
Algorithms for Sel�sh Agents

Mechanism Design for Distributed Computation

Noam Nisan�

Abstract

This paper considers algorithmic problems in a distributed setting

where the participants cannot be assumed to follow the algorithm but

rather their own self-interest. Such scenarios arise, in particular, when

computers or users aim to cooperate or trade over the Internet. As such

participants, termed agents, are capable of manipulating the algorithm,

the algorithm designer should ensure in advance that the agents' interests

are best served by behaving correctly.

This exposition presents a model to formally study such algorithms.

This model, based on the �eld of mechanism design, is taken from the

author's joint work with Amir Ronen, and is similar to approaches taken

in the distributed AI community in recent years. Using this model, we

demonstrate how some of the techniques of mechanism design can be

applied towards distributed computation problems. We then exhibit some

issues that arise in distributed computation which require going beyond

the existing theory of mechanism design.

1 Introduction

A large part of research in computer science is concerned with protocols and
algorithms for inter-connected collections of computers. The designer of such
an algorithm or protocol always makes an implicit assumption that the par-
ticipating computers will act as instructed { except, perhaps, for the faulty or
malicious ones.

With the emergence of the Internet as the platform of computation, this as-
sumption can no longer be taken for granted. Computers on the Internet belong
to di�erent persons or organizations, and will likely do what is most bene�cial
to their owners { act \sel�shly". We cannot simply expect each computer on
the Internet to faithfully follow the designed protocols or algorithms. It is more

�Institute of Computer Science, Hebrew U., Jerusalem and IDC, Herzliya. This research
was supported by grants from the Israeli ministry of Science and the Israeli academy of
sciences.

1



reasonable to expect that each sel�sh computer will try to manipulate it for its
owners' bene�t. An algorithm or protocol intended for sel�sh computers must
therefore be designed in advance for this kind of behavior!

Such protocols and algorithms will likely involve payments (or other trade)
between the sel�sh participants. One can view this challenge (of designing proto-
cols and algorithms for sel�sh computers) as that of designing automated trade
rules for the Internet environment. The normal practices of human trade, while
clearly relevant, cannot be directly applied due to the much greater complexity
involved and due to the automated nature of the trade.

The view taken in this paper is that of a systems' engineer that has certain
technical goals for the global behavior of the Internet. We view the sel�shness of
the participants as an obstacle to our goals, and we view the trade and payments
involved as a way to overcome this obstacle. In economic terms, we desire a
virtual \managed economy" of all Internet resources, but due to the sel�shness
of the participants we are forced to obtain it using the \invisible hand" of \free
markets". Our goal is to design the market rules as to ensure the desired global
behavior.

We �rst present a formal model that allows studying these types of issues.
The model relies on the rationality of the participants and is game-theoretic
in nature. Speci�cally, it is based upon the theory of mechanism design. The
model is directly taken from the author's joint work with Amir Ronen [18], and
is similar in spirit to some models studied in the distributed AI community.
After presenting the model we present some of the basic notions and results
from mechanism design in our distributed computation setting. We do not
intend here to give a balanced or exhaustive survey of mechanism design, but
rather to pick and choose the notions that we feel are most applicable to our
applications in distributed computation. Finally, we present some scenarios that
arise in distributed computation that require going beyond the existing theory
of mechanism design.

Before getting into the model, we will mention some of the application areas
we have in mind, and shortly mention some of the existing work in computer
science along this and similar tracks.

2 Sample Scenarios

We shortly sketch below three (somewhat related) application areas that we feel
require these types \sel�sh algorithms". These application areas are each quite
wide in their scope, involve complicated optimizations of resources, and directly
involve di�ering goals of the participants. Most of the works cited below lie in
one of these areas.



2.1 Resource allocation

The aggregate power of all computers on the Internet is huge. In a \dream
world" this aggregate power will be optimally allocated online among all con-
nected processors. One could imagine CPU-intensive jobs automatically mi-
grating to CPU-servers, caching automatically done by computers with free
disk space, etc. Access to data, communication lines, and even physical at-
tachments (such as printers) could all be allocated across the Internet. This
is clearly a di�cult optimization problem even within tightly linked systems,
and is addressed, in various forms and with varying degrees of success, by all
distributed operating systems.

