
Vickrey Prices and Shortest Paths:
What is an edge worth?

John Hershberger

Mentor Graphics Corp.
8005 SW Boeckman Road

Wilsonville, OR 97070, USA
john hershberger@mentor.com

Subhash Suri�

Computer Science Department
University of California

Santa Barbara, CA 93106, USA
suri@cs.ucsb.edu

Abstract

We solve a shortest path problem that is motivated by
recent interest in pricing networks or other computational
resources. Informally, how much is an edge in a network
worth to a user who wants to send data between two nodes
along a shortest path? If the network is a decentralized en-
tity, such as the Internet, in which multiple self-interested
agents own different parts of the network, then auction-
based pricing seems appropriate. A celebrated result from
auction theory shows that the use of Vickrey pricing moti-
vates the owners of the network resources to bid truthfully.
In Vickrey’s scheme, each agent is compensated in propor-
tion to the marginal utility he brings to the auction. In the
context of shortest path routing, an edge’s utility is the value
by which it lowers the length of the shortest path—the dif-
ference between the shortest path lengths with and without
the edge. Our problem is to compute these marginal values
for all the edges of the network efficiently. The naı̈ve method
requires solving the single-source shortest path problem up
to n times, for ann-node network. We show that the Vick-
rey prices for all the edges can be computed in the same
asymptotic time complexity as one single-source shortest
path problem. This solves an open problem posed by Nisan
and Ronen [12].

1. Introduction

Shortest paths are fundamental in many areas of com-
puter science, operations research, and engineering. Their
applications include network and electrical routing, trans-
portation, robot motion planning, critical path computation
in scheduling, etc. In addition, shortest paths also provide

�Subhash Suri’s research on this paper was partially supported by Na-
tional Science Foundation grants CCR-9901958 and ANI-9813723.

a unifying framework for many optimization problems such
as knapsack, sequence alignment in molecular biology, in-
scribed polygon construction, and length-limited Huffman-
coding, etc. (Eppstein [4] is a good reference for shortest
paths and their applications.) Most complex applications of
the shortest path problem, however, require more than just
the calculation of a single shortest path. In some applica-
tions, the desired path might be subject to additional con-
straints that are hard to quantify. In others it might be use-
ful to examine not justtheshortest but a larger set of “short
paths.” It some applications, it is desirable to see how the
shortest path is influenced by various system parameters,
through a “sensitivity analysis.” Our problem belongs to
this last category. We wish to determine, for each edgee
in a graph, what effecte’s deletion has on the shortest path
between two given nodes.

Our problem is motivated by recent interest in pric-
ing networks and computing resources, which in turn is
prompted by the prominent role the Internet has come to
play in our lives. One of the distinguishing characteristics
of the Internet is that it involves interaction among multiple
(often very many) self-interested participants. These partic-
ipants (organizations, people, computers, software), called
“agents” in the AI terminology, cannot be trusted to fol-
low the rules of a protocol, especially if deviating from the
protocol is beneficial to the agent. Thus, unlike traditional
distributed computing protocols, a protocol for these new
settings must be designed explicitly to account for willing
manipulation by the users. We briefly describe an example
that helps illustrate this phenomenon.

One of the most famous distributed protocols on the In-
ternet is the Transmission Control Protocol (TCP), imple-
mented on each host on the Internet. An important feature
of this protocol is itscongestion controlmechanism. The
protocol uses packet loss as an indication of network con-
gestion, and is designed to reduce the sending host’s trans-
mission rate (using a fairly aggressive exponential back-

1



off). It then gradually increases the transmission rate until
another sign of congestion is detected. This cycle of in-
creasing and then decreasing the transmission rate allows
the protocol to discover and utilize whatever bandwidth is
available between two communicating hosts, while at the
same time sharing the overall resource among many such
pairs.

