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Abstract

How does a search engine company decide what ads to display with each query so as
to maximize its revenue? This turns out to be a generalization of the online bipartite
matching problem. We introduce the notion of a tradeoff revealing LP and use it to derive
two optimal algorithms achieving competitive ratios of 1 − 1/e for this problem.

1 Introduction

Internet search engine companies, such as Google, Yahoo and MSN, have revolutionized not
only the use of the Internet by individuals but also the way businesses advertise to consumers.
Instead of flooding consumers with unwanted ads, search engines open up the possibility of a
dialogue between consumers and businesses, with consumers typing in keywords, called Ad-
words by Google, that reveal what they are looking for and search engines displaying highly
targeted ads relevant to the specific query.

The AdWords market1 is essentially a large auction where businesses place bids for individual
keywords, together with limits specifying their maximum daily budget. The search engine
company earns revenue from businesses when it displays their ads in response to a relevant
search query (if the user actually clicks on the ad). Indeed, most of the revenues of search
engine companies are derived in this manner2.

In this context, the following computational problem, which we call the Adwords problem,
was recently posed by Henzinger [6]: assign user queries to advertisers to maximize the total
revenue. Observe that the task is necessarily online – when returning results of a specific query,
the search engine company needs to immediately determine what ads to display on the side.

It is easy to see that the competitive ratio of the algorithm that awards each query to the
highest bidder is 1/2; moreover, this is tight. In this paper, we present two algorithms, one
deterministic and one randomized, achieving competitive ratios of 1− 1/e for this problem. In
Section 9 we show that no randomized algorithm can achieve a better competitive ratio.

The offline version of the Adwords problem is NP-hard, and the best known approximation
algorithm achieves a guarantee of 1−1/e [1], by solving a linear program followed by randomized
rounding. Our online algorithms achieve the same approximation guarantee and are more
efficient: the total running time is O(NM) where N is the number of bidders and M the
length of the query sequence.

1This market dwarfs the AdSense market where the ad is based on the actual contents of the website.
2According to a recent New York Times article (Feb 4, 2005), the revenue accrued by Google from this

market in the last three months of 2004 alone was over a billion dollars.
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In Section 7 we show how our algorithm and analysis can be generalized to the following, more
realistic, situations, while still maintaining the same competitive ratio:

• A bidder pays only if the user clicks on his ad.

• Advertisers have different daily budgets.

• Instead of charging a bidder his actual bid, the search engine company charges him the
next highest bid.

• Multiple ads can appear with the results of a query.

• Advertisers enter at different times.

1.1 Previous work

The adwords problem is clearly a generalization of the online bipartite matching problem: the
special case where each advertiser makes unit bids and has a unit daily budget is precisely the
online matching problem. Even in this special case, the greedy algorithm achieves a competitive
ratio of 1/2. The algorithm that allocates each query to a random interested advertiser does
not do much better – it achieves a competitive ratio of 1/2 +O(log n/n).

In [11], Karp, Vazirani and Vazirani gave a randomized algorithm for the online matching
problem achieving a competitive ratio of 1 − 1/e. Their algorithm, called RANKING, fixes a
random permutation of the bidders in advance and breaks ties according to their ranking in
this permutation. They further showed that no randomized online algorithm can achieve a
better competitive ratio.

In another direction, Kalyanasundaram and Pruhs [10] considered the online b-matching prob-
lem which can be described as a special case of the adwords problem as follows: each advertiser
has a daily budget of b dollars, but makes only 0/1 dollar bids on each query. Their online
algorithm, called BALANCE, awards the query to that interested advertiser who has the high-
est unspent budget. They show that the competitive ratio of this algorithm tends to 1 − 1/e
as b tends to infinity. They also prove a lower bound of 1 − 1/e for deterministic algorithms.

1.2 Our results

To generalize the algorithms of [10] and [11] to arbitrary bids, it is instructive to examine the
special case with bids restricted to {0, 1, 2}. The natural algorithm to try assigns each query to
a highest bidder, using the previous heuristics to break ties (largest remaining budget/ highest
ranking in the random permutation). We give examples (in the Appendix) showing that both
these algorithms achieve competitive ratios strictly smaller and bounded away from 1 − 1/e.

This indicates the need to consider a much more delicate tradeoff between the bid versus the
remaining budget in the first case, and the bid versus the position in the random permutation
in the second. The correct tradeoff function is derived by a novel LP-based approach, which
we outline below. The resulting algorithms are very simple, and are based on the following
tradeoff function:
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ψ(f) = 1 − e−(1−f)

We provide two algorithms which achieve a factor of 1 − 1/e :

Algorithm 1:

Allocate the next query to the bidder i maximizing the product of his bid and ψ(T (i)), where
T (i) is the fraction of the bidder’s budget which has been spent so far, i.e. T (i) = mi

bi
, where

bi is the total budget of bidder i, mi is the amount of money spent by bidder i.

Algorithm 2:

Start by permuting the advertisers at random. Allocate the next query to the bidder maxi-
mizing the product of his bid and ψ(r/n), where r is the rank of this bidder in the random
order and n is the number of bidders.

Both algorithms assume that the daily budget of advertisers is large compared to their bids.