The same type of allocation over the Internet requires handling an additional
problem: the resources belong to di�erent parties who may not allow others to
freely use them. The algorithms and protocols may, thus, need to provide some
motivation for these owners to \play along".

2.2 Routing

When one computer wishes to send information to another, the data usually
gets routed through various intermediate routers. So far this has been done
voluntarily, probably due to the low marginal cost of forwarding a packet. How-
ever, when communication of larger amounts of data becomes common (e.g.
video), and bandwidth needs to be reserved under various quality of service
(QoS) protocols, this altruistic behavior of the routers may no longer hold. If
so, we will have to design protocols speci�cally taking the routers' self-interest
into account.

2.3 Electronic Trade

Much trade is taking place on the Internet and much more is likely to take
place on it. Such trade may include various �nancial goods (stocks, currency
exchange, options), various information goods (video-on-demand, database ac-
cess, music), many services (help desk, ower delivery, data storage), as well as
real goods (books, groceries, computers) . This trade will likely involve sophis-
ticated programs communicating with each other trying to �nd \the best deal".
In addition, this will also raise the possibility of various brokerage services such
as information providers, aggregators, and other types of agents. Clearly any
system that enables such programs to e�ciently trade with each other needs
to o�er general economic e�ciency while very strongly taking into account the
fact that all participants have totally di�ering goals.



3 Existing Work

Game theory, Economics, and Computer Science
In recent years there have been many works that tried to introduce eco-

nomic or game-theoretic aspects into computational questions. The approach
presented here is part of this trend, but is much narrower, taking speci�cally
the direction of mechanism design. The reader interested in the wider view may
start his exploration e.g. with the surveys [8, 13], the book [21], the web sites
[3, 1, 2], or the papers in the conference [4].

Mechanism design
The �eld of mechanism design (also known as implementation theory) aims

to study how privately known preferences of many people can be aggregated
towards a \social choice". The main motivation of this �eld is micro-economic,
and the tools are game-theoretic. Emphasis is put on the implementation of
various types of auctions.

In the last few years this �eld has received much interest, especially due to its
inuence on large privatizations and spectrum allocations [16]. An introduction
to this �eld can be found in [15, chapter 23] [20, chapter 10], and an inuential
web site in [17].

Mechanism design in Computer Science
One may identify three motivations for combining mechanism design with

computational questions.

Auction implementation: As auctions become more popular as well
as more complicated, they are often implemented using computers and
computer networks. Many computational implementation questions re-
sult. These range from purely combinatorial ones regarding optimization
in complex combinatorial auctions to systems questions regarding com-
munication and performance issues in wide-scale auctions.

Leveraging Market Power: In the \real world" the invisible hand of
free markets seems to yield surprisingly good results for complex opti-
mization problems. This occurs despite the many underlying di�culties:
decentralized control, uncertainties, information gaps, limited computa-
tional power, etc. One is tempted to apply similar market-based ideas in
computational scenarios with similar complications, in the hope of achiev-
ing similarly good results.

Handling Sel�shness: This is the approach taken here, and it views
mechanism design introduced into computational problems as a necessary
evil, required to deal with the di�ering goals of the participants.

Even though these motivations are di�erent philosophically, research often
combines aspects from all approaches. Below we shortly sketch some of previous



work done introducing mechanism design into di�erent branches of computer
science, without attempting to further classify them.

Distributed AI
In the last decade or so, researchers in AI have studied cooperation and

competition among \software agents". The meaning of agents here is very
broad, incorporating attributes of code-mobility, arti�cial-intelligence, user-
customization, and self-interest.

A sub�eld of this general direction of research takes a game theoretic analysis
of agents' goals, and in particular uses notions from mechanism design [21]
[22] [7]. A related sub�eld of Distributed AI, sometimes termed market-based
computation [26] [8] [25], aims to leverage the notions of free markets in order
to solve distributed problems. These sub�elds of DAI are related to our work.