TCP isself-regulating, meaning that it assumes that in-
dividual hosts will respond to congestion exactly as the de-
signers of the protocol intended. But a self-interested host
(agent) has motivationnot to decrease its sending rate in
the hope thatotherswill reduce their rate, eliminating the
congestion, while he can continue to enjoy the higher rate.
In one extreme case, no one follows the TCP congestion
rules, and the system crashes; in another extreme case, a
few misbehaving users enjoy an unfair share of the net-
work resources, while the rule-abiding majority of users
suffer. Because a protocol like TCP is easily manipulated,
many researchers have proposed game-theoretic and price-
based mechanisms to share bandwidth and other network
resources [5, 13, 19].

In this context, a natural economic question is this: how
much is an edge in a network worth to a user who wants
to send data between two nodes along a shortest path? If
the network is a decentralized entity, such as the Internet,
in which multiple self-interested agents own different parts
of the network, then an auction is often the best mecha-
nism to determine the utility of various network elements.
A celebrated result from auction theory shows that the use
of Vickrey pricing motivates the agents to bid truthfully. In
Vickrey’s scheme, each agent is compensated in proportion
to the marginal utility he brings to the auction. The insight
of Vickrey is that although agents have an incentive to lie
about their costs in the hope of receiving larger compensa-
tion from the network, making an edge’s payment depend
only on the declarations ofotheragents eliminates this ma-
nipulative element.1

Suppose we are interested in discovering the shortest
path from nodex to nodey in a networkG, whose links
are owned by self-interested agents. We assume that agents
bid on individual links—that is, either each agent owns at
most one link, or if an agent owns multiple links, he bids on
each independently. (We do not consider the setting where
an agent can make strategic bids onsubsetsof links. In

1The Vickrey mechanism is a generalization of the well-known sealed
bid second price auction, in which an object is sold to the highest bid-
der, but the winner pays a price equal to the runner-up’s bid. This auction
protocol is known to be truthful, in that a rational agent’s best bidding
strategy is to bid his true valuation. Thus, in a distributed network where
network links belongs to rational, self-interested agents, Vickrey pricing
elicits truthful responses from agents, leading to economic efficiency in
the network—the shortest paths use agents with lowest costs (even though
actual costs are private, not public, information). This truthfulness, how-
ever, does come at a cost: the mechanism may need to subsidize the agents.
For a proof of the Vickrey mechanism’s truthfulness, see [11].

suchbundle auctions, even determining the winning bids is
NP-complete, but under a restricted setting Bikhchandani
et al. [2] solve the Vickrey payment problem using linear
programming.) The network employs the Vickrey pricing
mechanism to elicit agents’true preferences (costs). The
paymentpe made to an edgee is determined as follows:

pe =

8<
:

d(x; y; G n e)� d(x; y; Gje=0)
if e is on the shortest path

0 otherwise
(1)

That is, if edgee does not belong to the shortest path inG,
then its agent receives zero payment. Otherwise, the pay-
ment toe is the difference between the cost of the shortest
path withoute, and the cost of the shortest path assuminge
is free.

This formulation is from Nisan and Ronen [12], who
posed the following question: what is the computational
complexity of determining all the Vickrey payments? The
straightforward method requires computing thex–y short-
est paths up ton times: once inG, and once inG n e, for
eache that belongs to the shortest path inG. The pay-
ment function expressed in equation (1) requires two short-
est path computations, but the second term can easily be
deduced from the shortest path distanced(x; y; G), for
eache that belongs to the shortest path. In a graph with
n nodes andm edges, each shortest path can be computed
in O(n logn+m) time using Dijkstra’s algorithm, if all the
edges have non-negative costs, or inO(nm) time using the
Bellman-Ford algorithm, if the network has negative cost
edges but no negative cycles [3]. Since there are at most
n � 1 edges on the shortest path fromx to y, the na¨ıve
method’s total cost for computing the payments to all the
agents isO(n2 logn+nm) for non-negative cost networks,
andO(n2m) for networks with negative edge costs.

Our main result is an algorithm to compute the Vick-
rey payments to all the agents in essentially the same time
bound as one single-source shortest path computation. Our
algorithm builds two shortest path trees, one based onx
and the other based ony, and computes the payment term
d(x; y; G n e) for each edgee by combining parts of these
trees. The total time complexity isO(m + n logn) if the
edge costs are non-negative, andO(nm) otherwise.