1.3 A New Technique

We now outline how we derive the correct tradeoff function. For this we introduce the notion
of a tradeoff-revealing family of LP’s. This concept builds on the notion of a factor-revealing
LP [7]. We start by writing a factor-revealing LP to analyze the performance in the special
case when all bids are equal. This provides a simpler proof of the Kalyanasundaram and Pruhs
[10] result.

We give an LP, L, whose constraints are satisfied at the end of a run of BALANCE on any in-
stance π of the equal bids case. The objective function of L gives the performance of BALANCE
on π. Hence the optimal objective function value of L is a lower bound on the competitive
ratio of BALANCE. How good is this lower bound? Clearly, this depends on the constraints
we have captured in L. It turns out that the bound computed by our LP is 1 − 1/e which is
tight. Indeed, for some fairly sophisticated algorithms, e.g., [7, 2], a factor-revealing LP is the
only way known of deriving a tight analysis.

Next, we handle the case of arbitrary bids. We write a family of LP’s L(π, ψ), one for each
input instance π and decreasing tradeoff function ψ. The objective function of L(π, ψ) gives
the performance of Algorithm 1 when run on π with tradeoff function ψ. The problem now is
to choose ψ that yields a performance of at least 1 − 1/e on every instance π. Once the input
instance and tradeoff functions are fixed, of course, the exact results achieved by the algorithm
are completely determined. The right hand side of the inequalities in the LP L(π, ψ) are based
on these (unknown) parameters.

Now the constraints in each LP are obtained by relaxing a tautology, and therefore any single
LP in this family does not contain any useful information. However, the entire family does
express some of the structure of the problem which is revealed by considering the family of
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dual linear programs D(π, ψ).

It turns out that L(π, ψ) differs from L only in that a vector ∆(π, ψ) is added to the right
hand side of the constraints. Therefore, the dual programs D(π, ψ) differ from D only in the
objective function, which is changed by ∆(π, ψ) · y, where y is the vector of dual variables.
Hence the dual polytope for all LP’s in the family is the same as that for D. Moreover, we
show that D and the each LP in the family D(π, ψ) attains its optimal value at the same
vertex, y∗, of the dual polytope. Finally, we show how to use y∗ to define ψ in a specific
manner so that ∆(π, ψ) · y∗ ≤ 0 for each instance π (observe that this function ψ does not
depend on π and hence it works for all instances). This function is precisely the function used
in Algorithm 1. This ensures that the performance of Algorithm 1 on each instance matches
that of BALANCE on unit bid instances and is at least 1 − 1/e.

We call this ensemble L(π, ψ) a tradeoff revealing family of LP’s. Once the competitive ratio
of the algorithm for the unit bid case is determined via a factor-revealing LP, this family helps
us find a tradeoff function that ensures the same competitive ratio for the arbitrary bids case.

The same proof outline also applies to Algorithm 2 once we suitably simplify the analysis of
Karp, Vazirani and Vazirani [11] and cast it in terms of linear constraints.

2 Problem Definition

The Adwords problem is the following: There are N bidders, each with a specified daily budget
bi. Q is a set of query words. Each bidder i specifies a bid ciq for query word q ∈ Q. A sequence
q1q2 . . . qM of query words qj ∈ Q arrive online, and each query qj must be assigned to some
bidder i (for a bid of cij = ciqj

). The objective is to maximize the total revenue while respecting
the daily budgets of the bidders.

Throughout this paper we will make the assumption that the bids are small compared to the
budgets, i.e., maxi,j cij is small compared to mini bi. For the applications of this problem
mentioned in the Introduction, this is a reasonable assumption.

An online algorithm is said to be α-competitive if for every instance, the ratio of the revenue
of the online algorithm to the revenue of the best off-line algorithm is at least α.

While presenting the algorithms and proofs, we will make the simplifying assumptions that the
budgets of all bidders are equal (assumed unit) and that the best offline algorithm exhausts
the budget of each bidder. These assumptions will be relaxed in Section 7.

3 A Deterministic Algorithm

Let us first consider a greedy algorithm that maximizes revenue accrued at each step. It is
easy to see that this algorithm achieves a competitive ratio of 1

2 (see, e.g., [12]); moreover,
this is tight as shown by the following example with only two bidders and two query words:
Suppose both bidders have unit budget. The two bidders bid c and c+ ε respectively on query
word q, and they bid 0 and c on query word q′. The query sequence consists of a number of
occurrences of q followed by a number of occurrences of q′. The query words q are awarded to
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bidder 2, and are just enough in number to exhaust his budget. When query words q ′ arrive,
bidder 2’s budget is exhausted and bidder 1 is not interested in this query word, and they
accrue no further revenue.

Algorithm 1 rectifies this situation by taking into consideration not only the bids but also the
unspent budget of each bidder. For the analysis it is convenient to discretize the budgets as
follows: we pick a large integer k, and discretize the budget of each bidder into k equal parts
(called slabs) numbered 1 through k. Each bidder spends money in slab j before moving to
slab j + 1.

Definition: At any time during the run of the algorithm, we will denote by slab(i) the
currently active slab for bidder i.

