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We consider an implementation problem faced by a planner who manages a roadway network.
The problem entails both hidden information and hidden actions. We solve the planner’s problem by
introducing a new class of mechanisms and a new notion of implementation. The mechanisms, called
price schemes, attach transfers to the available routes; they do not involve direct revelation. The method
of implementation is evolutionary, requiring that players who follow any reasonable myopic adjustment
process eventually learn to behave as the planner desires. We show that efficient behaviour can be
guaranteed using simple, decentralized price schemes.

1. INTRODUCTION

Roadway congestion is a source of enormous economic costs.1 In principle, many of these
costs can be prevented, as they result from socially inefficient choices by individual drivers.
For example, it is socially optimal for commuters who only receive small benefits from driving
to work not to drive at all, as these benefits are outweighed by the delays they create for
others. However, since these drivers ignore the externalities they create, they may opt to drive
anyway. It is also socially desirable to limit traffic on narrow, easily congested roads: the
externalities created by drivers on these roads are more severe than those which develop on wider
expressways. But drivers typically will choose to drive on narrow roads if they offer shorter travel
times. Such behaviour creates needlessly high congestion levels.

A number of regions have considered alleviating roadway congestion by introducing
congestion pricing. The pioneer in this regard is Singapore, which introduced the first congestion
pricing scheme in 1975.2 Originally, this scheme set a toll for entering the central city during peak
driving hours; the scheme was administered using window stickers which were checked by police
at certain checkpoints. In 1998, Singapore began to administer its scheme using an electronic
collection system. Under this system, gantries are stationed over roadways at the points where
tolls are charged. The gantries send signals to receivers installed within individual vehicles; tolls
are deducted from the driver’s debit card. This system is designed to generate an error rate of less
than 1 in 100,000 even when traffic is heavy and moving at speeds of 120 km h−1, so that the toll
collection process itself is not a source of delay.3 Moreover, electronic tolling makes it possible

1. Schrank and Lomax (1999) estimate that in 1997, roadway congestion in the ten most congested U.S. cities
wasted 2·6 billion hours of drivers’ time, yielding a dollar cost of $39·3 billion. In Los Angeles alone, the corresponding
figures were 739 million hours and $10·8 billion, respectively.

2. More recently, France and California have begun to subject certain specific routes to congestion pricing. The
Norwegian cities of Bergen, Oslo and Trondheim possess toll rings around their city centres; while originally introduced
to finance infrastructure improvements, congestion management has become a secondary goal. Many cities and regions
have undertaken comprehensive studies of the impact of congestion pricing, most notably Hong Kong, Cambridge (U.K.),
Stockholm, the Randstad (Holland), and London. For further details on plans for and introductions of congestion pricing
schemes, see Gomez-Ibañez and Small (1994),The Economist(1997), and Small and Gomez-Ibañez (1998).

3. For more on congestion pricing in Singapore and on electronic tolling technologies, see Gomez-Ibañez and
Small (1994), Phang and Toh (1997) and Soo (1998).
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to place charges on specific road segments, and for charges to be varied with current congestion
levels. These features bring substantial efficiency gains within reach.

In this paper, we view the alleviation of network congestion as an implementation problem.
As is usual in such problems, we suppose that the planner must contend with hidden information:
he does not know individual drivers’ tolerances for delay. We also suppose that the planner faces
a hidden action problem: he only has a limited ability to observe drivers’ behaviour. As we shall
see, the hidden actions can render dominant strategy implementation impossible in this setting.

We solve the planner’s problem by introducing a new class of mechanisms and a new notion
of implementation. The mechanisms, called price schemes, attach transfers to the available
routes; they do not involve direct revelation. The notion of implementation is evolutionary,
requiring that players who follow any reasonable myopic adjustment process learn to behave
efficiently. We show that there are simple, decentralized price schemes which ensure efficient
play while respecting the planner’s limited knowledge of players’ preferences and behaviour.

We can describe the planner’s problem in the following way. A collection of towns is
connected by a network of streets. Commuters in these towns must travel from their homes to
their offices. The time such a journey requires is the sum of the delays on each street the driver
takes; the delay on each street depends on the number of drivers on that street. Different drivers
will tolerate different levels of delay before preferring to stay home. The planner would like to
ensure that the right drivers decide to commute, and that those who do commute use the network
in the most efficient manner possible.

We assume that the planner is faced with two constraints. First, he does not know players’
valuations for completing their commutes. Were this the planner’s only constraint, he could solve
his problem by applying a standard revelation mechanism, namely the Vickrey–Clarke–Groves
(VCG) mechanism (Vickrey (1961), Clarke (1971), Groves (1973)). Under this mechanism, each
player reports a valuation to the planner, who for each profile of reports specifies an allocation
of drivers over routes and the transfers paid by each player. The allocation is chosen to be
efficient conditional on reports being truthful, while the transfers are chosen to make truth-telling
a dominant strategy. Thus, were hidden information is the planner’s only constraint, he could
implement efficient behaviour in dominant strategies.

In employing the VCG mechanism, one implicitly assumes that the distribution of drivers
over routes specified by the mechanism will be followed by the players. This assumption might
be justified if the planner were able to observe each driver’s choice, as compliance could then
be guaranteed using a forcing contract. However, when the number of drivers is large, it seems
unrealistic to assume that the planner can perfectly observe their choices. If he cannot, the players
may prefer to ignore his recommendation. For example, a player told to take a roundabout route
to work may instead take a shorter route, confounding the planner’s attempt to ensure efficient
behaviour.

Rather than assume that the planner has perfect knowledge of behaviour, it seems more
reasonable to suppose that behaviour isanonymous: only aggregate behaviour can be observed,
and transfers can depend on this and on action (i.e. route) choices, not on players’ names.4 To
study implementation when behaviour is anonymous, we must include the players’ route choices
explicitly in the mechanism design problem, and must restrict the planner to mechanisms which
respect the players’ anonymity. The simplest such mechanisms areprice schemes. Under these
mechanisms, each player chooses a route to work or chooses to stay home; the planner attaches

4. The hidden action problem described here, which is due to a coarse information structure, differs from the
usual one in information economics, in which the principal receives a noisy signal concerning the agents’ behaviour.
Myerson (1982) proves a (Bayesian equilibrium) revelation principle for mechanism design problems with both hidden
information and hidden actions. His paper focuses on incentive compatibility, and does not address the problem of
multiple equilibria.
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prices to each of these actions which may depend on the players’ aggregate behaviour, but which
may not depend on the name of the player making the choice.

Unfortunately, when behaviour is anonymous, dominant strategy implementation may be
impossible. To see this most easily, suppose that all players attach the same value to getting
to work. Also assume the planner chooses to employ a price scheme.5 Suppose that under this
scheme a certain driver judges a particular route to be a dominant strategy: regardless of what
the others do, the driver prefers to drive on this route. Absent idiosyncratic preferences between
the streets themselves, it follows that all players who opt to drive will choose this same route.
Therefore, any social choice function which sometimes requires different players to take different
routes cannot be implemented in dominant strategies.

In settings where dominant strategy implementation is known to be impossible,
implementation using Nash equilibrium or one of its refinements is often considered next. This
approach implicitly assumes that players will follow an equilibrium of the mechanism which
the planner provides. In order to justify the equilibrium assumption via a rationalistic approach,
one needs players with considerable knowledge of their opponents’ intentions and reasoning
abilities.6 However, when there are large numbers of players, as is the case in the network
planner’s problem, these assumptions seem especially strong, and so predictions which rely on
them may not have much force.

In order to find a middle ground between dominant strategy and Nash implementation,
we consider a notion of implementation based on evolutionary game theory. In particular, we
suppose that once a price scheme is in place, the players adjust their behaviour over time in
response to current delays and to the incentives which the price scheme provides. The adjustment
process itself is described by a differential equation. Rather than specify a particular functional
form for this equation (e.g.the replicator dynamic), we instead ask that it be a member of a broad
class of admissible dynamics. The main restriction defining this class is quite weak, requiring
only that strategies’ growth rates be positively correlated with their payoffs.

The planner would like to ensure that regardless of their types, the players learn to follow
the efficient driving pattern. A price schemeglobally implementsthe efficient social choice
function if for every possible type profile, the efficient driving pattern is globally stable under
all admissible dynamics.7

We show that the planner can solve his implementation problem by selecting a mechanism
from a class whose members we callvariable price schemes.8 The schemes we consider are
separable, in the sense that the price of any route can be decomposed into prices on each
individual street in the route, where the price of each street only depends on the number of
drivers on that street. Separability implies that the variable price schemes can be imposed in a
decentralized fashion.