Communication Networks
In recent years researchers in the �eld of network design adopted a game

theoretic approach (See e.g. [11]). In particular mechanism design was applied
to various problems including resource allocation [12], cost sharing, and pricing
[23].

4 The Model

In this section we formally present the model. It is taken from the author's joint
work with Amir Ronen [18].

The model is concerned with computing functions that depend on inputs
that are distributed among n di�erent agents. A problem in this model has, in
addition to the speci�cation of the function to be computed, a speci�cation of
the goals of each of the agents. The solution, termed a mechanism, includes, in
addition to an algorithm computing the function, payments to be handed out
to the agents. These payments are intended to motivate the agents to behave
\correctly".

Subsection 4.1 describes what a mechanism design problem is. In subsec-
tion 4.2 we de�ne what a good solution is: an implementation with dominant
strategies. Subsection 4.3 de�nes a special class of good solutions: truthful im-
plementations, and states the well-known fact that restricting ourselves to such
solutions loses no generality.

4.1 Mechanism design problem description

Intuitively, a mechanism design problem has two components: the usual algo-
rithmic output speci�cation, and descriptions of what the participating agents
want, formally given as utility functions over the set of possible outputs (out-
comes).



De�nition 1 (Mechanism Design Problem) A mechanism design problem
is given by an output speci�cation and by a set of agent's utilities. Speci�cally:

1. There are n agents, each agent i has available to it some private input ti 2
T i (termed its type). Everything else in this scenario is public knowledge.

2. The output speci�cation maps to each type vector t = t1:::tn a set of
allowed outcomes o.

3. Each agent i's preferences are given by a real valued function: vi(o; ti),
called its valuation. This is a quanti�cation of its value from the outcome
o, when its type is ti, in terms of some common currency. I.e. if the
mechanism's outcome is o and in addition the mechanism hands this agent
pi units of this currency, then its utility will be ui = pi + vi(o; ti)1. This
utility is what the agent aims to optimize.

In this paper we only discuss optimization problems. In these problems the
outcome speci�cation is to optimize a given objective function. We present the
de�nition for minimization problems.

De�nition 2 (Mechanism Design Optimization problem) This is a
mechanism design problem where the outcome speci�cation is given by a pos-
itive real valued objective function g(o; t) and a set of feasible outcomes F . The
required output is the outcome o 2 F that minimizes g.

4.2 The Mechanism

Intuitively, a mechanism solves a given problem by assuring that the required
outcome occurs, when agents choose their strategies as to maximize their own
sel�sh utilities. A mechanism needs thus to ensure that players' utilities (which
it can inuence by handing out payments) are compatible with the algorithm.

Notation: We will denote (a1; :::ai�1; ai+1; :::an) by a�i. (ai; a�i) will denote
the tuple (a1; : : : an)

De�nition 3 (A Mechanism) A mechanism m = (o; p) is composed of two
elements: An outcome o = o(a), and an n-tuple of payments p1(a):::pn(a).
Speci�cally:

1. The mechanism de�nes for each agent i a family of strategies Ai. Agent
i can choose to perform any ai 2 Ai.

2. The �rst thing a mechanism must provide is an outcome function o =
o(a1:::an).

1This is termed \semi-linear utility". In this paper we limit ourselves to this type of
utilities.



3. The second thing a mechanism provides is a payment pi = pi(a1:::an) to
each of the agents.

4. We say that a mechanism is an implementation with dominant strategies
(or in short just an implementation) if

� For each agent i and each ti there exists a strategy ai 2 Ai, termed
dominant, such that for all possible strategies of the other agents a�i,
ai maximizes agent i's utility. I.e. for every a0

i
2 Ai, if we de�ne

o = o(ai; a�i), o0 = o(a0
i
; a�i), pi = pi(ai; a�i), p0

i
= pi(a0

i
; a�i) ,

then vi(ti; o) + pi � vi(ti; o0) + p0
i

� For each tuple of dominant strategies a = (a1:::an) the outcome o(a)
satis�es the speci�cation.

