an allocation of the

objects so as to maximize the seller’s revenue. The revenue depends on

the bids submitted but there is no guarantee that the submitted bids ap-

proximate the actual values that bidders assign to the various subsets. To

illustrate how this can happen consider three bidders, 1, 2 and 3, and two

objects {x, y}. Suppose:

v1(x, y) = 100, v1(x) = v1(y) = 0, v2(x) = v2(y) = 75, v2(x, y) = 0,

v3(x) = v3(y) = 40, v3(x, y) = 0.

Here vi(·) represents the value to bidder i of a particular subset. Notice that

the bid that i submits on the set S, bi(S), need not equal vi(S).

If the bidders bid truthfully, the auctioneer should award x to 2 and y

to 3, say, to maximize his revenue. Notice however that bidder 2 say, under

the assumption that bidder 3 continues to bid truthfully, has an incentive

to shade his bid down on x and y to, say, 65. Notice that bidders 2 and 3

still win but bidder 2 pays less. This argument applies to bidder 3 as well.

However, if they both shade their bids downwards they can end up losing

the auction. This feature of combinatorial auctions is called the ‘threshold

problem’ (see Bykowsky et al. 1995): a collection of bidders whose com-

bined valuation for distinct portions of a subset of items exceeds the bid

submitted on that subset by some other bidder. It may be difficult for them

to coordinate their bids to outbid the large bidder on that subset. The basic

problem is that the bidders 2 and 3 must decide how to divide 75+40−100
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between them. Every split can be rationalized as the equilibrium of an

appropriate bargaining game. In linear programming terms, the threshold

problem arises because of a multiplicity of optimal dual solutions.

In this section we describe what is known about auction mechanisms

that give bidders the incentive to truthfully reveal their valuations. 25

To discuss incentive issues we need a model of bidders preferences. The

simplest conceptual model endows bidder j ∈ N with a list {vj(S)}S⊆M

with vj(∅) = 0, abbreviated to vj , that specifies how she values (monetarily)

each subset of objects. Thus vj(S) represents how much bidder j values the

subset S of objects.26

The auction scheme chosen and the bids submitted will be a function

of the beliefs that seller and bidders have about each other. The simplest

model of beliefs is the independent private values model and it is the model

we will restrict ourselves to. Each bidder’s vj is assumed by seller and all

bidders to be an independent draw from a commonly known distribution

over a compact, convex set. Bidder j knows her vj but not the valuations of

the other bidders. Last, bidders and seller are assumed to be risk neutral.

To continue the discussion it will be useful to distinguish between two

popular objectives the auctioneer may have. The first is economic efficiency

and the second is revenue maximization.
25For more details on game theory, equilibria and mechanism design see Fudenberg and

Tirole (1992).
26In the language of mechanism design, this list of valuations becomes the bidders type.

In this case, since the type is not a single number it is called multi-dimensional. For an

introduction to mechanism design see Chapter 7 of Fudenberg and Tirole (1992).
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5.1 Economic Efficiency

An auction is economically efficient if the allocation of objects to bidders

chosen by the seller solves the following:

max
∑

j∈N

∑

S⊆M

vj(S)y(S, j)

s.t.
∑

S3i

∑

j∈N

y(S, j) ≤ 1 ∀i ∈ M

∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆ M, j ∈ N

Notice that this is just CAP1 with bi replaced by vi. The optimal objective

function value of this integer program is an upper bound on the revenue that

the seller can achieve if no bidder bids above their valuation. The fact that

the seller uses an auction that selects an allocation that solves this integer

program does not imply that the seller achieves this revenue.27

An auctioneer interested in producing an efficient allocation has a puz-

zle. Since bidders valuations are private information, he must solve the

optimization problem above without a knowledge of the objective function!

Remarkably, there is a sealed bid auction that implements the efficient out-

come. It does so because it is a weakly dominant strategy for bidders to bid

truthfully in the auction. The most general class of such auctions was char-

acterized by Clarke (1971) and Groves (1973). A special case was identified

earlier by William Vickrey (1961) in an auction that bears his name. The

version we describe here is sometimes known as as Vickrey-Clarke-Groves
27In Myerson (1981) it is shown that the revenue maximizing auction for a single good

is not guaranteed to be efficient. See Jehiel and Moldovanu (1999) for a more pronounced

version of the same.
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(VCG) scheme. It is proved in Krishna and Perry (1997) (see also Williams

(1999) for the same result under slightly different assumptions) that in the

independent private values model, amongst all auctions that implement the

efficient allocation, the VCG scheme maximizes the revenue to the seller.

It works as follows:

1. Agent j reports vj . There is nothing to prevent agent j from misre-

presenting themselves. However, given the rules of the auction, it is a

weakly dominant strategy to bid truthfully.

