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Abstract:

This paper analyzes individually-rational ex post equilibrium in the VC

(Vickrey-Clarke) combinatorial auctions. If Σ is a family of bundles of goods,

the organizer may restrict the participants by requiring them to submit their

bids only for bundles in Σ. The Σ-VC combinatorial auctions (multi-good

auctions) obtained in this way are known to be individually-rational truth-

telling mechanisms. In contrast, this paper deals with non-restricted VC

auctions, in which the buyers restrict themselves to bids on bundles in Σ,

because it is rational for them to do so. That is, it may be that when the

buyers report their valuation of the bundles in Σ, they are in an equilibrium.

We fully characterize those Σ that induce individually rational equilibrium in

every VC auction, and we refer to the associated equilibrium as a bundling

equilibrium. The number of bundles in Σ represents the communication

complexity of the equilibrium. A special case of bundling equilibrium is

partition-based equilibrium, in which Σ is a field, that is, it is generated

by a partition. We analyze the tradeoff between communication complexity

and economic efficiency of bundling equilibrium, focusing in particular on

partition-based equilibrium.

1 Introduction

The Vickrey-Clarke-Groves (VCG) mechanisms [40, 5, 12] are central to the

design of protocols with selfish participants (e.g., [28, 37, 39]), and in partic-

ular for combinatorial auctions (e.g., [41, 18, 8, 42, 24, 26, 19]), in which the

participants submit bids, through which they can express preferences over

bundles of goods. The organizer allocates the goods and collects payments

based on the participants’ bids.1 These protocols allow to allocate a set of

1Motivated by the FCC auctions (see e.g., [6, 21, 22] ) there is an extensive recent
literature devoted to the design and analysis of multistage combinatorial auctions, in
which the bidders express partial preferences over bundles at each stage. See e.g.,[42, 31,
2, 29, 30, 3] .
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goods (or services, or tasks) in a socially optimal (surplus maximizing) man-

ner, assuming there are no resource bounds on the agents’ computational

capabilities.2 The VCG protocols are designed in a way that truth-revealing

of the agents’ private information3 is a dominant strategy to them. Moreover,

VCG protocols can be applied in the context of games in informational form,

where no probabilistic assumptions about agents’ types are required.4 We

shortly define domination and equilibrium in such games. These solutions

are called ex post solutions because they have the property that if the players

were told about the true state, after they choose their actions, they would

not regret their actions.5

In this paper we deal with a special type of VCG mechanisms – the

VC mechanisms. Amongst the VCG mechanisms the VC mechanisms are

characterized by two additional important properties: Truth telling satisfies

the participation constraint, that is, it is preferred to non participation,6 and

the seller’s revenue is always non negative.

2There are at least two sources of computational issues, which arise when dealing
with combinatorial auctions; Winner determination –finding the optimal allocation (see
e.g.,[33, 26, 38, 34, 10, 1, 35, 14]) , and bid communication – the transfer of information
(see e.g., [27]).

3This paper deals with the private-values model, in which every buyer knows his own
valuations of bundles of goods. In contrast, in a correlated-values model, every buyer
receives a signal (possibly about all buyers’ valuation functions), and this signal does not
completely reveal his own valuation function (see e.g. [23, 15, 20, 7, 32, 31] for discussions
of models in which valuations are correlated).

4A game in informational form is a pre-Bayesian game. That is, it has all the ingredients
of a Bayesian game except for the specification of probabilities. Unlike Bayesian games,
games in informational form do not necessarily possess a solution: a recommendation for
rational players how to play. However, in many important models such solutions do exist.
See Section 2 for a precise definition.

5Alternatively, ex post solutions may be called probability-independent solutions be-
cause, up to some technicalities concerning the concept of measurable sets, they form
Bayesian solutions for every specification of probabilities.

6An equilibrium that satisfies the participation constraint is said to be individually-
rational.
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A famous observation of the theory of mechanism design in economics,

termed the revelation principle (see e.g. [25]), implies that the discussion

of additional individually rational (IR) equilibria of the VC mechanisms may

seem unneeded, and indeed it has been ignored by the literature. It can

be proved that every mechanism with an ex post equilibrium is economically

equivalent to another mechanism – a direct mechanism – in which every agent

is required to submit his information. In this direct mechanism, revealing

the true type is an ex post dominating strategy for every agent, and it yields

the same economics parameters as the original mechanism. However, the two

mechanisms differ in the set of inputs that the player submits in equilibrium.

This difference may be crucial when we deal with communication complexity.

Thus, two mechanisms that are equivalent from the economics point of view,

may be considered different mechanisms from the CS point of view.

Thus, tackling the VC mechanisms from a computational perspective

introduces a vastly different picture. While the revelation of the agents’

types defines one IR equilibrium, there are other (in fact, over-exponentially

many) IR equilibria for the VC auctions. Moreover, these equilibria have

different communication requirements.

In this paper we analyze ex post equilibria in the VC mechanisms.

Let Σ be a family of bundles of goods. We characterize those Σ, for

which the strategy of reporting the true valuation over the bundles in Σ is a

player-symmetric IR ex post equilibrium. An equilibrium that is defined by

such Σ is called a bundling equilibrium. We prove that Σ induces a bundling

equilibrium if and only if it is a quasi field of bundles.7 The number of bundles

in Σ represents the communication complexity of the equilibrium, and the

economic efficiency of an equilibrium is measured by the generated social

surplus. A special type of bundling equilibria are partition-based equilibria,

in which Σ is a field (i.e. it is generated by a partition). The partition-based

7A quasi field is a nonempty set of sets that is closed under complements and under
disjoint unions.
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equilibria are ranked according to the usual partial order on partitions: If

one partition is finer than another one, then it yields higher communication

complexity as well as higher social surplus.8

We analyze the least upper bound (over all possible profiles of valuation

functions, one for each buyer) of the ratio between the optimal surplus and

the surplus obtained in a partition-based equilibrium. We express this least

upper bound in terms of the partition’s structure. We provide an upper

bound for this ratio, which is proved to be tight in infinitely many cases.

In Section 2 we present the concept of ex post equilibrium in games in

informational form. In Section 3 we discuss combinatorial auctions. To-

gether, Sections 2 and 3 provide the reader with a rigorous framework for

general analysis of VC protocols for combinatorial auctions. In Section 4

we introduce bundling equilibrium, and provide a full characterization of

bundling equilibria for VC protocols. Then we discuss bundling equilibrium

that is generated by a partition, titled partition-based equilibrium. In Sec-

tion 5 we deal with the surplus of VC protocols for combinatorial auctions

when following partition-based equilibrium, exploring the spectrum between

economic efficiency and communication efficiency.