4.3 The Revelation Principle

The simplest types of mechanisms are those in which the agents' strategies are
to simply report their types.

De�nition 4 (Truthful Implementation) We say that a mechanism is
truthful if

1. For all i, and all ti, Ai = T i, i.e. the agents' strategies are to report their
type. (This is called a direct revelation mechanism.)

2. Truth-telling is a dominant strategy, i.e. ai = ti satis�es the de�nition of
a dominant strategy above.

A simple observation, known as the revelation principle, states that without
loss of generality one can concentrate on truthful implementations.

Proposition 4.1 ([15], page 871) If there exists a mechanism that implements
a given problem with dominant strategies then there exists a truthful implemen-
tation as well.

Proof: (sketch) We let the truthful implementation simulate the agents' strate-
gies. I.e. given a mechanism (o; p1; :::pn), with dominant strategies ai(ti), we
can de�ne a new one by o�(t1:::tn) = o(a1(t1):::an(tn)) and (p�)i(t1:::tn) =
pi(a1(t1):::an(tn)). 2

5 Applying Existing Mechanism Design Theory

In this section we present several well known mechanisms. While these mech-
anisms are the usual ones one would �nd in a standard text on mechanism
design, we present them in a distributed-computation setting. The implemen-
tations provided are all truthful ones, i.e. they follow this pattern:



1. Each agent reports its input to the mechanism.

2. The mechanism computes the desired outcome based on the reported
types.

3. The mechanism computes payments for each agent.

The challenge in these examples is to determine these payments as to ensure
that the truth is indeed a dominating strategy for all agents.

5.1 Maximum

Story:2

A single server is serving many clients. At a certain time, the server can
serve exactly one request. Each client has a private valuation ti for his request
being served. (The valuation is 0 if the request is not served.) We want the
most valuble request to be served.

Failed attempts:
One might �rst attempt to simply ignore all payments (i.e. set pi = 0 for all

i). This however is clearly insu�cient since it motivates each agent to exaggerate
his valuation, as to get his request executed. The second attempt would be to
let the winning agent pay his declaration. I.e. set pi = �t0i for the agent i
that declared the highest t0i (and pi = 0 for all others). This also fails since the
agent with highest ti is motivated to reduce his declaration to slightly above the
second highest valuation o�ered. This will result in his request still being served,
and his payment reduced. In case agent i has imperfect information about the
others this strategic behavior may lead him to accidently declare a lower value
than the second valuation, which will result in a sub-optimal allocation.

Solution:
The agent that o�ers the highest valuation for his request pays the second

highest price o�ered. I.e. pi = �tj , where i o�ers the highest price and j the
second highest. All other agents have pk = 0.

Analysis:
To see why this is a truthful implementation, consider agent i and consider

a lie t0i 6= ti. If this lie does not change the allocation, then nothing is gained
or lost by agent i since his payment is also una�ected by his own declaration.
If this lie gets his request served, then t0i > tj > ti and he gains ti of utility
from his valuation of the served request, but he loses tj on payments, thus his
total utility would be ti � tj < 0, as opposed to 0 in the case of the truth. On
the other hand, if his lie makes him lose the service, then his utility is now 0,
as opposed to a positive number which it was in the truthful case.

2This is an auction and the solution presented is Vickrey's well-known second price auction
[24].



5.2 Threshold

Story:3

A single cache is shared by many processors. When an item is entered into
the cache, all processors gain faster access to this item. Each processor i will
save ti in communication costs if a certain item X is brought into the cache.
(I.e its valuation of loading X is ti > 0, and of not loading it, 0.) The cost of
loading X is a publicly known constant C. We want to load X i�

P
i t

i > C.

Failed attempts:
Wemay �rst attempt to just divide the total cost between the n participating

agents, i.e. set pi = �C=n for all i. This however motivates any agent with
ti > C=n to announce his valuation as greater than C, and thus assure that
X is loaded. We may, as a second attempt, let each agent pay the amount
declared (or perhaps something proportional to it.) In this case, however, we
will be faced with a free-rider problem, where agents will tend to report lower
valuation than the true ones so as to reduce their payments. This, when done
by several agents, may result in the wrong decision of not loading X .