2. The seller chooses the allocation that solves:

V = max
∑

j∈N

∑

S⊆M

vj(S)y(S, j)

s.t.
∑

S3i

∑

j∈N

y(S, j) ≤ 1 ∀i ∈ M

∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N

y(S, j) = 0, 1 ∀S ⊆ M, j ∈ N

Call this optimal allocation y∗

3. To compute the payment that each bidder must make let, for each

k ∈ N ,

V −k = max
∑

j∈N\k

∑

S⊆M

vj(S)y(S, j)

s.t.
∑

S3i

∑

j∈N\k
y(S, j) ≤ 1 ∀i ∈ M

∑

S⊆M

y(S, j) ≤ 1 ∀j ∈ N \ k

y(S, j) = 0, 1 ∀S ⊆ M, j ∈ N \ k
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Denote by yk the optimal solution to this integer program. Thus yk is

the efficient allocation when bidder k is excluded.

4. The payment that bidder k makes is equal to

V −k − [V −
∑

S⊆M

vk(S)y∗(S, k)].

Thus bidder k’s payment is the difference in ‘welfare’ of the other

bidders without him and the welfare of others when he is included in

the allocation. Notice that the payment made by each bidder to the

auctioneer is non-negative.

If a seller were to adopt the VCG scheme her total revenue would be

∑

k∈N

V −k −
∑

k∈N

[V −
∑

S⊆M

vk(S)y∗(S, k)]

=
∑

k∈N

∑

S⊆N

vk(S)y∗(S, k) +
∑

k∈N

(V −k − V )

= V +
∑

k∈N

(V −k − V ).

If there were a large number of agents then no single agent can have a

significant effect, i.e., one would expect that, on average, V is very close in

value to V −k. Thus the revenue to the seller would be close to V , the largest

possible revenue that any auction could extract. To solidify this intuition

we need that for all agents k that their valuation vk is superadditive, i.e.

vk(A)+vk(B) ≤ vk(A∪B) for all k ∈ N and A, B ⊂ M such that A∩B = ∅.
With this assumption we can find the efficient allocation using CAP2. Thus:

V = max
∑

S⊂M

{max
j∈N

vj(S)}xS

s.t.
∑

S3i

xS ≤ 1 ∀i ∈ M
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xS = 0, 1 ∀S ⊂ M

and

V −k = max
∑

S⊂M

{ max
j∈N\k

vj(S)}xS

s.t.
∑

S3i

xS ≤ 1 ∀i ∈ M

xS = 0, 1 ∀S ⊂ M

Notice now that if the number |N | of bidders is large and given that the vj ’s

live in a compact set, the random variable maxj∈N vj(S) is very close on

average to maxj∈N\k vj(S).28 Hence the objective function of the program

that defines V is essentially the same as the objective function of the integer

program that defines V −k. This argument is made precise in Monderer and

Tennenholtz (1999), where it is shown in the model used here that the VCG

scheme generates a revenue for the seller that is asymptotically close to the

revenue from the optimal auction.

The VCG scheme is, in general, impractical to implement, if the number

of bidders is very large. However in some circumstances this difficulty can

be avoided. Hershberger and Suri (2001), for example, show that in the

network routing context at most two optimization problems must be solved

to compute Vickrey payments. Bikhchandani et al. (2001), show that in a

wide range of situations, the problem of finding the efficient allocation can

be formulated as a linear program. What is more, optimal dual variables in

this linear program coincide with the Vickrey payments. In these instances,

two —and in many instances even only one— optimization problems must

be solved to compute the Vickrey payments.
28In fact the difference of the two is essentially the difference between the first and second

order statistic of a large collection of independent random numbers from a compact set.
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Another way to overcome the computational difficulties is to replace y∗

and yk for all k ∈ N with approximately optimal solutions. Such a modi-

fication in the scheme does not in general preserve incentive compatibility

(see Nisan and Ronen 2000). In Lehmann et al. (1999) such a direction is

taken. They solve the embedded optimization problems using a greedy type

algorithm and show that the resulting scheme is not incentive compatible.

However if one is willing to restrict bidders valuations drastically it is pos-

sible to generate schemes based on the greedy algorithm that are incentive

compatible. Lehmann et al. (1999) call this restriction “single mindedness.”

Each bidder values only one subset and no other.