The collection of variable price schemes is indexed by a parameter called theelasticity
threshold, which specifies the lowest level of sensitivity to congestion which a street must exhibit
to be assigned a positive price. When demand to use the network is inelastic, the elasticity
threshold determines the revenues generated by the tolling scheme. When demand is elastic,

5. An analogous argument can be applied to other mechanisms which respect the players’ anonymity.
6. See, for example, Aumann and Brandenburger (1995).
7. As we shall see, global implementation implies implementation in Nash equilibrium. However, the former

notion of implementation is considerably stronger, as it requires not only that there be a unique Nash equilibrium
outcome, but also that this outcome be globally stable under any reasonable behaviour adjustment process.

8. The word “variable” refers to the fact that the prices charged are not set in advance, but rather are functions of
current network utilization.
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different thresholds generate efficiency under different welfare measures, which vary the relative
weights assigned to costs and benefits in assessing a driver allocation.9

Variable price schemes can be viewed as generalizations of marginal cost pricing. “Marginal
cost pricing” usually refers to an equilibrium phenomenon: that by making agents pay for the
externalities they create in equilibrium, one can guarantee the efficiency of equilibrium play. In
contrast, variable price schemes set prices appropriately both in and out of equilibrium. By doing
so, a planner can render efficient behaviour the unique equilibrium and the global attractor of any
reasonable adjustment process. More importantly, he can do so without knowing anything about
players’ types, and hence without being able to predict what the equilibrium will turn out to be.

By imposing a variable price scheme and noting where behaviour settles, the planner can
learn the efficient allocation of drivers over roads. After determining this allocation, the planner
can maintain efficient behaviour using afixed price scheme, which alwayscharges the tolls
imposed under some variable price scheme at the efficient allocation. This simple scheme ensures
that the efficient allocation is globally stable, so that play will return to this allocation after any
shock to behaviour.

Our analysis is based on results on potential games developed in Sandholm (2001). A
potential game is a game which admits a potential function: a real valued function defined on
the space of strategy distributions which any reasonable evolutionary process must ascend.10 By
executing a variable price scheme, the social planner ensures that regardless of the realization of
demand, the players face a potential game whose potential function is proportional to the social
welfare measure. Because of this, we can establish that under the variable price schemes, players
always learn to make socially optimal decisions about both whether and how to play the game.

Recent papers by Cabrales (1999), Cabrales and Ponti (2000) and Ponti (2000) use
techniques from evolutionary game theory to evaluate well-known mechanisms from the
implementation literature, obtaining mixed results.11 Cabrales (1999) shows that a modified
version of the Nash implementation mechanism of Repullo (1987) has strong evolutionary
stability properties. He also establishes an instability result for Abreu and Matsushima’s
(1994) mechanism, which relies on the iterated elimination of weakly dominated strategies.
Similarly, Cabrales and Ponti (2000) show that Sjöstr̈om’s (1994) mechanism can possess weakly
dominated Nash equilibria which do not yield the desired outcome but which are limit points of
payoff monotone evolutionary dynamics. Ponti (2000) proves a related result for Glazer and Ma’s
(1989) solution to King Solomon’s dilemma, and provides an alternative mechanism with better
evolutionary properties.

The papers described above all concern implementation in settings with hidden information
but without hidden actions, in which well-known mechanisms can be employed. In contrast,
to address the network planner’s problem we must devise new mechanisms which explicitly

9. If equal weights are chosen, the welfare measure is simply consumer surplus. However, other weights are
sometimes desirable. For example, driving causes pollution, an externality which is not directly accounted for in our
model. If the planner values clean air, he may want to attach extra importance to lowering aggregate driving time when
assessing the welfare of a driving pattern.

10. An early application of potential functions can be found in Beckmannet al. (1956), who use a potential
function to characterize equilibria in an elastic demand traffic model. Rosenthal (1973) introduces congestion games
with finite numbers of players and uses a potential function argument to establish the existence of a pure strategy
equilibrium. Building on the latter paper, Monderer and Shapley (1996) define finite player potential games. They show
that maximizers of potential are both the only equilibria of these games and the only possible limits of better reply
strategy adjustment processes. In Sandholm (2001), we define infinite player potential games and prove related results
characterizing equilibrium and evolution; some of these results are presented below. We also establish conditions under
which equilibria are efficient, and characterize our infinite player potential games as the limits of Monderer and Shapley’s
(1996) finite player games.

11. Other papers which address the dynamics of implementation include Muench and Walker (1983), Walker
(1984), Jordan (1986), de Trenqualye (1988, 1989) and Vega-Redondo (1989); see Cabrales (1999) for a discussion.
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allow for the players’ anonymous choices. We exhibit pricing mechanisms which possess strong
evolutionary stability properties, and which seem possible to administer using current tolling
methods.

We open our analysis by studying price schemes for network congestion games with
inelastic demand. Section 2 introduces congestion games, potential games, and admissible
evolutionary dynamics. Section 3 describes the planner’s problem and defines our evolutionary
notion of implementation. Section 4 presents the variable and fixed price schemes, showing that
the former can be used to ensure efficient play when demand to use the network is unknown, and
that the latter can be used to maintain efficient play after the efficient allocation is discovered.
Sections 5–7 present definitions and results for the more complicated case of elastic demand.
Section 8 concludes.

2. GAMES AND EVOLUTION UNDER INELASTIC DEMAND

2.1. Games with continuous player sets

Each player in a game with continuous player sets is a member of a population in the setR =

{1, . . . , r̄ }, each element of which corresponds to a different player role. A typical population is
denotedr ∈ R. The mass of each population ismr , and the vectorm = (m1, . . . , mr̄ ) lists the
masses of all populations.

We letSr be the set of strategies available to populationr , and letnr be the number of such
strategies. We also letS =

⋃
r ∈R Sr denote theunion of all populations’ strategy sets, and let

n =
∑

r ∈R nr equal the total number of strategies available to all populations.
A typical strategy distributionis x ∈ Xm = {x ∈ Rn

+ :
∑

i ∈Sr xi = mr for all r }, where
xi is the mass of players in populationr who choose strategyi ∈ Sr . The payoff function for
strategyi is denotedFi : Xm → R, while the payoff functions for all strategies are collectively
denotedF : Xm → Rn. A strategy distributionx ∈ Xm is aNash equilibriumif all players choose
strategies which maximize their payoffs given their opponents’ behaviour:

Fi (x) = max
j ∈Sr

F j (x) wheneveri ∈ Sr and xi > 0.

2.2. Congestion games

Consider a group of drivers who live in a collection of towns connected by a network of streets.
Each driver must commute from his hometown to the town of his workplace. He does so by
selecting a route (i.e. a subset of the streets) leading from home to work. A driver’s total travel
time is the sum of the delays on each street, which are each increasing functions of the number
of drivers on that street.

An inelastic demand congestion model is a collection{R, {mr
}r ∈R, {Sr

}r ∈R, {8i }i ∈S,
{cφ}φ∈8}. R is a set of one or more populations, one for each home/work location pair. The
finite set8 =

⋃
i ∈S8i contains all available streets. Each strategyi ∈ Sr corresponds to a

complete route (i.e. a non-empty collection of streets)8i ⊂ 8 which connects the home and
work pairr .12

Let ρ(φ) = {i ∈ S : φ ∈ 8i } denote the set of routes which require streetφ. Theutilization
of streetφ ∈ 8 is the total mass of the players who drive on that street:

uφ(x) =

∑
i ∈ρ(φ)

xi .

12. We do not assume any graph theoretic structure on the set of streets8. Hence, all of our results can be used to
study congestion in settings in which the facilitiesφ ∈ 8 are not arranged in a network.
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The cost functionscφ : R+ → R report the delay on a street as a function of the number of
drivers using that street. As some streets (e.g.the narrower ones) are more prone to delays than
others, different streets will typically have different cost functions. We assume that each cost
functioncφ is non-negative, continuously differentiable, and strictly increasing:cφ(u) ≥ 0 and
c′
φ(u) > 0 for all u.13

The total delay from using routei ∈ S is determined by adding the delays on the streets in
the route. Hence,Ci : Xm → R, the cost of using strategyi as a function of the overall strategy
distribution, is given by

Ci (x) =

∑
φ∈8i

cφ(uφ(x)).

To define acongestion game, we must specify payoff functions for all strategies. Here, payoffs
are simply the negations of delay costs:Fi (x) = −Ci (x).

To describe the inelastic demand implementation problem, we suppose that at some initial
stage, Nature specifies that each player is of one of two types: “stay home” or “commute”. The
demand vectorm = (m1, . . . , mr̄ ) represents the realized numbers of active commuters in each
population.

