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We address the problem of how to reinforce learning in ultracomplex
environments, with huge state-spaces, where one must learn to exploit a
compact structure of the problem domain. The approach we propose is
to simulate the evolution of an artificial economy of computer programs.
The economy is constructed based on two simple principles so as to assign
credit to the individual programs for collaborating on problem solutions.
We find empirically that starting from programs that are random computer
code, we can develop systems that solve hard problems. In particular,
our economy learned to solve almost all random Blocks World problems
with goal stacks that are 200 blocks high. Competing methods solve such
problems only up to goal stacks of at most 8 blocks. Our economy has also
learned to unscramble about half arandomly scrambled Rubik’s cube and
to solve several commercially sold puzzles.

1 Introduction

Reinforcement learning (cf. Sutton & Barto, 1998) formalizes the problem
of learning from interaction with an environment. The two standard ap-
proaches are value iteration and policy iteration. At the current state of
the art, however, neither appears to offer much hope for addressing ul-
tracomplex problems. Standard approaches to value iteration depend on
enumerating the state-space and are thus problematic when the state-space
is huge. Moreover, they depend on finding an evaluation function showing
progress after a single action, and such a function may be extremely hard
to learn or even to represent. We believe that what is necessary in hard do-
mains is to learn and exploit the compact structure of the state-space, for
which powerful methods are yet to be discovered. Policy iteration, on the
other hand, suffers from the fact that the space of policies is also enormous,
and also has a bumpy fitness landscape. Standard methods for policy iter-
ation, among which we would include the various kinds of evolutionary
and genetic programming, thus grind to a halt on most complex problems.

The approach we propose here is to evolve an artificial economy of mod-
ules, constructed so as to assign credit to the individual modules for their
contribution. Evolution then can progress by finding effective modules.
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This divide-and-conquer approach greatly expedites the search of program
{a.k.a. policy) space and can result in a compact solution exploiting the
structure of the problem.

Holland's (1986) seminal classifier systems previously pursued a similar
approach, using an economic model to assign credit to modules. Unfortu-
nately, classifier systems have never succeeded in their goal of dynamically
chaining modules together to solve interesting problems (Wilson & Gold-
berg, 1989). We believe we have understood the problems with Holland’s
proposal, and other multiagent proposals, and how to correct them in terms
of simple but fundamental principles. Our picture applies widely to the
evolution of multiagent systems, including ecologies and economies. We
discuss here evidence for our picture, evolving artificial economies in three
different representations and for three problems that dynamically chain
huge sequences of learned modules to solve problems too vast for com-
peting methods to address. Control experiments show that if our system is
modified to violate our simple principles, even in ways suggested as desir-
able in the classifier system literature, performance immediately breaks as
we would predict.

We present results on three problems: Blocks World, Rubik’s cube, and
a commercially sold set of puzzles called “Rush Hour.” Block’s World has
a lengthy history as a benchmark problem, which we survey in section 3.
Methods like TD learning using a neural net evaluation, genetic program-
ming, inductive logic programming, and others are able to solve problems
directly comparable to the ones we experiment with only when they are
very small and contain a handful of blocks—that is, before the exponential
growth of the state-space bites in. By contrast, we report the solution of prob-
lems with hundreds of blocks, and state-spaces containing on the order of
10 states, with a single reward state. On Rubik’s cube we have been able to
evolve an economy able to unscramble about half of a randomly scrambled
cube, comparable to the performance of many humans. On Rush Hour, our
approach has solved 15 different commercially sold puzzles, including one
dubbed “advanced” by the manufacturer. Genetic programming (GP) was
unable to make headway on either Rubik or Rush Hour in our experiments,
and we know of no other learning approach capable of interesting results
here.

Note that we are attempting to learn a program capable of solving a class
of problems. For example, we are attempting to learn a program capable of
unscrambling a randomly scrambled Rubik’s cube. We conjecture that for
truly complex problems, learning to solve a class is often the most effective
way to solve an individual problem. No one can learn to unscramble a Ru-
bik’s cube, for example, without learning how to unscramble any Rubik’s
cube. And the planning approach to Blocks World has attempted a huge
search to solve individual Blocks World problems, but what is needed is
to learn to exploit the structure of Blocks World. In our comparison experi-
ments, we attempted to use alternative methods such as GP to learn to solve
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a class of problems, but we failed. We train by presenting small instances,
and our method learns to exploit the underlying compact structure of the
problem domain. We conjecture that learning to exploit underlying com-
pact structure is closely related to “understanding,” a human ability little
explained.

Section 2 describes our artificial economy and the principles that it em-
bodies. Section 3 describes the Blocks World problem and surveys alterna-
tive approaches. Section 4 describes the syntax of our programs. Section 5
describes our results on Blocks World. Section 6 describes a more complex
economic model involving metalearning. Section 7 describes our results
with Rubik’s cube. Section 8 describes our results with the Rush Hour prob-
lem. Section 9 sums up what we have learned from these experiments and
suggests avenues for further exploration. Appendix A discusses results on
Blocks World with alternative methods such as TD learning and genetic
programming. Appendix B gives pseudocode. Appendix C discusses pa-
rameter settings.

2 The Artificial Economy

This section describes and motivates our artificial economy, which we call
Hayek. Hayek interacts with a world that it may sense, where it may take ac-
tions, and that makes a payoff when it is put in an appropriate state. Blocks
World (see Figure 1) is an example world. Hayek is a collection of mod-

ules, each consisting of a computer program with an associated numeric
“wealth.” We call the modules agerlts1 because we allow them to sense fea-

tures of the world, compute, and take actions on the world. The system acts
in a series of auctions. In each auction, each agent simulates the execution of
its program on the current world and returns a nonnegative number. This
number can be thought of as the agent’s estimate of the value of the state its
execution would reach. The agent bids an amount equal to the minimum of
its wealth and the returned number. The solver with the highest bid wins
the auction. It pays this bid to the winner of the previous auction, executes
its actions on the current world, and collects any reward paid by the world,
as well as the winning bid in the subsequent auction. Evolutionary pressure
pushes agents to reach highly valued states and to bid accurately, lest they
be outbid.

In each auction, each agent that has wealth more than a fixed sum 10W,;
creates a new agent that is a mutation of itself. Like an investor, the creator
endows its child with initial wealth Wi, and takes a share of the child’s
profit. Typically we run with each agent paying one-tenth of its profit plus
a small constant sum to its creator, but performance is little affected if this

1 This is in the spirit of the currently best-selling Al textbook (Russell & Norvig, 1995)
which defines an agent as “just something that perceives and acts” (p. 7).
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share is anywhere between 0 and .25. Each agent also pays resource tax
proportional to the number of instructions it executes. This forces agent
evolution to be sensitive to computational cost. Agents are removed if, and
only if, their wealth falls below their initial capital, with any remaining
wealth returned to their creator. Thus, the number of agents in the system
varies, with agents remaining as long as they have been profitable.

This structure of payments and capital allocations is based on simple
principles (Baum, 1998). The system is set up so that everything is owned by
some agent, interagent transactions are voluntary, and money is conserved
in interagent transactions (i.e., what one pays, another receives) (Miller &
Drexler, 1988). Under those conditions, if the agents are rational in that they
choose to make only profitable transactions, a new agent can earn money
only by increasing total payment to the system from the world. Butirrational
agents are exploited and go broke. In the limit, the only agents that survive
are those that collaborate with others to extract money from the world.