Let ψ : [1 . . . k] → R+ be the following (monotonically decreasing) function:

ψ(i) = 1 − e−(1−i/k)

Algorithm 1

1. When a new query arrives, let the bid of bidder i be c(i).

2. Allocate the query to the bidder i who maximizes c(i) × ψ(slab(i)).

Note that in the special case when all the bids are equal, our algorithm works in the same way
as the BALANCE algorithm of [10], for any monotonically decreasing tradeoff function.

4 Analyzing BALANCE using a Factor-Revealing LP

In this section we analyze the performance of Algorithm 1 in the special case when all bids are
equal. This is exactly the algorithm BALANCE of [10]. We give a simpler analysis of this
algorithm using the notion of a factor-revealing LP. This technique was implicit in [14, 5, 13]
and was formalized and made explicit in [8, 7].

We will assume for simplicity that in the optimum solution, each of the N players spends his
entire budget, and thus the total revenue is N . Recall that BALANCE awards each query to
the interested bidder who has the maximum unspent budget. We wish to lower bound the total
revenue achieved by BALANCE. Let us define the type of a bidder according to the fraction
of budget spent by that bidder at the end of the algorithm BALANCE: say that the bidder
is of type j if the fraction of his budget spent at the end of the algorithm lies in the range
((j − 1)/k, j/k]. By convention a bidder who spends none of his budget is assigned type 1.

Clearly bidders of type j for small values of j contribute little to the total revenue. The factor
revealing LP for the performance of the algorithm BALANCE will proceed by bounding the
number of such bidders of type j.

Lemma 1 If OPT assigns query q to a bidder of type j, then BALANCE pays for q from slab
k such that k ≤ j.
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The lemma follows immediately from the criterion used by BALANCE for assigning queries to
bidders.

For simplicity we will assume that bidders of type i spend exactly i/k fraction of their budget.
The total error resulting from this simplification is at most N/k and is negligible. Now, for
i = 1, 2, . . . , k − 1, let xi be the number of bidders of type(i). Let βi denote the total money
spent by the bidders from slab i in the run of ALG. It is easy to see (Figure 1) that β1 = N/k,
and for 2 ≤ i ≤ k, βi = N/k − (x1 + . . .+ xi−1)/k.

2/k

1/k

3/k

3x 2x 1xkx
0

1

TYPE 2

SLAB  3

Figure 1: The bidders are ordered from right to left in order of increasing type. We have labeled here

the bidders of type 2 and the money in slab 3.

Lemma 2

∀ i, 1 ≤ i ≤ k − 1 :
i
∑

j=1

(1 +
i− j

k
)xj ≤

i

k
N

Proof : By Lemma 1,

i
∑

j=1

xj ≤
i
∑

j=1

βj =
i

k
N −

i
∑

j=1

(
i− j

k
)xj

The lemma follows by rearranging terms. �

The revenue of the algorithm is

ALG ≥

k−1
∑

i=1

i
kxi +

(

N −

k−1
∑

i=1

xi

)

− N
k

= N −
k−1
∑

i=1

k−i
k xi −

N
k

To find a lower bound on the performance of BALANCE we want to find the minimum value
that N −

∑k−1
i=1

k−i
k xi −

N
k can take over the feasible {xi}s. This gives the following LP, which
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we call L:

maximize Φ =
k−1
∑

i=1

k−i
k xi (1)

subject to ∀ i, 1 ≤ i ≤ k − 1 :
i
∑

j=1

(1 +
i− j

k
)xj ≤

i

k
N

∀ i, 1 ≤ i ≤ k − 1 : xi ≥ 0

Let us also write down the dual LP, D, which we will use in the case of arbitrary bids.

minimize
k−1
∑

i=1

i
kNyi

subject to ∀ i, 1 ≤ i ≤ k − 1 :
k−1
∑

j=i

(1 +
j − i

k
)yj ≥

k − i

k

∀ i, 1 ≤ i ≤ k − 1 : yi ≥ 0

Define A, b, c so the primal LP, L, can be written as

max c · x s.t. Ax ≤ b x ≥ 0.

and the dual LP, D, can be written as

min b · y s.t. AT y ≥ c y ≥ 0.

Lemma 3 As k → ∞, the value Φ of the above linear program goes to N
e

Proof : On setting all the primal constraints to equality and solving the resulting system,
we get a feasible solution x∗i ≥ 0. Similarly, we can set all the dual constraints to equality and
solve the resulting system to get a feasible dual solution.

These two feasible solutions are:

x∗i = N
k (1 − 1

k )i−1 for i = 1, .., k − 1

y∗i = 1
k (1 − 1

k )k−i−1 for i = 1, .., k − 1

But these clearly satisfy the complementary slackness conditions, hence they are also optimal
solutions of the primal and dual programs.
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This gives an optimal objective function value of

Φ = c · x∗ = b · y∗

=
k−1
∑

i=1

(k−i
k )N

k (1 − 1
k )i−1

= N(1 − 1
k )k

As we make the discretization finer (i.e. as k → ∞) Φ tends to N
e .

�

Recall that the size of the matching is at least N − Φ − N
k , hence it tends to N(1 − 1

e ). Since
OPT is N , the competitive ratio is at least 1 − 1

e .

On the other hand one can find an instance of the problem (e.g., the one provided in [10]) such
at the end of the algorithm all the inequalities of the primal are tight, hence the competitive
ratio of ALG is exactly 1 − 1

e .