Because the planner does not know which realization ofm occurs, payoffs must be defined
for all possible realizations. If the number of potential commuters in populationr is Mr ,
then the realized number of active commuters will lie between 0 andMr . Hence, the set of
possible demand vectors isM =

∏
r ∈R[0, Mr

], while the set of possible strategy distributions is
X =

⋃
m∈M Xm = {x ∈ Rn

+:
∑

i ∈Sr xi ≤ Mr for all r }. Fortunately, our earlier definitions of
the cost and payoff functions on the setXm do not depend on the demand vectorm; therefore,
these definitions extend immediately to all ofX.14

For convenience, we assume throughout the paper thatstrategy distributions are
distinguishable: for each distinct pairx, y ∈ X, there is a streetφ ∈ 8 such thatuφ(x) 6= uφ(y).
While this assumption simplifies our analysis, it is not essential—see footnote 18 below.

2.3. Evolutionary dynamics

The rationalistic approach to justifying Nash equilibrium requires players to know their
opponents’ intentions. When the number of players is large this requirement is quite strong.
But if the game is played repeatedly, we can avoid this assumption by modelling behaviour as a
myopic adjustment process during which players switch to strategies which improve their current
payoffs.

An evolutionary dynamic is described by a vector fieldV : X → Rn. This vector field defines
an equation of motioṅx = V(x) on the space of strategy distributions. We callV admissiblewith
respect to the gameF if it satisfies the following five conditions:

V is Lipschitz continuous. (LC)

Vi (x) ≥ 0 wheneverxi = 0. (FI 1)∑
i ∈Sr

Vi (x) = 0 for all x ∈ X andr ∈ R. (FI 2)

V(x) · F(x) > 0 wheneverV(x) 6=
⇀

0 . (PC)

V(x) =
⇀

0 implies thatx is an equilibrium ofF . (NC)

13. Allowing c′
φ to equal zero has only a minor impact on our analysis.

14. When they are defined on all ofX, the payoffsF do not define a single congestion game, but a collection of
congestion games, one for each demand vectorm. Nevertheless, we will sometimes abuse terminology and refer toF
itself as a game.
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The first three conditions are technical requirements which ensure the existence of unique
solution trajectories which stay in the spaceX.15 The more important conditions are the last two,
which link the dynamic to the game’s payoffs. To interpret condition (PC), note that by forward
invariance condition (FI 2),

V(x) · F(x) =

∑
r ∈R

∑
i ∈Sr

Vi (x)Fi (x)

=

∑
r ∈R

(∑
i ∈Sr

(Vi (x) − 0)

(
Fi (x) −

1

nr

∑
j ∈Sr

F j (x)

))
=

∑
r ∈R

nr Cov(V r (x), Fr (x)),

where Cov(V r , Fr ) is the covariance of growth rates and payoffs in populationr . Thus,
condition (PC) requires apositive correlationbetween growth and payoffs. While this condition
holds if there is a positive covariance in each population, it only requires the weighted
sum of the covariances of all populations to be positive. Positive correlation is the weakest
monotonicity condition used in the evolutionary game theory literature; for some comparisons,
see Sandholm (2001).

We call condition (NC)noncomplacency. It requires that a population that is not playing a
Nash equilibrium continues to adjust its behaviour. When behaviour is not in equilibrium, there
are players who would benefit from switching strategies; noncomplacency requires that some
players eventually avail themselves of this opportunity.16

2.4. Potential games

We now review results from Sandholm (2001) which we need to analyze our price schemes. We
call a game with continuous player sets apotential gameif there is a functionf which satisfies

∂ f

∂xi
(x) = Fi (x) for all x ∈ X and i ∈ S.

We call f the game’spotential function. If a game admits a potential function, this function can
be used to determine the game’s Nash equilibria and to characterize evolutionary dynamics. In
particular, Sandholm (2001), building on the work of Beckmannet al. (1956), Rosenthal (1973)
and Monderer and Shapley (1996), establishes the following result.

Lemma 1. (i) Let F be a potential game, and let V be a dynamic which is admissible
with respect to F. Then every solution trajectory of V converges to a connected set of Nash
equilibria of F.

(ii) Suppose that in addition, the potential function f of F is strictly concave, and fix a demand
vector m. Then the maximizer of f on the set Xm is the unique Nash equilibrium of F in
Xm and is the global attractor under V of all trajectories in Xm.

For completeness, the proof of this result is presented in the appendix.
In general, evolutionary dynamics of games need not converge to Nash equilibria: solution

trajectories may converge to non-Nash rest points or to limit cycles, and can even exhibit

15. Condition (FI 1) requires that the mass of players using each strategy never becomes negative, and condition
(FI 2) requires that the mass of players in each population remains constant.

16. An example of an admissible dynamic is the Brown–von Neumann–Nash (BNN) dynamic; see Brown and
von Neumann (1950), Weibull (1996), Berger and Hofbauer (2000) or Sandholm (2001). The replicator dynamic is not
admissible because it fails condition (NC). However, our analysis can be extended to this dynamic—see the discussion
at the end of the next section.
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chaotic behaviour. However, if a game admits a potential function, all solution trajectories of
all admissible dynamics converge to connected sets of Nash equilibria.17 If the potential function
is strictly concave, the equilibrium is unique, and therefore globally stable.18

For intuition, observe that the definitions of potential and positive correlation imply that any
solution trajectory{xt }t≥0 of an admissible dynamicV must satisfy

d

dt
f (xt ) = ∇ f (xt ) · ẋt = F(xt ) · V(xt ) ≥ 0.

That is, profitable behaviour adjustments must increase potential. Local maximizers of potential
reflect the absence of profitable adjustments, and hence are Nash equilibria. If the potential
function is strictly concave, profitable adjustments must lead to its unique maximizer, which
is the unique equilibrium of the game.

It is easily verified that all congestion games admit the potential function

f (x) = −

∑
φ∈8

∫ uφ(x)

0
cφ(z)dz.

Lemma 2 shows that when costs are strictly increasing, this function is strictly concave. Hence,
Lemma 1 implies that in any congestion game in which congestion is a “bad”, there is a unique,
globally stable equilibrium for each demand vector.

Lemma 2. Any congestion game with distinguishable strategy distributions and with cost
functions satisfying c′φ > 0 has a strictly concave potential function.

Proof. Let x, y ∈ X; it is enough to show that the potential function is strictly concave
on the line segment joiningx and y. For λ ∈ [0, 1], let z(λ) = λx + (1 − λ)y, and let
zφ(λ) = uφ(λx + (1 − λ)y). Then sinceu

φ̂
(x) 6= u

φ̂
(y) for someφ̂ ∈ 8 by distinguishability,

z′

φ̂
(λ) = u

φ̂
(x) − u

φ̂
(y) 6= 0 for thisφ̂, and so

d2

(dλ)2
f (z(λ)) = −

∑
φ∈8

c′
φ(zφ(λ))(z′

φ(λ))2 < 0. ‖

In restricting attention to dynamics which satisfy the noncomplacency condition (NC), we
rule out the replicator dynamic. This dynamic can be interpreted as a model of evolution through
imitation of successful agents.19 Consequently, strategies which are initially absent from the
population are never used, and so the dynamic admits non-Nash rest points on the boundary of
the state space. In the appendix, we consider evolution underpayoff monotonedynamics, a class
of dynamics which includes the replicator dynamic but whose members all violate condition
(NC). We show (Proposition A1) that in games with a strictly concave potential function, all
solution trajectories of these dynamics from interior initial conditions converge to the game’s
unique Nash equilibrium. Hence, versions of all of the results which follow can be proved for
payoff monotone dynamics under this restriction on initial behaviour.

17. It is known thatif an interior solution trajectory of a payoff monotone dynamic (see below) converges to a
unique limit point, this point must be a Nash equilibrium, regardless of whether the underlying game is a potential game.
In potential games, setwise convergence ofall solution trajectories of all admissible dynamics is guaranteed.

18. If the potential function is concave but not strictly so, equilibrium need not be unique, but the set of Nash
equilibria is equal to the closed, convex set of maximizers of potential. For this reason, the strict concavity assumptions
used below are not essential. In fact, the only role of our distinguishability assumption is to ensure that concavity of
potential holds strictly (see the proof of Lemma 2), so this assumption is dispensable as well.

19. See Bj̈ornerstedt and Weibull (1996) and Schlag (1998).
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3. EVOLUTIONARY IMPLEMENTATION UNDER INELASTIC DEMAND

Equilibria of congestion games are typically inefficient, as easily congested streets tend to be
overused relative to the social optimum. The planner would like to ensure that players learn to
behave efficiently, but must do so without knowing demand. Furthermore, because the players’
behaviour is anonymous, the planner cannot simply tell each player how to act, but must influence
their choices through some incentive scheme which respects their anonymity.