2. Related work

Researchers in multi-agent systems, or distributed AI,
have studied cooperation and competition among “software
agents.” Many of these papers use ideas from mechanism
design to analyze strategies and responses of these agents
in negotiations and resource allocations [14, 15, 20]. Oth-
ers use market-based ideas to solve distributed computa-
tional problems [21, 23]. Researchers in networking have

2



proposed game-theoretic techniques to deal with congestion
control in the Internet [5, 6, 13, 19].

Our paper is motivated by the algorithmic mechanism
design paper of Nisan and Ronen [12]. They investigate
computational complexity and algorithmic issues in mech-
anism design, and raise some intriguing problems. Specif-
ically, they asked the question that forms the basis of our
work: Can the payment functions of the Vickrey mechanism
be computed faster thann invocations of the optimization
problem? The payment function computation for the net-
work routing problem is equivalent to the following: given
a directed graphG, and two specified nodesx andy, deter-
mine, for each edgee in the graph, the effect ond(x; y) of
deletinge.

Our problem is related to the topic of “sensitivity analy-
sis” in operations research. In sensitivity analysis, the goal
is to determine the robustness of a solution: how much
the system parameters can be perturbed before the solution
changes. For instance, the sensitivity analysis of the mini-
mum spanning tree requires computing for each edgee the
amountÆ(e) by which the cost ofe must change before the
minimum spanning tree changes;Æ(e) is positive ife is part
of the MST, and negative otherwise. Tarjan [22] presents
anO(m�(m;n)) time algorithm for calculatingÆ(e) for all
edges of a graph withn nodes andm edges, where� is
a functional inverse of Ackermann’s function. Tarjan also
presents a similar result for performing the sensitivity anal-
ysis of a shortest path tree. In our problem, however, we are
not interested in computing the cost threshold of an edge,
but rather in deleting an edge, and then finding the new
shortest path. To the best of our knowledge, all the known
methods for this type of sensitivity analysis of shortest paths
require
(m) work per shortest path edge [1]. Our prob-
lem also has some similarity to thek-shortest paths problem
studied by Eppstein [4], but requires different techniques.

Finally, Bikhchandani et al. [2] and Schummer and
Vohra [18] have considered general auction settings where
the Vickrey payments correspond todual variablesin a lin-
ear program. Their results depend on a combinatorial condi-
tion, which they call the “agents are substitutes” condition.
It turns out that the minimum spanning tree problem and the
assignment problem satisfy the “agents are substitutes” con-
dition, and therefore the Vickrey payments for those prob-
lems can be determined efficiently. However, the “agents
are substitutes” condition does not hold for the shortest path
problem, so the methods of [2] and [18] do not apply to our
setting.

3. Shortest path preliminaries

We assume that our network is modeled by a graph
G = (V;E), with jV j = n andjEj = m. Each edgee 2 E
has an associated costc(e). We consider both directed and

undirected graphs, and present our algorithm for undirected
graphs first, since some of the details are simpler. We as-
sume that a pair of verticesu andv has at most one edge
connecting them, but this is not a necessary restriction for
our algorithms: the algorithms work just as well when there
are multiple parallel edges joining pairs of vertices.

A path inG is a sequence of edges, such that consecutive
edges share a common vertex, and each vertex is incident to
at most two path edges. The total cost of a path inG is the
sum of the costs of the edges on the path. Theshortest path
between two verticesa andb, denoted bypath(a; b), is the
path joininga to b, assuming one exists, that has minimum
cost. The distance betweena andb, denotedd(a; b), is the
length ofpath(a; b), or infinity if no path exists.2

We denote shortest paths and distances when an edge
e has been removed from the graphG by the notations
path(a; b; G n e) and d(a; b; G n e). The distance in
the full graphd(a; b) is shorthand ford(a; b; G); likewise
path(a; b) is shorthand forpath(a; b; G).

There are two distinguished verticesx andy in the graph,
called thesourceand thetargetvertices. The shortest path
joining them ispath(x; y) = (v1, v2, : : :, vk), wherev1 = x
and vk = y. Recall that we want to compute, for each
i 2 f1; : : : ; k � 1g, the length of the shortest path from
x to y that does not use the edgeei = (vi; vi+1), which we
call thex-y distance omittingei. This is precisely the term
d(x; y; G n ei) in the payment function.