Hayek guarantees that everything is owned by auctioning the whole
world to one agent, which then can alone act on the world, sell it, and
receive reward from it. Agent interactions are voluntary in that they respect
property rights. For example, the agent owning the world can refuse to sell
by outbidding other agents, which costs her nothing since she pays herself.
The guide for all ad hoc choices (e.g., the one-tenth profit fraction) was that
the property holder might reasonably make a similar choice if given the
option. In principle, all such constants could be learned.

By contrast, such property rights are not enforced in real ecologies (Miller
& Drexler, 1988), simulated ecologies like Tierra (Ray, 1991) and Avida
(Lenski, Ofria, Collier, & Adami, 1999) or other multiagent learning systems
such as Lenat’s Eurisko (Lenat, 1983; Miller & Drexler, 1988) or Holland clas-
sifier systems (Holland, 1986). When not everything is owned, or money is
not conserved, or property rights are not enforced, agents can earn money
while harming the system, even if other agents maximize their profits. The
overall problem, then, cannot be factored because a local optimum of the system will
not be a local optimum of the individual agents. For example, because in Hol-
land classifiers many agents are active simultaneously, there is no clear title
to reward, which is usually shared by active agents. A tragedy of the com-
mons (Hardin, 1968) can then ensue in which any agent can profit by being
active when reward is paid, even if its action harms system performance
(Baum, 1996). Such systems evolve complex behavior but not accurate credit
assignment (Miller & Drexler, 1988; Baum, 1998).

We have done runs with conservation of money broken in various ways.
The system learns to exploit any way of “creating money” without solving
thehard problems posed by the world (cf. Baum, 1996). Conversely, if money
leaks out of the system too fast (the resource tax is a small leak, but must
be kept very small, at less than 10~° per instruction), the economy collapses
to essentially random agents. We have also experimented with violations
of property rights. For example, we did runs identical to Hayek in every
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Figure 1: A Blocks World instance with four blocks and three colors. (a) Initial
state. (b) The position just before solution. Hatching represents color. When the
hand drops the white block on stack 1, the instance will be solved, and Hayek
will see another random instance.

way, except using the procedure advocated in zeroth-level classifier systems
(Wilson, 1994) of choosing the winning bidder with probability proportional
to its bid. These runs never solved more than six-block problems, even if
given NumCorrect, or made any progress on Rubik’s cube.

3 Blocks World

We have trained Hayek by presenting Blocks World (BW) problems of grad-
ually increasing size (see Figure 1). Each problem contains 4 stacks of col-
ored blocks, with 2n total blocks and k colors. The leftmost stack, stack 0,
serves as a template only and is of height n. The other three stacks contain,
between them, the same multiset of colored blocks as stack 0. The learner
can pick up the top block on any but stack 0 and place the block on top of
any stack but 0. The learner takes actions until it asserts “Done,” or exceeds
10nlog;, (k) actions. If the learner copies stack 0 to stack 1 and states Done, it
receives a reward of n. If it uses 10nlog, (k) actions or states Done without
copying stack 0, it terminates activity with no reward. Note that the goal is
to discover an algorithm capable of solving random new instances. The best
human-generated algorithm of which we are aware (a recursive algorithm
similar to that solving the Tower of Hanoi problem that we developed in
conversation with Manfred Warmuth) is capable of solving arbitrary BW
problems in 4nlogs (k) grabs and drops.

Blocks World (BW) has been well studied (cf. Korf, 1987; Whitehead &
Ballard, 1991; Koza, 1992; Koehler, 1998; Bacchus & Kabanza, 1996; Dzeroski,
Blockeel, & De Raedt, 1998). Although it is easy for humans to solve or pro-
gram, its exponential-size state-space and the complexity of code that would
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solve it have stymied fully autonomous methods. One line of research has
involved planning programs, which are told the goal and do an extensive
search to attempt to solve an individual instance. Until about 1998, state-of-
the-art planning programs such as Prodigy 4.0 could solve only problems
involving about five blocks before succumbing to the combinatorial explo-
sion (Bacchus & Kabanza, 1996). More recently, it has been discovered that
the Blum-Furst graphplan heuristic (Blum & Furst, 1997) can be effectively
used to constrain the search, postponing, although not preventing, the com-
binatorial explosion. The best results are by Koehler (1998), who solved a
related 80-block stacking problem in 5 minutes and a 100-block problem in
11 minutes. (Note the exponential increase.) Koehler’s problems are simpler
than those discussed here in that all blocks start on the table, with no block
on top of them, avoiding any necessity for the long, Tower-of-Hanoi-like
chains of stacks and unstacks required by a three-block-wide table.

No standard method appears able to address the BW reinforcement learn-
ing problem. Previous attempts to reinforcement-learn in BW (e.g., White-
head & Ballard, 1991; Koza, 1992; Birk & Paul, 1994; Dzeroski et al., 1998)
addressed only much simpler versions not involving abstract goal discov-
ery (they attempted to stack a fixed order of colors rather than match an
arbitrary target stack); nor did they have a fixed small table size; nor did
they involve goal stacks of more than a handful of blocks.

Q-learning (Watkins, 1989) is inapplicable to this problem because there
are combinatorial numbers of states; there are almost 10!% distinct possible
200-block goal stacks and for each of these, a search space of some 101%
states, among which there is a single goal state. The standard approach to
dealing with large state-spaces is to train a neural net evaluator in TD(1)
learning (cf. Sutton & Barto, 1998). This has been effective in some domains,
such as backgammon (Tesauro, 1995). However, the success at backgam-
mon was attributed to the fact that a linear function is a good evaluator
(Tesauro, 1995). TD(A) using a neural net evaluation function is not suit-
able here because the goal is so nonlinear and abstract, and the size of
the problem description is variable.> We nonetheless attempted to train a
neural net.? This succeeded in solving four-block problems from a raw rep-
resentation or eight-block problems using a powerful hand-coded feature
NumCorrect. NumCorrect returns the current number of correct blocks on
stackl, the largest integer I such that the bottom I blocks of stacks 0 and
1 agree in color. A recent attempt at inductive logic programming solved
only two-block problems (Dzeroski et al., 1998). We have experimented ex-
tensively with genetic programming (Baum & Durdanovic, 1999) and also

2 For a discussion of various other difficulties, see Whitehead & Ballard (1991)

3 We report in this paragraph results on a substantially simpler version of the problem
where, rather than demanding that the learner say “done” when the stack is correct,
we externally supplied the “done” statement. Run on the full problem, these standard
methods did worse.
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Figure 2: Data from Hayek3 runs with NumCorrect. The horizontal axis is in
millions of instances presented. The right vertical axis is in units of agents. The
left vertical axis is in units of numbers of blocks or, equivalently, reward. (A) The
moving average over the last 100 instances of winning first and last bid and pay-
off from the world. (B) The moving average (solid line) of the score, computed

as ,/2 21222 p()i for p(i) = fraction instances of size i solved. If all instances of
every size up to S were solved and no instances above size S were solved, the
score would be about S. The score is computed only over instances with no new
agents introduced. This approximates the average size instance being solved if
agent creation is suspended. The moving average of payoff is lower than the
score because new agents frequently lead to failures. A system performing at
the level of score can, however, be achieved at any time by suspending creation.
The dashed line shows the moving average of the number of agents in the pop-
ulation (measured against the right-hand axis). Effective solving coincides with
a split of first and last bids, when it learns to estimate value of states.

some less standard approaches: a hill-climbing approach on cdmputer pro-
grams, previous economic models, and an attempt to induce an evaluation
function using S-expressions. These approaches all solved at most four- or
five-block problems reliably.* (See appendix A for a fuller discussion of
these results.)