One way the planner can influence behaviour while respecting these restrictions is to set
prices for the use of each route. Formally, aprice schemeis a function P: X → Rn. Its
componentsPi : X → R represent the payments a player choosing routei must make to the
planner as a function of society’s aggregate behaviour. By introducing a price scheme, the planner
creates a new game whose payoffs are

F̂i (x) = Fi (x) − Pi (x) = −Ci (x) − Pi (x).

The planner would like to choose prices in such a way that regardless of the demand vectorm,
myopic adjustment with respect to the new payoffsF̂ leads to efficient behaviour with respect to
the original payoffsF .

To express this idea more precisely, we define asocial choice functionσ : M → X to be
a map which specifies a strategy distributionσ(m) ∈ Xm for each demand vectorm. The price
schemeP globally implementsthe social choice functionσ if for each demand vectorm, the
distributionσ(m) is globally stable under any dynamicV which is admissible with respect to
the augmented gamêF . By introducing a price scheme which globally implements the efficient
state, the planner ensures that regardless of its demand or its initial behaviour, a population of
players who revise their choices in a reasonable fashion will learn to behave efficiently.

If the price schemeP globally implements the social choice functionσ , then for each
demand vectorm, the strategy distributionσ(m) is the unique rest point inXm of any admissible
dynamic, and is hence the game’s unique Nash equilibrium (see Lemma A1 in the appendix).
Therefore, global implementation implies Nash implementation. However, since even a unique
Nash equilibrium may not be globally or locally stable under admissible dynamics, the converse
implication is false: of the two notions of implementation, global implementation is strictly more
demanding.

In principle, the pricePi (x) for route i may depend on the entire strategy distributionx
without violating the players’ anonymity. But sincex lists the numbers of players choosing each
complete route, keeping track of the full strategy distribution is a demanding task. We therefore
require prices to be of the form

Pi (x) =

∑
φ∈8i

pφ(uφ(x))

for some functionspφ : R+ → R. We call a price schemeseparableif it can be decomposed
in this way. Under a separable scheme, the total pricePi of each routei can be expressed as
the sum of pricespφ on each street along the route. This allows transfers to be collected as the
drivers use each street, obviating the need to know any driver’s complete route. Furthermore, the
price of each street only depends on the number of drivers who take that street, so the prices
themselves can be determined in a decentralized fashion. We will see below that the separability
of our optimal price schemes follows from the separability of each route delay functionCi (x) =∑

φ∈8i
cφ(uφ(x)) into functions describing delays on each street along the route.20

20. Under inelastic demand, the planner’s information problem would not exist were it not for his inability to
observe the strategy distributionx: if the planner knewx, he could easily compute the masses of active playersmr .
This need not be possible if only the numbers of drivers on each street are observed. Of course, the hidden information
and hidden action problems are independent when demand is elastic, since in this case even complete knowledge of the
strategy distribution reveals little about the distribution of types.
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4. CONGESTION PRICING UNDER INELASTIC DEMAND

Lemmas 1 and 2 guarantee that once demand is fixed, any congestion game with increasing
cost functions has a unique, globally stable Nash equilibrium. Unfortunately, this equilibrium is
unlikely to be efficient. We define efficiency in terms of the aggregate payoff functionF̄ : X → R,
given by

F̄(x) =

∑
i ∈S

xi Fi (x) = −

∑
i ∈S

xi Ci (x).

The social planner would like to choose a price scheme that implements an efficient social choice
functionx∗, defined by

x∗(m) ∈ arg maxx∈Xm
F̄(x).

The price scheme creates a new game whose payoffs combine transfer payments with the costs
of delay. If the scheme can be chosen in such a way that the new game admits a potential function
which is proportional to aggregate payoffs, we can use Lemma 1 to show that myopic adjustment
with respect to the new payoffs always leads to efficient play.

Let F̂i : X → R denote the payoff functions of the new game, which are the differences
between the original payoffs and the prices charged by the social planner:

F̂i (x) ≡ Fi (x) − Pi (x).

We would like the new game to admit a potential functionf̂ which is proportional to aggregate
payoffs:

f̂ (x) ≡ κ F̄(x) for some κ > 0.

Moreover, we would like to create this new game using a separable price scheme.
To determine whether such a price scheme exists, we first differentiate the second identity

with respect toxi to obtain

F̂i (x) = κ
∂

∂xi
F̄(x).

Whenκ = 1, this equation tells us to set an individual’s total payoff from choosing an action
equal to the marginal social payoff of that action. Hence, the price scheme we derive will be
a form of marginal cost pricing. More generally, individuals’ payoffs are set proportional to
marginal social payoffs. Players may bear costs which are larger or smaller than their marginal
social impact, but each always agrees with the social planner about the relative costs of any action
pair.

Now, recalling that payoffs in congestion games are of the formFi (x) = −Ci (x) =

−
∑

φ∈8i
cφ(uφ(x)), and observing that

∂uφ

∂x j
(x) =

{
1 if φ ∈ 8 j ,
0 otherwise,

we can solve for the price scheme.

Pi (x) = Fi (x) − F̂i (x)

= Fi (x) − κ
∂

∂xi
F̄(x)

= Fi (x) − κ

(
Fi (x) +

∑
j ∈S

x j
∂F j

∂xi
(x)

)
= κ

(∑
j ∈S

x j
∂C j

∂xi
(x)

)
+ (κ − 1)Ci (x)
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= κ

(∑
j ∈S

x j

(∑
φ∈8i ∩8 j

c′
φ(uφ(x))

))
+ (κ − 1)

(∑
φ∈8i

cφ(uφ(x))

)
= κ

∑
φ∈8i

uφ(x)c′
φ(uφ(x)) + (κ − 1)

∑
φ∈8i

cφ(uφ(x))

=

∑
φ∈8i

(κuφ(x)c′
φ(uφ(x)) + (κ − 1)cφ(uφ(x))). (T)

Equation (T) shows that because the original payoff functionsFi are separable inφ, the price
scheme we have constructed is separable as well. To create a game whose potential function
is proportional to aggregate payoffs, a social planner need only set prices for the use of each
individual streetφ, and the price of each street need only depend on the number of drivers who
take that street. Thus, the price scheme can be imposed in a decentralized fashion.

Letting η̄ =
1
κ

− 1 > −1, we define thevariable price scheme Pη̄ by

Pη̄
i (x) =

∑
φ∈8i

pη̄
φ(uφ(x)),

where the street pricespη̄
φ are given by

pη̄
φ =

1

η̄ + 1
(uc′

φ(u) − η̄cφ(u)).

We use the word “variable” to highlight the fact that prices in these schemes vary with current
utilization levels, and to contrast these schemes with the fixed price schemes defined below.

To interpret the price schemes more easily, we define

ηφ(u) =
uc′

φ(u)

cφ(u)

to be the cost elasticity of streetφ. Then whencφ(u) > 0, we can express the street prices as

pη̄
φ(u) =

cφ(u)

η̄ + 1
(ηφ(u) − η̄).

The parameter̄η, which we call theelasticity threshold, has a simple interpretation. When the
cost elasticity of a street is exactlȳη, the price of that street is set to zero; at cost elasticities
higher thanη̄, positive prices are charged; at cost elasticities lower thanη̄, negative prices (i.e.
subsidies) are offered.

We now characterize behaviour under the variable price schemes.

Theorem 1. Suppose that the cost functions satisfy uc′′
φ(u) > −2c′

φ(u) for all φ and u.

Then each variable price scheme Pη̄ globally implements the efficient social choice function x∗.

Proof. The condition on the cost functionscφ implies that the augmented street costs

cφ + pη̄
φ are strictly increasing:

d

du
(cφ(u) + pη̄

φ(u)) =
d

du

(
1

η̄ + 1
(uc′

φ(u) + cφ(u))

)
=

1

η̄ + 1
(uc′′

φ(u) + 2c′
φ(u)) > 0.

Hence, Lemma 2 implies that the potential functionf̂ is strictly concave.
Now, fix any demand vectorm. Lemma 1(i i ) implies that the unique state which

maximizes f̂ on Xm is globally stable onXm under all dynamics which are admissible with
respect toF̂ . But f̂ (x) =

1
η̄+1 F̄(x) and 1

η̄+1 > 0, so this global attractor is the efficient
statex∗(m). ‖
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Since the potential function of the new game is proportional to aggregate payoffs, one
can show that regardless of the shapes of cost functionscφ , the distribution which maximizes
aggregate payoffs is a locally stable Nash equilibrium. However, this distribution need only be
globally stable if the potential function is concave, which is only guaranteed if the cost functions
are never too concave.