2 Ex post equilibrium in games in informa-

tional form

A game in informational form G = G(N, Ω, T, (t̃i)i∈N , X, (ui)i∈N) is de-

fined by the following parameters:

• Agents: Let N = {1, . . . , n} be the set of agents.

• States: Let Ω be the set of (relevant) states.

8It is worth mentioning that the various equilibria cannot be ranked according to the
revenue of the seller. That is, under some conditions, a partition-based equilibrium may
simultaneously yield more revenue and less communication complexity than the truth
revealing equilibrium (an example is provided).
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• Types: Let Ti be the set of types of agent i, T = ×i∈NTi.

• Signaling functions: Let t̃i : Ω → Ti be the signaling function of

agent i. Without loss of generality, it is assumed that every type ti ∈ Ti is

possible. That is t̃i(Ω) = Ti.

• Actions: Let Xi be the set of actions of i, X = ×i∈NXi.

• Utility functions: Let ui(ω, x) be the utility of i at state ω, when the

agents choose the action profile x.

Every ω ∈ Ω defines a game in strategic (normal) form, G(ω). In this

game agent i receives ui(ω, x), when it chooses xi, and all other agents choose

x−i. However, the agents do not know which game they play.

For ti ∈ Ti let Ωi(ti) be the set of states that generate the signal ti, that

is

Ωi(ti) = {ω ∈ Ω|t̃i(ω) = ti}.

A strategy9 of i is a function bi : Ti → Xi; The associated implied

strategy is the function b̂i : Ω → Xi given by

b̂i(ω) = bi(t̃i(ω)).

A profile of strategies b = (b1, · · · , bn) is an ex post equilibrium, if for

every agent i, for every ti ∈ Ti, for every ω ∈ Ωi(ti), and for every xi ∈ Xi,

ui(ω, bi(ti), b̂−i(ω)) ≥ ui(ω, xi, b̂−i(ω)).

A strategy bi of i is an ex post dominant strategy for i, if for every

profile of strategies b−i of the other players, for every ti ∈ Ti, for every

ω ∈ Ωi(ti), and for every xi ∈ Xi,

ui(ω, bi(ti), b̂−i(ω)) ≥ ui(ω, xi, b̂−i(ω)).

Obviously, if bi is an ex post dominant strategy for every i, b is an ex post

equilibrium, but not necessarily vice versa. An ex post equilibrium b, in

which every strategy bi is ex post dominant is called an ex post domination

equilibrium.

9In this paper we do not deal with mixed strategies.

6



3 Combinatorial auctions

In a combinatorial auction there is a seller, denoted by 0, who wishes to sell

a set of m items A = {a1, . . . , am}, m ≥ 1, that are owned by her. There

is a set of (potential) buyers N = {1, 2, . . . , n}, n ≥ 1. We take N as the

set of agents. Let Γ be the set of all allocations of the goods. That is, every

γ ∈ Γ is an ordered partition of A, γ = (γi)i∈N∪{0}. A valuation function

of buyer i is a function vi : 2A → <, where < denotes the set of real numbers,

with the normalization vi(∅) = 0. In a more general setup, a buyer may care

about the distribution of goods that he does not own. In such a setup the

utility of an agent may depend on the whole allocation γ rather than on γi.

Hence, by dealing with valuation functions we actually assume:

• No allocative externalities.10

We also assume:

• Free disposal: If B ⊆ C, B, C ∈ 2A, then vi(B) ≤ vi(C).

Let Vi be the set of all possible valuation functions of i (obviously Vi = Vj

for all i, j ∈ N), and let V = ×i∈NVi. We refer to V as the set of states

(Ω = V ). In a general model, each buyer receives a signal ti through a

signaling function t̃i defined on V . We assume:

• Private value model: t̃i(v) = vi. That is, Ti = Vi and each buyer

knows his valuation function only.11

A mechanism for allocating the goods is defined by sets of messages

Xi, one set for each buyer i, and by a pair (d, c) with d : X → Γ, and

c : X → <n, where X = ×Xi. d is called the allocation function and c the

transfer function; if the buyers send the profile of messages x ∈ X, buyer i

receives the set of goods di(x) and pays ci(x) to the seller. We assume:

•Quasi linear utilities: If agent i with the valuation function vi receives

the set of goods γi and pays ci, his utility equals vi(γi)− ci.

10For auctions in which externalities are assumed see, e.g., [17, 16].
11See e.g. [23, 15, 20, 7, 32, 31] for discussions of models in which valuations are

correlated and buyers do not know their own valuation.
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As the seller cannot force the buyer to participate, a full description of

a mechanism should describe the allocation of goods and transfers for cases

in which not all agents participate. However, we adopt the way this issue

is treated in economics: The mechanism (X, d, c) defines a game in informa-

tional form. An ex post equilibrium b in this game satisfies the participation

constraint if for every buyer i,

vi(di(b(v)))− ci(b(v)) ≥ 0 for every v ∈ V , (3.1)

where b(v) = (b1(v1), . . . , bn(vn)). If an ex post equilibrium satisfies the

participation constraint, we call it individually rational. If the buyers use

an individually rational ex post equilibrium profile b, then a deviation of a

buyer to non participation is not profitable for him.12 Similarly, a dominant

strategy of i, bi, is individually rational if (3.1) is satisfied for every profile

b−i of the other buyers’ strategies.

For an allocation γ and a profile of types v we denote by S(v, γ) the total

social surplus of the buyers, that is

S(v, γ) =
∑
i∈N

vi(γi).

We also denote:

Smax(v) = max
γ∈Γ

S(v, γ).

Consider a mechanism M = (X, d, c) and an individually rational ex

post equilibrium b. For every profile v we denote the surplus generated

by b by SM
b (v) = S(v, d(b(v))), and the revenue collected by the seller by

RM
b (v) =

∑
i∈N ci(b(v)).

12Thus, b remains an ex post equilibrium profile if every set of messages is extended
by a null message, and an agent whose input is null receives no good and pays nothing.
Nevertheless, if the issue of uniqueness of equilibrium is important, dealing with ex post in-
dividually rational equilibrium instead of dealing with ex post equilibrium in the extended
model is not without loss of generality. The extended model may have more equilibrium
profiles, that cannot be expressed in the reduced model, that is, equilibrium profiles in
which some of the agents do not participate in some of the cases.
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Because of the participation constraint,

RM
b (v) ≤ SM

b (v) ≤ Smax(v) for all v ∈ V .