4 Representation Language

This section discusses the syntax of the agent programs. The programs of
the agents discussed in this article are typed S-expressions (Montana, 1994),
recursively defined as a symbolic expression, as in Lisp, consisting of ei-
ther a symbol or a list structure whose components are S-expressions. S-
expressions are isomorphic to parse trees. A simple example is shown in
Figure 6a.

Allour expressions are typed, taking either integer, void, color, or boolean
values. All operations respect types so that colors are never compared to

4 A simpler economic model learned to solve arbitrary BW problems, but only if pro-
vided intermediate reward in training whenever an action was taken partially advancing
solution (Baum, 1996). :
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Figure 3: Example of solution of an eight-block instance.
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integers, for example. The use of typing semantically constrains mutations
and thus improves the likelihood of randomly generating meaningful and

useful expressions.

Our S-expressions are built out of constants, arithmetic functions, con-
ditional tests, loop controls, and four interface functions: Look(i,j), which
returns the color of the block at location i, j., Grab(i} and Drop(i), which act
on stack i; and Done, which ends the instance. Some experiments also con-
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Figure 4: Data from Hayek3 runs without NumCorrect or R nodes. For further
information, see the caption of Figure 2, which presents identically formatted
data for a different run.

tain the function NumCorrect, and some contain arandomnode R(, f), which
simply executes branch { with probability 1/2 and j with probability 1/2.
The system starts with a single, special, hand-coded agent, called Seed,
with zero wealth. Seed does not bid, but simply creates children as random
S-expressions in the same way that expressions are initiated in genetic pro-
gramming (Koza, 1992; Montana, 1994), choosing each instruction in the
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S-expression at random from the instruction set with increasing probability
of choosing a terminal expression so the tree terminates. Wiy; is initially
set to 0, so all agents can create freely. Eventually one of Seed’s descendants
earns reward. Thereafter, Win; is set equal to the size of the largest reward
earned, and agents can no longer create unless they earn money.

We report elsewhere experiments using a similar economic model, but
with three other representation languages. Hayek1 (Baum, 1996) used sim-
ple productions of a certain form in some ways similar to the language
used by classifier systems (Holland, 1986). In Hayek and also in classi-
fier systems, a configuration is stable only if agents are on average fol-
lowed by agents of higher bid, else agents will go broke. Conversely, a
human writing programs in such a language will naturally use higher bids
to prioritize agents, which may result in high-bidding agents preceding
lower-bidding ones. This means that many programs that a human could
write in a given language may not be dynamically stable. Although the
classifier system language has been proved universal (Forrest, 1985), it is
not clear whether it remains universal when restricted to stable configura-
tions. Baum (1996) and Lettau and Uhlig (1999) independently pointed this
problem out. Similarly, because of this problem, Hayek1 was able to solve
large BW problems only when given an intermediate reward for partial
progress.

Hayek? used an assembler-like language inspired by Tierra (Ray, 1991).
This proved both ineffective and incomprehensible to humans.

We call the system experimented w1th here, using typed S-expressions,
Hayek3.

Hayek4, reported on in a companion paper, uses postproduction sys-
tems. This language is Turing complete, and Hayek4 succeeds in learning a
program capable of solving arbitrary BW problems (of our type). By com-
parison, we do not believe the S-expression language used in Hayek3 is
Turing complete, and so we will see that Hayek3 succeeds in building only
systems capable of solving large, but finite, BW problems.

5 Blocks World Behaviors

We now report on experiments running the Hayek3 system. We trained
Hayek on the following distribution of problems:

e One-block problems if there was no money in the system (e.g., until
the first instance is solved).

e Else we presented problems with size uniformly distributed between
1 and 2 + ni + m/5, where m was set as follows. We maintained a
table S, (i) as the fraction of the last 100 instances of size i presented
that were solved. m was increased by 1 whenever S,(m) > 75% and
Sp(m + 1) > 30%. m was decreased by 1 whenever 5,(m) < 25% and
Sp(m — 1) < 70%.
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This distribution was chosen ad hoc, with a small amount of experimen-
tation, to present larger instances smoothly as Hayek learned. The reason
that we used different conditions. for increasing and decreasing m was to
prevent rapid oscillation between two neighboring values.

We first describe experiments with NumCorrect in the language. Within
a few hundred thousand training instances, Hayek3 evolves a set of agents
that cooperate to solve 100-block goals virtually 100% of the time and
problems involving much higher goal stacks over 90% of the time. (See
Figure 2.) ‘

Our best run to date solved almost 90% of 200-block goals, the largest
stacks among our tests, in a problem with k = 3 colors. Such problems have
about 10'® states. Hundreds of agents act in sequence, each executing tens
of actions, with a different sequence depending on the instance. The system
is stable even though reward comes only at the end of such long sequences.
The learning runs lasted about a week on a 450 MHz Pentium 2 processor
running Linux, but the trained system solved new 200-block problems in a
few seconds.

Empirically we find Hayek3 evolves a system with the following strat-
egy. The population contains 1000 or more agents, each of which bids ac-
cording to a complex S-expression that can be -understood, using Maple,
to be effectively equal A - NumCorrect + B, where A and B are complex
S-expressions that vary across agents but evaluate, approximately, to con-
stants. The agents come in three recognizable types. A few, which we call
“cleaners,” unstack several blocks from stack 1, stacking them elsewhere,
and have a positive constant B. The vast majority (about 1000), which we call
“stackers,” have similar positive A values to each other, small or negative
B, and shuffle blocks around on stacks 2 and 3, and stack several blocks on
stack 1. “Closers” bid similarly to stackers but with a slightly more positive
B, and say Done.

At the beginning of each instance, blocks are stacked randomly. Thus,
stack 1 contains about n/3 blocks, and one of its lower blocks is incorrect. All
agents bid low since NumCorrect is small, and a cleaner whose B is positive
thus wins the auction and clears some blocks. This repeats for several auc-
tions until the incorrect blocks are cleared. Then a stacker typically wins the
next auction. Since there are hundreds of stackers, each exploring a different
stacking, usually at least one succeeds in adding correct blocks. Since bids
are proportional to NumCorrect, the stacker that most increases NumCorrect
wins the auction. This repeats until all blocks are correctly stacked on stack
1. Then a closer wins, either because of its higher B or because all other
agents act to decrease the number of blocks on stack 1 and thereby reduce
NumCorrect. The instance ends successfully when this.closer says Done. A
schematic of this procedure is shown in Figure 3.

This evolved strategy does not solve all instances. It can fail, for example,
when the next block to place is buried under 5 or 10 other blocks and no
agent can find a way to make progress. The next block needed is more
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likely to be buried deep for higher numbers of colors, so runs with k = 10
or k = 20 colors evolve more agents, up to 3000 in some experiments, and
hence run slower than runs with k = 3. Nonetheless, they follow a similar
learning curve and have learned to solve BW instances with up to 50 blocks
consistently.