We can analyze the shortest paths fromx to y in terms
of the set of edges crossing acut. In later sections we will
choose the cut according to the structure of the graph, but
for now let us simply consider any partition of the ver-
tex setV into two setsVx andVy such thatx 2 Vx and
y 2 Vy . The set of edges crossing the cut is denoted by
Ecut = E(Vx; Vy). Each edge(u; v) 2 Ecut hasu 2 Vx
andv 2 Vy. Any path fromx to y must include at least one
edge fromEcut. Therefore, we can express our problem as
follows: For eachei = (vi; vi+1) and some cut(Vx; Vy)
possibly dependent onei, compute

d(x; y; G n ei) = min
(u;v)2Ecut

(u;v)6=ei

0
@

d(x; u; G n ei) +
c(u; v) +
d(v; y; G n ei)

1
A (2)

In Section 4 we apply this expression to compute thex-
y distance omitting each edge ofpath(x; y) in the special
case in whichG is undirected and all the vertices ofV lie on
path(x; y). In Section 5 we solve the problem for general
undirected graphs, and in Section 6 we solve the problem
for directed graphs.

2For convenience we assume that all path lengths are distinct, so the
shortest path between any two vertices is unique. This condition is easy to
enforce by a symbolic perturbation of the edge costs.

3



4. Payment computation in path graphs

We illustrate our ideas by solving the special case in
which path(x; y) includes all the vertices ofV . The ad-
ditional structure in this case makes it particularly easy to
compute the distances inG n e required by equation (2).
We define the cut(Vx; Vy) based on the natural partition of
path(x; y) = (v1; v2; : : : ; vn) induced by the removal of
the edgeei = (vi; vi+1). We chooseVx = fv1; : : : ; vig and
Vy = fvi+1; : : : ; vng. To simplify the notation, we define
Ei = E(Vx; Vy) for ei. See Figure 1.

x yVx Vy

Figure 1. The edges ofEi cross the dashed ver-
tical line.

For a given edgeei = (vi; vi+1) to be removed, consider
a cut edge(u; v) 2 Ei. Becausepath(x; u) is contained in
Vx, d(x; u) = d(x; u; Gnei). Likewise, becausepath(v; y)
is contained inVy , d(v; y) = d(v; y; G n ei). These dis-
tances are simply the lengths of the subpaths ofpath(x; y)
connecting each point tox andy. Thus equation (2) reduces
to

d(x; y; Gnei) = min
(u;v)2Ei

(u;v) 6=ei

d(x; u)+c(u; v)+d(v; y): (3)

To compute the shortestx-y path omitting each edge
of path(x; y) efficiently, we evaluate equation (3) for each
ei = (vi; vi+1) in sequence fromi = 1 ton�1. For a given
i, we minimize the quantityd(x; u)+ c(u; v)+d(v; y) over
all (u; v) 2 Einei. But the difference betweenEi andEi+1

is easy to compute: it consists of exactly those edges with
one endpoint atvi+1. To produceEi+1 from Ei, we add
toEi all edges whose left endpoint isvi+1, and we remove
fromEi all edges whose right endpoint isvi+1.

To formalize this, letleft(e) andright(e) be the indices
of the endpoints ofe in path(x; y), with left(e) < right(e).
In later sections, when the endpoints ofe do not necessarily
lie on path(x; y), we will redefineleft(e) andright(e) to
be indices such thate 2 Ei for all left(e) � i < right(e).
We perform the following algorithm:

Path Algorithm

1. Let L andR be k-element arrays whose elements are
sets of edges, initially empty.
Let Q be a priority queue of (weight, edge) pairs, in-
dexed by weight, initially empty.

2. For eache 2 E n path(x; y)

If left(e) < right(e), put e into L[left(e)] and
R[right(e)].

3. Fori = 1 to k � 1

(a) For eache = (u; v) 2 L[i]

Insert(w; e) intoQ, with weightw =
d(x; u; G n ei) + c(u; v) + d(v; y; G n ei).

