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Abstract

One of the major achievements of mechanism design theory is the family of truthful

(incentive compatible) mechanisms often called VCG (named after Vickrey, Clarke and

Groves). When applying VCG mechanisms to complex mechanism design problems
such as combinatorial auctions a problem emerges: even �nding optimal outcomes is

computationally intractable. A striking observation is that if the optimal outcome

is replaced by the results of computationally tractable approximation algorithms or

heuristics then the resulting mechanism (termed VCG-based) is no longer necessarily

truthful!

The �rst part of this paper considers this problem in depth and shows that it is

almost universal. Speci�cally, we prove that essentially all reasonable approximations

or heuristics for combinatorial auctions as well as a wide class of cost minimization

problems yield non-truthful VCG-based mechanisms.

The second part of this paper proposes a method for handling this non-truthfulness.

We introduce a notion of feasible truthfulness that captures the limitation on agents
imposed by their own computational limits. We then show that under reasonable

assumptions on the agents, it is possible to turn any VCG-based mechanism into a

feasibly truthful one, using an additional appeal mechanism. The resulting mechanism

also satis�es participation constraints.

1 Introduction

The theory of mechanism design may be described as studying the design of protocols under

the assumption that the participants behave according to their own goals and preferences

and not necessarily as "instructed" by the protocol. This theory has been traditionally used

in economic settings such as auctions of various kinds (for an introduction see e.g. [12, 18]).

Recently, with the emergence of the Internet as the distributed computing platform, the
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theory of mechanism design has been applied in computational settings such as distributed

resource and task allocation [16, 27, 26], communication networks [3, 9], multi-agent systems

[21], and others.

The canonical mechanism design problem can be described as follows: A set of rational

agents need to collaboratively choose an outcome o from a �nite set O of possibilities. Each

agent i has a privately known valuation function vi : O! R quantifying the agent's bene�t

from each possible outcome. The agents are supposed to report their valuation functions

vi(�) to some centralized mechanism that chooses an outcome o that maximizes the total

welfare
P

i v
i(o).

The main diÆculty is that agents may choose not to reveal their true valuations but

rather report carefully designed lies in an attempt to in
uence the outcome to their liking.

The tool that the mechanism uses to motivate the agents to reveal the truth is monetary

payments { these payments are to be designed in a way that ensures that rational players

always reveal their true valuations { making the mechanism, so called, incentive compatible

or truthful.

There is only one general technique known for designing such a payment structure, some-

times called the generalized Vickrey auction [25], the Clarke pivot rule [1] the Groves mech-

anism [7], or, as we will, VCG. In certain senses this payment structure is unique [6, 20].

In recent years mechanisms have become quite complicated, requiring implementation

on computer systems. Cases in point include combinatorial auctions [23, 4, 8, 11, 24, 14,

15, 2, 13], where multiple items are concurrently sold in an auction, as well as various

computational task and resource allocation problems [16, 27, 26, 10, 3]. For many of these

applications the space of possible outcomes is huge and �nding an outcome that maximizes

the declared total welfare is computationally infeasible (NP-complete). In these cases any

realistic mechanism will not be able to obtain the optimal outcome.

A natural general approach for the development of mechanisms for complex problems

would be to use a computationally feasible approximation algorithm or heuristic for obtaining

a near-optimal outcome. The payments in such an approach would presumably be derived

by applying the VCG payment rules to the underlying algorithm. We term such mechanisms

VCG-based.

The starting point of this paper is the surprising observation, noticed already by some
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researchers ([11, 17]), that VCG-based mechanisms are not necessarily truthful! I.e. if the

choice of outcome is sub-optimal, then applying the VCG payment rules will not necessarily

motivate the agents to reveal the truth { rational agents may lie taking advantage of quirks

in the outcome choice algorithm.

The �rst part of this paper exams this phenomena in depth and shows that it is near

universal: essentially all reasonable VCG-based mechanisms are not truthful. We �rst point

our attention at combinatorial auctions and characterize the class of truthful VCG-based

mechanisms for this problem. This characterization yields, in particular, the following corol-

lary. Call an allocation algorithm for combinatorial auctions reasonable if whenever an item

is valued by only a single agent, then this agent receives that item.

Theorem: Any reasonable VCG-based mechanism for combinatorial auctions is not truthful

(unless it uses the { computationally intractable { optimal allocation algorithm).

We then study a family of problems termed "cost minimization allocation problems". We

call an algorithm for such a problem degenerate if it produces results which are arbitrarily

far from the optimal.

Theorem: Any non-degenerate VCG-based mechanism for any cost minimization allocation

problem is not truthful (unless it uses the optimal allocation algorithm).

We then examine carefully why VCG-based mechanisms are non-truthful, and observe

that the only reason for an agent to lie about her valuation is to "help" the algorithm to

improve the overall result. However, if �nding a better outcome is hard, then we would

not expect an agent to be computationally able to do so! This motivates us to de�ne a

feasible notion of truthfulness, a notion that takes into account the computational limits of

the agents.

In the second part of this paper we �rst de�ne this "feasible" notion of truthfulness. We

then introduce a variant on VCG-based mechanims, called the second-chance mechanism1

and show that under reasonable assumptions, any such mechanism is indeed "feasibly truth-

ful".

Our notion of truthfulness is based on the view that each agent has some strategic knowl-

edge and that her range of actions is determined by this knowledge. This knowledge may

1The mechanism is patent pending.
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represent the computational limitations of the agent or some structural limitations on her

information or behavior. We say that an action is feasibly dominant for the agent if her

strategic knowledge does not contain awareness of any circumstances where another action

is better for her. We say that a mechanism is feasibly truthful if the truth is feasibly dominant

for all agents.

Given any algorithm for the corresponding optimization problem we de�ne the second-

chance mechanism based on it. This mechanism is a modi�cation of the VCG-based mech-

anism where in addition to their type declarations, the agents are allowed to submit appeal

functions as well. An appeal function is an encapsulation of the agents' algorithmic ability

to help the mechanisms' underlying outcome determination algorithm by means of input

modi�cation.