Even if one is willing to relax incentive compatibility, an approximate

solution to the underlying optimization problems in the VCG can lead to

other problems. There can be many different solutions to an optimization

problem whose objective function values are within a specified tolerance of

the optimal objective function value. The payments specified by the VCG

scheme are very sensitive to the choice of solution. Thus the choice of ap-

proximate solution can have a significant impact on the payments made by

bidders. This issue is discussed by Johnson et al. (1997) in the context of

an electricity auction used to decide the scheduling of short term electric-

ity needs. Through simulations they show that variations in near-optimal

schedules that have negligible effect on total system cost can have significant

consequences on the total payments by bidders.

The VCG scheme as described is a single round sealed bid auction. In

simple settings the VCG auction has an iterative counterpart that imple-

ments the efficient outcome in the sense that it is a Nash equilibrium for

bidders to bid truthfully in each round. Such iterative auctions reduce the

cognitive burden on bidders to list their valuations for all bundles. Also, they

50



reduce the amount of information that bidders must reveal to the auction-

eer. An example of such can be found in Ausubel (2000) where an ascending

auction for indivisible heterogenous objects under the gross substitutes on

preferences assumption is proposed that implements the efficient outcome.

Bikhchandani and Ostroy (1998) and Bikhchandani et al. (2001) show that

in many environments the problem of finding the efficient allocation can be

formulated as a linear program in such a way that dual variables correspond

to Vickrey payments.29 The primal-dual algorithm for these linear programs

produce an iterative auction that implements the outcome of the VCG auc-

tion. That is, bidding truthfully in each round is a Nash equilibrium.

Experience with the VCG scheme in field settings is limited. Isaac and

James (1998) report on an experiment using the VCG scheme for a combi-

natorial auction involving three bidders and two objects. On the basis of

their results they argue that the VCG scheme can be operationalized and,

in their words, ‘achieve high allocative efficiency’. Kagel and Levin (2001)

experiment with iterative auctions for the sale of multiple units of homo-

geneous goods. They compare the uniform price auction with an iterative

auction (due to Ausubel 1997) that implements the VCG outcome. In their

experiments Ausubel’s auction results in outcomes close to the efficient one.

Hobbs et al. (2000) explore the possibility that the VCG scheme is vulner-

able to collusion. It is pointed out by these authors in environments with

repeated interactions that not only are there many opportunities for collu-

sion amongst bidders but incentive compatibility of the VCG scheme cannot

be guaranteed. However, this is a weakness not unique to VCG.

The efficient auction when bidders values are interdependent is more
29In fact the envirnoments when this is possible are charaterized in terms of bidders

preferences.
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difficult. Jehiel et al. (1999) and Jehiel and Moldovanu (2000) discuss the

underlying mathematical problems. Eső and Maskin (1999) introduce a re-

striction on preferences which they call partition preferences. The collection

of subsets that a bidder assigns positive value to form a partition of the set

of objects.30 For this restricted case they derive results about the form of

the efficient auction.

5.2 Revenue Maximization

The problem of designing an auction that maximizes the auctioneers revenue

(optimal auction) is more difficult. Our discussion of this problem will be

restricted to the case of independent private values. For simplicty we will

suppose that each bidder assumes that the other bidders value functions

are independent draws from a finite set V of value functions with commonly

known distribution F . The probability that agent j has value function u will

be denoted F (u). The probability that the n-tuple v = (v1, . . . , vn) ∈ V n is

realized is denoted Πn
j=1F (vj). For convenience this will be abbreviated to

F (v).

One can imagine a variety of elaborate and involved auction protocols

that must be considered. However, the revelation principle (see Myerson

1981) allows one to restrict attention to a direct revelation scheme. In

such a scheme the auctioneer announces how he will allocate the objects

amongst the bidders and the payments he will extract from each as a function

of the announced value functions. Then bidders are asked to announce their

value functions. The auctioneer is constrained to choose an allocation rule

and payment function that satisfy two constraints:
30Note that problem CAP is still NP-hard under this restriction.
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1. Induce bidders to reveal their actual valuations (incentive compat-

ibility).

2. Each bidder’s expected payoff is non-negative.

An allocation rule is a mapping from an n-tuple of value functions to an

integer solution to CAP1. If A is an allocation rule and v = (v1, v2, . . . , vn)

an n-tuple of value functions, we will write A(v) to mean the allocation

selected by the rule A.

A payment rule is a mapping from an n-tuple of value functions to

an n-tuple of payments, one for each bidder. If P is a payment rule and

v = (v1, v2, . . . , vn) an n-tuple of value functions, we will write Pj(v) to

mean the payment that bidder j must make.

With these variables one can formulate the problem of finding a revenue

maximzing auction as a mathematical program.31

There is one decision variable that represents the choice of allocation

rule and another to represent the choice of payment rule. The objective is

max
A,P

∑

v∈V n

F (v)[
∑

j∈N

Pj(v)].