A mechanism and an individually rational ex post equilibrium (M, b) are

called socially optimal if

SM
b (v) = Smax(v) for all v ∈ V .

Note that the seller controls the mechanism, but she does not control the

strategies used by the buyers. However, it is assumed that if the mechanism

possesses an individually rational ex post equilibrium, the agents use such

an equilibrium.13

A public seller may wish to generate a socially optimal mechanism, whereas

a selfish seller may be interested in the revenue function only. Such a seller

would rank mechanisms according to the revenue they generate.

A mechanism (X, d, c) is called a direct mechanism if Xi = Vi for ev-

ery i ∈ N . That is, in a direct mechanism a buyer’s message contains a

full description of some valuation function. A direct mechanism is called

truth revealing if for every buyer i, telling the truth (bi(vi) = vi) is an

individually rational ex post dominating strategy. (Of course the profile of

strategies b = (bi)i∈N is an individually rational ex post equilibrium.) By

the revelation principle,14 given a mechanism and an individually rational

ex post equilibrium (M, b) one can find a direct truth revealing mechanism

that yields the same distribution of goods and the same payments (and in

particular, the same revenue and surplus functions).15 It may seem there-

fore that the concept of ex post equilibrium is not interesting in our setup
13For example, the agents may reach the equilibrium by a process of learning (see e.g.

[13]).
14See e.g. [25].
15This strong version of the revelation principle is due to our private values assumption.

Otherwise, the revelation principle guarantees the existence of an equivalent direct mech-
anism in which telling the truth is an individually rational ex post equilibrium (but not
necessarily a domination equilibrium).
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(private values), and indeed most of the economics literature of mechanism

design with private values deals only with direct and truth revealing mech-

anisms. However, when we deal with computational issues, two mechanism

that are equivalent in economics may differ in their complexity. The time,

space, and communication required to compute and communicate the mes-

sage of an agent as well as the chosen allocation may depend on the messages

sent in equilibrium. Thus, the concept of ex post equilibrium may be very

important even if private values are assumed.

Well-known truth revealing mechanisms are the VC mechanisms. These

mechanisms are parameterized by an allocation function d, that is socially

optimal. That is, Smax(v) = S(v, d(v)) for every v ∈ V . The transfer

functions are defined as follows:

cd
i (v) = max

γ∈Γ

∑
j 6=i

vj(γj)−
∑
j 6=i

vj(dj(v)). (3.2)

Note that cd
i (v) ≥ 0 for every v ∈ V .

The mechanisms differ in the allocation they pick in cases in which there

exist more than one socially optimal allocation, and therefore in the second

term in (3.2).16 It is well-known that all VC mechanisms yield the same

utility to a truth telling buyer: For a VC mechanism d17 we denote by

ud
i (vi, (v

′
i, v−i)) the utility of buyer i with the valuation function vi, when he

16By VC mechanisms we refer here to what is also known as Clarke mechanisms or the
Pivotal mechanism. More general mechanisms are the VCG mechanisms. Every VCG
mechanism is obtained from some VC mechanism by changing the transfer functions: A
VCG mechanism is defined by a socially optimal allocation function d and by a family of
functions h = (hi)i∈N . The transfer functions are defined by:

cd
i (v) = max

γ∈Γ

∑
j 6=i

vj(γj)−
∑
j 6=i

vj(dj(v)) + hi(v−i).

Truth telling is an ex post equilibrium in every VCG mechanism, but it is not necessarily
an individually rational ex post equilibrium.

17Since in all VC mechanisms M = (X, d, c), X is V and c is defined as in (3.2), it is
enough to specify d in order to specify the mechanism.
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declares v′i and the other buyers declare v−i. That is,

ud
i (vi, v

′) = vi(di(v
′))− cd

i (v
′), (3.3)

where v′ = (v′i, v−i). Therefore, by (3.2),

ud
i (vi, v

′) = S(v, d(v′))− gi(v−i), (3.4)

where v = (vi, v−i), and

gi(v−i) = max
γ∈Γ

∑
j 6=i

vj(γj). (3.5)

If i declares vi,

ud
i (vi, v) = S(v, d(v))− gi(v−i) = Smax(v)− gi(v−i). (3.6)

As the right-hand side of (3.6) does not depend on d, a truth telling buyer

receives the same utility at all VC mechanisms. Note that truth revealing is

indeed a dominant strategy in a VC mechanism.

In the next section we discuss other (not truth revealing) individually

rational ex post equilibrium profiles in the VC mechanisms. We will focus

on player symmetric equilibria b = (bi)i∈N , where bi = bj for all i, j ∈ N ,

which are in equilibrium in every VC mechanism.

4 Bundling equilibrium

Let Σ ⊆ 2A be a family of bundles of goods. We deal only with such families

Σ for which

• ∅ ∈ Σ.

A valuation function vi is a Σ-valuation function if

vi(B) = max
C∈Σ,C⊆B

vi(C), for every B ∈ 2A.
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The set of all Σ-valuation functions in Vi is denoted by V Σ
i . We further

denote V Σ = ×i∈NV Σ
i . For every valuation function vi we denote by vΣ

i its

projection on V Σ
i , that is:

vΣ
i (B) = max

C∈Σ,C⊆B
vi(C), for every B ∈ 2A.

Obviously vΣ
i ∈ V Σ

i , and for vi ∈ V Σ
i , vΣ

i = vi. In particular (vΣ
i )Σ = vΣ

i for

every vi ∈ Vi. Let fΣ : Vi → V Σ
i be the projection function defined by

fΣ(vi) = vΣ
i .

An allocation γ is a Σ-allocation if γi ∈ Σ for every buyer i ∈ N . The

set of all Σ-allocations is denoted by ΓΣ.

We are interested in the following question: For which Σ, do we have that

fΣ is a player-symmetric individually rational ex post equilibrium in every

VC mechanism (with any number of buyers)? In such a case we call fΣ a

bundling equilibrium for the VC mechanisms and say that Σ induces a

bundling equilibrium. The next example shows that not every Σ induces a

bundling equilibrium.