We show that under reasonable assumptions on the agents, the addition of this appeal

mechanism is enough to ensure feasible truthfulness. Speci�cally we prove several variants

of theorems of the following schema. The di�erent theorems di�er from each other in the

exact de�nition of computational limitation.

Theorem Schema: If all agents' strategic knowledge functions are computationally limited

and the outcome determination algorithm is computationally limited then the second chance

mechanism is feasibly truthful. Furthermore, the appeal functions are all computationally

limited, and the mechansim's' outcome is at least as good as that of the underlying algorithm.

The resulting mechanism satis�es participation constraints as well.

We present our work in the context of VCG-mechanisms. However our results are more

general. In particular all they can be applied to the compensation and bonus mechanism

[17] and to weighted versions of the VCG method.

The rest of this paper is organized as follows: In section 2 we introduce our model and

notations. Limitations of truthful VCG-based mechanisms are studied in section 3. In

section 4 we introduce the second-chance mechanism and show some of its properties.

2 Preliminaries

In this section we formally present our model. We attempt, as much as possible, to use the

standard notions from both mechanism design and computational complexity. We focus on
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dominant strategy implementation under quasi-linear environments.

In subsection 2.1 we describe mechanisms and mechanism design problems2. In subsection

2.2 we describe the celebrated VCG mechanisms and present our VCG-based mechanisms.

In subsection 2.3 we discuss the computational burden of VCG mechanisms and brie
y

describe some fundamental notions of computational complexity.

As an example, we formulate, in subsection 2.4, the important problem of combinatorial

auctions.

2.1 Mechanism design problems

De�nition 1 (Utilitarian mechanism design problem) A (utilitarian) mechanism de-

sign problem is described by the following:

1. A �nite set O of allowed outputs.

2. Each agent i = (1; : : : ; n) has a real function vi(o 2 O) called its valuation or type.

This is a quanti�cation of its bene�t from each possible output o in terms of some

common currency. vi is privately known to agent i. The space V i of all possible

valuation functions is called the type space of the agent.

3. If the mechanism's output is o and in addition the mechanism hands the agent pi units

of this currency, then her utility ui equals3 vi(o) + pi. This utility is what the agent

aims to optimize.

4. The goal of the mechanism is to select an output o 2 O that maximizes the total

welfare g(v; o) =
P

i v
i(o).

An example for such a problem can be found in section 2.4.

In a direct revelation mechanism, the participants are simply asked to reveal their types

to the mechanism. Based on these declarations the mechanism then computes the output o

and the payment pi for each of the agents.

2In this paper we discuss only what are called utilitarian problems. Without loss of generality we limit

ourselves to direct revelation mechanisms.
3This is called the quasi-linearity assumption.
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De�nition 2 (A mechanism) A (direct revelation) mechanism is a pair m = (k; p) such

that:

� The output function k accepts as input a vector w = (w1; : : : ; wn) of declared valuation

functions4 and returns an output k(w) 2 O.

� The payment function p(w) = (p1(w); : : : ; pn(w)) returns a real vector. This is the

payment handed by the mechanism to each of the agents (e.g. if pi = �2 then the agent

pays two units of currency to the mechanism).

A revelation mechanism computes its output according to the type declarations of the

agents. As they may lie to the mechanism, it should be carefully designed such that it will

be for the bene�t of each agent to reveal her true type to the mechanism.

Notation: We denote the tuple (a1; :::ai�1; ai+1; :::; an) by a�i. We let (ai; a�i) denote the

tuple (a1; : : : ; an).

De�nition 3 (truthful mechanism) A mechanism is called truthful if truth-telling is a

dominant strategy. I.e. for every agent i of type vi and for every type declaration w�i for the

other agents, the agent's utility is maximized when she declares her real valuation function

vi.

As an example consider the famous Vickrey auction [25]: A seller wishes to sell one item

in an auction. There are n buyers, each privately knowing her valuation vi for this item. In

a Vickrey auction each of the buyers is simply asked for her valuation. The item is allocated

to the buyer with the highest bid for the price equal the second highest bid. The reader may

verify that this mechanism is truthful, i.e. that it is always for the agent's bene�t to declare

her true type vi. Another example for a truthful mechanism can be found in section 2.4.

2.2 VCG-based mechanisms

In this subsection we present the celebrated VCG mechanisms. Intuitively these mechanisms

solve utilitarian problems by identifying the utility of truthful agents with the declared total

welfare.

4We do not consider the issue of how to represent the valuations.
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De�nition 4 (VCG mechanism) A mechanism m = (k; p) belongs to the VCG family if:

� k(w) maximizes the total welfare according to w.

� The payment is calculated according to the VCG formula: pi(w) =
P

j 6=iw
j(k(w)) +

hi(w�i) (hi() is an arbitrary function of w�i).

Theorem 2.1 ([7]) A VCG mechanism is truthful.

2

It is worth notifying that weighted VCG mechanisms are possible as well (see e.g. [20] [17]).

For many applications, the task of �nding an output k(w) that maximizes the total welfare

is computationally infeasible. In this paper we consider mechanisms where the optimal

algorithm is replaced by a sub-optimal but computationally feasible one.

De�nition 5 (VCG-based mechanism) Let k(w) be an algorithm that maps type decla-

rations into allowable outputs. We call m = (k(w); p(w)) a VCG mechanism based on k if

p is calculated according to the VCG formula: pi(d) =
P

j 6=iw
j(k(w)) + hi(w�i) (where hi()

is an arbitrary function of w�i).

Obviously, a VCG-based mechanism that is based on an optimal algorithm is a VCG mech-

anism.