Incentive compatibility requires that for each j ∈ N with value function vj

and all u 6= vj :

∑

v−j∈V n−1

[vj(A(vj ,v−j)−Pj(vj ,v−j)]F (v−j) ≥
∑

v−j∈V n−1

[vj(A(u,v−j)−Pj(u,v−j)]F (v−j).

31This is just a a specialization of the usual formulation for optimal auctions with multi-

dimensional types. The survey paper by Rochet and Stole (2000) has more details on this

subject. No closed form solution to the problem of optimal auctions with multidimensional

types is known and it is unlikely that any exists.
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That is, the expected utility from truthfully reporting ones value function

should exceed the expected utility from reporting some other value func-

tion. Given incentive compatibility we can write the individual rationality

constraint as

∑

v−j∈V n−1

[vj(A(vj ,v−j))− Pj(vj ,v−j)]F (v−j) ≥ 0

for all j ∈ N and value functions vj .

How might one solve this? First fix a choice for allocation rule, A. Let

νj(A, u) =
∑

v−j∈V n−1

vj(A(u,v−j))F (v−j)

and

ρj(u) =
∑

v−j∈V n−1

Pj(vj ,v−j)F (v−j).

Then we can rewrite the incentive compatibility and individual rationality

constraints as follows:

ρj(vj)− ρj(u) ≤ νj(A, vj),−νj(A, u),

and

ρj(vj) ≤ νj(A, vj).

The objective function can be written as:

∑

v∈V n

F (v)[
∑

j∈N

Pj(v)] =
∑

j∈N

∑

v∈V

F (v)ρj(u).

Thus the optimization problem becomes:

max
∑

j∈N

∑

v∈V

F (v)ρj(v)

s.t. ρj(v)− ρj(u) ≤ νj(A, v)− νj(A, u) ∀v, u ∈ V
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ρj(v) ≤ νj(A, v) ∀v ∈ V.

Since the allocation rule A is fixed, the only variables are the ρ’s. There are

at most two of them per constraint with coefficients of +1 and -1. Hence,

given A, the problem of finding a payment rule that enforces incentive com-

patibility and individual rationality is a network flow problem (or more

precisely the dual to one).32 For each possible choice of allocation rule A,

we can determine via the duality theorem of linear programming whether a

payment rule that is incentive compatible exists.

To determine the optimal auction one has to solve this constrained opti-

mization problem for each possible allocation rule. Then pick the allocation

rule that yields the largest revenue. Thus the design of the optimal auction

may be extremely sensitive to both the choice of bidders value function as

well as distribution of type. Under fairly stringent conditions some results

have been derived as well as comparisons of revenue between auctions of

different kind. Rochet and Stole (2000) summarize these results.

Levin (1997) identifies the optimal auction under a more restrictive set-

ting. Specifically, all objects, for all bidders, complement each other and

bidders are perfectly symmetric. In this case, the revenue maximizing auc-

tion is to simply bundle all the objects together and auction the bundle off

using an optimal single item auction.

Krishna and Rosenthal (1996), again with a simplified model of pref-

erences, attempt to make revenue comparisions between different auction

schemes. They consider auctions involving two items where bidders are of

two kinds. One kind, that they call local, are interested in receiving a single
32Introduce one vertex for each value function in V . For each ordered pair (v, u),

introduce an arc directed from v to u with length νj(A, v),−νj(A, u). The dual problem

is to find the shortest path tree rooted at the source.
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item. The other, called global, have valuations for the entire set that are

superadditive. In this paper they identify equilibria for a two item sequen-

tial second-price auction, (a particular) simultaneous second-price auction,

and a combinatorial second-price auction. The revenues obtained from each

auction (under the identified equilibria) are compared numerically. They

observe that if the synergy is small then the sequential second-price auc-

tion generates the largest revenue. For larger synergies the simultaneous

second-price auction generates the largest revenue. In their simulations the

combinatorial second-price auction always generates the smallest revenue.

It is not known whether this relation is a function of the equilibrium found

or the specification of the simultaneous auction.

Cybernomics, Inc. (2000) went a step further by comparing a particular

simultaneous multi-round auction with a particular multi-round combina-

torial auction. They performed experiments for additive values, and for

valuations with synergies of small, medium or high intensity. Their ex-

periments indicate, that the combinatorial multi-round auction was always

superior with respect to efficency but the revenue was smaller and it took

more rounds of longer duration to finish the auction.

6. Summary

Our survey has had three goals. The first, a pedestrian one, has been to

survey the extant literature. The second, has been to point out ‘classical’

results that apply directly to the problem of designing combinatorial auc-

tions. The third has been to emphasize the connections between the duality

theory of optimization problems and the design of auctions.
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