Classical planning programs search a large space of possible actions.
By contrast, Hayek3 learns to search only a few hundred macroactions and
learns to break BW into a sequence of subgoals, long an open problem in the
planning community (Korf, 1987). Note that the macroactions are tuned to
the problem domain. For example, the macroaction of the cleaner involves
unstacking from 1 and stacking elsewhere, and the macroaction of each
stacker involves unstacking some block (or blocks) and placing it (or them)
on stack 1.

Standard RL approaches, as well as classifier systems, try to recognize
progress after a single action. Such an evaluation requires not only under-
standing NumCorrect, but also concepts such as “number of blocks on top
of the last correct block,” “next block needed,” and “number of blocks on
top of the next block needed.” It is too complicated to hope to learn in
one piece. Hayek3 instead succeeds by simultaneously learning macroac-
tions and evaluation. Its macroactions make sufficient progress that it can
be evaluated.

We also ran Hayek3 without the function NumCorrect. NumCorrect can
still be computed as

For(And(EQ(Look(0, h), Look(1, h)), Not(EQ(Look(0, h), Empty)))).

Hayek3 learned to approximate NumCorrect as For((EQ(Look(0, h),
Look(1, h)))) and, employing a similar strategy as above, solved problems
involving goal stacks of about 50 blocks (see Figure 4).

To improve For((EQ(Look(0, h), Look(1, h)))) to the full NumCorrect,
Hayek3 has to make a large jump at once. We have discovered that adding
anode R(a, b) to the language greatly improves the evolvability. R(a, b) sim-
ply returns the subexpression a with probability 1/2 and the subexpression
b with probability 1/2. In addition, we add mutations changing R(a, b) to
R(a, a) or R(b, b). The profitability of an S-expression containing an R node
interpolates between that of the two S-expressions, with the R node simply
replaced by each of its two arguments. This seems to smooth the fitness
landscape. If one of the two alternatives evolves to a useful expression, the
mutation allows it to be selected permanently.

With R added to the language, Hayek3 consistently succeeds in discover-
ing the exact expression for NumCorrect (see Figure 5). The runs then follow
a strategy identical to that with NumCorrect included as a primitive. Unfor-
tunately, the runs are slower by a factor of perhaps 100 because the single
built-in instruction NumCorrect becomes a complex For loop with an execu-
tion cost in the hundreds of slow instructions. Accordingly, after a week of
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Figure 5: Data from Hayek3 runs without NumCorrect or R nodes. For further
information, see the caption of Figure 2, which presents identically formatted
data for a different run.

computation, the system has learned to solve only 20-block problems consis-
tently. Nevertheless, this system is stably following a similar learning curve
to that with a primitive NumCorrect supplied, apparently learning only a
constant factor slower, which could be made up with a faster computer.
By contrast, standard strategies typically incur an exponentially increasing
cost for solving larger problems. The 50- and 20-block problems solved by
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Hayek3 without NumCorrect are each several times bigger than were solved
by competing methods with NumCorrect.

6 Metalearning

This section describes experiments with a more complex approach where
new agents are created by existing agents rather than as simple mutations
of existing agents. The point of this is metalearning. By assigning credit to
agents that create other good agents, we hope to learn how to create good
agents, and thus expedite the learning process greatly.

In this scheme there are two kinds of agents: solvers and creation agents.
An agent is a creation agent if the instruction at the root of its S-expression is
a modify or a create, otherwise it is a solver. Solvers behave like the agents
we discussed in previous sections.

Creation agents do not bid. Instead, in each auction, all the creators that
have wealth more than W;,;; (a fixed sum) are allowed to create. The creator
endows its new child with an initial wealth W;,;;. Creators are compen-
sated for creating profitable solvers, profitable creators, or agents modified
into profitable agents, as follows. In each instance, all agents pay one-tenth
their profit (if any) plus a small constant sum toward this compensation. For
agents created de novo, this payment goes to their creator (which then recur-
sively passes one-tenth on to its creator). For agents created by a “modify”
command, the payoff is split equally between their creator and the hold-
ers of intellectual property used to create them. Intellectual property rights
in an agent A are deemed shared equally by its creator and, recursively,
the holder of intellectual property rights in the agent (if any) modifed to
create A.

Creators that profit create more agents. Creators with no surviving sons
and wealth less than Wi,;; are removed. Creators are thus removed when
their wealth, plus that of all surviving descendants (which they are viewed
as “owning”), is less than Wy, so that creators, like solvers, are removed
whenever their net impact has been negative. Thus, there is evolutionary
pressure toward creators that are effective at creating profitable progeny.

The system is initiated with a single creation agent, called Seed, with
zero capital. Seed is written (by us) to create children that consist of random
code. These agents can create other agents if their code so indicates. As in
the simpler scheme described in section 2, Wiy;; is initiated as zero but raised
when an agent first earns money from the world. Creators endow their child
with Wiy capital.

In addition to the instruction set described in section 4, Creators employ
one “wildcard” # of -each type; four binding symbols $1,$2,$3,$4 of each
type, and two functions, create and modify.

Wildcards are treated as symbols of appropriate type when they appear
in creators. When a wildcard (or an unbound binding symbol) appears in
an S-expression of a solver, however, it is expanded into a random subtree.
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This is done similarly to the general approach in strongly typed genetic
programming (Montana, 1994), by growing from the top down. At each
node, one randomly chooses an expression of the correct type. Unless this
expression is a constant (i.e., takes zero arguments), we must iterate to the
next level, choosing random expressions for the children (subexpressions).
At each step, we multiplicatively decrease the probability of generating a
nonterminal symbol so that the expansion terminates with a small tree.”

Create takes one argument. Create creates a new agent whose expression
is simply identical to its argument.

The modify instruction has two arguments. Modify chooses a random
agent in the population® and attempts to match the expression in its first
argument with a subexpression of either the randomly chosen agent’s void
or integer expressions. If it fails to find a match, no agent is created. If it
succeeds, it creates a new agent identical to the matched one except that
modify’s second argument is substituted in place of the matched expression.
(SeeFigure 6.) A match must be exact, except that the arguments of the modify
expression may contain binding symbols and wildcards. Binding symbols
and wildcards can match arbitrary expressions of the appropriate type. The
difference between them is that such binding symbols in the first argument
are bound when it matches, and if the same binding symbol also occurs
in the second argument, the binding symbol is replaced by the expression
it was bound to. Wildcards match independently and do not bind. Every
tenth new agent, however created, is further mutated by having a randomly
chosen node or nodes replaced by random trees. This helps to ensure the
system will not get stuck in a configuration from which it cannot further
evolve.

Note that a modify operation may use code from a solver in the pop-
ulation to create another creator. This creator may then use code from a
second solver in creating another solver. In this way, it is possible for code
fragments from different agents to be combined.

When we ran on BW with creation agents, the system learned a collec-
tion of solvers employing a similar strategy to that described in section 5.
The behavior of creation agents was less clear. Some evolved to modify se-

5 Let Pexpand (d) be the probability of choosing a nonterminal at depth d. We set

Pexpand @d+1) = Pexpand (d) * C. We imposed limit conditions that Pexpand(depth =
0) = initial — expansion and Pexpand(average — depth) = 0.5. We chose (ad hoc, without
experimentation) an average depth of 3 and initial expansion of 0.9. The constant C is then
computed as: C = exp((log(0.5) — log(initial expansion))/average depth).