We observe that an elasticity threshold ofη̄ = 0 (which corresponds toκ = 1) yields a
generalization of marginal cost pricing. In this case, the variable prices are given byp0

φ(u) =

uc′
φ(u): players are always charged the marginal social cost of the congestion they currently

create. It is not surprising that these prices render the efficient statex∗(m) an equilibrium.
However, Theorem 1 goes much further: it shows that if street prices are always adjusted to
represent current marginal social costs, then the efficient state is the only equilibrium, is globally
stable under any admissible adjustment process, and can be implemented without knowledge of
the demand vectorm or the efficient statex∗(m).

By employing a variable price scheme, the planner ensures that the efficient allocation
x∗(m) is ultimately played. Even after convergence to this state occurs, the planner still faces
a hidden action problem, and must continue to use tolls to maintain efficient play. Fortunately,
his knowledge of the efficient state enables him to do so using an especially simple price scheme.
For eachη̄ > −1, we define thefixed price scheme5η̄,m by

5
η̄,m
i =

∑
φ∈8i

π
η̄,m
φ , whereπ

η̄,m
φ = pη̄

φ(uφ(x∗(m))).

Under the fixed price scheme5η̄,m, the planneralwayssets the prices charged by the variable
price schemePη̄ at the efficient statex∗(m). By employing this scheme, the planner ensures that
the players will return to the efficient state after any shock to their behaviour.

Theorem 2. Suppose that the demand vector is m, and that the planner imposes the fixed
price scheme5η̄,m. Then the efficient distribution x∗(m) is globally stable under any admissible
dynamics V .

Proof. Let F̆ denote payoffs under the fixed price scheme5η̄,m: that is,F̆i (x) = Fi (x) −

5
η̄,m
i . By the definition ofπ η̄

φ , F̆(x∗(m)) = F̂(x∗(m)), while by construction,x∗(m) is a Nash

equilibrium of the variable price gamêF . Therefore,x∗(m) must also be a Nash equilibrium of
the fixed price gamĕF . Moreover, since the original cost functionscφ(u) are strictly increasing,

so are the cost functions̆c(u) = cφ(u) + π
η̄,m
φ of the fixed price gamĕF . Hence, Lemma 2

implies that the potential function of̆F is strictly concave. It then follows from Lemma 1 thatF̆
has a unique equilibrium, and that this equilibrium is globally stable under all dynamics which
are admissible with respect tŏF . The equilibrium must bex∗(m). ‖

We observe that Theorem 2 does not require any assumption about the convexity of costs:
when prices are fixed, that delay costscφ are increasing is enough to ensure global convergence
to equilibrium.

By choosing a price scheme with an arbitrary elasticity threshold and then observing the
drivers’ behaviour, the planner can determine the efficient state. After doing so, the planner can
select other thresholds which have interesting properties in equilibrium. For example, for any
demand vectorm the planner can compute the threshold

η̄min(m) = min
φ∈8

ηφ(uφ(x∗(m))).
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Recall that once the threshold is fixed, streets whose cost elasticities lie above the threshold
are assigned positive prices, while those with elasticities below the threshold are given negative
prices. Thus, setting the threshold toη̄min(m), the lowest cost elasticity obtaining at the efficient
statex∗(m), yields the price scheme with the lowest non-negative equilibrium prices. As long as
all facilities are sensitive to congestion,η̄min(m) will exceed zero, so these prices will be strictly
less than those which obtain under marginal cost pricing.

Since each of the price schemes induces the same strategy distributionx∗(m), higher prices
must yield higher toll revenues. By adjusting the elasticity threshold, what range of revenues can
the social planner obtain?

Corollary 1. If the demand vector m is not zero, each point in the interval(F̄(x∗(m)), ∞)

can be achieved as the equilibrium toll revenue through an appropriate choice of elasticity
threshold.

Proof. Let u∗
φ = uφ(x∗(m)). Observe that ifu∗

φ > 0, then lim̄η↓−1 pη̄
φ(u∗

φ) = ∞,

limη̄↑∞ pη̄
φ(u∗

φ) = −cφ(u∗
φ), and

∂

∂η̄
pη̄
φ(u∗

φ) =
−(u∗

φc′
φ(u∗

φ) + cφ(u∗
φ))

(η̄ + 1)2
< 0.

Hence, equilibrium toll revenueRm(η̄) =
∑

φ u∗
φ pη̄

φ(u?
φ) is a smooth, strictly decreasing function

which satisfies lim̄η↑∞ Rm(η̄) = −
∑

φ u∗
φcφ(u∗

φ) = F̄(x∗(m)) and limη̄↓−1 Rm(η̄) = ∞. ‖

Since F̄(x∗(m)) < 0, Corollary 1 implies that for each demand vectorm, there is a price
scheme which yields a revenue of zero: by choosing an elasticity threshold ofη̄z(m) ≡ R−1

m (0),
the amount of revenue generated from tolls on highly congested streets can be exactly offset by
subsidies paid to drivers on less congested streets. Indeed, the global stability of the efficient
strategy distribution can be achieved along with any positive level of revenue, as well as a wide
range of negative revenues.21

Of course, Corollary 1 depends crucially on the inelasticity of demand. Generating large
revenues means imposing large tolls, which we would expect to cause some drivers to abandon
their commute. Fortunately, our variable price schemes are still quite effective when the demand
to drive depends on the cost of the trip.

5. ELASTIC DEMAND

We now extend our model to allow for elastic demand. Elastic demand introduces a new source
of inefficiency: not only may players distribute themselves over the roads inefficiently, but
the players who choose to drive may not be those who would drive at the social optimum.
Nevertheless, our variable price schemes continue to yield efficient play.

5.1. Congestion games

To introduce elastic demand, we suppose that while all players who choose the same route
experience the same delays, different players attach different values completing their commutes.
Let Dr

: [0, Lr
] → [0, Mr

] denote the demand curve for populationr , so thatDr (v) is the mass

21. Since the variable and fixed price schemes charge the same prices at the efficient statex∗(m), Corollary 1
describes the equilibrium revenues obtained under either class of schemes.
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of commuters from populationr for whom the value of the commute is at leastv. We assume
that eachDr is onto, differentiable, and strictly decreasing:d

dv
Dr (v) < 0. These assumptions

imply that the inverse demand curves̃Dr
: [0, Mr

] → [0, Lr
] are well defined and satisfy

d
dzD̃r (z) < 0. D̃r (z) is the “z-th highest” value of commuting among players from populationr ,
wherez ∈ [0, Mr

].
If a player with valuationv commutes via routei , his payoff isv − Ci (x); if he stays home,

his payoff is zero. In principle, the valuations of the commuters who are active at any moment
in time could be an arbitrary subsets of the sets[0, Lr

]. However, in order to make our dynamic
analysis tractable, we make the simplifying assumption that whenever a player whose valuation
is v commutes, all players in his population who have higher valuations commute as well.22

Under this assumption, behaviour in all populations can be fully described by an elementx
of the state spaceX =

{
x ∈ Rn

+:
∑

i ∈Sr xi ≤ Mr for all r ∈ R
}
. Since the high valuation

commuters are the ones who opt to drive, if we letxr
=

∑
i ∈Sr xi denote the number of active

drivers in populationr , thenD̃r (xr ) is the valuation of the marginal active driver. The payoffs of
this marginal driver are therefore given by the (reduced form) payoff functionsF̃i : X → R:

F̃i (x) = D̃r (xr ) − Ci (x) for i ∈ Sr .

If F̃i (x) > 0, then the marginal driver would rather commute via routei than stay home; if
F̃i (x) < 0, he would rather stay home.

While F̃i represents the payoffs of the marginal active driver, it also capturesall players’
relative payoffs to choosing different routes.23 Therefore, in using the reduced form payoffs
to specify our evolutionary dynamics, we capture all players’ incentives for deciding between
different routes, and we capture the incentives faced by the marginal active drivers in deciding
whether or not to drive.

Nash equilibria of the elastic demand game must satisfy two conditions. First, ifi ∈ Sr then
F̃i (x) = maxj ∈Sr F̃ j (x) wheneverxi > 0: within each population, all routes which are used
perform equally well, at least as well those which are not used. Second, we must ensure that the
marginal player is indifferent between commuting and staying home. Whenxr

∈ (0, Mr ), the
condition we need is that maxj ∈Sr F̃ j (x) = 0. When this condition holds, the valuation of the
marginal player,D̃r (xr ), is equal to the cost of taking an optimal route, minj ∈Sr C j (x). Players
with higher valuations opt to commute, while players with lower valuations stay home.24

5.2. Evolutionary dynamics

Evolutionary dynamics under elastic demand are once again defined by vector fieldsV : X → Rn.
Since the number of active players can change over time, we must replace the forward invariance
condition (FI 2), which kept the population masses constant, by

For eachr,
∑

i ∈Sr
Vi (x) ≤ 0 wheneverxr

= Mr , (FI 2′)

which ensures that the number of players in each population never exceeds the upper bound
of Mr .