2.3 Computational considerations in mechanism design

Computer scientists make a sharp distinction between two major classes of computational

problems. The �rst class is called P and contains all the easy problems. I.e. problems that

can be solved in time polynomial in the bit-size of the input. The second class is called

NP -Complete and contains problems which are provably hard. To date, no sub-exponential

algorithm for any NP -Complete problem has been found. Unfortunately, many problems

of interest (e.g. �nding an allocation that maximizes the total welfare in a combinatorial

auction) are NP -Complete. Fortunately, for many of these problems, various polynomial

time heuristics and approximation algorithms are available. An introduction to the theory

of computational complexity can be found in [5] [19].

We de�ne these two principal notions in terms of mechanisms:
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De�nition 6 A mechanism (k; p) is called polynomial time computable if both k(w) and

p(w) run in polynomial time (using a standard encoding of w).

Note that a VCG-based mechanism is polynomial i� its output algorithm is polynomial.

We sometimes call polynomial algorithms and mechanisms computationally feasible.

De�nition 7 A mechanism design problem is called NP -complete if the problem of �nding

an output that maximizes the total welfare is NP -complete.

2.4 Example: Combinatorial auctions

The problem of combinatorial auction has been extensively studied in recent years (see e.g.

[11] [23] [4] [8] [15] ). The importance of this problem is twofold. First, several important

applications rely on it (e.g. the FCC auction [13]). Second, it is a generalization of many

other problems of interest, in particular in the �eld of electronic commerce.

The problem: A seller wishes to sell a set S of items (radio spectra licenses, electronic

devices, etc.) to a group of agents who desire them. Each agent i has, for every subset s � S

of the items, a number vi(s) that represents how much s is worth for her. We assume that

vi(:) is privately known to the agent.

We take two standard additional assumptions on the type space of the agents:

No externalities The valuation of each agent depends only on the items allocated to her.

I.e. fvi(s)js � S)g completely represents the agent's valuation.

Free disposal Items have non-negative values. I.e if s � t then vi(s) � vi(t). Also vi(�) =

0.

Note that the problem allows items to be complementary, i.e. vi(S
S
T ) � vi(S) + vi(T )

or substitutes i.e. vi(S
S
T ) � vi(S) + vi(T ) (S, T disjointed). For example a buyer may be

willing to pay $200 for T.V set, $150 for a VCR, $450 for both and only $200 for two VCRs.

When an agent payment is pi for a set of items si then her overall utility is pi + vi(si).

Note that here the payment is non-positive. This utility is what each agent tries to optimize.

For example an agent prefers to buy a $1000 valued VCR for $600 gaining $400 to buying a

$1500 valued VCR for $1250.
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In a VCG mechanism for such an auction, the participants are �rst required to reveal

their valuation functions to the mechanism. The mechanism then computes, according to the

declarations of the agents, an allocation s that maximizes the total welfare. The payment for

each of the agents is calculated according to the VCG formula. By theorem 2.1, the utility

ui = pi + vi(si) of each of the agents is maximized when she reveals her true valuation to

the mechanism. When all agents are truthful, the mechanism maximizes the total welfare.

Consider however the computational task faced by such a mechanism. After the types are

declared, the mechanism needs to select, among all possible allocations, one that maximizes

the total welfare. This problem is known to be NP-Complete. Therefore, unless the number

of agents and items is very small, such a mechanism is computationally infeasible. Note

that even the problem of �nding an allocation that approximates the optimal allocation

within a reasonable factor is NP -Complete (under the common complexity assumption that

RP 6= Co� NP , see e.g. [23, 11]). Nevertheless, various heuristics and tractable sub-cases

have been analyzed in the literature [23] [4] [8] [15] [24].

3 Limitations of truthful VCG-based mechanisms

In this section we study the limitations of truthful VCG-based mechanisms. In subsection

3.1 we characterize these mechanisms for important problem of combinatorial auctions (see

subsection 2.4). This characterization precludes the possibility of obtaining truthfulness by

applying VCG rules to many of the proposed heuristics for combinatorial auctions, e.g. the

greedy algorithms in [11] and [15]. Moreover we show that any truthful non-optimal VCG-

based mechanism for combinatorial auctions su�ers from abnormal behavior. In subsection

3.2 we show that for many natural cost minimization problems, any truthful VCG-based

mechanism is either optimal or produces results which are arbitrarily far from the optimal. As

a result, when such a problem is computationally intractable, any truthful computationally

feasible VCG-based mechanism will produce unreasonable results.

3.1 Truthful VCG-based mechanisms for combinatorial auctions

In this section we characterize the class of truthful VCG-based mechanisms for combinatorial

auctions (subsection 2.4).
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De�nition 8 Let k(w) be an algorithm that maps type declarations into allowable outputs.

Let V 0 be a subspace of the space of all possible types V
df
=
Qn

i=1 V
i. Let O denote the range

of k at V 0, i.e. O = fk(w)jw 2 V 0g. We say that k is maximal in its range at V' if for

every type w 2 V 0, k(w) maximizes g over O. We say that k is maximal in its range if it

is maximal in its range at V .

As an example consider an algorithm for combinatorial auctions that allocates all the

items (the set S) to the agent with the highest valuation vi(S). Clearly, this computationally

eÆcient algorithm is maximal in its range . The result of this algorithm is never worse than

1=n and also 1=jSj times the optimal result (n denotes the number of the agents).

Proposition 3.1 A VCG-based mechanism with an output algorithm that is maximal in its

range is truthful.

Proof: Such a mechanism is a VCG mechanism where the set of allowable outputs is the

range of its output algorithm. By theorem 2.1 such a mechanism is truthful. 2

We show that this almost characterizes the class of truthful VCG-based mechanisms for the

combinatorial auction problem.

Notation: We let ~V denote the space of all types v = (v1; : : : ; vn) such that for any two

di�erent allocations x and y, g(v; x) 6= g(v; y). (Recall that g(:) denotes the total welfare.)

It is not diÆcult to see that ~V contains almost all the types, i.e. V � ~V is zero measured.

Theorem 3.2 If a VCG-based mechanism for the combinatorial auction problem is truthful

then its output algorithm is maximal in its range at ~V .