5 A Tradeoff-Revealing Family of LPs for the Adwords Prob-

lem

Observe that even if we knew the correct tradeoff function, extending the methods of the
previous section is difficult. The problem with mimicking the factor-revealing LP for constant
bids is that now the tradeoff between bid and unspent budget is subtle and the basic Lemma 1
which allowed us to write the inequalities in the LP no longer holds.

Here is how we proceed instead: We fix both a monotonically decreasing tradeoff function ψ as
well as the instance π of the adwords problem and write a new LP L(π, ψ) for Algorithm 1 using
tradeoff function ψ run on the instance π. Of course, once we specify the algorithm as well
as the input instance, the actual allocations of queries to bidders is completely determined.
In particular, the number αi of bidders of type i is fixed. L(π, ψ) is the seemingly trivial
LP obtained by taking the left hand side of each inequality in the factor revealing LP and
substituting xi = αi to obtain the right hand side. Formally:

Let a be a k − 1 dimensional vector whose ith component is αi. Let Aa = l. We denote the
following LP by L(π, ψ):

max c · x s.t. Ax ≤ l x ≥ 0

The dual LP is denoted by D(π, ψ) and is:

min l · y s.t. AT y ≥ c y ≥ 0

Clearly, any one LP L(π, ψ) offers no insight into the performance of Algorithm 1; after all the
right hand sides of the inequalities are expressed in terms of the unknown number of bidders
of type i. Nevertheless, the entire family L(π, ψ) does contain useful information which is
revealed by considering the duals of these LP’s.
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Since L(π, ψ) differs from L only in the right hand side, the dual D(π, ψ) differs from D only
in the dual objective function; the constraints remain unchanged. Hence solution y∗ of D is
feasible for D(π, ψ) as well. Recall that this solution was obtained by setting all nontrivial
inequalities of D to equality.

Now by construction, if we set all the nontrivial inequalities of LP L(π, ψ) to equality we get a
feasible solution, namely a. Clearly, a and y∗ satisfy all complementary slackness conditions.
Therefore they are both optimal. Hence we get:

Lemma 4 For any instance π and monotonically decreasing tradeoff function ψ, y∗ is an
optimal solution to D(π, ψ).

The structure of Algorithm 1 does constraint ow the LP L differs from L(π, ψ). This is what
we will explore now.

As in the analysis of BALANCE, we divide the budget of each bidder into k equal slabs,
numbered 1 to k. Money in slab i is spent before moving to slab i+ 1. We say that a bidder
is of type j if the fraction of his budget spent at the end of Algorithm 1 lies in the range
((j − 1)/k, j/k]. By convention a bidder who spends none of his budget is assigned type 1. As
before, we make the simplifying assumption (at the cost of a negligible error term) that bidders
of type j spend exactly j/k fraction of their budget. Let αj denote the number of bidders of
type j. Let βi denote the total money spent by the bidders from slab i in the run of Algorithm
1. It is easy to see that β1 = N/k, and for 2 ≤ i ≤ k, βi = N/k − (α1 + . . .+ αi−1)/k.

We are interested in comparing the performance of Algorithm 1 (abbreviated as ALG) with the
optimal algorithm OPT. The following definitions focus on some relevant paramters comparing
how ALG and OPT treat a query q:

Definition: Let ALG(q) (OPT(q)) denote the revenue earned by Algorithm 1 (OPT) for query
q. Say that a query q is of type i if OPT assigns it to a bidder of type i, and say that q lies in
slab i if Algorithm 1 pays for it from slab i.

Lemma 5 For each query q such that 1 ≤ type(q) ≤ k − 1,

OPT(q)ψ(type(q)) ≤ ALG(q)ψ(slab(q)).

Proof : Consider the arrival of q during the run of Algorithm 1. Since type(q) ≤ k− 1, the
bidder b to whom OPT assigned this query is still actively bidding from some slab j ≤ type(q)
at this time. The inequality in the lemma follows from the criterion used by Algorithm 1 to
assign querries, together with the monotonicity of ψ.

�

Lemma 6

k−1
∑

i=1

ψ(i)(αi − βi) ≤ 0.
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Proof : We start by observing that for 1 ≤ i ≤ k − 1:
∑

q:type(q)=i

OPT(q) = αi

∑

q:slab(q)=i

ALG(q) = βi

By Lemma 5
∑

q:type(q)≤k−1

[OPT(q)ψ(type(q)) − ALG(q)ψ(slab(q))] ≤ 0.

Next observe that

∑

q:type(q)≤k−1

OPT(q)ψ(type(q)) =

k−1
∑

i=1

∑

q:type(q)=i

OPT(q)ψ(i)

=

k−1
∑

i=1

ψ(i)αi.

And
∑

q:type(q)≤k−1

ALG(q)ψ(slab(q)) ≤
∑

q:slab(q)≤k−1

ALG(q)ψ(slab(q))

=

k−1
∑

i=1

∑

q:slab(q)=i

ALG(q)ψ(i)

=

k−1
∑

i=1

ψ(i)βi.

The lemma follows from these three inequalities. �

Let ∆(π, ψ) be a k− 1 dimensional vector whose ith component is (α1 − β1) + . . .+ (αi − βi).
The following lemma relates the right hand side of the LPs L and L(π, ψ).