Before we present the example we need the following notation: Let B ∈
2A, we denote by wB the following valuation function:

If B 6= ∅, wB(C) = 1 if B ⊆ C, and wB(C) = 0 otherwise.18

If B = ∅, wB(C) = 0 for all C ∈ 2A.

Example 1

Let A contain four goods a, b, c, d. Let

Σ = {a, d, bcd, abc, A, ∅}.19

18For B 6= ∅, a valuation function of the form wB is called a unanimity TU game in
cooperative game theory. An agent with such a valuation function is called by Lehmann,
O’Callaghan, and Shoham [19] a single-minded agent.

19We omit braces and commas when writing subsets of A.
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Let v2 = wa, v3 = wd. Consider buyer 1 with v1 = wbc. Note that vi ∈ V Σ
i for

i = 2, 3. If buyer 1 uses fΣ he declares v′1(bcd) = v′1(abc) = v′1(A) = 1 and

v′1(C) = 0 for all other C, and there exists a VC mechanism that allocates a

to 2, d to 3 and bc to the seller. In this mechanism the utility of 1 from using

fΣ is zero. On the other hand, if agent 1 reports the truth (wbc) he receives

(in every VC mechanism) bc and pays nothing. Hence, his utility would be

1. Therefore fΣ is not in equilibrium in this VC mechanism, and hence Σ

does not induce a bundling equilibrium.

4.1 A characterization of bundling equilibria

Σ ⊆ 2A is called a quasi field if it satisfies the following properties:20

• B ∈ Σ implies that Bc ∈ Σ, where Bc = A \B.

• B, C ∈ Σ and B ∩ C = ∅ imply that B ∪ C ∈ Σ.21

Theorem 1 Σ induces a bundling equilibrium if and only if it is a quasi

field.

Proof:

Suppose Σ is a quasi field:

Consider a VC mechanism with an allocation function d. We show that

fΣ is an individually rational ex post equilibrium in this VC mechanism.

Assume that every buyer j, j 6= i, uses the strategy bj = fΣ. Let v−i ∈
V−i. We have to show that for buyer i with valuation vi, vΣ

i is a best reply

to vΣ
−i. As truth revealing is a dominating strategy in every VC mechanism,

it suffices to show that buyer i’s utility when submitting vΣ
i is the same as

when submitting vi.
22 That is, we need to show that

20Recall our assumption that we deal only with Σ such that ∅ ∈ Σ.
21Equivalently, the union of any number of pairwise disjoint sets in Σ is also in Σ.
22Note that this will imply not only that fΣ is in equilibrium but also that it is indi-

vidually rational.
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Smax(vi, v
Σ
−i)− α = S((vi, v

Σ
−i), γ)− α,

where α = gi(v
Σ
−i), and γ = d(vΣ

i , vΣ
−i).

Hence, we have to show that

Smax(vi, v
Σ
−i) = S((vi, v

Σ
−i), γ). (4.1)

Obviously,

Smax(vi, v
Σ
−i) ≥ S((vi, v

Σ
−i), γ). (4.2)

As vi(B) ≥ vΣ
i (B) for every B ∈ 2A,

S((vi, v
Σ
−i), γ) ≥ S((vΣ

i , vΣ
−i), γ) = Smax(v

Σ
i , vΣ

−i). (4.3)

Let ξ = d(vi, v
Σ
−i). For j 6= i and j 6= 0, let ξΣ

j ∈ Σ be such that ξΣ
j ⊆ ξj

and vΣ
j (ξΣ

j ) = vΣ
j (ξj). Let ξΣ

i = (∪j 6=0,iξ
Σ
j )c, and let ξΣ

0 = ∅.
Because Σ is a quasi field, ξΣ

i ∈ Σ, and hence ξΣ ∈ ΓΣ. As ξi ⊆ ξΣ
i , ξΣ is

also optimal for (vi, v
Σ
−i). However

S((vi, v
Σ
−i), ξ

Σ) = S((vΣ
i , vΣ

−i), ξ
Σ) ≤ Smax(v

Σ
i , vΣ

−i). (4.4)

Combining (4.2), (4.3), and (4.4) yields

Smax(v
Σ
i , vΣ

−i) ≥ Smax(vi, v
Σ
−i) ≥ S((vi, v

Σ
−i), γ) ≥ Smax(v

Σ
i , vΣ

−i).

Therefore (4.1) holds.

Suppose Σ induces a bundling equilibrium:

We first show that if B ∈ Σ, then Bc ∈ Σ. If B = A then by definition

Bc = ∅ ∈ Σ. Let B ⊂ A. Assume, for the sake of contradiction, that Bc 6∈ Σ.

Let v2 = wB and v1 = wBc . Note that vΣ
2 = v2. Thus, if buyer 2 uses fΣ, he

declares v2. If buyer 1 uses fΣ, he declares vΣ
1 , where vΣ

1 (Bc) = 0. Hence,

there exists a VC mechanism d, that allocates B to agent 2 and Bc to the

seller. However, if buyer 1 deviates and declares his true valuation, then this

14



VC mechanism allocates to him Bc, and he pays nothing. Hence, there is a

profitable deviation from fΣ, a contradiction.

Next, we show that if B, C ∈ Σ are disjoint then B ∪ C ∈ Σ. By the

first part of the proof, it suffices to show that (B ∪ C)c ∈ Σ. Clearly, we

may assume that the sets B, C, and (B ∪ C)c are all non empty. Assume,

for the sake of contradiction, that (B ∪C)c /∈ Σ. Consider three buyers with

valuations v1 = w(B∪C)c , v2 = wB, v3 = wC . Proceeding as in the first part

of the current part of the proof yields a similar contradiction.

It may be useful to note that if fΣ is a buyer-symmetric equilibrium for

a fixed set of buyers, then Σ is not necessarily a quasi field. For example,

if there is only one buyer, every Σ such that A ∈ Σ induces an equilibrium.

In the case of two buyers, being closed under complements is necessary and

sufficient for Σ to induce an equilibrium. However, it can be deduced from

the proof of the only if part of Theorem 1, that for a fixed set of buyers N ,

if n = |N | ≥ 3, then Σ must be a quasi field if it induces an equilibrium for

the set of buyers N .