Proof: Assume by contradiction that m = (k; p) is truthful but k is not maximal in its

range at ~V . Without loss of generality assume that pi(w) =
P

j 6=iw
j(k(w)) (i.e. we let hi()

in the VCG formula to be zero). The utility of a truthful agent i, when the declarations of

the other agents are w�i, equals g((vi; w�i); k(vi; w�i)).

Let O denote the range of k at ~V and let v 2 ~V be a type such that k(v) is not

optimal over O. Let y = optO(v). Among the optimal allocations in O we also require that

y = (y1; : : : ; yn) allocates all the items to the agents, i.e.
S
i y

i = S. Note that this is possible

due to the free disposal assumption. Finally let w 2 ~V be a type such that y = k(w).
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De�ne a type z by

zi(s) =

(
vi(s) if s 6� yi

� if s � yi

where � stands for a suÆciently large number. In other words, each agent i strongly desires

the set yi. We assume that z 2 ~V , otherwise we could add suÆciently small \noise" �i(s) to

z such that all the following claims remain true.

Lemma 3.3 y = k(z).

Proof: De�ne a sequence of type vectors by:

w0 = (w1; : : : ; wn)
w1 = (z1; w2; : : : ; wn)
...
wn = (z1; : : : ; zn)

We assume that wj 2 ~V for all j. It is not diÆcult to see that z could be de�ned in a way

that guarantees this.

Claim 3.4 k(w1) = y.

Proof: Assume by contradiction that this is false. From the de�nition of ~V we obtain that

g(w1; k(w1)) 6= g(w1; y). Consider the case where agent 1's type is z1 and the types of the

others are w2; : : : ; wn. By declaring w1, agent 1 can force the algorithm to decide on y.

Therefore it must be that g(w1; k(w1)) > g(w1; y). In particular since � is large, it must

be that k1(w1) � y1. Thus, � +
Pn

j=2 w
j(k(w1)) > � +

Pn
j=2w

j(y). As, due to the free

disposal assumption, w1(k1(w1)) � w1(y), we obtain that w1(k1(w1)) +
Pn

j=2w
j(k(w1)) >

w1(y) +
Pn

j=2w
j(y) i.e. g(w0; k(w

1)) > g(w0; y). Therefore when the type of agent 1 is w1,

she is better o� declaring z1 in contradiction to the truthfulness of the mechanism. 2

Similarly we obtain that k(wj) = y for all j. This completes the proof of lemma 3.3. 2

Consider the following sequence of type vectors:

v0 = (v1; : : : ; vn)
v1 = (z1; v2; : : : ; vn)
...
vn = (z1; : : : ; zn)

11



Claim 3.5 For all vj, y maximizes g on O.

Proof: y maximizes g for v0. Due to the free disposal assumption, an optimal allocation for

vj allocates y
i for every agent i � j. It must also to allocate the rest of the items optimally

among the rest of the agents. This is also done according to y. 2

Claim 3.6 k(vn�1) = y.

Proof: Otherwise, when agent n's type is vn, she is better o� declaring zn obtaining

g(vn�1; y). This contradicts the truthfulness of the mechanism. 2

Similarly, we obtain that k(v0) = y. A contradiction. This completes the proof of theorem

3.2. 2

This result characterize the output algorithms that could be incorporated in a VCG-based

mechanisms accept maybe a measure zeroed subset of the types. We can now give a complete

characterization:

Corollary 3.7 Consider a VCG-based mechanism for a combinatorial auction with an out-

put algorithm k. If the mechanism is truthful then there exists an output algorithm ~k, maxi-

mal in its range, such that for every v, g(v; k(v)) = g(v; ~k(v)).

Proof: Let gk(v)
df
=g(v; k(v)). It is not diÆcult to see that gk(v) must be contiguous in v.

As ~V is dense in V our corollary is proved. 2

This result gives rise to several interesting algorithmic and combinatorial questions. For

example given an approximation factor c � 1, what is the minimal size of a sub-family

O � O such that for every v, maxy2O g(v; y) � c � gopt(v).

We now show that non-optimal truthful VCG-based mechanisms su�er from the following

disturbing abnormal behavior:

De�nition 9 (reasonable mechanism) A mechanism for combinatorial auctions is called

reasonable if whenever there exists an item j and an agent i such that

� For all S, if j =2 S then vi(S [ fjg) > vi(S).

� For every agent l 6= i, vi(S [ fjg) = vi(S).
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then j is allocated to agent i.

In other words, when one of the agents desires some item and the others do not, then the

\right one" gets it.

Theorem 3.8 Any non-optimal truthful VCG-based mechanism for combinatorial auctions

is not reasonable.

Proof: By theorem 3.7, let S = (S1; : : : ; Sn) be an allocation which is not in the range of

the output algorithm. De�ne a type vector v by vi(X) = jX \ Sij. Clearly each item j is

desired by a single agent. As the mechanism's allocation is not S, there exist at least one

item which is not allocated to the \right" agent. 2

3.2 Truthful VCG-based mechanisms for cost minimization prob-

lems

We now show that for many natural cost minimization problems, any truthful VCG-based

mechanism is either optimal or produces results which are arbitrarily far from the optimal.

We start with an example.

Multicast transmissions: A communication network is modeled by a directed graph G =

(V;E). Each edge e is a privately owned link. The cost te of sending a message along that

edge is privately known to its owner. Given a source s 2 V and a set T � V of terminals,

the mechanism must select a subtree rooted in s that covers all the terminals. The message

is then broadcasted along this tree. We assume that no agent owns a cut in the network.

Naturally, the goal of the mechanism is to select, among all possible trees, a tree R that

minimizes the total cost:
P

e2R te. The natural goal of each agent however is to maximize

her own pro�t: pi �
P

(e2R owned by i)
te. It is not diÆcult to see that this a utilitarian

mechanism design problem.

This example was introduced at [3] (under a di�erent model). It is motivated by the need to

broadcast long messages (e.g. movies) over the Internet. We now generalize this example.