22. This ordering property clearly must hold in any equilibrium of the game; we require it to hold out of
equilibrium as well.

23. That is, the difference between a players’ payoffs to choosing routei and choosing routej equals(v−Ci (x))−

(v − C j (x)) = C j (x) − Ci (x) = F̃i (x) − F̃ j (x), regardless of the player’s valuationv.
24. If xr

= 0, so that no players in populationr commute, then equilibrium requires that maxj ∈Sr F̃ j (x) ≤ 0. If

xr
= Mr , so that all players commute, then equilibrium requires that maxj ∈Sr F̃ j (x) ≥ 0.
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We must also modify the positive correlation condition:

V(x) · F̃(x) > 0 wheneverV(x) 6=
⇀

0 . (PC′)

To see that this condition has the desired interpretation, letVor (x) ≡ −
∑

i ∈Sr Vi (x) and
F̃or (x) ≡ 0 denote the growth rate and payoffs of the outside option in populationr . Then
since

∑
i ∈Sr ∪{or } Vi (x) = 0, we see that

V(x) · F̃(x) =

∑
r ∈R

∑
i ∈Sr

Vi (x)F̃i (x)

=

∑
r ∈R

∑
i ∈Sr ∪{or }

Vi (x)F̃i (x)

=

∑
r ∈R

(∑
i ∈Sr ∪{or }

(Vi (x) − 0)

(
F̃i (x) −

1

nr + 1

∑
j ∈Sr ∪{or }

F̃ j (x)

))
=

∑
r ∈R

(nr
+ 1)Cov(V r (x), F̃r (x)).

Hence, (PC′) still requires positive correlation between growth rates and payoffs, but now the
lists of strategies include outside options, and the payoffs considered are those of the marginal
active player.

Finally, we state the noncomplacency condition in terms of the reduced form payoffsF̃ .

V(x) =
⇀

0 implies thatx is an equilibrium ofF̃ . (NC′)

5.3. Potential games

The definition of potential games under elastic demand is analogous to that under inelastic
demand:F̃ is a potential game if it admits a potential functionf̃ which satisfies

∂ f̃

∂xi
(x) = F̃i (x) for all x ∈ X and i ∈ S.

Congestion games with elastic demand are therefore potential games with the potential
function25

f̃ (x) =

∑
r ∈R

∫ xr

0
D̃r (z)dz−

∑
φ∈8

∫ uφ(x)

0
cφ(z)dz.

Importantly, versions our lemmas from Section 2.4 can be established in this new setting.

Lemma 3. (i) Let F̃ be an elastic demand potential game, and let V be a dynamic
which is admissible with respect tõF. Then every solution trajectory of V converges to a
connected set of Nash equilibria ofF̃.

(ii) If the potential functionf̃ of F̃ is strictly concave, then the maximizer off̃ on the set X is
the unique equilibrium of̃F and is globally stable under V .

Since demand is elastic, the number of active players can vary; hence, the uniqueness and
global stability results in part (i i ) of the lemma are with respect to all ofX rather than just
the subsetsXm.

Lemma 4. Any elastic demand congestion game with distinguishable strategy
distributions and with cost functions satisfying c′

φ > 0 has a strictly concave potential function.

25. Beckmannet al. (1956) use an analogous potential function to characterize equilibria in their elastic demand
congestion model.
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Proofs. The proof of Lemma 3 is a simple extension of the proof of Lemma 1. To
prove Lemma 4, letx, y ∈ X; it is enough to show that the potential function is strictly
concave on the line segment joiningx and y. For λ ∈ [0, 1], let z(λ) = λx + (1 − λ)y, let
zφ(λ) = uφ(λx + (1 − λ)y), and letzr (λ) = λxr

+ (1 − λ)yr . Then sincez′

φ̂
(λ) 6= 0 for some

φ̂ ∈ 8, we see that

d2

(dλ)2
f̃ (z(λ)) =

∑
r ∈R

d

dz
D̃r (zr (λ))((zr )′(λ))2

−

∑
φ∈8

c′
φ(zφ(λ))(z′

φ(λ))2 < 0. ‖

Examining the proof of Lemma 4, we see that the first component of the potential function is
concave as long as the demand curvesDr are downward sloping; no other conditions on demand
are required. Hence, to establish the concavity of the potential function, it is enough to place
restrictions on the cost functionscφ .

6. EVOLUTIONARY IMPLEMENTATION

When demand is inelastic, efficiency only requires that players distribute themselves over the
streets in an optimal fashion. Under elastic demand, efficiency also requires that the right players
choose to drive. The planner would like to ensure efficient behaviour by imposing a price scheme,
but must do so without any information about the values players attach to completing their
commutes.

Formally, we letD = (D1, . . . , Dr̄ ) denote a profile of demand functions, and letD denote
the set of all such profiles. Asocial choice functionσ : D → X maps every demand profile to
a strategy distribution inX. A price schemeis once again a mapP: X → Rn which for each
strategy distributionx specifies the pricePi (x) which users of strategyi must pay.

The price scheme creates a new elastic demand game with the same strategies as the original
game. The reduced form payoffs of the new game are denoted

_
F :

_
F i (D, x) = F̃i (D, x) − Pi (x).

Our notation makes explicit that both reduced form payoff functions depend on the demand
profile D, but that the price scheme does not. We say that the price schemeP globally implements
the social choice functionσ if for each demand profileD, the strategy distributionσ(D)

is globally stable under any dynamicV which is admissible with respect to the augmented
game

_
F(D, ·).

7. CONGESTION PRICING

We measure welfare under elastic demand using the function

Wk(D, x) =

∑
r ∈R

∫ xr

0
D̃r (z)dz+ kF̄(x) =

∑
r ∈R

∫ xr

0
D̃r (z)dz− k

∑
i ∈S

xi Ci (x),

wherek is some strictly positive constant. The first component ofWk captures the benefits
obtained by drivers who decide to commute; each integral measures the area under the demand
curve from zero through the number of active playersxr . The second component aggregates the
driving times of all active players. Of course, tolls are excluded from the calculation of welfare.

The constantk measures the ratio of costs to benefits used in measuring welfare. Ifk = 1,
costs and benefits are weighted equally, andWk equals consumer surplus. However, since driving
causes pollution, a “bad” not accounted for in the payoff functions, a social planner may wish to
give extra weight to costs in determining welfare. By varyingk (in particular, by choosingk > 1),
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a social planner can attach added importance to reducing total driving time, which serves as a
proxy for any indirect externalities which driving creates.

The social planner would like to implement the social choice functionxk
: D → X

defined by

xk(D) ∈ arg maxx∈XWk(D, x).

To do so, he chooses a mechanism which creates a new game
_
F :

_
F i (D, x) ≡ F̃i (D, x) − Pi (x).

He would like the new game to have a potential function equal to the welfare functionWk.
_
f (D, x) ≡ Wk(D, x).

It is not immediately clear that a mechanism with both of these properties exists. However,
differentiating the second identity with respect toxi yields

_
F i (D, x) = D̃r (xr ) + k

∂

∂xi
F̄(x).

Solving for Pi , we find that

Pi (x) = F̃i (D, x) −
_
F i (D, x)

= (D̃r (xr ) + Fi (x)) −

(
D̃r (xr ) + k

∂

∂xi
F̄(x)

)
= Fi (x) − k

∂

∂xi
F̄(x).

Since this last expression does not depend onD, prices can be chosen independently of
the demand profile. In fact, the last expression is equivalent to equation (T), which defined the
variable price schemePη̄ (with η̄ =

1
k − 1). Thus, the same separable price schemes which

guarantee efficient behaviour under inelastic demand also do so under elastic demand.

Theorem 3. Suppose that the cost functions satisfy uc′′
φ(u) > −2c′

φ(u) for all φ and u.

Then the variable price scheme Pη̄ with elasticity threshold̄η =
1
k − 1 globally implements the

social choice function xk.

The proof of Theorem 3 is analogous to that of Theorem 1, with Lemmas 3 and 4 used
in place of Lemmas 1 and 2. We observe that the only property of demand curves required to
establish this result is that they are downward sloping.

Our analysis of the inelastic demand case showed that if the number of active players in
each population is fixed, the variable price schemes lead the players to distribute themselves over
the streets efficiently. This suggests that if these schemes are used under elastic demand, the
players who decide to stay in the game will behave efficiently. It therefore remains to show that
the optimal number of players from each population will choose to stay in the game.