4.2 Partition-based equilibrium

Let π = {A1, ..., Ak} be a partition of A into non empty parts. That is,

Ai 6= ∅ for every Ai ∈ π, ∪k
i=1Ai = A, and Ai ∩ Aj = ∅ for every i 6= j. Let

Σπ be the field generated by π. That is, Σπ contains all the sets of goods

of the form ∪i∈IAi, where I ⊆ {1, ..., k}. To avoid confusion: ∅ ∈ Σπ. For

convenience, we will use fπ to denote fΣπ . A corollary of Theorem 1 is:

Corollary 1 fπ is a bundling equilibrium.

Proof: As Σπ is a field it is in particular a quasi field. Hence, the proof

follows from Theorem 1.

A bundling equilibrium of the form fπ, where π is a partition, will be

called a partition-based equilibrium. Thus, a partition-based equilibrium

is a bundling equilibrium fΣ that is based on a field Σ = Σπ. It is important
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to note that there exist quasi fields, which are not fields. For example, let

A = {a, b, c, d}. Σ = {ab, cd, ac, bd, A, ∅} is a quasi field, which is not a field.

We note, however, that when m = |A| ≤ 3, the notions of quasi field and

field coincide.

5 Surplus and communication complexity

Let Σ ⊆ 2A. If every buyer uses fΣ, then in every VC mechanism d, the

total surplus generated when the types of the buyers are given by v ∈ V is

S(vΣ, d(vΣ)) = Smax(v
Σ).

We denote

SΣ−max(v) = max
γ∈ΓΣ

S(v, γ).

Obviously,

SΣ−max(v) = SΣ−max(v
Σ) = Smax(v

Σ), for every v ∈ V .

For convenience we denote SΣ−max by SΣ, and we call SΣ the Σ-optimal

surplus function (note that S2A = Smax). When Σ is a field generated by

a partition π we write Sπ for SΣπ .

If Σ is a quasi field we say that the communication complexity of the

equilibrium fΣ is the number of bundles in Σ, that is |Σ|. Notice that this is

a natural definition because a buyer who is using fΣ has to submit a vector

of |Σ| numbers to the seller.23 Thus, if π is a partition, the communication

complexity is 2|π|. If Σ1 ⊆ Σ2, then SΣ1(v) ≤ SΣ2(v) for every v ∈ V . So, Σ2

induces more surplus (a proxy for economic efficiency) than Σ1, but Σ2 also

induces higher communication complexity. Hence, there is a tradeoff between

economic efficiency and computational complexity. The next example shows

23A discussion of the way this can be extended to deal with the introduction of concise
bidding languages [26, 4] is beyond the scope of this paper.
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that as far as the revenue of the seller is concerned, there is no clear com-

parison between the revenues obtained by quasi fields ranked by inclusion.24

Before we present the example, note that for two partitions π1, π2, Σπ1 ⊆ Σπ2

if and only if π2 refines π1.

Example 2

Assume there are two buyers, N = {1, 2}, and two goods, A = {a, b}.
Assume v1 = wa and v2 = wb. In any VC mechanism, in the truth revealing

equilibrium buyer 1 gets a, buyer 2 gets b, and they pay nothing. Hence

the level of social surplus is 2 and the revenue of the seller at v = (v1, v2) is

zero. Let π be the trivial partition {A} (Σπ = {∅, A}). If each buyer uses

the equilibrium strategy fπ, they both report wA. Hence, one of the buyers

gets ab and pays 1. The seller collects a revenue of 1, and the social surplus

equals 1. Hence, Smax(v) > Sπ(v) and R(v) < Rπ(v). On the other hand,

if N = {1, 2, 3, 4} where v1 and v2 are defined as before and v3 = v1 and

v4 = v2, Smax(v) = 2 and R(v) = 2 while Sπ(v) = 1 and Rπ(v) = 1.

For every family of bundles Σ with A ∈ Σ we define

rn
Σ = sup

v∈V,v 6=0

Smax(v)

SΣ(v)
, (5.1)

where V = V1 × · · · × Vn. Thus, rn
Σ is a worst-case measure of the economic

inefficiency that may result from using the strategy fΣ when there are n buy-

ers. Obviously rn
Σ ≥ 1, and equality holds for Σ = 2A. A standard argument

using homogeneity and continuity of Smax/SΣ shows that the supremum in

(5.1) is attained, i.e., it is a maximum.

The following remark gives a simple upper bound on the inefficiency as-

sociated with Σ.

Remark 1 For every Σ ⊆ 2A with A ∈ Σ, and for every v ∈ V ,

Smax(v) ≤ nSΣ(v),
24In spite of our example, it is commonly believed that social optimality is a good proxy

for revenue. This was proved to be asymptotically correct when the number of buyers is
large, and the organizer has a Bayesian belief over the distribution of valuation functions,
which assumes independence across buyers (see [24]).
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where n is the number of potential buyers. Consequently,

rn
Σ ≤ n.

Proof: Let γ = d(v), where d is any VC mechanism.

Smax(v) = S(v, γ) =
∑
i∈N

vi(γi) ≤
∑
i∈N

vi(A) =
∑
i∈N

vΣ
i (A) ≤ nSΣ(v).

However, we are interested mainly in upper bounds on the economic in-

efficiency that are independent of the number of buyers. For every family of

bundles Σ with A ∈ Σ we define

rΣ = sup
n≥1

rn
Σ. (5.2)

It is easy to see that, since any allocation assigns non empty bundles to at

most m = |A| buyers, the supremum in (5.2) is attained for some n ≤ m.

When Σ = Σπ for a partition π, we write rπ instead of rΣπ .

In the following subsection we characterize and estimate rπ, thereby ob-

taining a quantitative form of the tradeoff between communication and eco-

nomic efficiency in partition-based equilibria.

5.1 Communication efficiency vs. economic efficiency

in partition-based equilibria

We first express rπ in terms of the partition π = {A1, ..., Ak} only. A feasible

family for π is a family ∆ = (Hi)
s
i=1 of (not necessarily distinct) subsets of

{1, ..., k} satisfying the following two conditions:

• Hi ∩Hj 6= ∅ for every 1 ≤ i, j ≤ s.

• |{i : l ∈ Hi}| ≤ |Al| for every 1 ≤ l ≤ k.

We write s = s(∆) for the number of sets in the family ∆ (counted with

repetitions).
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Theorem 2 For every partition π,

rπ = max s(∆),

where the maximum is taken over all families ∆ that are feasible for π.

Proof:

We first prove that rπ ≤ max s(∆). It suffices to show that for every

v ∈ V there exists a feasible family ∆ for π such that

Smax(v) ≤ s(∆) · Sπ(v).