Solution:
In caseX is loaded, each agent pays a sum equal to the minimum declaration

required from him in order to load X , given the other's declarations. I.e. the
only case where pi 6= 0, is when

P
j 6=i t

j � C <
P

j t
j , in which case pi =P

j 6=i t
j � C (a negative number).

The analysis is left to the reader. Alternatively, this example may be seen
to be a special case of the example below.

This example can be generalized to the case where ti can be negative as well.

5.3 Shortest Path

Story:
We have a communication network modeled by a directed graph G, and two

special nodes in it x and y. Each edge e of the graph is an agent. Each agent e
has private information (its type) te � 0 which is the agent's cost for sending a
single message along this edge. The goal is to �nd the cheapest path from x to
y (as to send a single message from x to y). I.e the set of feasible outcomes are
all paths from x to y, and the objective function is the path's total cost. Agent
e's valuation is 0 if his edge is not part of the chosen path, and �te if it is. We
will assume for simplicity that the graph is bi-connected.

Solution:
The following mechanism ensures that the dominant strategy for each agent

is to report his true type te to the mechanism. When all agents honestly report

3This is known as the \public project" problem, and the solution is known as the Clarke
tax [5].



their costs, the cheapest path is chosen: The outcome is obtained by a simple
shortest path calculation. The payment pe given to agent e is 0 if e is not in
the shortest path and pe = dG�e � (dG � t0e) if it is. Here t0e is the agents'
reported input (which may be di�erent from its actual one), dG is the length
of the shortest path (according to the inputs reported), and dG�e is the length
of the shortest path that does not contain e (again according to the reported
types).

Analysis:
First notice that if the same shortest path is chosen with t0e as with te then

the payment and thus utility of the agent does not change. A lie t0e > te will
cause the algorithm to choose the shortest path that does not contain e as
opposed to the (correct one) which does contain it i� dG�e�dG < t0e� te. This
directly implies that e's utility would have been positive had e been chosen in
the path (as opposed to 0 when its not chosen), thus the truth is better. A
similar argument works to show that t0e < te is worse than the truth.

Many other graph problems, where agents are edges, and their valuations
proportional to the edges' weights, can be implemented by a VCG mechanism.
In particular minimum spanning tree and max-weight matching seem natural
problems in this setting. A similar solution applies to the more general case
where each agent holds some subset of the edges.

Algorithmic Problem: How fast can the payment functions be computed?
Can it be done faster than computing n versions of the original problem? For the
shortest paths problem we get the following equivalent problem: given a directed
graph G with non-negative weights, and two vertices in it x; y. Find, for each
edge e in the graph, the shortest path from x to y that does not use e. Using
Disjktra's algorithm for each edge on the shortest path gives an O(nm logn)
algorithm. Is anything better possible? Maybe O(m logn)?

5.4 Utilitarian Functions

Arguably the most important positive result in mechanism design is what is
usually called the generalized Vickrey-Groves-Clark (VCG) mechanism [24] [10]
[5]. All previous examples are, in fact, VCG mechanisms. In this section we
present the general case.

The VCG mechanism applies to mechanism design optimization problems
where the objective function is simply the sum of all agents' valuations.

De�nition 5 An optimization mechanism design problem is called utilitarian
if its objective function satis�es g(o; t) =

P
i v

i(o; ti).

De�nition 6 We say that a direct revelation mechanism m = (o(t); p(t)) be-
longs to the VCG family if



1. o(t) 2 argmaxo(
Pn

i=1 v
i(ti; o)).

2. pi(t) =
P

j 6=i v
i(o(t); ti) + hi(t�i) where hi() is an arbitrary function of

t�i.

Theorem 5.1 (Groves [10]) A VCG mechanism is truthful.