Were there only one population of players, the intuition for the latter claim would be simple.
Lowering the elasticity threshold̄η increases the street prices. Hence, by varyingη̄, the planner
can choose the level of demand; since the allocation of drivers will be efficient, any weighted
welfare optimum can be achieved. Unfortunately, this simple argument fails when there are
multiple populations. In this case, each choice of thresholdη̄ yields some equilibrium demand
vector(x1(η̄), . . . , xr (η̄), . . . , xr̄ (η̄)). By varying η̄, we can obtain demand vectors lying on a
one-dimensional path throughRr̄

+. It is not obvious that this path should trace out the demand
vectors inRr̄

+ which lead to welfare optimality.
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To see why it does, let̄C(x) = −F̄(x) equal aggregate costs, and letĈi (x) = Ci (x) +

Pi (x) = −F̂i (X) denote the augmented strategy costs. We designed the variable price scheme
in the inelastic demand setting to set individuals’ costs proportional to marginal social costs
(Ĉi (x) = k ∂

∂xi
C̄(x)).

Suppose that demand is inelastic. In equilibrium, the augmented costs of all strategiesi
used by a single populationr are equal (̂Ci (x) = cr wheneverxi > 0). Consequently, the
marginal social costs of these strategies are equal (k ∂

∂xi
C̄(x) = cr ), and so aggregate behaviour

is efficient.
Now suppose that demand is elastic. In equilibrium, the augmented cost of each strategy

which is used must equal the valuation of the marginal driver (Ĉi (x) = D̃r (xr ) whenever
xi > 0). It then follows from the definition of the price scheme that marginal social costs
are proportional to this valuation (k ∂

∂xi
C̄(x) = D̃r (xr )). Since the valuation of the marginal

driver represents the marginal social benefit of further entry, this last equation implies welfare
optimality. Finally, since the variable price schemes yield games with concave potential
functions, each scheme guarantees the global stability of the welfare maximizing state.

We can also explain our price schemes directly in terms of the potential functions. In the
inelastic demand setting, we chose the variable prices so that the potential functionf̂ was
equal tok times aggregate payoffs, so that admissible dynamics would ascend the aggregate
payoff function. Under elastic demand, the potential function

_
f and the welfare functionWk

both have a new term capturing players’ valuations. But in each case, this term is
∑

r

∫ xr

0 D̃r .

Therefore, the variable prices which equatef̂ and kF̄ also equate
_
f and Wk, and so ensure

welfare optimality.
More intuitively, a social planner is able to set the relative costs of playing the various

strategies appropriately while fixing the absolute costs at any desired scale. If the social planner
chooses this scale correctly, then a player comparing his benefit from joining the game to
his cost of participating will decide to join precisely when it is socially desirable for him
to do so.

After imposing the variable price scheme, the planner can learn the efficient statex∗(D)

by observing the players’ behaviour. Since behaviour is anonymous, maintaining efficient play
also requires the use of a price scheme. As before, this maintenance can be accomplished by
administering a fixed price scheme. For each demand vectorD, define the fixed price scheme
5η̄,D by

5
η̄,D
i =

∑
φ∈8i

π
η̄,D
φ , where π

η̄,D
φ = pη̄

φ(uφ(xk(D))) and k =
1

η̄ + 1
.

A variation on the proof of Theorem 2 establishes the following result.

Theorem 4. Suppose that the demand profile is D, and that the planner imposes the fixed
price scheme5η̄,D with η̄ =

1
k −1. Then the efficient distribution xk(D) is globally stable under

any admissible dynamics V .

Again, no convexity condition on street costscφ is required.
Under elastic demand, the central role of the choice ofη̄ ∈ (−1, ∞) is to allow the

implementation of efficient behaviour under different welfare measures; hence, different choices
of η̄ generate different equilibrium behaviours. Nevertheless, we can give some indication of
the equilibrium toll revenues generated by different choices ofη̄.26 For η̄ near−1 (and hence
k =

1
η̄+1 very large), toll revenue is zero: prices are so high that no one commutes. Whenever

26. For simplicity, we assume here that delay costs satisfycφ(0) > 0 for all streetsφ ∈ 8.
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η̄ ≤ 0, all prices are weakly positive, so toll revenues are weakly positive as well. Similarly, when
η̄ ≥ ηmax = maxφ,u ηφ(u), prices and revenues are weakly negative. A continuity argument then
shows that for any demand profileD, there is an elasticity threshold̄ηz(D) → [0, ηmax] which
is revenue neutral in equilibrium. This threshold typically corresponds to a welfare measure with
k < 1, which places relatively little weight on keeping aggregate delays small.

8. DISCUSSION

We considered a problem faced by a planner who would like to ensure the efficient use of a
highway network. The problem entails both hidden information and hidden actions. We showed
that the planner can guarantee efficient behaviour by introducing a separable, variable price
scheme. After using this scheme to resolve his information problem, the planner can maintain
efficient behaviour using a separable, fixed price scheme.

Throughout our analysis, we have assumed that the planner is fully patient, only caring
about the final outcomes of the evolutionary process. Alternatively, one could consider a less
patient planner who cares about the entire time path of play. For example, the planner might
evaluate the time path of play by aggregating the welfare of behaviour over time using some
fixed discount rate. To study this issue, one would need to introduce conditions on dynamics
specifying the speed at which behaviour adjustment takes place; for instance, one could assume
that the difference between strategies’ growth rates is monotone in the difference between their
payoffs. In this case, price schemes that dramatically penalize the use of crowded routes would
lead to faster adjustment towards the efficient state. If demand is inelastic, this would favour the
use of schemes with low elasticity thresholdsη̄, as such schemes magnify payoff differences
between routes. However, low values ofη̄ also generate high tolls; if demand is elastic, such tolls
might reduce network usage to undesirably low levels. The planner might strike a compromise
between these issues by judiciously adjustingη̄ over time.

Our study of congestion pricing has focused on traffic during a single usage period. An
important use of congestion pricing which we do not address here is that of smoothing peak
demand over different usage periods: that is, setting prices to encourage driving before and after
the period of peak demand.27 Allowing commuters the choice of when to drive introduces new
modelling issues which we hope to address in future research.

While this paper has focused on pricing roadway networks, the techniques developed here
seem applicable in principle to the pricing of computer networks.28 Like roadway networks,
computer networks are used by large numbers of individuals who are primarily concerned with
the speed of their own conveyance through the network. On the other hand, there are some
important differences between the two types of networks. For one, routing decisions in computer
networks are presently made by routing devices positioned throughout the network rather than
by individual users. In addition, different network applications require vastly different levels
of service: while a real-time video conference requires a constant, high bandwidth connection
throughout its duration, e-mail messages require little bandwidth, and can be sent after some
delay without significantly reducing user benefits. For these reasons, a realistic model of
computer network congestion would be significantly different from the model considered here.
Nevertheless, evolutionary implementation in computer networks seems an important topic for
future research.

27. This aspect of congestion pricing is considered by Vickrey (1963, 1969) and Arnottet al. (1990, 1993).
28. Congestion pricing in computer networks is studied by Cocchiet al. (1993), Mackie-Mason and Varian (1995),

Shenkeret al. (1996) and Cŕemer and Hariton (1999).
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APPENDIX

The Proof of Lemma1

Suppose that the dynamicV is admissible with respect to the gameF . Since the potential functionf is a global Lyapunov
function the for this dynamic (i.e. since d

dt f (xt ) = ∇ f (xt ) · ẋt = F(xt ) · V(xt ) ≥ 0), Proposition 1 of Losert and
Akin (1983) and Theorem 5.4.1 of Robinson (1995) imply that every solution trajectory of the dynamic converges to a
connected set of rest points. Condition (NC) tells us that all rest points of the dynamic are Nash equilibria ofF , proving
part (i ) of the lemma.

The proof of part (i i ) requires the following preliminary results.

Lemma A1. Suppose that the dynamic V is admissible with respect to the game F. Then x∗ is a rest point of the
dynamic if and only if it is a Nash equilibrium of F.