Let v ∈ V . Let γ be a socially optimal allocation. That is,

Smax(v) =
∑
i∈N

vi(γi).

For every γi let γπ
i be the minimal set in Σπ that contains γi. That is

γπ
i = ∪l∈Ji

Al where Ji = {l ∈ {1, . . . , k} : Al ∩ γi 6= ∅}.
Let ξ be a partition of N to r subsets, such that for every i, j ∈ I ∈ ξ,

i 6= j, γπ
i ∩ γπ

j = ∅. Assume r is the minimal cardinality of such a partition.

For every I ∈ ξ let HI = ∪i∈IJi. That is, each HI is a set of indices of parts

Al in π that should be allocated to the buyers in I in order for each of them

to get the goods they received in the optimal allocation γ. Note that if I 6= J ,

HI ∩HJ 6= ∅, otherwise we can join I and J together in contradiction to the

minimality of the cardinality of ξ. Hence, ∆ = (HI)I∈ξ is a family of subsets

of {1, ..., k} that satisfies that any two subsets in ∆ intersect. Furthermore,

the second condition for feasibility is also satisfied, because for any given

l ∈ {1, ..., k} there are at most |Al| buyers i with γi ∩ Al 6= ∅, and hence at

most |Al| parts I ∈ ξ such that l ∈ HI . Thus, ∆ is a feasible family for π

with s(∆) = r.

Every HI , I ∈ ξ defines a Σπ-allocation. In this allocation every i ∈ I

receives γπ
i , and the seller receives all other goods. Therefore

∑
i∈I vi(γ

π
i ) ≤

Sπ(v) for every I ∈ ξ. Hence,

Smax(v) ≤
∑
i∈N

vi(γ
π
i ) =

∑
I∈ξ

∑
i∈I

vi(γ
π
i ) ≤

∑
I∈ξ

Sπ(v) = rSπ(v).
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Next, we prove that rπ ≥ max s(∆). It suffices to show that for every

feasible family ∆ for π there exists a profile of valuations v = (v1, ..., vn) 6= 0

for some number n of buyers satisfying

Smax(v) ≥ s(∆) · Sπ(v).

Let ∆ = (Hi)
s
i=1 be a feasible family for π. By the second condition of

feasibility, we can associate with each Hi a set of goods Bi containing one

good from each Al such that l ∈ Hi, in such a way that the sets Bi are

pairwise disjoint. By the first condition of feasibility, for every 1 ≤ i, j ≤ s

there can be no two disjoint sets Ci, Cj ∈ Σπ such that Bi ⊆ Ci, Bj ⊆ Cj.

Now, we take n = s buyers, and let buyer i have the valuation vi = wBi
.

Then Smax(v) = s whereas Sπ(v) = 1.

Theorem 2 reduces the determination of the economic inefficiency measure

rπ to a purely combinatorial problem. However, this combinatorial problem

does not admit an easy solution.25 Nevertheless, we will use Theorem 2 to

calculate rπ in some special cases, and to obtain a general upper bound for

it which is tight in infinitely many cases.

The following proposition determines rπ for partitions π with a small

number of parts. We use the notations b·c and d·e for the lower and upper

integer rounding functions, respectively.

Proposition 1 Let |A| = m, and let π = {A1, ..., Ak} be a partition of A

into k non empty sets.

• If k = 1 then rπ = m.

• If k = 2 then rπ = max{|A1|, |A2|}. Consequently, the minimum of rπ

over all partitions of A into 2 parts is dm
2
e.

25The special case of this problem, in which |Ai| = |Aj | for all Ai, Aj ∈ π, has been
treated in the combinatorial literature using a different but equivalent terminology (see
e.g. [11]). But even in this case, a precise formula for max s(∆) seems out of reach.
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• If k = 3 then rπ = max{|A1|, |A2|, |A3|, bm
2
c}. Consequently, the mini-

mum of rπ over all partitions of A into 3 parts is bm
2
c.

Proof:

In each case, we determine the maximum of s(∆) over all families ∆ that

are feasible for π.

For k = 1, a feasible family consists of at most |A1| = m copies of {1},
and therefore max s(∆) = m.

A feasible family for k = 2 cannot contain two sets, Hi and Hj, such

that 1 /∈ Hi and 2 /∈ Hj, because such sets would be disjoint. Hence, for any

feasible family ∆, either all sets contain 1 or all of them contain 2. Therefore,

s(∆) ≤ max{|A1|, |A2|}. On the other hand, feasible families of size |A1|, |A2|
trivially exist.

Suppose k = 3, and denote

βl = |Al| for l = 1, 2, 3.

We first show that s(∆) ≤ max{β1, β2, β3, bm
2
c} for every feasible family ∆.

If ∆ contains some singleton {l}, then all sets in ∆ must contain l, and hence

s(∆) ≤ βl. Otherwise, ∆ consists of s12 copies of {1, 2}, s13 copies of {1, 3},
s23 copies of {2, 3}, and s123 copies of {1, 2, 3}, for some non negative integers

s12, s13, s23, s123. We have the following inequalities:

s12 + s13 + s123 ≤ β1,

s12 + s23 + s123 ≤ β2,

s13 + s23 + s123 ≤ β3.

Upon adding these inequalities we obtain

2(s12 + s13 + s23) + 3s123 ≤ m,

which implies

s(∆) = s12 + s13 + s23 + s123 ≤ bm
2
c.
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We show next that there exists a feasible family ∆ with s(∆) = max{β1, β2, β3, bm
2
c}.

If this maximum is one of the βl’s, this is trivial. So assume that βl < bm
2
c

for l = 1, 2, 3. If m is even then the family ∆ that consists of

s12 =
β1 + β2 − β3

2
copies of {1, 2},

s13 =
β1 + β3 − β2

2
copies of {1, 3},

s23 =
β2 + β3 − β1

2
copies of {2, 3},

is feasible (note that the prescribed numbers are non negative because βl <

bm
2
c for l = 1, 2, 3, and they are integers because β1 + β2 + β3 = m is even).

The size of this family is s(∆) = s12 + s13 + s23 = m
2
. If m is odd, we

make slight changes in the values of s12, s13, s23: we add 1
2

to one of them

and subtract 1
2

from the other two. In this way we get a family ∆ with

s(∆) = bm
2
c.