Proof: (sketch) Let d1; : : : ; dn denote the declaration of the agents and
t1; : : : ; tn denote their real types. Suppose that truth telling is not a dominant
strategy, then there exists d; i; t; d0

i
such that

vi(ti; o(d�i; ti)) + pi(ti; o(d�i; ti)) + hi(d�i) <

vi(ti; o(d�i; d0
i
)) + pi(ti; o(d�i; d0

i
)) + hi(d�i)

But then
nX

i=1

vi(o(d�i; ti); ti) <

nX

i=1

vi(o(d�i; d0
i
); ti)

In contradiction for the de�nition of o(). 2

Thus a VCG mechanism essentially provides a solution for any utilitarian prob-
lem (except for the possible problem that there might be dominant strategies
other than truth-telling). It is known that (under mild assumptions) VCG are
the only truthful implementation for utilitarian problems ([9]).

5.5 More Issues in Mechanism Design

The examples presented here demonstrate only the most basic notions from the
�eld of mechanism design. Many more issues addressed by the theory of mech-
anism design are applicable to the distributed computation setting. We briey
mention just some of the issues commonly studied by mechanism design (and
other branches of game theory) that we feel may �nd applications in distributed
computation.

Bayesian-Nash equilibrium: Our notion of a solution was very strong,
requiring dominant strategies. Weaker notions of equilibrium are also
often considered, in particular Bayesian-Nash equilibrium.

Non semi-linear utilities: We assumed that the utility of each agent is
additive in the money. More general types of utilities may be considered,
where money inuences the utility in an arbitrary manner.

Budgets: We did not put any requirements on the sums of money in-
volved in a mechanism. At least two types of constraints are widely stud-
ied: constraining the total money spent by the mechanism (either to as
large a negative amount as possible, or to 0 { budget balance), and con-
sidering budget limitations of the agents.



Common value models: We assumed that each agent has a known valu-
ation function that is independent from the others. One may alternatively
assume a valuation that is common to all agents but is not fully known
by them.

Repeated Games: We only considered a single instance of a problem.
One may clearly consider repeated instances.

Coalitions: We only considered manipulation by a single agent. Clearly
one may study coalitions of agents.

6 Beyond Existing Mechanism Design

We feel that the application of existing mechanism design in distributed compu-
tation, as demonstrated above, is just a �rst step. Many of the considerations
of distributed computation are quite di�erent from the ones usually considered
in mechanism design. Addressing these considerations will thus require new
research. In this section we exhibit several scenarios in distributed computa-
tion that raise questions that indeed go beyond the current scope of mechanism
design.

6.1 Task Scheduling

Story:
A computer has k tasks it wishes to execute, and can execute each of them

on any one of n servers. Each server i knows, for every task j, the time tij
it requires to execute this task. Each server's cost is proportional to the time
it spends on executing the tasks assigned to it. Our goal is to have all tasks
completed as soon as possible (i.e. to minimize the completion time of the last
task.)

This problem was considered in [18]. Here are some of the issues raised by
this problem and addressed there. Similar issues arise in many other problems
in distributed computation.

Issues:

Non-utilitarian Problem: The goal in this example is non-utilitarian.
Thus, the VCG mechanism cannot be applied and new mechanisms need
to be invented.

Impossibility: It is possible to prove that no mechanism perfectly solves
this problem. As is common in Computer Science, one should try to
overcome this impossibility. In particular, the following approaches may
be considered (and were all studied in [18]):



Approximation: Find a mechanism that approximates the optimal
solution as well as possible.

Randomization: In Computer Science as well as in game theory
randomization often helps. In turns out that for this problem, ran-
domized mechanisms can provably do better than deterministic ones.

Model Extensions: Every model is an imperfect abstraction of
reality. One may incorporate useful attributes of reality into the
model as to make an impossible result possible. In [18] the model was
extended by assuming that the mechanism need only compute the
payments after the tasks were actually executed, giving it additional
information.

Computational Intractability: Even from a purely algorithmic point
of view, the task scheduling problem is intractable (NP-complete). When
adding the requirements of a mechanism things only get worse. In partic-
ular, standard ways of overcoming the computational intractability (such
as tractable approximations) have complicated interactions with the re-
quirements of mechanism design.