(b) Remove fromQ all (w; e) pairs withe 2 R[i].

(c) Report the minimum weight inQ as thex-y dis-
tance omittingei.

At step i, Q contains the edges ofEi n ei, and so
the x-y distance omittingei is correctly computed. Only
the priority queue operations take non-constant time. A
naı̈ve priority queue implementation gives a running time
of O(m logm).

We can improve this time complexity by using a Fi-
bonacci heap forQ with at mostk � 1 nodes, numbered
from 2 to k [3]. The j’th node stores the minimum-weight
edge in the current cut that belongs toR[j]. We initialize
the Fibonacci heap to havek � 1 nodes, each with weight
1. In step 3a, for eache 2 L[i], we compare its weightw
with the weight of the heap node with indexj = right(e);
if e has the lesser weight, we perform a DecreaseKey op-
eration on nodej and reset its edge to bee. (We do not
need to do anything ife has the greater weight, because the
edge stored at nodej will be in the cut just as long ase.)
In step 3b, we delete nodei from Q—the minimization in
step 3a means that this node is the representative of all the
edges inR[i]. Thus the heap contains only a subset of the
edges that would be stored in a na¨ıve implementation ofQ,
but it is guaranteed to contain the minimum-weight element
of the cut set.

The Fibonacci heap implementation performsO(m)
DecreaseKey operations, but onlyO(n) inserts, deletes,
and FindMin operations. Only the delete operation takes
O(logn) time in the Fibonacci heap; the other three opera-
tions takeO(1) amortized time apiece. Thus, the total time
spent on priority queue operations using the Fibonacci heap
implementation isO(n logn+m).

4



5. Networks with undirected edges

In a general undirected graph, not all vertices lie on
path(x; y). This means that the structure of the shortest
paths fromx to other vertices is unrelated to the structure
of the shortest paths from those other vertices toy. The
shortest path treewith sourcex is the union of all the short-
est paths fromx to other vertices inV . Since we assume
uniqueness of shortest paths, this union of paths is indeed
a tree. Each vertexv has a unique parentu in the tree;
path(x; v) is obtained by concatenatingpath(x; u) with the
edge(u; v). Let us denote the shortest path tree with source
x byX .

We can also define a shortest path tree with sinky, which
we denote byY . This is the union of all shortest paths from
vertices inV to the destinationy. (Since we are assumingG
is undirected,Y is identical in structure to the shortest path
tree with sourcey. For directed graphs, this is not true.) The
shortest path treesX andY can be computed inO(n logn+
m) time using Dijkstra’s algorithm and Fibonacci heaps [3],
or inO(m log n) time using simple data structures.

In the case of a path graph, as discussed in Section 4,
X = Y = path(x; y), and the removal of an edgee splits
X andY into identical components. However, for general
undirected graphs, this is not true. For example, in Figure 2,
the vertices in the upper branch of the graph lie in opposite
components ofX n e andY n e.

10 10 10 10 10 10

11

10

10 10 10

11

G

X

Y

e

e

e

Figure 2. X andY have different structures.

To compute thex-y distance omitting each edgeei =
(vi; vi+1) in path(x; y) = (v1; : : : ; vk), we define the
cut (Vx; Vy) based on the shortest path treeX . Because
path(x; y) is contained inX , the removal ofei splits X
into two components; we choose the component containing
x to beVx, and the complement to beVy . To be more spe-
cific in the determination ofVx andVy, we assign vertices
of V to blocksbased on their position in the shortest path
treeX . If we delete all the edges ofpath(x; y) fromX , the

vertices connected tovi in the remaining forest form block
Bi. If u 2 Bi, we defineblock (u) = i. Thus for a given
edgeei = (vi; vi+1) 2 path(x; y), Vx = [ij=1Bj , and
Vy = [kj=i+1Bj . See Figure 3.

1B

2B

3B

kB

Figure 3. Removingpath(x; y) fromX defines
blocksBi.

Consider computing thex-y distance omittingei accord-
ing to equation (2). For allu 2 Vx, path(x; u) is contained
in Vx by definition, so we haved(x; u) = d(x; u; G n ei).
Because the partition ofX induced by deletingei is not the
same as the corresponding partition ofY (Figure 2), it is not
obvious thatpath(v; y) is contained inVy for all v 2 Vy.
Nevertheless, it turns out thatpath(v; y) does not useei,
which is what we need.