Lemma 7 l = b + ∆(π, ψ).

Proof : Consider the ith components of the three vectors. We need to prove:

α1(1 + i−1
k

) + α2(1 + i−2
k

) + . . .+ αi = iN
k

+ (α1 − β1) + . . .+ (αi − βi).

This equation follows using the fact that βi = N/k − (α1 + . . .+ αi−1)/k. �

Theorem 8 For function ψ defined as

ψ(i) :=

k−1
∑

j=i

y∗j = 1 − (1 −
1

k
)k−i+1
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the competitive ratio of Algorithm 1 is (1 − 1
e ).

Proof : By Lemma 4, the optimal solution to L(π, ψ) and D(π, ψ) has value l · y∗. By
Lemma 7 this equals (b + ∆) · y∗ ≤ N/e+ ∆ · y∗ (since b · y∗ ≤ N/e, from Section 4).

Now,

∆ · y∗ =
k−1
∑

i=1

y∗

i ((α1 − β1) + . . .+ (αi − βi)

=
k−1
∑

i=1

(αi − βi)(y
∗

i + . . .+ y∗k−1)

=
k−1
∑

i=1

(αi − βi)ψ(i)

≤ 0,

where the last equality follows from our choice of the function ψ, and the inequality follows
from Lemma 6. Hence the competitive ratio of Algorithm 1 is (1 − 1

e ).

�

6 Direct Analysis of Algorithm 1

In the last section we derived the correct tradeoff function ψ to use in Algorithm 1, and in the
process also gave a proof that the competitive ratio of the resulting algorithm is 1 − 1/e. In
this section abstract out the essential features of the argument and sketch a direct proof of the
competitive ratio starting with this tradeoff function ψ.

Theorem 9 The competitive ratio of Algorithm 1 is 1 − 1/e.

Proof : Recall that αi is the number of bidders of type i, and βi is the total amount of
money spent by bidders from slab i. We have the following relations from Section 5:

∀i : βi =
N −

∑i−1
j=1 αj

k
∑

i

ψ(i)αi ≤
∑

i

ψ(i)βi

Using the above equations and the choice of ψ:

ψ(i) = 1 − (1 −
1

k
)k−i+1
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we get:
k
∑

i=1

αi
k − i+ 1

k
≤
N

e
(2)

But the left side of (2) is precisely the amount of money left unspent at the end of the algorithm.
Hence the factor of the ψ-based algorithm is at least 1 − 1/e. �

7 Towards more realistic models

In this section we show how our algorithm and analysis can be generalized to the following
situations:

1. Advertisers have different daily budgets.

2. The optimal allocation does not exhaust all the money of advertisers

3. Advertisers enter at different times.

4. More than one ad can appear with the results of a query. The most general situation is
that with each query we are provided a number specifying the maximum number of ads.

5. A bidder pays only if the user clicks on his ad.

6. A winning bidder pays only an amount equal to the next highest bid.

1, 2, 3: We say that the current type of a bidder at some time during the run of the algorithm
is j if he has spent between (j−1)/k and j/k fraction of his budget at that time. The algorithm
allocates the next query to the bidder who maximizes the product of his bid and ψ(current
type).

The proof of the competitive ratio changes minimally: Let the budget of bidder j be Bj . For

i = 1, .., k, define βj
i to be the amount of money spent by the bidder j from the interval

[ i−1
k Bj ,

i
kBj) of his budget. Let βi =

∑

j β
j
i . Let αi be the amount of money that the optimal

allocation gets from the bins of final type i. Let α =
∑

i αi, be the total amount of money
obtained in the optimal allocation.

Now the relations used in Section 6 become

∀i : βi ≥
α−

∑i
j=1 αj

k
∑

i

ψ(i)αi ≤
∑

i

ψ(i)βi

These two sets of equations suffice to prove that the competitive ratio is at least 1 − 1/e. We
also note that the algorithm and the proof of the competitive ratio remain unchanged even if
we allow advertisers to enter the bidding process at any time during the query sequence.
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4: If the arriving query q requires nq number of advertisements to be placed, then allocate it
to the bidders with the top nq values of the product of bid and ψ(current type). The proof of
the competitive ratio remains unchanged.

5: In order to model this situation, we simply set the effective bid of a bidder to be the product
of his actual bid and his click-through rate (CTR), which is the probability that a user will
click on his ad. We assume that the click-through rate is known to the algorithm in advance -
indeed several search engines keep a measure of the click-through rates of the bidders.

6: So far we have assumed that a bidder is charged the value of his bid if he is awarded a
query. Search engine companies charge a lower amount: the next highest bid. There are two
ways of defining “next highest bid”: next highest bid for this query among all bids received at
the start of the algorithm or only among alive bidders, i.e. bidders who still have money.

It is easy to see that a small modification of our algorithm achieves a competitive ratio of
1−1/e for the first possibility: award the query to the bidder that maximizes next highest bid×
ψ(fraction of money spent). Next, let us consider the second possibility. In this case, the offline
algorithm will attempt to keep alive bidders simply to charge other bidders higher amounts.
If the online algorithm is also allowed this capability, it can also keep all bidders alive all the
way to the end and this possibility reduces to the first one.