De�nition 10 (cost minimization allocation problem)

A cost minimization allocation problem (CMAP) is a mechanism design problem de-

scribed by:
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Type space The type of each agent i is described by a vector (vi1; : : : ; v
i
mi
). We let m =P

imi. (In our multicast example the vijs correspond to the negation of the costs te.)

Allowable outputs Each output is denoted by a

bit vector x = (x11; : : : ; x
1
m1
; : : : ; xn1 ; : : : ; x

n
mn

) 2 f0; 1gm. We denote (xi1; : : : ; x
i
mi
) by

xi. There may be additional constraints on the set O of allowable outputs. (In our

example x should correspond to a tree the network's graph where xij equals 1 i� the

corresponding edge is in the tree.)

such that the following conditions are satis�ed:

Non-boundedness if vi = (vi1; : : : ; v
i
mi) describes a type for agent i and wi � vi (as vec-

tors), them wi also describe a type.

Independence and monotonicity Each valuation vi depends only on i's bits xi. (In our

example, the agent valuation of a given tree depends only on her own edges in it.) If

for all j, wi
j � vij then for every output x, wi(xi) � vi(xi).

Forcing condition For every type v, an allowable output x and a real number �, de�ne a

type v[�] by

v[�]ij =

(
vij if xij = 1
� otherwise

The forcing condition is satis�ed if for every allowable output y 6= x,

lim�!�1 g(t(�); y) = �1.

Many natural problems in which the goal is to minimize the total cost under given

constraints belong to this class. In particular the reader may verify that our multicast

example is of this kind.

Notations: For a type v we let gopt(v) denote the optimal value of g. We denote g(v; k(v))

by gk(v).

De�nition 11 (degenerate algorithm) An output algorithm k is called degenerate if the

ratio rk(v) =
gk(v)�gopt(v)
jgopt(v)j+1

is unbounded. I.e. there exist v's such that rk(v) is arbitrarily large.

14



A degenerate algorithm is arbitrarily far from optimal both additively and multiplica-

tively. Note that this should not be confused with the standard notion of an approximation

ratio, as our de�nition corresponds to a single problem. In particular the number of agents

is �xed.

Theorem 3.9 If a VCG-based mechanism for a CMAP is truthful then its output algorithm

is either optimal or degenerate.

Proof: Let m = (k; p) be a non-optimal truthful VCG-based mechanism for a CMAP. Like

in theorem 3.2 assume that pi(w) =
P

j 6=iw
j(k(w)). Let v be a type (description) such that

k(v) is not optimal and let y = opt(v) be an optimal output.

We de�ne a type z by:

zij =

(
vij if yij = 1
�� otherwise

where � is arbitrarily large.

Consider the type sequence:

v0 = (v1; : : : ; vn)
v1 = (z1; v2; : : : ; vn)
...
vn = (z1; : : : ; zn)

Claim 3.10 For all j, y = opt(vj).

Proof: y is optimal for v0. From the independence condition, g(vj; y) = g(v0; y). From the

monotonicity, g(vj; x) � g(v0; x) for all x. 2

Claim 3.11 g(v1; k(v1)) < g(v1; y)

Proof: Otherwise g(v1; k(v1)) = g(v1; y) = g(v0; y) > g(v0; k(v0)). Therefore, when agent

1's type is v1 and the declarations of the other agents are v2; : : : ; vn, agent 1 is better o�

declaring z1. This contradicts the truthfulness of the mechanism. 2

Similarly, we obtain that g(z; k(z)) < g(z; y) = g(v0; y). By the forcing condition,

g(z; k(z))! �1 when �!1. By that the theorem is proved. 2
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When a CAMP is NP-Complete, an optimal algorithm is infeasible from a computational

point of view. Thus, any computationally feasible truthful VCG-based mechanism for such a

problem will produce unreasonable results. If we insist on solving problems under dominant

strategies we are therefore in trouble. Another interesting class of mechanisms is one where

the agents �rst declare their types, then calculate the output according to some protocol

and �nally calculate the payments according to the VCG formula. An immediate outcome

of theorem 3.9 is that if such a mechanism has a non-optimal ex-post Nash equilibrium, then

there are equilibriums which are arbitrarily far from optimal. Finally we comment that we

do not know how to prove such theorems for Bayesian models.

4 Computationally feasible VCG mechanisms

To date, VCG is the only known general method for the development of strategy-proof

mechanisms. Therefore the results in the previous section do not leave much hope for the

development of satisfying, computationally feasible strategy-proof mechanisms.

Our goal in this section is to develop feasible mechanisms that provide solution concepts

of the same spirit as strategy-proofness.

Taking into consideration the computational limitations of the agents, we de�ne the

concept of feasible dominance. It is meant to be used in the context of revelation games.

We assume that each of the agents chooses her action according to some knowledge she has

at the beginning of the game. This knowledge may represent the computational limitations

of the agent or some structural limitations on her information or behavior. We say that

an action is feasibly dominant for the agent if she is not aware of any circumstances where

another action is better for her. We argue that if an agent has such actions available, then

it is irrational for her not to choose one of them.

When VCG-based mechanisms are carefully inspected one sees that the only reason for

an agent to lie about her type is to help the algorithm to improve the overall result. This

leads to the intuition that if the agents cannot improve upon the underlying algorithm then

they can do no better than being truthful.

Given any algorithm for the corresponding optimization problem we de�ne the second-

chance mechanism based on it. This mechanism is a modi�cation of the VCG-based mech-

anism where in addition to their type declarations, the agents are allowed to submit appeal
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functions as well. We show that under reasonable assumptions on the agents, truth-telling

is feasibly dominant. When the agents act rationally and report their true types, the mech-

anism's result is at least as good as the underlying algorithm's. Our mechanism also satis�es

participation constraints.

The reader is noted that our solution concept and the reasoning of why an agent should

tell the truth to the mechanism are essentially di�erent from previous works on bounded

rationality. (For a recent book on this topic see [22].)