6.2 Maximum Independent Set

Story:
There are n processors connected in a linear array (i.e. each processor i

is connected to i � 1 and to i + 1). Each processor wants to execute a single
job, and values it at ti � 0. The problem is that executing the job requires
exclusive access to the common link with each of its neighbors. Thus no two
consecutive processors can execute their job. Our goal is to execute the set of
tasks with maximal valuation, i.e. to �nd an independent set S of processors
that maximizes

P
i2S t

i.

Model Restriction:
In this story we want to �nd a decentralized solution. I.e. we want to design

a protocol, that runs on these computers, using only the available communica-
tion links, and without assuming any central trusted computer, or any other
communication links.

Solution:
Our protocol has two phases a left-to-right phase and a right-to-left phase.

In the left-to-right phase, each processor places a bid Ri for link on its right.
These o�ers are computed by each processor in turn as follows: R1 = t1, and
for 1 < i < n, Ri = max(ti �Ri�1; 0). In the right-to-left phase each processor
places a bid Li on the link to its left as follows: Ln = tn, and for 1 < i < n,
Li = max(ti � Li+1; 0). Processor i wins the left link i� Li > Ri�1 and wins
the right link i� Ri � Li+1. It can execute its task (i.e. is chosen to be in S) if



it has won both links. In this case its payment is �pi = Ri�1 + Li+1 (i.e. the
second price on each of links it has won).

Analysis:
There are many issues to consider here:

Algorithmic correctness: One may verify that Ri is the di�erence be-
tween the weight of the maximum weight independent set in 1:::i� 1 and
the weight of the maximum weight independent set in 1:::i. Similarly, Li

is the di�erence between of the weights of the maximum weight indepen-
dent sets in i + 1:::n and i:::n. Clearly i should be chosen to be in S if
ti > Li+1+Ri�1 (ties can be broken arbitrarily), which is exactly what this
protocol does. This protocol can be viewed as a dynamic programming
solution of this problem.

Domination of the Truth: Assume that the players' strategies are
limited to acting according to some �xed valuation t0i. Such a model may
be called the \honest but sel�sh" case. In this case one may observe that
the protocol achieves the VCG mechanism that is a solution since the
problem is indeed utilitarian.

Dishonesty: A more general model would allow all strategies made pos-
sible by the protocol. In this case the processors could act according to a
di�erent t0i in each phase. One may verify that in this model the truth is
no longer dominant. Yet, truth is still a Nash equilibrium.

Ensuring Honesty: There are various ways to augment the model as to
force the processors to be consistent in both phases, and thus essentially
force the \honest but sel�sh" situation. In particular, if processors i�1 and
i+1 can communicate with each other then they can catch i's dishonesty.
Such communication may alternatively be implicitly achieved by using
cryptographic signatures.

Decentralized Payments: The payments in this solution were to be
given to some party outside of the n involved processors. It would have
been nice to have a mechanism where the payments are only transferred
between connected processors.

6.3 Decentralized Auction

Story:
A single item is to be auctioned over the Internet among n humans (each

with his own computer).

Restriction:



There is no trusted entity. In particular we do not trust the auctioneer to
faithfully execute the auction rules or to keep any secrets. In the absence of
such a trusted entity we would like to ensure two goals:

� The auction is executed according to the published auction rules (e.g.
second price).

� No information about bids is leaked to any participant, beyond the results
of the auction which become public knowledge. I.e. only the identity of
the winner (but not his bid), and the amount of the second highest bid
(but not the identity of the bidder) become known.

Solution:
The celebrated \oblivious circuit evaluation" cryptographic protocols [19, 14,

6] exactly achieve this goal (as long as not too many of the participants collude
to lie). These cryptographic protocols can faithfully carry out any distributed
computation without leaking any information to the participants. What cannot,
in principle, be ensured by cryptography is that the participants reveal their
inputs. This, however, is ensured by the mechanism. We should note that these
cryptographic protocols, while theoretically tractable, are quite impractical.

7 Acknowledgments

The notions expressed in this paper are derived from my joint work with Amir
Ronen, who has also helped with the writing of this paper. I thank Dov Mon-
derer, Motty Perry, and Moshe Tennenholtz for helpful discussions.