6 Note that there is no “selection” operator per se. Modify chooses a random
agent in the population. Selection occurs because unprofitable agents are removed
from the population. Modifiers can only sense which agent they modify in that they
must match a' pattern. We have not yet explored allowing modifiers other sensa-
tions and options, such as choosing to modify a wealthy agent or even one recently
active.
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Figure 6: (a) An integer expression. This is equivalent to ifl(look(0,0)=look(1,0))
and(look(3,0)=E)] then 0 else —3. It returns 0 if the bottom block of the 0 stack is
the same color as the bottom block of the 1 stack and there are no blocks on the
3 stack; else it returns —3. (b) The void expression of a creator, with modify at its
root. This can match with the expression of 2 by matching the and expressions,
binding $1 to eq(look(0,0),look(1,0)), and binding $2 to eq(E,look(3,0)). Substituting
the second argument of the modify (the subtree rooted by or) results in ¢. Finally
the wildcard # is expanded into a random tree, resulting in the expression of d.

quences of grabs and drops in ways that create useful stackers or cleaners.
Others were not transparent to us.

We ran control experiments to discover whether we were in fact able to
learn effective ways to create. We first compared a run with the creation
agents to a control in which creation agents attempted to create, but we
discarded the agent they created in favor of a mutated agent. Hayek3 with
creation agents performed 30% to 50% better after a week of execution than
this control. This indicates that the creation agents were learning useful
techniques. However, the pattern matching in the creation agents was ex-
pensive in time, and the system with creation agents performed no better
than the less complicated system reported in previous sections.

The conclusion of our experience with metalearning is thus mixed. With
our current techniques, metalearning is probably not a practical alternative.
It remains plausible that with a more powerful creation language and for yet
more complex problem domains, metalearning may reemerge as a useful
technique.
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7 Rubik’s Cube

We tried to learn a Hayek capable of unscrambling a randomly scrambled
Rubik’s cube. This section will assume some familiarity with Rubik’s cube,
For the uninitiated, a “cubie” is one of the 26 physical little cubes out of
which a Rubik’s cube is constructed. We call a “square” one face of a cubie.

Rubik’s cube is a complex problem. We experimented with a variety of
instruction sets, including several versions of numcorrect functions, several
presentation schemes of increasingly harder instances, and several reward
schemes. All of the versions we experimented with used creation and mod-
ify operators, as discussed in the previous section.

We used instruction sets with several types. For example, one set of runs
used six types: boolean, integer, coordinate, face, square, and void (i.e., ac-
tions). To describe a particular square, you could write s(i, x, y) where i is a
coordinate of type “face” specifying a face of the cube (e.g., the face with red
center), and x and y are coordinates taking values 0, 1, or 2, specifying the
location on the face. Having specified two squares s1 and s2, it would be pos-
sible to compare their color with the boolean-valued function EQCs(s1, s2),
which returns true if and only if they have the same color. We supplied an in-
struction Sum taking a boolean argument, which summed any constructed
boolean function over all cube faces. Hayek evolved evaluation functions,
which used sums to estimate the number of correct cubies. We realized,
however, that it was impossible for Hayek to express the physical concept

of a cubie in this language and so also experimented with a language based
around cubies, in which we supplied a function NumCorrect describing the

number of correct cubies.

We also worked with two different presentation schemes. In Presentation
Scheme 1, we initially presented cubes scrambled with one rotation, and as
Hayek learned to master cubes at a given level of scrambling, presented
cubes scrambled with increasing numbers of rotations. We then gave re-
ward only for completely unscrambling the cube. In Presentation Scheme 2,
we presented a completely scrambled cube—a cube scrambled with 100 ran-
dom rotations—and presented Hayek with reward proportional toits partial
progress at the time it said “done.” For this purpose we measured partial
progress according to three different metrics (in different runs): (1) the num-
ber of cubies it got right, (2) the number of cubies it got right according to a
fixed sequence (i.e., we numbered the cubies starting with the top face and
gave Hayek reward equal to one less than the first cubie in the sequence that
was wrong), and (3) the number of cube faces it got right (maximum 54).

We also worked with two different cube models. Cube model A allowed
three actions: F- a one-quarter move on the front face, and X and Y rotations
of the whole cube. Cube model B held the x-, y- and z-axes of the cube fixed,
but allowed a one-quarter move on each of six faces (L,R,F,B,T,D).

Some representative results are as follows. In a run using Presentation
Scheme 1, with Hayek given an instruction NumCorrect that we set equal
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to the total number of cubie faces correct relative to the center cubie face,
Hayek learned after a few days to descramble cubes scrambled with 20
quarter-moves 80% of the time and cubes scrambled with 30 quarter-moves
40% of the time.

In another experiment, using Presentation Scheme 2, with reward equal
to the total number of cubie faces it left correct, Hayek learned to improve
scrambled positions by about 20 cubie faces (the average number of cor-
rect cubie faces at the end minus the number of correct cubie faces at the
beginning was about 20).

In runs with Presentation Scheme 2, with Hayek given a reward for partial
success defined as the number of correct cubies in a particular (x, y, z) order,
stopping at the first incorrect cubie (and not counting the center cubies,
which are always correct by definition), Hayek learned to solve about 10
cubies or the whole first slice and 2 more cubies of the middle slice. This is
further than many humans get.

For each of the schemes we tried, Hayek made significant progress, but
after a few days of crunching, it would plateau and cease further improve-
ment. Actually, this describes as well the progress of many humans, because
as the cube becomes more solved, it becomes increasingly difficult to find
operators that will make progress without destroying the progress already
achieved. Such operators become increasingly long chunks of code, and
there are no evident incremental properties of the chunks, so it becomes
exponentially hard to find them unless some deep understanding can be
achieved.

Hayek’s strategy in these runs was fundamentally similar to its strat-
egy in BW: it produced a collection of 300 to 700 agents that took various
clever sequences of actions and bid an estimate of the value of the state they
reached. Typical instances involved a dozen or so auctions, the winner in
each making partial progress. Hayek made progress in all of the different
schemes, and it was not obvious that any scheme was particularly preferable
to the others.

It is unclear whether Hayek, at least using the S-expression represen-
tation here, can exploit the compact structure of the problem domain in
more powerful ways. It is worth noting, for example, that within the S-
expression languages used here, it does not seem that high-level concepts
such as “cubies” can be represented (never mind learned) to the extent that
we do not simply insert them by hand. However, it also seems likely there
is fundamentally less structure to be exploited in Rubik’s cube than in BW.
The smallest program a human could write that will solve Rubik’s cube is
much much larger than the smallest human-crafted program to solve BW,
while at the same time the state-space in BW is huge (in fact infinite) and the
state-space in Rubik is merely large. Indeed Rubik can be solved by brute
search (Korf, 1997).
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8 Rush Hour

This section describes experiments applying Hayek to the commercially
available game Rush Hour. The game comes with 40 different puzzle in-
stances. Figure 7 shows instance 35. Each instance consists of several cars
placed on a 6 x 6 grid. Cars are of width 1 and come in two different lengths,
2 or 3. A car can only be moved forward or backward, not turned. The goal
of the game is to move the cross-marked car out the exit. The game was
honored for excellence by Mensa, and humans find the problems challeng-
ing. Moreover the game is provably hard. Flake and Baum (1999) show that
the generalization to an n x n grid is P-space complete, equivalent to a re-
versable Turing machine, and that solution may require a number of moves
exponential in 7.