Lemma 1 Let v be a vertex inVy = [kj=i+1Bj for some
ei = (vi; vi+1). Thend(v; y) = d(v; y; G n ei).

x y

Vx
Vy

vu

vi vi+1

Figure 4. Unlike the shaded path,path(v; y)
cannot includeei, becausepath(vi+1; v) is con-
tained inVy.

Proof: The proof is by contradiction. Suppose that
path(v; y) uses the edgeei. It must traverseei in the for-
ward direction, fromvi to vi+1, because the shortest path
from vi+1 to y is fully contained inVy and does not traverse
ei. Thenpath(v; y) is the concatenation ofpath(v; vi+1)
with path(vi+1; y), and the first subpath contains vertex
vi (which is a vertex ofVx) in its interior (see Figure 4).
On the other hand, becausev 2 Vy, the shortest path tree
X shows thatpath(vi+1; v) is completely contained inVy.
SinceG is undirected,path(v; vi+1) is just the reversal of

5



path(vi+1; v). But one containsvi and one does not, a con-
tradiction. Thereforepath(v; y) does not containei, and the
lemma is established.

We have (almost) reduced the general undirected graph
case to the case in which all vertices lie alongpath(x; y).
For an edgee = (u; v) =2 path(x; y), we defineleft(e) =
block (u) andright(e) = block (v), assumingblock (u) �
block (v). This ensures thate 2 Ei if and only if left(e) �
i < right(e), and we can apply the algorithm of Section 4
directly. For each edge(u; v) 2 Ei, the distanced(x; u) is
computed using the shortest path treeX , and the distance
d(v; y) is computed usingY .

6. Directed networks

WhenG is directed, things become more complicated.
For example, the shortest path tree with sources is not the
same as the shortest path tree with sinks. To get the shortest
path treeY with sink y, we must reverse the orientation of
every edge inE and compute the shortest path tree with
sourcey in this modified tree.

If G contains only edges with non-negative costs, we can
compute the shortest path tree using Dijkstra’s algorithm in
O(n logn +m) time, as in the undirected case. However,
directed graphs may contain negative-cost edges; so long
as there are no negative-cost cycles, it still makes sense to
compute shortest paths. IfG contains negative-cost edges,
Dijkstra’s algorithm is not applicable, and we must use a
less efficientO(nm) algorithm to compute shortest path
trees [3].

x
y

Vx
Vy

vu

e10

10

10

100

10

1000

1010

Figure 5. Lemma 1 is false for directed graphs.

Even after the shortest path treesX and Y are com-
puted, computing thex-y distance omitting each edge on
path(x; y) is still more complicated than in the undirected
case. The chief difficulty is that Lemma 1 does not hold for
directed graphs. Figure 5 shows an example in which vertex
v belongs to the component ofX n e that containsy, but the
shortest pathpath(v; y) contains the edgee. Fortunately, it
turns out that we can finesse our way around the failure of
Lemma 1. As the following lemma shows, we do not need
to minimize over all the edges inE(Vx; Vy) in equation (2),
and the edges that we do need don’t violate Lemma 1.

Lemma 2 LetVx andVy be the components ofX induced
by removing an edgee 2 path(x; y). Thenpath(x; y; Gne)
includes exactly one edge ofE(Vx; Vy).

x
y

Vx Vyu
e

P

Figure 6. u is the last vertex ofP in Vx. Shaded
path(x; u) is contained inVx.

Proof: Consider any pathP connectingx to y in G n e, and
let u be the last vertex ofP in Vx. (The pathP may pass
from Vx to Vy several times, but we choose the last such
transition. See Figure 6.) The shortest path fromx to u in
G is contained inVx, sinceVx is a subtree ofX containing
bothx andu. Thereforepath(x; u) = path(x; u; G n e),
and we can shortenP by replacing the portion ofP up tou
by path(x; u). The only edge ofE(Vx; Vy) in this shorter
path is the one immediately followingu. It follows that the
shortest path fromx to y in G n e must contain exactly one
edge ofE(Vx; Vy).