Subsection 4.1 describes the concept of feasibly dominant actions. The second-chance

mechanism is introduced in subsection 4.2. In subsection 4.3 we describe why agents should

tell the truth to our mechanism. Additional implementation issues are discussed in subsection

4.4. Our method is summarized in subsection 4.5.

4.1 Feasibly dominant actions

The basic models of equilibria in game theory are justi�ed by the (hidden) assumption that

the agents are capable of computing their best response functions.

In many natural games however, the action space is huge and this function is too complex

to be calculated or even to be approximated within a reasonable amount of time. In such

situations this assumption seems no longer valid.

In this section we re-formulate the concept of dominant actions (strategies) under the

assumption that agents have a limited capability of computing their best response. Our

concept is meant to be used in the context of revelation games. We assume that each of

the agents chooses her action according to some knowledge she has at the beginning of the

game. We de�ne an action to be feasibly dominant if, when the agent has chosen her action,

she was not aware of any circumstances where another action is better for her.

Notations: We denote the action space of agent i by Ai. Given a tuple a = (a1; : : : ; an) of

actions chosen by the agents, we denote the utility of agent i by ui(a).

In a direct revelation mechanism (de�nition 2) Ai = V i and ui(w) = vi(k(w)) + pi(w).

Note that the agent's type is suppressed.

De�nition 12 (strategic knowledge) Strategic knowledge (or knowledge for short) of

agent i is a partial function bi : A�i ! Ai.
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Knowledge is a function by which the agent describes (for herself!) how she would like

to respond to any given situation. The semantics of ai = bi(a�i) is \when the others' actions

are a�i the best action I can think of is ai".

Naturally we will assume that each agent is capable of computing her own knowledge

and henceforth that bi can be computed in a reasonable amount of time. (This assumption

is formulated in section 4.4.)

De�nition 13 (feasible best response) An action ai for agent i is called feasible

best response to a�i if either a�i is not in the domain of the agent's knowledge bi or

ui((bi(a�i); a�i)) � ui(a).

In other words, other actions may be better against a�i but at least when choosing her

action the agent was not aware of these.

Note that when the agent's knowledge bi is optimal, i.e. it is a best response function,

this de�nition corresponds to the standard one. Note also that if a�i is not in the domain

of bi, then any action ai is a feasible best response to it.

The de�nition of feasibly dominant actions now follows naturally.

De�nition 14 (feasibly dominant action) An action ai for agent i is called feasibly

dominant if it is a feasible best response against any a�i. We also call such an action fda.

A dominant action is obviously feasibly dominant.

To exemplify the concept, consider a match between two chess-players, White and Black,

where each of the opponents is required to submit a computer program that plays on her

behalf. Black's knowledge for example speci�es what program she would like to submit if she

knew White's. Of course one cannot expect such knowledge to be optimal. A program Ab is

a feasible best response to Aw if Black does not know how to play better against Aw, more

precisely, if when submitting Ab Black was not aware of any better way to play against Aw.

Note that since this is a revelation game, we do not refer to knowledge that may be acquired

during the game. Ab is feasibly dominant for Black if she cannot think of any change in the

program that would help her against any possible opponent! We argue that if an agent has

feasibly dominant actions available, then it is irrational not to choose one of them.

Our goal is to de�ne a mechanism where truth-telling is feasibly dominant.
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4.2 The second-chance mechanism

Although VCG-based mechanisms may not be truthful, it is not diÆcult to see that the only

reason for an agent to lie about her type is to help the algorithm to improve the overall result.

An agent who believes that the declarations of the others are such that she may better lie

to the algorithm, might be wrong and henceforth cause damage to the overall result.

In order to prevent this we introduce the usage of appeal functions. The semantics of an

appeal l is: \when the agents' type is v = (v1; : : : ; vn) I believe that the output algorithm

k produces a better result if it is given l(v) instead of the actual input v". Given the

agents' declarations w, the mechanism then computes k(w) and the results of all the appeals

k(l1(w)); : : : ; k(ln(w)) and selects the best output among these results.

The idea is that instead of declaring a falsi�ed type, it is better for the agent to report it

truthfully and to ask the mechanism to check whether the false declaration would have lead

to better results. When the agents are truth-telling, the output chosen by the mechanism is

at least as good as k(v).

De�nition 15 (appeal function) Let V =
Q

i V
i denote the type space of the agents. An

appeal is a function l : V ! V .

We now de�ne the second-chance mechanism.

De�nition 16 (second-chance mechanism) Given an output algorithm k, the second

chance mechanism based on k is the following game:

1. Each agent sends a type declaration wi and an appeal function li to the mechanism.

2. Let w = (w1; : : : ; wn). The mechanism computes k(w); k(l1(w)); : : : ; k(ln(w)) and

chooses among these outputs the one that maximizes the total welfare (according to

w). I.e. the mechanism tries all the appeals and chooses the one that yields the best

result.

3. Let ô denote the chosen output. The mechanism then calculates the payments according

to the VCG formula: pi =
P

j 6=iw
j(ô) + hi(w�i) (where hi is any real function).
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The actual implementation of the appeal functions is discussed in subsection 4.4. Note that

hi(w�i) is independent of the agents' appeals. Until section 4.4 we can simply assume that

it is always zero.

An action in a second chance mechanism is a pair (wi; li) where wi is a type declaration

and li is an appeal function.

De�nition 17 (truthful action) An action ai = (wi; li) is called truthful if wi = vi, i.e.

the agent reveals her true type to the mechanism. A mechanism is called feasibly truthful if

truth-telling is feasibly dominant for all the agents.

The following observation is a key property of the mechanism.

Proposition 4.1 Consider a second-chance mechanism with an output algorithm k. For

every type v = (v1; : : : ; vn), if all agents are truth-telling, the output chosen by the mechanism

is at least as good as k(v).

2

In other words, when the agents are truth-telling, the mechanism is at least as good as the

underlying algorithm. In particular, when the algorithm is guaranteed to be within a certain

constant from the optimal, then so is the mechanism.