We trained Hayek, and also a genetic program, by presenting problems of
gradually increasing difficulty, including easy training problems generated
from the original 40 by randomly removing cars. Rush Hour presents new
challenges, particularly in the selection of a representation language for the
agents, since agents need flexibility in specifying actions and must be able
naturally to express relations such as “the car that is blocking this car.” The
version of the program discussed here used integer-type S-expressions and
creation operators. We call this Hayek3.1

Agents were limited to expressions of up to 20, 000 nodes. The lan-
guage consists of constants (0,1,2), arithmetic functions (add, subtract, mul-
tiply), if-then-else, and some additional functions, as follows. There is a
pointer that is initiated pointing to the marked car. The function PUSH
moves the car pointer to either the car blocking forward motion of the
pointed car or the car blocking its backward motion, depending on whether
its argument is zero or not. (If there is no such blocking car—motion in

Figure 7: Rush hour problem 35.
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Table 1: Ordering of the Tasks by Random Moves.

Order 1 2 3 4 5 6 7 8
Task 9 13 28 14 23 10 7 22
Moves| 1394] 3181 5909| 6063| 6069 6854; 7487 8931
Order 9 10 11 12 13 14 15 16
Task 2 12 4 6 20 27 16 1
Moves| 9919 10,204| 11,718] 13,134| 13,532| 14,281 | 14,451| 20,916
Order 17 18 19 20 21 22 23 24
Task 21 25 30 17 32 3 5 38
Moves| 21,968 22,348| 23,255 24,336] 25,813| 26,077| 27,572| 27,828
Order 25 26 27 28 29 30 31 32
Task 37 11 15 19 29 8 18 26
Moves| 28,127 36,892 41,421| 57,901 58,439| 70,804! 79,533| 87,473
Order 33 34 35 36 37 38 39 40
Task 24 40 39 34 31 33 36 35
Moves [ 100,016 [ 111,243 (123,884 | 157,495 160,507 | 171,687 | 184,341 | 209,923

Notes: Task is the number supplied by the manufacturer. Moves is the number
of moves taken to solve the problem using random search. Problems printed in
boldface were solved by Hayek3.1.

that direction is blocked only by a wall or, alternatively, it is possible to
drive off the board—then PUSH fails and takes no action.) As a side ef-
fect, the previously pointed car is pushed onto a car stack. Cars can be
popped back, giving our language a weak backtracking ability. Function
PUSH2 behaves like PUSH, except that it moves the car pointer to the
second blocking car (the car that would block next if the first blocking
car were removed). Function MOVE moves the pointed car forward or
backward. Each of these functions returns 1 if they succeed and 0 if they
fail.

Creators employ additional statements: MODIFY, a “wildcard” *, and
four binding symbols $1,$2,$3,$4.

To get a rough estimate of the difficulty of the problems, we applied
random search to them. Table 1 shows the problems ordered by the number
of moves used to solve them by a random search algorithm. We call the
ranking according to Table 1 “order no.” and the number supplied by the
manufacturer “task no.”

For each task we allowed a total number of car moves bounded by 100 +
#random-moves /100 where #random-moves was the average number of moves
taken to solve that particular instance random search. In each instance we
allowed 10 + #random-moves /1000 auctions. If the move limit or the auction
limit is exceeded, the instance ends with no reward.

Hayek3.1 was trained using random problems drawn from a distribution
crafted to present easier problems first, as follows. We first select a problem
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A1198

A1052 A1011 A1006 A1198

Figure 8: Sequence of positions solving problem 20.

randomly and uniformly from the 40 supplied with the commercial game.
The instance is then subsampled by removing cars as follows. For each prob-
lem number, we maintain a count of the fraction of instances of that problem
number solved out of the last 100 times this instance was presented.” We
remove a number of cars so that the fraction of cars remaining, called p, is
equal to the fraction of the last 100 problems of that number solved (up to
round-off, since we must present an integer number of cars). This allows
Hayek3.1 to learn from simpler examples, and as it learns on each example,
we gradually ramp up p until we are presenting the full example. The re-
ward R given for solving an instance was R = (orderno.)e4%7—406) Thys
more reward was given for harder instances, and reward is exponentially
increased for solving instances with no subsampling. The coefficients in the
exponent were determined by fitting e®+? to be equal to 0.01 for p = 0 and
10forp=1. :

After training, Hayek contains a collection of hundreds of agents that
collaborate to solve some of the problems. Figure 8 shows a sequence of
agents acting to solve task no. 20 (a.k.a. order no. 13). Table 2 shows the
sequence of bids and number of actions taken. Notice that the agents rec-
ognize as they close on a solution and bid higher. Note that the final bid
is quite accurate (although in this case a slight overbid). (This agent was
profiting on other instances, but lost money on this one.) In instances where
the problem is ultimately not solved, bids stay low, as agents realize they
are not close to solution. The ability of agents to recognize distance from the
solution is critical to Hayek’s performance. In each of a series of auctions, it
chooses the agent that in its own estimation makes the most progress, even-
tually converging on a solution. This breaks down a lengthy search into a
sequence of operations, effectively achieving subgoals.

Figures 9 and 10 show the time evolution of statistics for this typical
Hayek3.1 run. The data points are a sample every 10,000 instances of the
average over 100 instances. Figure 9 shows the winning bid in the first

7 Actually, the bins record data from runs only where a new agent did not win the
bidding and immediately die. Such failures are deemed irrelevant for the purpose of
determining the distribution, as this dead agent is no longer part of Hayek3.1 and thus
does not affect future performance.
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Figure 9: Bid as discriminator between positions.

auction, the winning bid in the last auction, and the final payoff and the the
last bid accurately estimates payoff and the first bid is lower.

Figure 10a shows the reward earned and Figure 10b the linearly weighted
sum of fully solved problems

In each run, Hayek has learned to solve a number of unsubsampled prob-
lems. A typical run creates a collection of agents that is solving about five
unsubsampled problems at a time. The best run solved nine unsubsampled
problems simultaneously. In one run or another, Hayek has solved problems
1,2,3,4,5,6,7,8,9,10,12, 13, 14, 20, and 21 according to task number (i.e.,
the manufacturer’s ordering). When Hayek solves an unsubsampled prob-
lem, it generally involves a collaboration of two to five agents. Subsampled
problems are much easier, of course, and are often solved by a single agent.

Table 2: Auctions for a Solution of Problem 20.

Auction # Winning Agent Winning Bid Reward Actions

0 al1052 6.749 0 14
1 al011 7.369 0 15
2 al006 9.208 0 20
3 all98 13.741 0 22
4 all98 13.853 13 35
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Figure 10: (A) Reward per instance. Horizontal axis times 100 is instances pre-
sented to Hayek. Horizontal axis times 10 is GP generations. The first point
shown is after 100 GP generations. GP at generation 1 scores about 2 on this
scale and learns rapidly at first. Each GP generation involves presentation of
100 instances of each type (4000 instances total) to each program in the popu-
lation. The scales were chosen to agree roughly in wall clock time. GP shows
reward per instance of the best program in the population. (B) Score as linearly
weighted sum of fully solved instances.
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We have tried several approaches to getting a genetic program to solve
these problems, varying the instance presentation scheme and other pa-
rameters. In each case, our GP used the same instruction set as Hayek3.1.
The runs shown used a population size of 100 and an instance presentation
scheme as similar to that Hayek saw as possible.® As the graphs show, al-
though GP learns to solve subsampled problems, and thus to earn reward,
it has never learned to solve any of the original problem set. It reaches a
plateau where it is solving only subsampled problems after fewer than 100
generations. Even when trained solely on Problem 1, we have not been able

to learn a program solving the full problem. Possibly some better scheme
for ramping up problem difficulty would improve performance.