A simple corollary of this lemma is the fact that if(u; v)
is the single edge ofpath(x; y; G n e) in E(Vx; Vy), then
path(v; y; G n e) = path(v; y). It follows that in the min-
imization of equation (2), we do not need to consider any
edge(u; v) of E(Vx; Vy) such thatpath(v; y) contains any
vertex ofVx. Consequently, the minimization set of equa-
tion (2) can be reduced as follows:

d(x; y; G n e) = min
(u;v)2E(Vx;Vy)

(u;v)6=e
path(v;y)\Vx=;

0
@

d(x; u; G n e) +
c(u; v) +
d(v; y; G n e)

1
A

(4)
To filter out edges that violate the condition on

path(v; y), we label each vertexv 2 V according to the
lowest-indexed block ofX thatpath(v; y) passes through.
Defineminblock (v) to be the smallesti such thatpath(v; y)
contains a vertex of blockBi. That is, minblock (v) =
minw2path(v;y) block (w). See Figure 7. We can compute
minblock (v) for all verticesv in O(n) time by by a pre-
order traversal ofY starting fromy. For any edge(u; v),
minblock (u) is justmin(block (u);minblock (v)), and the
preorder traversal visitsv beforeu.

For a directed edgee = (u; v) =2 path(x; y), we define
left(e) = block (u) and right(e) = minblock (v). With

6



x
y

v

B2 B3 B4 B5

Figure 7. block (v) = 5, butminblock (v) = 3.

these definitions ofleft(e) andright(e), we ensure thate
belongs to the minimization set of equation (4) forei if and
only if left(e) � i < right(e), and we can apply the al-
gorithm of Section 4. The distancesd(x; u) andd(v; y) are
available from the shortest path treesX andY . We have
established our main result:

Theorem 3 Given a directed networkG withm edges and
a pair of vertices(x; y), we can computed(x; y; G n e) for
each edgee 2 path(x; y) in total timeO(n logn+m) plus
the time to compute a shortest path tree inG.

This theorem allows us to compute the Vickrey payments
for all edges of a shortest path in a network, as given in
equation (1), in the same asymptotic time as is needed to
compute the shortest path itself.

7. Concluding remarks

With the emergence of the Internet as a global plat-
form for communication, computation, and commerce,
there is an increased need to design efficient protocols
that motivate self-interested agents to cooperate. Example
applications include resource allocation in computational
grids [24], market-based protocols for scheduling or task
allocation [21, 23], and congestion control in the Inter-
net [5, 6, 10, 19]. One of the most celebrated results in
the field of mechanism design is the Vickrey (or Vickrey-
Clarke-Groves) protocol, which uses a payment scheme to
motivate selfish agents to bid truthfully.

In this paper, we focused on the algorithmic aspect of
computing the Vickrey payments in the context of shortest
path routing in an internet, where multiple self-interested
agents own portions of the network. Na¨ıvely, computing
payment functions forn agents requiresn shortest path
computations. Our main result shows that this computa-
tional overhead can be significantly reduced—the payments
are computable in the same asymptotic time as a single
shortest path tree. Our algorithm is quite simple, and uses
only some elementary properties of shortest paths.

We believe our algorithm will have applications to other
graph problems as well. For example, we have recently used
these ideas to compute thek simple (loopless) shortest paths
in the same asymptotic time ask single-source shortest path

tree computations (paper in preparation). The running time
of our algorithm is an improvement by a factor of
(n) over
the previous best results, which date back to Lawler’s and
Yen’s algorithms of the early seventies [8, 25, 26].

Many interesting and challenging problems remain in
the still nascent field of algorithmic mechanism design.
For instance, many applications in distributed comput-
ing may require designing new mechanisms [12, 21, 24].
There are also many important problems in which comput-
ing Vickrey payments requires solving NP-complete prob-
lems [9, 16, 17]. In those cases, it would be interesting
to use the techniques of approximation or randomization
to design new polynomial-time mechanisms. The work of
Bikhchandani et al. [2] and Schummer and Vohra [18] also
suggests a promising direction for further exploration.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network
Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, Englewood Cliffs, NJ, 1993.