We will show that under reasonable assumptions on the agents, the mechanism is indeed

feasibly truthful. We also need to guarantee that all the computations can be carried out in

a reasonable amount of time.

An example

To exemplify the strength of the mechanism consider Alice who participates in a combina-

torial auction for houses. She is interested in a particular pair of adjacent cottages and is

willing to pay up to $200; 000 for them. She is also willing to pay up to $60; 000 for each

one separately.

Alice's type is therefore vi = f200; 60; 60g (in thousands, regarding only these particular

two houses). After experimenting with the mechanism Alice notices that in many situations

a declaration of wi = f200; 0; 0g causes the algorithm to produce a better result.

In a VCG-based mechanism Alice may choose to declare wi instead of vi. Sometimes,

depending on the type declarations of the others, it would indeed improve the overall result
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and would therefore increase her own pro�t as well. On other occasions it would reduce the

quality of the overall result and therefore decrease Alice's pro�t.

In the second chance mechanism Alice can report her true valuation vi and de�ne

li(vi; w�i) as (wi; w�i). This way she can enjoy the best of both worlds: In cases where

declaring wi would improve the overall result, the mechanism will choose k(li(v)). In cases

where lying to the algorithm would reduce the quality of the overall result, the mechanism

will prefer k(v), and thus prevent the damage.

4.3 Existence of computationally eÆcient feasibly dominant

truth-telling actions

In this subsection we will show that under reasonable assumptions, computationally eÆcient

feasibly dominant truth-telling actions do exist for the agents. Note that our assumptions

are di�erent from what is customary in game theory.

We �rst comment that if no time limit is enforced on the appeal functions then the

agents have dominant actions available: Consider an agent i participating in a second chance

mechanism. Let k denote the output algorithm. Given the type declarations w�i of the

other agents, there exists a type vector ŵ
df
=li(w�i) that maximizes g((vi; w�i); k(ŵ)). It is

not diÆcult to see that (vi; li) is dominant and henceforth feasibly dominant action for the

agent. However, if the original problem is too hard to compute then so is li.

When the agents are limited to submit only computationally limited appeal functions, the

existence of feasibly dominant truth-telling actions is less obvious. In this section we show

that such actions are available under reasonable assumptions on the way that the agents'

knowledge is obtained. We argue that in practice this knowledge will not \fall out of the

blue", but there will be a few reasonable ways for the agents to obtain it.

We focus on two types of knowledge that look to us the most natural ones:

The �rst is obtained by an agent who simply explores the output algorithm. Such an agent

ignores potential appeals for the other agents. Therefore knowledge of this kind is actually

knowledge about the algorithm. The justi�cation behind the assumption that agents will

have this kind of knowledge is that the space of possible appeals is so huge and complex that

it is beyond the agents' capability to reason about it.

The second type of knowledge is obtained by an agent who explores, in addition to the
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output algorithm, a small family of potential appeals for the other agents.

In both cases we show the existence of computationally eÆcient feasibly dominant truth-

telling actions for the agent.

Clearly, when an agent lies about her type, there exist cases where she will consequently

loose. Therefore the agents are further motivated to be truthful.

We begin with a formal de�nition for computationally limited algorithms and mecha-

nisms.

De�nition 18 (algorithm of degree d) We say that an output algorithm is of degree d

if its running time is bounded by some polynomial of degree d in the number of agents.

The de�nition for appeal functions, actions, knowledge and mechanisms are similar.

Proposition 4.2 If the output algorithm of a second-chance mechanism is of degree d then

the mechanism is of degree d+ 1.

2

In subsection 4.4 we discuss ways to force the agents to submit only appeal functions of

degree d.

We now refer to the �rst type of knowledge obtained by an agent who simply explores

the output algorithm:

De�nition 19 (appeal independent knowledge) Knowledge bi is called appeal indepen-

dent if it is of the form bi : V �i ! Ai. Such knowledge is called declaration based if it is of

the form bi : V �i ! V i.

The semantics of declaration based knowledge is: \when the others declare w�i, I would

like to declare bi(w�i)". Alice in our example has such kind of knowledge. The semantics of

(wi; li) = bi(w�i) where bi is appeal independent is: \when the others declare w�i, I would

like to declare wi and to submit the appeal li".

Theorem 4.3 If bi is a declaration based knowledge for agent i then (vi; bi) is feasibly dom-

inant for the agent.

22



Proof: Assume by contradiction that it is not feasibly dominant. Therefore there exists a

vector of actions a�i for the others such that (wi; �)
df
=bi(a�i) is strictly better for the agent

than playing (vi; bi). Note that i's appeal is always empty. Since bi is declaration based, we

can assume that all the appeals of the other agents are also empty. Denote a�i by (w�i; �).

Consider the case where the agent's action is (vi; bi). If the mechanism \rejects the appeal"

and chooses the type (vi; w�i) then g((vi; w�i); k(vi; w�i)) � g((vi; w�i); k(wi; w�i)). By

declaring wi the agent forces the mechanism to choose k(wi; w�i) which can only reduce the

utility of the agent. If the mechanism \accepts the appeal" and chooses the type (wi; w�i),

then it does the same when the agent declares wi. 2

Theorem 4.4 If the output algorithm is of degree d and the agent has appeal independent

knowledge of degree d then there exists a truthful feasibly dominant action of degree d for

this agent.

Proof: Let bi be a knowledge of degree d for agent i. De�ne an appeal li as follows: Given

w�i, let (wi;  i) = bi(w�i). The appeal computes k(wi; w�i) and k( ((wi; w�i))) and takes

the better result according to (vi; w�i). Obviously li is feasibly dominant and of degree d 2

We now consider a more general scenario, where the agent explores, in addition to the output

algorithm, a small family of potential appeals for the other agents.

De�nition 20 (d-obtainable knowledge) Knowledge bi is called d-obtainable if the fol-

lowing holds:

1. bi is of degree d.