8 A Randomized Algorithm

In this section we define a generalization of the RANKING algorithm of [11], which has a
competitive ratio of 1 − 1/e for arbitrary bids, when the bid to budget ratio is small.

In this algorithm we pick a random permutation σ of the n bidders right at the beginning. For
a bidder i, we call σ(i) the position or rank bidder i in σ. Again, we choose the same tradeoff
function to trade off the importance of the bid of a bidder and his rank in the permutation:

ψ(i) = 1 −

(

1 −
1

n

)n−i+1

Algorithm 2:

1. Pick a random permutation σ of the bidders.

2. For each new query, let the bid of bidder i be b(i).

3. Allocate this query to a bidder with the highest value of the product b(i)×ψ(σ(i)).

Analysis of Algorithm 2

In this section we prove that the competitive ratio of Algorithm 2 is also 1 − 1/e. We follow
the direct proof of Section 6.
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We first define the notion of a Refusal algorithm based on Algorithm 2, which will disallocate
certain money from the bidders as follows. Refusal will run identically to Algorithm 2, with
the following difference: Consider a query q which arrives in the online order. Let rq be the
bidder to whom OPT allocated q, and let optq be the amount of money that OPT gets for
q. Suppose that rq has at least optq remaining budget when q arrives. Suppose further, that
Refusal matches q to some bidder other than rq (since this bidder has a higher product of bid
and ψ-value). Then Refusal will disallocate optq money from rq, i.e. it will artificially reduce
the remaining budget of rq by an amount optq.

Let bmax be the maximum bid value for any query from any bidder.

Lemma 10 For any bidder, the amount of money which is not disallocated and not spent is
at most bmax.

Proof : Consider any bidder i and consider the queries that the optimum allcation allocates
to i. The sum of the money spent by i in the optimal allocation is exactly the budget of i
by assumption. For each such query q, let optq be the revenue of OPT on query q. When q
enters during the algorithm, either it is allocated to i at the price of optq, or it is allocated to
some other bidder. In the latter case, if i had optq amount of money remaining at that time,
then optq amount is disallocated from i. Otherwise, the money remaining with i is less than
optq ≤ bmax. �

Lemma 11 The competitive ratio of Refusal is at most the competitive ratio of Algorithm 2.

Proof : By induction on the arrival of queries it is easy to see that the amount of money
left with each bidder in Refusal is at most the amount of money with that bidder in Algorithm
2. �

We will now prove that the competitive ratio of Refusal is at least 1 − 1/e.

Fix a query q and a permutation σ of the rows. Let rq be the bidder to which OPT allocates
q and let optq be the amount of money that OPT gets for q.

If Refusal matches q to rq, then define α(q, σ) = n+1. Otherwise, we define α(q, σ) as follows:
Let A(q, σ) be the position in σ of the bidder to which Refusal matches q. Modify σ by shifting
rq upwards in the order, keeping the order of the rest of the bidders unchanged. Define α(q, σ)
as the highest such position of rq so that rq has at least optq remaining budget when q arrives,
and Refusal still matches q to the bidder in position A(q, σ).

Define xq
i = optq Pr[α(q, σ) = i], where the probability is taken over random σ. Let xi =

∑

q x
q
i .

Define wq
i to be the expected amount of money spent by the row in position i on query q.

Let wi =
∑

q w
q
i , the expected amount of money spent by the row in position i at the end of

Refusal.

Lemma 12
∑

i

ψ(i)xi ≤
∑

i

ψ(i)wi (3)
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Proof : Fix a query q and a permutation σ. Let rq be the bidder to which OPT allocates q
and let optq be the amount of money OPT gets for q. Let A(q, σ) be the position in σ of the
bidder to which Refusal matches q and let algq be the amount of money Refusal gets for q.

In the case that α(q, σ) 6= n+ 1, the following holds by the rule used by the algorithm:

ψ(α(q, σ))optq ≤ ψ(A(q, σ))algq

In the case that α(q, σ) = n+ 1, we simply write:

0 ≤ ψ(A(q, σ))algq

Taking expectation over random σ we get

∑

i

ψ(i)xq
i ≤

∑

i

ψ(i)wq
i

Taking a summation over all queries q, we get

∑

i

ψ(i)xi ≤
∑

i

ψ(i)wi

�

Lemma 13

∀i : wi ≥ 1 −

∑i
j=1 xj

n
− bmax (4)

Proof : By Lemma 10, it is equivalent to prove that the expected amount of money disal-

located in position i by Refusal is at most
∑i

j=1
xj

n .

For a fixed query q and permutation σ, let rq be the row to which OPT allocates q, and let
B(q, σ) be the position of rq in σ. Then an optq amount of money is disallocated from rq if
and only if α(q, σ) ≤ B(q, σ). In such a case, consider the following process. Start with a
permutation derived from σ by shifting rq to position α(q, σ). Replace rq uniformly at random
in each of the n positions. Then with probability 1/n we get back σ and optq amount of money
is disallocated from rq in position B(q, σ). In this manner, we may only be overcounting the
amount of disallocated money, since some of the positions for rq below α(q, σ) may correspond
to permutations σ′ with a different (larger) value of α(q, σ′).