References

[1] Comet group technical reports. Web Page:
http://comet.ctr.columbia.edu/publications/techreports.html.

[2] The information economy. Web Page:
http://www.sims.berkeley.edu/resources/infoecon/.

[3] Market-oriented programming. Web Page:
http://ai.eecs.umich.edu/people/wellman/MOP.html.

[4] First international conference on information and computation economies
ice-98. Web Page: http://www.cs.columbia.edu/ICE-98/, October 1998.

[5] E. H. Clarke. Multipart pricing of public goods. Public Choice, pages
17{33, 1971.



[6] C. Crepeau D. Chaum and I. Damgard. Multiparty unconditionally secure
protocols. In 20th STOC, 1988.

[7] Eithan Ephrati and Je�rey S. Rosenschein. The clarke tax as a concen-
sus mechanism among automated agents. In Proceedings of the national
Conference on Arti�cial Intelligence, pages 173{178, July 1991.

[8] Donald F. Ferguson, Christos Nikolaou, and Yechiam Yemini. Economic
models for allocating resources in computer systems. In Scott Clearwa-
ter, editor, Market-Based Control: A Paradigm for Distributed Resource
Allocation. World Scienti�c, 1995.

[9] J. Green and J.J. La�ont. Characterization of satisfactory mechanism for
the revelation of preferences for public goods. Econometrica, pages 427{
438, 1977.

[10] T. Groves. Incentives in teams. Econometrica, pages 617{631, 1973.

[11] Y.A Korilis, A. A. Lazar, and A. Orda. Architecting noncooperative net-
works. IEEE Journal on Selected Areas in Communication (Special Issue on
Advances in the Fundamentals of Networking), 13(7):1241{1251, September
1991.

[12] A.A. Lazar and N. Semret. The progressive second price auction mechanism
for network resource sharing. In 8th International Symposium on Dynamic
Games, Maastricht, The Netherlands, July 1998.

[13] Nathan Lineal. Game theoretic aspects of computing. In Handbook of Game
Theory, volume 2, pages 1339{1395. Elsevier Science Publishers B.V, 1994.

[14] S. Golwasser M. Ben-Or and A. Wigderson. Completeness theorems for
fault-taulerent distributed computing. In 20th STOC, 1988.

[15] A. Mas-Collel, W. Whinston, and J. Green. Microeconomic Theory. Oxford
university press, 1995.

[16] J. McMillan. Selling spectrum rights. Journal of Economic Perspectives,
pages 145{162, 1994.

[17] Market design inc. Web Page: http://www.market-design.com.

[18] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Avilable at
http://www.cs.huji.ac.il/~amiry.

[19] S. Micali O. Goldreich and A. Wigderson. Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design. In 27th
FOCS, 1986.



[20] M. J. Osborne and A. Rubistein. A Course in Game Theory. MIT press,
1994.

[21] Je�rey S. Rosenschein and Gilad Zlotkin. Rules of Encounter: Designing
Conventions for Automated Negotiation Among Computers. MIT Press,
1994.

[22] Tuomas W. Sandholm. Limitations of the vickrey auction in computational
multiagent systems. In Proceedings of the Second International Conference
on Multiagent Systems (ICMAS-96), pages 299{306, Keihanna Plaza, Ky-
oto, Japan, December 1996.

[23] S. Shenkar, Clark D. E., and Hertzog S. Pricing in computer networks:
Reshaping the research agenda. ACM Computational Comm. Review, pages
19{43, 1996.

[24] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders.
Journal of Finance, pages 8{37, 1961.

[25] W.E. Walsh and M.P. Wellman. A market protocol for decentralized task
allocation: Extended version. In The Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS-98), 1998.

[26] W.E. Walsh, M.P. Wellman, P.R. Wurman, and J.K. MacKie-Mason.
Auction protocols for decentralized scheduling. In Proceedings of The
Eighteenth International Conference on Distributed Computing Systems
(ICDCS-98), Amsterdam, The Netherlands, 1998.