2. Every appeal function that appears, in the domain or in the range of bi, is of degree d.

3. There are at most nd appeal functions that appear in the domain or in the range of bi.

Moreover there exists a representative family Li of no more than nd (n � 1)-tuples of

appeals such that for every tuple ��i that appears in the domain of bi there exists a

 �i 2 Li such that for all w�i, bi((w�i; ��i)) = bi((w�i;  �i)).

The second condition is justi�ed by the assumption that an agent can not reason about

functions that she cannot compute. The representative family in the third condition stands
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for all the cases that the agent has checked. The underlying assumption is that an agent

cannot reason about functions and tuples that she has not checked at least once. Naturally

we assume that an agent can check only a reasonable number of cases.

Theorem 4.5 If the output algorithm is of degree d and an agent has a d-obtainable knowl-

edge, then she has a truthful feasibly dominant action of degree 3 � d.

Proof: Let bi be a d-obtainable knowledge for agent i. Given w�i we shall de�ne an appeal li

as follows: Let L be the family of all appeals that appear in the domain or in the range of bi.

Let Li be a representative family and letW = fwij9 �i 2 Li; �is:t:(wi; �i) = bi((w�i;  �i))g.

Obviously jW j; jLj are bounded by a polynomial of degree d. li computes for every pair

(wi 2 W; l 2 L), k(l((wi; w�i))) and takes the best output according to (vi; w�i). It is not

diÆcult to see that (vi; li) is feasibly dominant and that li is of degree 3 � d. 2

When the agents' knowledge is obtained in one of the ways mentioned above then if the time

limit enforced on the appeals is not too small, the agents are strongly motivated to report

their true types to the mechanism. We argue that this will be the case for many applications

of interest.

Truthful feasibly dominant actions may not exist in situations where an agent has sig-

ni�cant knowledge about properties of the potential appeals of the others. Such situations

may arise in repeated settings (e.g an auction that runs every week). This may be solved by

merging each appeal that improves the result of the output algorithm into it and letting the

agents update their appeal functions.

4.4 Other implementation issues

4.4.1 Implementation of the appeal functions

We see two natural ways to implement the concept of appeal functions. The �rst is simply to

let the agents compute their appeals by themselves and to send the results to the mechanism

in a second round. In this method however, the type of each agent is revealed to all the

others. This is undesirable for many applications. Another natural way is to supply the

agents with a language for the description of their appeals and to perform the computation

on the mechanism's machine.
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In both methods it is not diÆcult to impose a time limit on the agents or to ask them

to pay for additional computational time. However an arbitrary time limit may prevent the

existence of feasible dominant actions.

An interesting direction is to impose on the description of the appeals a structure that

re
ects the agents' knowledge of the output algorithm. One possible structure is a decision

tree where the agents are required to supply, for each leaf �, a type vector t� such that

the algorithm's result is strictly improved when it is given l(t�) instead of the actual input

t�. In this method the computational time of the mechanism is naturally limited by the

computational power of the agents themselves.

4.4.2 Participation constraints

One desirable property of mechanisms is that the utility of a truthful agent is always non-

negative. This is often called participation constraints (see e.g. [12]). In this section we

construct a second-chance mechanism that satis�es this property.

We shall assume that for each agent i, there exists a type vi such that for every v =

(v1; : : : ; vn), gopt((v
i; v�i)) � gopt(v). In a combinatorial auction for example, this type is

de�ned by vi(s) = 0 for every combination s of items.

The Clarke mechanism ([1]) is a VCG mechanism with payments pi(w) =P
j 6=iw

j(opt(w)) � gopt(v
i; (w�i)). It is not diÆcult to check that the mechanism satis�es

participation constraints. When the optimal algorithm in the Clarke mechanism is replaced

by a sub-optimal one, the result of the algorithm may be improved when wi is replaced by vi.

Therefore participation constraints may no longer be satis�ed. However this is not diÆcult

to �x.

De�nition 21 We say that an output algorithm k satis�es participation constraints if for

every type v = (v1; : : : ; vn) and agent i, gk(v) � gk((v
i; v�i)).

Proposition 4.6 If the output algorithm k is of degree d, then there exists an algorithm ~k of

degree d+ 2 that satis�es participation constraints such that for every type v, g~k(v) � gk(v).

Proof: Given v we de�ne ~k(v) as follows. At the beginning we let k0 = k. In the (j + 1)th

phase, if for every agent i, gkj(v) � gkj (v
i; v�i) then �x ~k(v) = kj(v) and stop; Otherwise
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�x the type of one of the agents i who does not satisfy the above condition to be vi and

continue. It is not diÆcult to verify that ~k satis�es the required conditions. 2

Given an algorithm ~k that satis�es participation constraints we shall de�ne the payment

function of the second chance mechanism based on it as pi =
P

j 6=iw
j(o) � g~k(v

i; (w�i))

where w denotes the agents' declarations and o the chosen output. Since g(w; o) � g~k(w),

participation constraints are satis�ed.

4.5 Summary of the method

We summarize the necessary steps the designer of a mechanism needs to take when using

our method. First the designer needs to develop an algorithm k for the corresponding

optimization problem. This could be done without any constraints on the global behavior of

the algorithm. The designer can automatically transform k into an algorithm ~k that satis�es

participation constraints. The next step is to �nd a reasonable time limit on the appeals

or better to develop a language (API) for the appeals that re
ects the agents' knowledge

of the algorithm. After this is done the designer can give the mechanism to the agents

to experiment with and to learn ~k. Finally, after the participants are ready, the second-

chance mechanism could be executed. In repeated settings the designer may want to merge

(automatically) successful appeals into ~k and let the agents update their appeal functions

afterwards. Note that all the steps required for turning the algorithm k into a mechanism

are either automatic or common for all mechanism design problems. Using our method, the

development of a mechanism for a mechanism design problem is therefore reduced to the

development of a good algorithm for the corresponding optimization problem.
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