We see from Proposition 1 that if we use partitions into two parts (en-

tailing a communication complexity of 4), the best we can do in terms of

economic efficiency is rπ = dm
2
e, and this is achieved by partitioning A into

equal or nearly equal parts. Allowing for three parts (and therefore a com-

munication complexity of 8) permits only a small gain in rπ (in fact, no gain

at all when m is even).

We will now state the two parts of our main result.

Theorem 3 Let π = {A1, ..., Ak} be a partition of A into k non empty sets

of maximum size β(π). (That is, β(π) = max{|A1|, ..., |Ak|}.) Then

rπ ≤ β(π) · ϕ(k),

where

ϕ(k) = max
j=1,...,k

min{j, k

j
}.
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The proof of Theorem 3 is given in the following subsection.

Note that

ϕ(k) ≤
√

k.

In particular, if all sets in π have equal size m
k
, we obtain the upper bound

rπ ≤
m√
k
.

Now, consider the case when, for some non negative integer q, we have

k = q2 + q + 1, and (5.3)

|Ai| = q + 1 for i = 1, ..., k. (5.4)

In this case

ϕ(k) =
q2 + q + 1

q + 1
,

and hence the upper bound of Theorem 3 takes the form

rπ ≤ k.

The second part of our main result implies that in infinitely many of these

cases this upper bound is tight.

Theorem 4 Let π = {A1, ..., Ak} be a partition that satisfies (5.3) and (5.4)

for some q which is either 0 or 1 or of the form pl where p is a prime number

and l is a positive integer. Then

rπ = k.

We prove Theorems 3 and 4 in the following subsection.
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5.2 Proofs of Theorems 3 and 4

We begin with some preparations. Let ∆ = (Hi)
s
i=1 be a family of (not

necessarily distinct) subsets of {1, ..., k}. A vector of non negative numbers

δ = (δi)
s
i=1 is called a semi balanced26 vector for ∆ if for every l ∈ {1, ..., k},

∑
i:l∈Hi

δi ≤ 1.

Proposition 2 Let ∆ = (Hi)
s
i=1 be a family of (not necessarily distinct)

subsets of {1, ..., k} such that Hi ∩ Hj 6= ∅ for every 1 ≤ i, j ≤ s. Let

δ = (δi)
s
i=1 be a semi balanced vector for ∆. Then

s∑
i=1

δi ≤ ϕ(k),

where

ϕ(k) = max
j=1,...,k

min{j, k

j
}.

Proof:

Assume without loss of generality that h = |H1| is the minimal number

of elements in a member of ∆. The proposition will be proved if we prove

the following two claims:

Claim 1:
∑s

i=1 δi ≤ h.

Claim 2:
∑s

i=1 δi ≤ k
h
.

Proof of Claim 1:

Let z =
∑

l∈H1

∑
i:l∈Hi

δi. As every Hi intersects H1, every δi appears in z

at least once. Therefore, z ≥ ∑s
i=1 δi. Because δ is semi balanced,

∑
i:l∈Hi

δi ≤
1 for every l, and in particular for l ∈ H1. Hence, z ≤ ∑

l∈H1
1 = h.

Proof of Claim 2:

26This concept is equivalent to what is called a fractional matching in combinatorics.
We chose the term semi balanced, because balanced vectors, defined by requiring equality
instead of weak inequality, are a familiar concept in game theory (see e.g. [36]).
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Let w =
∑k

l=1

∑
i:l∈Hi

δi. Every δi appears in w exactly |Hi| times. Since

|Hi| ≥ h for every i, we have w ≥ h
∑s

i=1 δi. On the other hand, as in the

proof of Claim 1, we obtain w ≤ ∑k
l=1 1 = k. Combining the two inequalities,

we get
∑s

i=1 δi ≤ k
h
.

Therefore,
s∑

i=1

δi ≤ min{h,
k

h
} ≤ ϕ(k).

We are now ready for the proof of Theorem 3:

Proof of Theorem 3:

Let π = {A1, ..., Ak} be a partition of A into k non empty sets of maximum

size β(π). We have to prove that rπ ≤ β(π) ·ϕ(k). By Theorem 2, it suffices

to show that for every feasible family ∆ for π, we have

s(∆) ≤ β(π) · ϕ(k).

Let ∆ = (Hi)
s
i=1 be such a family. Consider the vector δ = (δi)

s
i=1 with

δi =
1

β(π)
, i = 1, ..., s.

By the second condition of feasibility, this vector is semi balanced. Hence we

may apply Proposition 2 and conclude that

s∑
i=1

δi ≤ ϕ(k),

or equivalently,
s

β(π)
≤ ϕ(k),

as required.

In order to prove Theorem 4 we invoke a result about finite geometries

(see e.g. [9]). A finite projective plane of order q is a system consisting

of a set Π of points and a set Λ of lines (in this abstract setting, a line is

just a set of points, i.e., L ⊆ Π for every L ∈ Λ), satisfying the following

conditions:

25



• |Π| = |Λ| = q2 + q + 1.

• Every point is incident to q+1 lines and every line contains q+1 points.

• There is exactly one line containing any two points, and there is exactly

one point common to any two lines.

Such a system does not exist for every q. However, it trivially exists for q = 0

(a single point) and for q = 1 (a triangle) and it is known to exist for every q

of the form q = pl, where p is a prime number and l is a positive integer. The

first non trivial example, corresponding to q = 2, is called the Fano plane:

Π = {1, 2, 3, 4, 5, 6, 7},

Λ = {124, 235, 346, 457, 561, 672, 713}.

Proof of Theorem 4:

Let π = {A1, ..., Ak} be a partition that satisfies (5.3) and (5.4) for some

q which is either 0 or 1 or of the form pl where p is a prime number and l

is a positive integer. As rπ ≤ k follows from Theorem 3 (see the discussion

preceding the statement of Theorem 4), we need to prove only that rπ ≥ k.

By Theorem 2, it suffices to show that there exists a family ∆ with s(∆) = k

which is feasible for π. Such a family is given by the system of lines of a

projective plane of order q, when the points are identified with 1, ..., k.

5.3 More on the ranking of equilibria

The tradeoff between communication complexity and economic efficiency, as

delineated above, may be made concrete by the following scenario. Suppose

that a set A of m goods is given, and we are in a position to recommend to

the potential buyers an equilibrium strategy. Assume further that a certain

level M of communication complexity is considered the maximum acceptable

level. If we are going to recommend a partition-based equilibrium fπ, then

the number of parts in π should be at most k = blog2 Mc. From the viewpoint
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of economic efficiency, we would like to choose such a partition π with rπ as

low as possible. Which partition should it be?