9 Discussion

We have created an artificial economy that assigns credit to useful agents.
When we enforce property rights to everything and conservation of money,
and when agents are rational in the sense that they accept transactions only
on which they profit, new agents can enter if and only if they improve
system performance. Agents are initiated far from rational, but we hoped
exploitation of irrational agents would lead to the evolution of rational
agents and a smoothly functioning system that divides and conquers hard
problems. Conversely, we argued that when property rights or conservation
of money are not enforced, agents will be able to profit at the expense of the
system. Under those conditions, a local optimum of the system will not be
evolutionarily stable, and there is no reason to expect evolution to produce
a useful system.

We have now performed experiments on BW using three different rep-
resentation languages for the agents (one in Baum, 1996; one here; and a
very different one reported in Baum & Durdanovic, 2000, which adopts a
radically different solution strategy), and also with and without creation
agents. We have performed experiments on Rubik’s cube using two dif-
ferent representation languages (here and in Baum & Durdanovic, 2000).
We have reported experiments here on Rush Hour. In each of these cases,
we have stably evolved systems with agents collaborating to solve hard
problems. In the BW examples in particular, we are evolving systems with
stable sequences of agents hundreds long, receiving reward only at the end.
This contrasts with classifier systems, which are rarely able to achieve sta-
ble chains more than a few agents long (Wilson & Goldberg, 1989). Our
dynamics have also been largely robust to parameter variations.

8 For a GP, there is a question as to how to compute the fraction of problems of type i
solved in recent generations. The runs shown used the average over the last 10 generations
of the fraction of problems of that type solved by the upper half scoring members of the
population, which worked as well as any of the other approaches we tried.
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All of this dynamic stability vanishes when conservation of money is
broken. If the tax rate is raised too high, so that money leaks out, the system
dies. If, on the other hand, money is nonconserved in a positive fashion,
for example by introducing new agents with externally supplied money
(Baum, 1996), or in other ways as has happened more than once due to bugs
in the code, the system immediately learns to exploit the ability to create
money, and cooperation in solving problems from the world disappears.
If property rights are broken, for example by choosing the winner of the
auction probabilistically, as sometimes suggested in the classifier system
literature (Wilson, 1994), again cooperation immediately breaks and the
system can no longer function.

We believe that all of this provides powerful evidence for our economic
picture. Aswe have discussed elsewhere (Baum, 1998), we believe that many
of the dynamic phenomena in natural complex systems such as ecologies,
as well as many problems with other learning programs, can be profitably
viewed as manifestations of violations of property rights or conservation
of money. We also propose that Hayek is of interest as an artificial life.
In particular, our experiments (particularly with metalearning) answer the
open question (Thearling & Ray, 1997) of how to get a collection of self-
reproducing programs to cooperate like a multicellular being in solving
problems of interacting with an external world.

We further conjecture that progress in reinforcement learning in ultra-
complex environments requires learning to exploit the compact structure

of the problem. This means that learning in complex environments will es-
sentially involve automatic programming. We have learned to exploit the

structure from small problems and generalized the knowledge to produce
programs solving large problems.

The problem with automatic programming methods, including ours, is
that the space of programs is enormous and has a very bumpy fitness land-
scape, making it inherently difficult to search. Our proposal to divide and
conquer automatically using an economy helps, but the problem remains.
This raises the key question of what language will be evolvable.

We have made progress using S-expressions, which have previously been
used in genetic programming (Koza, 1992) precisely because, intuitively,
their structure makes mutations more likely to create semantically mean-
ingful expressions. Typing (Montana, 1994) has also been critical here in
cutting down the search space.

We found that using a certain generic random node smoothed the fitness
landscape in BW and increased the evolvability of complex expressions. We
found that Hayek was able to solve problems so long as the longest chunk
of code it needed as a component was not too long to find. Hayek has been
able to create very complex programs made of relatively small chunks of
code.

Nonetheless, our ability to evolve complex code has been limited. For
example, we were not able to progress on Rubik’s cube because after a
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point, the next chunk of code needed was too long to evolve. Metalearning
was proposed as a possible solution to this problem, and our economy was
able to support some degree of metalearning, but to date we have not been
able to extend the overall abilities of Hayek using metalearning.

A related language question is the power of the language. We believe
the S-expression language used here is not computationally universal, and
accordingly Hayek has not been able to evolve a program solving, for exam-
ple, arbitrary BW problems. By contrast, we report elsewhere (Baum & Dur-
danovic, 2000) a Hayek employing postproduction system language, which
is computationally universal and succeeds in evolving a simple universal
solver for BW. However, this system also founders in the search problem
for Rubik’s cube.

More generally, for truly complex problems, one might imagine some-
how evolving an information economy, with agents buying and selling in-
formation from one another. We have not solved the problem of how to
make this work. Also, it would be interesting to have a single, universal
language able to address many problem domains and see if it is possible
to transfer knowledge from one domain (e.g., BW) to another (e.g., Rubik’s
cube.)

Appendix A: Other Methods Applied to Blocks World

For comparison, we tested TD()A) using a neural net evaluator. (For a de-
scription of the method, see Sutton & Barto, 1998, or Tesauro, 1995.) We
tested several values of A, several discount rates,® and several neural net
topologies. We report results on only three color problems. As will be evi-
dent, 10 color problems would have further stressed the encoding requiring
much larger nets if a unary coding were desired. We also report results only
on an easier version of our BW where, rather than requiring the learner to
recognize when it is done, we externally supply that information. We con-
sidered a single move to be a grab-and-drop combination, which improved
performance.

Neural nets have a fixed input dimension, so it is unclear how to encode
a problem like BW with varying size. An evaluator that does not see the
whole space, however, will cause aliasing, turning a Markov problem into
a non-Markovian one causing great difficulties. (For a discussion of such
problems, see Whitehead & Ballard, 1991.) After some experimentation, we
used neural nets with inputs for each of the top five blocks in each stack. We
tried both unary and analog encoding for the block color. In unary encoding,
each block was represented by three inputs to the net, with one having value

9 Adiscount rate of 1 (no discounting), as used by Tesauro in his backgammon program
(Tesauro, 1995), is the most logical in an episodic presentation scheme like ours. However,
empirically discounted rates of about 0.9 stabilized learning in some runs.
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1 and the others value 0 to indicate which color the block had and all value
0 indicating no such block (because the stack was not five blocks high). In
analog encoding, the situation was indicated by a single integer input value
from 0 to 3. We ran experiments both with and without NumCorrect supplied
as an input.

We presented increasingly larger instances as the system learned, as in
our experiments with Hayek3. However, to keep learning stable, we found
we had to slow the increase in instance size greatly. We presented instances
chosen uniformly over the sizes from 1 up to ! + 1, where [ was the largest
size being solved 80% of the time.

In experiments without NumCorrect, using a 61-20-1 feedforward net,
with 60 inputs giving unary encoding of the colors of the top five blocks in
each of four stacks and one “on” input to realize a threshold, we were able
to learn stably and solve problems with n = 4 after several days of learning.
No other system without NumCorrect supplied did better.

In experiments with NumCorrect supplied as an input, the system learned
fairly rapidly to solve problems up to about n = 8. Once it got up to this
size, its learning would destabilize and it would crash to much worse per-
formance. Then it would rapidly learn again. The system was never able to
learn beyond n = 8.