Proof. The “only if” direction follows directly from condition (NC), so we need only consider the “if” direction.
Let x be a Nash equilibrium ofF . Let Sr

d(x) be the set of strategies inSr that are in decline atx : Sr
d(x) = {i ∈

Sr
: Vi (x) < 0}. SinceSr

d(x) can only contain strategies which are used atx (by condition (FI 1)), and since all
such strategies must be optimal, we see thatSr

d(x) ⊂ arg maxj ∈Sr F j (x). But
∑

i ∈Sr Vi (x) = 0 by the forward
invariance condition (FI 2). Thus, the inclusion implies that

∑
r ∈R

∑
i ∈Sr Vi (x)Fi (x) ≤ 0. Summing overr , we see

that
∑

r ∈R
∑

i ∈Sr Vi (x)Fi (x) ≤ 0. We therefore conclude from condition (PC) thatV(x) =
⇀
0 . ‖

Lemma A2. Suppose that F is a potential game with potential function f . Then x is a Nash equilibrium of F if
and only if it satisfies the Kuhn–Tucker first-order conditions for a maximizer of f on Xm: that is, for someµ ∈ Rr̄ and
someλ ∈ Rn,

∂ f x

∂xi
= µr

− λi for all i ∈ Sr and r ∈ R, (KT1)

λi xi = 0 for all i ∈ S, and (KT2)

λi ≥ 0 for all i ∈ S· (KT3)

Proof. Suppose thatx is a Nash equilibrium ofF . Since Fi (x) =
∂ f
∂xi

(x), (KT1)–(KT3) are satisfied byx,

µr
= maxj ∈Sr , F j (x), andλi = µr

− Fi (x) for i ∈ Sr . The proof of the converse is similar. ‖

Now suppose thatf is strictly concave. Thenf has a unique maximizerx∗ on Xm, which is the unique point
satisfying (KT1)–(KT3) (see,e.g.Theorems 4.38 and 4.39 of Avriel, 1976). Thus, Lemma A2 implies thatx∗ is the
unique Nash equilibrium ofF , and so Lemma A1 implies thatx∗ is the unique rest point oḟx = V(x). Hence, part (i )
of the lemma implies thatx∗ is a global attractor undeṙx = V(x). ‖

We now consider evolution underpayoff monotonedynamics. Payoff monotone dynamics are dynamics of the
form

ẋi = xi gi (x) for all i ∈ Sr andr ∈ R, (PM)

where the percentage growth ratesgi : X → R satisfy the monotonicity condition

gi (x) > g j (x) if and only if Fi (x) > F j (x)

for all populationsr ∈ R and strategiesi , j ∈ Sr . In addition, the functionsgi are required to be Lipschitz
continuous (which implies condition (LC)), and must satisfy

∑
i ∈Sr xi gi (x) = 0 for all populationsr ∈ R (which

is condition (FI 2)).
An important example of a payoff monotone dynamic is thereplicator dynamic, which is defined by

ẋi = xi

(
Fi (x) −

1

mr

∑
j ∈Sr x j F j (x)

)
for all i ∈ Sr and r ∈ R. (R)

In words, the replicator dynamic requires that the percentage growth rate of each strategy is given by the difference
between that strategy’s payoff and the average payoff in its population. This dynamic can be interpreted as a model of
evolution through imitation—see Björnerstedt and Weibull (1996) and Schlag (1998).

It is easy to see that in addition to satisfying conditions (LC) and (FI 2), payoff monotone dynamics also satisfy
condition (FI 1). We now show that in these dynamics also satisfy the positive correlation condition (PC).

Lemma A3. Every payoff monotone dynamic satisfies condition (PC).
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Proof. Let (PM) be a payoff monotone dynamic, and suppose thatx ∈ X is not a rest point of (PM). Then the set
of populations which are not at rest atx, R̃ = {r ∈ R : xi gi (x) 6= 0 for somei ∈ Sr

}, is nonempty. Condition (FI 2)
then implies that for all populationsr ∈ R̃, the sets of strategiesGr

= {i ∈ Sr
: gi (x) > 0} andSr

− Gr are nonempty.
Thus, for such populations, the scalarsl r = mini ∈Gr Fi (x) andhr

= maxi ∈Sr −Gr Fi (x) are well defined, and, by payoff
monotonicity, satisfyl r > hr . Therefore, since

∑
i ∈Gr xi gi (x) = −

∑
i ∈Sr −Gr xi gi (x) by condition (FI 2), we find that

V(x) · F(x) =

∑
r ∈R

∑
i ∈Sr (xi gi (x))Fi (x)

≥

∑
r ∈R̃

(
l r

∑
i ∈Gr xi gi (x) + hr

∑
i ∈Sr −Gr xi gi (x)

)
=

∑
r ∈R̃

(
(l r − hr )

∑
i ∈Gr xi gi (x)

)
> 0. ‖

Payoff monotone dynamics admit many rest points which are not Nash equilibria, and therefore fail condition (NC).
To describe the rest points of these dynamics, we define the set ofrestricted equilibriaof the gameF by

RE = {x ∈ Xm : [xi > 0 ⇒ Fi (x) = max
j ∈Sr :x j >0

F j (x)] for all i ∈ Sr and r ∈ R}.

Thus,x is a restricted equilibrium ofF if it is a Nash equilibrium of a restricted version ofF in which only strategies
in the support ofx can be played. (For example, every pure strategy profile is a restricted equilibrium.) It is easily
verified that the rest points of a payoff monotone dynamic are precisely the restricted equilibria of the underlying game.
Nevertheless, if the gameF has a strictly concave potential function, we can establish the following result.

Proposition A1. Suppose that the game F admits a strictly concave potential function f . Then under any payoff
monotone dynamic, any solution trajectory starting from an interior initial condition converges to the unique Nash
equilibrium of F.

Proof. We begin by showing that the set of restricted equilibria ofF , and hence the set of rest points of the payoff
monotone dynamic, is finite. To see this, consider any restricted version ofF in which each population is constrained to
choose from some nonempty subset of its pure strategies fromF . Then by definition, the original potential functionf
also serves as potential function for this restricted game. Sincef is strictly concave, Lemma A2 and the argument which
follows it show that the restricted game has a unique Nash equilibrium, which is the point which maximizesf on the
appropriate subset ofXm. This Nash equilibrium is a restricted equilibrium of the original gameF , and all restricted
equilibria are of this form. Since the number of restricted games which can be derived fromF is finite, so too is the
number of restricted equilibria.

Now, since the dynamic satisfies condition (PC) by Lemma A3, it admits the global Lyapunov functionf . Thus,
Proposition 1 of Losert and Akin (1983) and Theorem 5.4.1 of Robinson (1995) imply that every solution trajectory
converges to a connected set of rest points. Since the number of rest points is finite, convergence must always be to a
unique limit point, which is a restricted equilibrium.

Let {xt }t≥0 be a solution trajectory of the dynamic with interior initial conditionx0; thenxt lies in the interior
of Xm for all finite timest (see,e.g.Weibull, 1995, p. 195). Lety = limt→∞ xt , and suppose thaty is a restricted
equilibrium of F which is not a Nash equilibrium ofF . Then for some populationr ∈ R, there is a strategyi ∈ Sr such
thatyi = 0 and such thatFi (y) > F j (y) for eachj ∈ Sr in the support ofy. It then follows from payoff monotonicity and
the fact thaty is a rest point thatgi (y) > g j (y) = 0. Since the functiongi is continuous, it follows that for someε > 0,
there exists aδ > 0 such thatgi (x) > ε whenever|x − y| < δ. Now since{xt }t≥0 converges toy, there exists aT such

that|xt − y| < δ whenevert ≥ T . At such timest , (ẋt )i > (xt )i ε > 0. Hence,(xt )i = (xT )i +
∫ t

T (ẋs)i ds ≥ (xT )i > 0
for all t ≥ T , contradicting the definition of the trajectory. We therefore conclude that{xt }t≥0 approaches the unique
Nash equilibrium ofF . ‖
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SMALL, K. and GOMEZ-IBAÑEZ, J. A. (1998), “Road Pricing for Congestion Management: The Transition from

Theory to Policy”, in K. J. Button and E. T. Verhoef (eds.)Road Pricing, Traffic Congestion, and the Environment
(Chetlenham, UK: Edward Elgar).

SOO, C. (1998), “ERP Cuts Congestion in Singapore”,Traffic Technology International, June/July, 23–24.
The Economist(1997), “Living with the Car”, December 6–12, 21–23.



SANDHOLM CONGESTION PRICING 689

VEGA-REDONDO, F. (1989), “Implementation of Lindahl Equilibrium: An Integration of the Static and Dynamic
Approaches”,Mathematical Social Sciences, 18, 211–228.

VICKREY, W. (1961), “Counterspeculation, Auctions, and Competitive Sealed Tenders”,Journal of Finance, 16, 8–37.
VICKREY, W. (1963), “Pricing in Urban and Suburban Transport”,American Economic Review Papers and Proceedings,

52, 452–465.
VICKREY, W. (1969), “Congestion Theory and Transport Investment”,American Economic Review Papers and

Proceedings, 59, 251–260.
WALKER, M. (1984), “A Simple Auctioneerless Mechanism with Walrasian Properties”,Journal of Economic Theory,

32, 111–127.
WEIBULL, J. W. (1995),Evolutionary Game Theory(Cambridge, MA: MIT Press).
WEIBULL, J. W. (1996), “The Work of John Nash in Game Theory”,Journal of Economic Theory, 69, 153–185.