According to Theorem 3, we obtain the lowest guarantee on rπ by making

the maximum size of a part in π as small as possible, which means splitting

A into k equal (or nearly equal, depending on divisibility) parts. This leads

to the question whether, for given m and k, the lowest value of rπ itself (not

of our upper bound) over all partitions π of A into k parts is achieved at an

equi-partition, i.e., a partition π = {A1, ..., Ak} such that bm
k
c ≤ |Ai| ≤ dm

k
e,

i = 1, ..., k.

While Proposition 1 gives an affirmative answer for k = 1, 2, 3, it turns

out, somewhat surprisingly, that this is not always the case. This is shown

in the following example.

Example 3

Let m = 21 and k = 7. If π is an equi-partition of the 21 goods into

7 triples then, by Theorem 4, rπ = 7. Consider now a partition π′ =

{A1, ..., A7} in which

|A1| = 2, |A2| = 4, |A3| = · · · = |A7| = 3.

We claim that rπ′ ≤ 6.

In order to prove this, it suffices to show that there exists no feasible

family of 7 sets for π′. Suppose, for the sake of contradiction, that ∆ =

(Hi)
7
i=1 is such a family. Let Hi be an arbitrary set in ∆. It follows from the

second condition of feasibility that if Hi contains the element 1 then it shares

it with at most one other set in ∆. Similarly, if Hi contains the element 2

then it shares it with at most three other sets in ∆. For l = 3, ..., 7, if Hi

contains the element l then it shares it with at most two other sets in ∆. This

implies that Hi must contain at least three elements (because it must share

an element with every other set, and 3 + 2 < 6). Moreover, if Hi contains

exactly three elements and one of them is 1, then it also contains 2 (since
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1 + 2 + 2 < 6). On the other hand, we have

7∑
i=1

|Hi| =
7∑

i=1

∑
l∈Hi

1 =
7∑

l=1

∑
i:l∈Hi

1 =
7∑

l=1

|{i : l ∈ Hi}| ≤
7∑

l=1

|Al| = 21.

Since every Hi has at least three elements, it follows that every Hi has exactly

three elements, and all the weak inequalities |{i : l ∈ Hi}| ≤ |Al| must in fact

hold as equalities. In particular, there exist two sets in ∆, say Hi and Hj,

that contain the element 1. By the above, they both contain 2 as well. Let

l be the third element of Hi. Then among the remaining five sets in ∆, the

set Hi shares the element 1 with none of them, it shares the element 2 with

two of them, and the element l with at most two of them. This contradicts

the fact that Hi intersects every other set in ∆.

It can be checked that in fact rπ′ = 6 and this is the lowest achievable

value among all partitions of 21 goods into 7 sets. We omit the detailed

verification of this.

The tradeoff between communication complexity and economic efficiency

was quantitatively analyzed above only for partition-based equilibria. It is

natural to ask whether it is possible to beat this tradeoff using the more

general bundling equilibria. The answer is, in a sense made precise below:

sometimes yes, but not by much.

Example 4

Assume that the number of goods m is even, and let the set of goods A

be partitioned into two equal parts B and C. Consider Σ ⊆ 2A defined by

Σ = {D ⊆ A : |D ∩B| = |D ∩ C|}.

It is easy to check that Σ is a quasi field, and hence it induces a bundling

equilibrium. The communication complexity is

|Σ| =
m/2∑
j=0

(
m/2

j

)2

=
m/2∑
j=0

(
m/2

j

)(
m/2

m/2− j

)
=

(
m

m/2

)
.

We claim that rΣ = 2. That rΣ ≥ 2 can be seen by taking two buyers

with valuations wB and wC , respectively. To see that rΣ ≤ 2, suppose that
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v is a profile of valuations for a set of buyers N , and let γ be an optimal

allocation. Split the set N into the following two sets:

NB = {i ∈ N : |γi ∩B| ≥ |γi ∩ C|},

NC = {i ∈ N : |γi ∩B| < |γi ∩ C|}.

Note that the sets of goods γi, i ∈ NB, can be expanded to pairwise disjoint

sets of goods that belong to Σ. In other words, there exists a Σ-allocation ξ

such that γi ⊆ ξi for every i ∈ NB. Similarly, there exists a Σ-allocation η

such that γi ⊆ ηi for every i ∈ NC . Hence

Smax(v) =
∑
i∈N

vi(γi) =
∑

i∈NB

vi(γi)+
∑

i∈NC

vi(γi) ≤
∑
i∈N

vi(ξi)+
∑
i∈N

vi(ηi) ≤ 2SΣ(v).

Thus, rΣ ≤ 2.

We claim further that if a partition π of A satisfies rπ ≤ 2 then |Σπ| ≥
2m−2. Indeed, suppose π = {A1, ..., Ak}. It is easy to find a feasible family

of 3 sets for π if one of the Al’s has three or more elements, or if three of

the Al’s have two elements each. Therefore, rπ ≤ 2 implies that at most two

of the sets A1, ..., Ak have two elements and the rest are singletons. Thus

k ≥ m− 2 and |Σπ| ≥ 2m−2.

Since
(

m
m/2

)
< 2m−2 for all even m ≥ 10, we have the following conclusion:

If m ≥ 10 then every partition-based equilibrium that matches the economic

efficiency of fΣ has a higher communication complexity than fΣ. In other

words, the quasi field Σ offers an efficiency/complexity combination that

cannot be achieved or improved upon (in the Pareto sense) by any field.

The above example notwithstanding, the efficiency/complexity combina-

tions which arise from arbitrary quasi fields are still subject to a tradeoff that

is not much better than for fields. This is the content of our final remark.

Remark 2 Let m = |A| and let k be a positive integer. Any quasi field

Σ ⊆ 2A with rΣ ≤ m
k

must contain a partition of A into k non empty parts,

and therefore must satisfy |Σ| ≥ 2k.

Proof:
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Let there be m buyers, each with valuation wa for a distinct a ∈ A. For

this v we have Smax(v) = m. If rΣ ≤ m
k

then we must have SΣ(v) ≥ k. Hence

an optimal Σ-allocation has to assign non empty bundles of goods to at least

k buyers. Thus Σ contains k pairwise disjoint non empty sets of goods, and

therefore, being a quasi field, also a partition of A into k non empty parts.
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