[2] S. Bikhchandani, S. de Vries, R. Vohra, and J. Schum-
mer. Linear Programming and Vickrey Auctions.Pro-
ceedingss of the IMA workshop on e-auctions and
markets, 2001.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Intro-
duction to Algorithms. MIT Press, Cambridge, MA,
1990.

[4] D. Eppstein. Finding thek shortest paths.SIAM J.
Computing, 28:652–673, 1998.

[5] R. J. Gibbens and F. P. Kelly. Resource pricing
and the evolution of congestion control.Automatica,
35:1969–1985, 1999.

[6] R. Karp, E. Koutsoupias, C. Papadimitriou, and
S. Shenker. Optimization problems in congestion con-
trol. In Proc. 41st Annu. IEEE Sympos. Found. Com-
put. Sci., 2000.

[7] V. King. A simpler minimum spanning tree verifica-
tion algorithm.Algorithmica, 18(2):263–270, 1997.

[8] E. L. Lawler. A procedure for computing theK best
solutions to discrete optimization problemns and its
application to the shortest path problem.Management
Science, 18, pp. 401–405, 1972.

[9] D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth
revelation in approximately efficient combinatorial
auctions. InProc. ACM Conference on Electronic
Commerce, 2000.

7



[10] J. K. MacKie-Mason and H. R. Varian. Pricing con-
gestible network resources.IEEE Journal of Selected
Areas in Communications, 1995.

[11] A. Mas-Collel, W. Whinston, and J. Green.Microeco-
nomic Theory. Oxford University Press, 1995.

[12] N. Nisan and A. Ronen. Algorithmic mechanism de-
sign. InProc. 31st Annu. ACM Sympos. Theory Com-
put., 1999.

[13] A. Odlyzko. A modest proposal for preventing
Internet congestion. http://www.research. -
att.com/˜amo/doc/modest.proposal.ps ,
1997.

[14] J. Rosenschein and G. Zlotkin.Rules of Encounter:
Designing Conventions for Automated Negotiations
Among Computers. MIT Press, 1994.

[15] T. Sandholm. Distributed rational decision making.
In Introduction to Multiagent Systems: A Modern In-
troduction to Distributed Artificial Intelligence. MIT
Press, 1999.

[16] T. Sandholm and S. Suri. Improved algorithm for op-
timal winner determination in combinatorial auctions
and generalizations. InAAAI 17th National Confer-
ence on Artificial Intelligence, 2000.

[17] T. Sandholm, S. Suri, A. Gilpin, and D. Levine.
CABOB: A Fast Optimal Algorithm for Combinato-
rial Auctions. InIJCAI 17th International Joint Con-
ference on Artificial Intelligence2001.

[18] J. Schummer and R. Vohra. Auctions for Procuring
Options. Northwestern University Technical Report,
2001.

[19] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pric-
ing in computer networks: Reshaping the research
agenda.Telecommunications Policy, pages 183–201,
1996.

[20] Y. Shoham and K. Tanaka. A dynamic theory of in-
centives in multi-agent systems. InIntl. Joint Conf. on
Artificial Intelligence, 1997.

[21] W. E. Walsh and M. P. Wellman. A market protocol
for decentralized task allocation. InProc. 3rd Interna-
tional Conference on Multi-Agent Systems, 1998.

[22] R. E. Tarjan. Sensitivty analysis of minimum spanning
trees and shortest path trees.IPL, 14 (1), pp. 30–33,
1982.

[23] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K.
MacKie-Mason. Auction protocols for decentralized
scheduling. InProc. 18th International Conference
on Distributed Computing Systems, 1998.

[24] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. G-
commerce: Market formulations controlling resource
allocation on the computational grid. InIPDPS, 2001.

[25] J. Y. Yen. Finding theK shortest loopless paths in
a network. Management Science, 17, pp. 712–716,
1971.

[26] J. Y. Yen. Another algorithm for finding theK shortest
loopless network paths.Proc. of 41st Mtg. Operations
Research Society of America, 20, 1972.

8