Taking expectation over random σ and summing over all queries q, we get the statement of
the lemma. �

Comparing to Section 6, we see that the constraints (3) and (4) are similar to the constraints
obtained in that proof. The amount of money left unspent also has the same form, namely

n
∑

i=1

(1 − wi) ≤
n
∑

i=1

xi
n− i+ 1

n
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Hence we get

Proposition 14 The competitive ratio of Refusal is at least 1 − 1/e.

From Lemma 11, we get:

Theorem 15 The competitive ratio of the Algorithm 2 is at least 1 − 1/e.

Remark: Lemma 10 points to the reason why we assume that the largest bid is small
compared to the budgets. Our analysis loses an amount of bmax due to fence-post errors, and
it would be interesting to tighten the analysis and remove the assumption that the budget is
large compared to the bids.

9 A Lower Bound for Randomized Algorithms

In [11], the authors proved a lower bound of 1−1/e on the competitive ratio of any randomized
online algorithm for the online bipartite matching problem. Also, [10] proved a lower bound of
1−1/e on the competitive ratio of any online deterministic algorithm for the online b-matching
problem, even for large b. We show a lower bound of 1−1/e for for online randomized algorithms
for the b-matching problem, even for large b. This also resolves an open question from [9].

Theorem 16 No randomized online algorithm can have a competitive ratio better than 1−1/e
for the b-matching problem, for large b.

Proof : We use Yao’s Lemma [15], which says that the worst case expected factor (over
all inputs) of the best randomized algorithm is equal to the expected factor of the best de-
terministic algorithm for the worst distribution over inputs. Thus it suffices for our purpose
to present a distribution over inputs such that any deterministic algorithm obtains at most
1− 1/e of the optimal allocation on the average. By Yao’s Lemma, this would put a bound of
1 − 1/e on the worst case performance of any randomized algorithm.

Consider first the worst case input for the algorithm BALANCE with N bidders, each with a
budget of 1. In this instance, the queries enter in N rounds. There are 1/ε number of queries
in each round. We denote by Qi the queries of round i, which are identical to each other. For
every i = 1, .., N , bidders i through N bid ε for each of the queries of round i, while bidders 1
through i − 1 bid 0 for these queries. The optimal assignment is clearly the one in which all
the queries of round i are allocated to bidder i, achieving a revenue of N . One can also show
that BALANCE will achieve only N(1 − 1/e) revenue on this input.

Now consider all the inputs which can be derived from the above input by permutation of the
numbers of the bidders and take the uniform distribution D over all these inputs. Formally, D
can be described as follows: Pick a random permutation π of the bidders. The queries enter
in rounds in the order Q1, Q2, ..., QN . Bidders π(i), π(i + 1), ..., π(N) bid ε for the queries Qi

and the other bidders bid 0 for these queries. The optimal allocation for any permutation
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π remains N , by allocating the queries Qi to bidder π(i). We wish to bound the expected
revenue of any deterministic algorithm over inputs from the distribution D.

Fix any deterministic algorithm. Let qij be the fraction of queries from Qi that bidder j is
allocated. We have:

Eπ[qij ] ≤

{

1
N−i+1 if j ≥ i,

0 if j < i.

To see this, note that there are N − i + 1 bidders who are bidding for queries Qi. The
deterministic algorithm allocates some fraction of these queries to some bidders who bid for
them, and leaves the rest of the queries unallocated. If j ≥ i then bidder j is a random
bidder among the bidders bidding for these queries and hence is allocated an average amount
of 1

N−i+1 of the queries which were allocated from Qi (where the average is taken over random
permutations of the bidders). On the other hand, if j < i, then bidder j bids 0 for queries in
Qi and is not allocated any of these queries in any permutation.

Thus we get that the expected amount of money spent by a bidder j at the end of the algorithm
is at most min{1,

∑j
i=1

1
N−i+1}. By summing this over j = 1, .., N , we get that the expected

revenue of the deterministic algorithm over the distributional input D is at most N(1 − 1/e).
This finishes the proof of the theorem. �

10 Discussion

Search engine companies accumulate vast amounts of statistical information which they do use
in solving the Adwords problem. The main new idea coming from our study of this problem
from the viewpoint of worst case analysis is the use of a tradeoff function. Blending this idea
into the the currently used algorithms seems a promising possibility. One concrete way of
accomplishing this is by applying the algorithm for learning from expert advice [4] to fine
tuning the tradeoff function. For example, the tradeoff function should ideally be relaxed
towards the end of the day. This can be accomplished by consider a set of “experts” each of
whom changes the tradeoff function according to a fixed schedule over the course of the day.
The learning algorithm is used over successive days to track the best such daily variation in
tradeoff function.

Our first algorithm needs to keep track of the money spent by each advertiser, but the second
one does not and is therefore useful if the search engine company is using a distributed set of
servers which periodically coordinate the money spent by each advertiser.

Several new issues arise: Our notion of tradeoff revealing family of LP’s deserves to be studied
further in the setting of approximation and online algorithms. Is it possible to achieve com-
petitive ratio of 1−1/e when the budgets of advertisers are not necessarily large? As stated in
the Introduction, both our algorithms assume that daily budgets are large compared to bids.
It is worth noting that an online algorithm for this problem with a competitive ratio of 1−1/e
will not only match the lower bound given in [11] for online algorithms but also the best known
off-line approximation algorithm [1].