These results are perhaps disappointing but not surprising. While neu-
ral nets are good at associative memory and approximating some func-
tions, there is no evidence to indicate that they are suited to solving sym-

bolic search problems or inducing programs as necessary for solving BW.
Tesauro’s success with backgammon, for example, is attributable to the fact

that a linear function provides a reasonable evaluator for backgammon
(Tesauro, 1995).

We also extensively tested genetic programming. Results are reported in
Baum and Durdanovic (1999). Since this publication, we have done further
extensive tests using population sizes up to 1000, various selection meth-
ods, and various combinations of instruction sets, including NumCorrect.
As discussed in Baum and Durdanovic (1999), our results were of some
independent interest as bearing on the hotly debated question within the
genetic programming community, whether genetic programming benefits
from crossover, or would be just as effective using the “headless chicken
macromutation” where, rather than swapping random subtrees between
trees in the population, random subtrees are simply replaced with new
random subtrees. A recent textbook (Banzhaf, Nordin, Keller, & Francone,
1998) reports several studies showing these methods essentially equiva-
lent and none showing a big advantage for crossover. BW is thus in some
sense an unusually suitable problem for genetic programming, as our BW
results represent the only published comparison of which we are aware
showing crossover much superior to headless chicken. Nonetheless, ge-
netic programming had only limited success on this problem. Run with a
learner having to say done, our best genetic programming run solved 70%
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of size 3 and 30% of size 4. Run with done externally supplied, GP produced
at best S-expressions capable of solving 80% of size 4 problems and 30% of
size 5. These results are arguably directly comparable to our Hayek results
as both GP and Hayek used the same language for their S-expressions.

We also extensively tested hill-climbing approaches using an assembler-
like language. Results, reported in Baum and Durdanovic (1999), were that
only about four block instances could be solved.

We also tested a system that searched for an evaluator as the maximum .
of a set of S-expressions in Hayek’s language. This system differed from
Hayek3 in that we did not learn agents capable of sequences of actions.
Rather, as in TD()), we considered all pairs of a grab followed by a drop,
evaluated the resulting state, and chose the move leading to the highest
evaluated state. We modified our evaluator better to estimate the value of
the next state reached. There is no standard method for training complex
functional expressions as evaluators. We tried to approximate the evalu-
ation from below, by using the maximum of a number of S-expressions,
and removing an S-expression from our population when it overestimated
the evaluation, replacing it with another S-expression, generated either ran-
domly or as a mutation of an existing S-expression. This method was also
ineffective, solving only single-digit BW problems. We believe that it is crit-
ical to learn macroactions, as it will be very difficult to learn any evaluator
capable of showing progress after only a single grab-drop pair.

Baum (1999) discusses several other ineffective approaches we experi-
mented with.

Appendix B: Pseudocode for Hayek3

hayek () {
for (;;) {
task.new() // create an instance
solve() // try to solve it

payment () // perform money transactions
tax() // collect taxes
}
}
solve() {

record.clean()

for ( Agent A = Solvers.begin(); A < Solvers.end(); A++ ) {
A.o0ld wealth = A.wealth

}

while ( task.state() == RUN ) {
create() // creates new agents
auction() // performs an auction

3
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create() {
for ( Agent A = Creators.begin(); A < Creators.end(); A++)
if ( A.wealth > InitialWealth() ) A.create()

auction() {
best'bid = -1
best ‘state = task
best "agent = nil
for ( Agent A = Solvers.begin(); A < Solvers.end(); A++) {
if ( A.wealth > best "'bid ) {
A.move{ task, state );
bid = min( A.eval( state ), A.wealth };
if ( bid > best'bid ) {(
best 'bid = bid;
best state = state;
best "agent = A;
}
}
}
if ( best agent !=nil ) { // the winner takes the world into
// a new state
task = best ‘state;
update’ agent ‘wealth( best agent, best bid)
record.add ( best "agent, best 'bid, task.reward() )
}
}

update " agent ‘'wealth( agent, bid ) {
best "agent .wealth ~= best 'bid
if ( record.last =nil ) {
pay to 'world += best 'bid
else {
record.last .wealth += best 'bid

payment () {
for ( AuctionRecordR = record.begin() ; R<record.end(); R++ ) {

delta = R.agent.wealth - R.agent.old welth

if (delta>0) {
R.agent.wealth += 0.9 * delta
copyright ‘payment ( A, 0.1 * delta )

} else {
R.agent.wealth += delta
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}
}
}

copyright ‘payment ( Agent A, Money M ) {
if ( A.father == nil ) {
A.wealth += M
} else {
A.father += 0.5 * M
copyright ‘payment ( A.father, 0.5 * M)
}
}

tax() {

for ( Agent A = Agents.begin(); A < Agents.end(); A++ ) {
A.wealth -= A.executed instructions * 1E-6
A.executed instructions = 0
if ( A.wealth < A.initial wealth AND A.no living sons == 0 ) {

Agents.remove({ A )

}

-}

}

Appendix C: Parameters

There are a number of constants in this system chosen in an ad hoc way,
such as the one-tenth profit sharing, the resource-tax, Wiy, and, in versions
with creation agents, the equal split between creators and IP holders. These
parameters were not subject to evolution within the system. We attempted
only a small amount of empirical tuning. Within reasonable bands in each
parameter, the behavior of the system was not found empirically to be qual-
itatively sensitive to these choices, and we did not establish quantitative
differences. Runs of the system require a day or more to learn, and there
is considerable random variation from run to run, so empirical tuning is
quite difficult unless a qualitatively different behavior can be observed. We
discuss our choices of these values in turn.

Since creators are intuitively considered to own their children, in prin-
ciple the creator might be allowed to set the profit-sharing fraction as it
pleases, say by writing appropriate code in the child, and indeed this was
done inan earlier version (Baum & Durdanovic, 1999). For the work reported
here, just for simplicity, we fixed the profit-sharing fraction at one-tenth. We
also experimented with one-half. Our subjective impression was that pass-
ing one-half of the profit passed too much money to the creation agents,
causing an increase in creation, which slowed the system. However, the
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increase, if any, was not huge, and we have no statistically significant claim
that one-tenth is better than one-half.

Wiy was initially set equal to zero. Once there was money in the system
because instances were solved, Wiy;; was simply set equal to the maximum
payoff possible in the run. Thus, if we were going to run up to a maximum
instance size of 200, we set Wiy;; to 200. This ensured that the created agent
would have enough money to make any possible rational bid. If the newly
created agent’s money ever went below its initial capital, it was removed,
with its remaining money transferred back to its creator. Thus a creator that
invested 200 in a child would not lose the full 200 if the child proved to be
unprofitable. We did not experiment with any other choices.

We experimented with several values of the resource tax. Resource tax
above 10~ per instruction sucked too much money out of the system, which
then could not get started. We did not establish a difference between resource
taxes of 10~°, 1076, and 107, although subjectively runs of 10~7 ran slower.
Our best runs used simply 1075,

The runs here with creation agents used an equal split of the passed
profit between creators and IP holders, but we also experimented with not
using IP at all.1 The equal split of passed profit with IP holders subjectively
worked marginally better, but again we do not claim to have established a
statistically significant difference.

A more principled approach to all of these choices is a subject for future
work. Fixing these parameters by fiat has the feel of fixing prices, which
typically can cause inefficiencies in economies.
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