Finally, this new auctions setting seems ripe with new game theoretic issues. For example,
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some of the search engines (e.g., Google) use a mechanism similar to a second-price auction for
charging the advertisers in order to achieve some degree of incentive compatibility. However, it
seems that there are still various ways for the advertisers to game these mechanisms. Designing
a truthful mechanism in this setting is an important open problem. Recently, [3] provided a
partial answer for this problem by showing that under some assumptions, it is impossible to
design a truthful mechanism that allocates all the keywords to budget constrained advertisers.

Acknowledgement: We would like to thank Monika Henzinger stating the Adwords prob-
lem and Milena Mihail, Serge Plotkin and Meredith Goldsmith for valuable discussions. We
would also like to thank Subrahmanyam Kalyanasundaram for his help in finding the coun-
terexample in Appendix B, and in implementing our algorithm.
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Appendix

A Counterexample 1

PHASE   1

PHASE  2

Bin N                                       Bin 0.5N                           Bin 0.1N   Bin 1

Figure 2: The bidders are ordered from right to left. The area inside the dark outline is the amount

of money generated by the algorithm. The optimum allocation gets an amount equal to the whole

rectangle.

We present an example to show a factor strictly less than 1−1/e for the algorithm which gives
a query to a highest bidder, breaking ties by giving it to the bidder with most left-over money.
This example has only three values for the bids - 0, a or 2a, for some small a > 0. Thus, in
the case of arbitrary bids, the strategy of bucketing close enough bids (say within a factor of
2) together, and running such an algorithm does not work.

There are N bidders numbered 1, . . . , N , each with budget 1. We get the following query
sequence and bidding pattern. Each bid is either 0, a or 2a. Let m = 1/a. We will take a→ 0.
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The queries arrive in N rounds. In each round m queries are made. The N rounds are divided
into 3 phases.

Phase 1 (1 ≤ i ≤ 0.4N): In the first round m queries are made, for which the bidders 0.1N+1
to N bid with a bid of a, and bidders 1 to 0.1N do not bid. Similarly, for 1 ≤ i ≤ 0.4N , in
the ith round m queries are made, for which bidders 0.1N + i to N bid with a bid of a, and
for which bidders 1 to 0.1N + i− 1 do not bid.

For 1 ≤ i ≤ 0.4N , the algorithm will distribute the queries of the ith round equally between
bidders 0.1N + i to N . This will give the partial allocation as shown in Figure 2.

Phase 2 (0.4N + 1 ≤ i ≤ 0.5N): In the (0.4N + 1)th round m queries are made, for which
bidder 1 bids a, and bidders 0.5N to N bid 2a (the rest of the bidders bid 0). Similarly, for
0.4N + 1 ≤ i ≤ 0.5N , in the ith round m queries are made, for which bidder i− 0.4N bids a,
and bidders 0.5N to N bid 2a.

For 0.4N + 1 ≤ i ≤ 0.5N , the algorithm will distribute the queries of round i equally between
bidders 0.5N to N .

At this point during the algorithm, bidders 0.5N + 1 to N have spent all their money.

Phase 3 (0.5N + 1 ≤ i ≤ N): m queries enter in round i, for which only bidder i bids at a,
and the other bidders do not bid.

The algorithm has to throw away these queries, since bidders 0.5N+1 to N have already spent
their money.

The optimum allocation, on the other hand, is to allocate the queries in round i as follows:

• For 1 ≤ i ≤ 0.4N , allocate all queries in round i to bidder 0.1N + i.

• For 0.4N + 1 ≤ i ≤ 0.5N , allocate all queries in round i to bidder i− 0.4N .

• For 0.5N + 1 ≤ i ≤ N , allocate all queries in round i to bidder i.

Clearly, OPT makes N amount of money. A calculation shows that the algorithm makes 0.62N
amount of money. Thus the factor is strictly less than 1 − 1/e.

We can modify the above example to allow bids of 0, a and κa, for any κ > 1, such that the
algorithm performs strictly worse that 1 − 1/e.

As κ → ∞, the factor tends to 1 − 1/e, and as κ → 1, the factor tends to 1/2. Of course, if
κ = 1, then this reduces to the original model of [10], and the factor is 1 − 1/e.

B Counterexample 2

The example consists of an N×N upper-triangular matrix, as shown in Figure 3. The columns
represent the queries and are ordered from right to left. The rows represent the bidders. The
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3N/4
2

N/2

N

1

1

2

N 1

0

Figure 3: The rows N/2 to 3N/4 have a budget of 1. All other rows have a budget of 2.

entry in the ith row and jth column is the bid of bidder i for query j. The entries in the upper
triangle in rows 1 to N/2, and rows 3N/4 to N are all 2. These bidders have a budget of 2.
The entries in the upper triangle in rows N/2 + 1 to 3N/4 are all 1. These bidders have a
budget of 1.

The optimum allocation is along the diagonal, with column i allocated to row i. This generates
2N −N/4 amount of money.

It can be proved that the algorithm gets 1.1N amount of money, which is strictly less than
1 − 1/e of the optimum.
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