Correlated-Q Learning and Cyclic Equilibria in Markov games

Haoqi Zhang
Correlated-Q Learning

Greeenwald and Hall (2003)

• Setting: general sum Markov games
• Goal: convergence (reach equilibrium), payoff
• Means: CE-Q
• Results: empirical convergence in experiments
• Assumptions: observable reward, umpire for CE selection
• Strong? Weak? What do you think?
Markov Games

- State transitions only dependent on current state and action
- Q-values over states and action-vectors over agents
- Don’t always exist deterministic actions that maximize each agent’s rewards
- Each agent plays an action profile with a certain probability
Q-values

- Use Q values to find best action (in single player, argmax a..)
- In Markov game, can use Nash-Q, CE-Q, ..., which use Q-values as the entries to a stage game and compute the equilibria.
- Play according to probabilities in the optimal strategy (your own part)
Nash equilibrium vs. Correlated equilibrium

Nash Eq.
- vector of independent probability distributions over actions
- No unilateral deviation given everyone else is playing the equilibrium

Correlated Eq.
- joint probability distribution (e.g. traffic light)
- No unilateral deviation given that others believe you are playing the equilibrium
Why CE?

- Easily computable with linear programming
- Higher rewards than Nash Equilibrium
- No-regret algorithms converge to CE (Foster and Vohra)
- Actions chosen independently (but based on commonly observed private signal)
LP to solve for CE

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>6,6</td>
<td>2,7</td>
</tr>
<tr>
<td>B</td>
<td>7,2</td>
<td>0,0</td>
</tr>
</tbody>
</table>

The correlated equilibria in this game are described by the probability constraints $\pi_{TL} + \pi_{TR} + \pi_{BL} + \pi_{BR} = 1$ and $\pi_{TL}, \pi_{TR}, \pi_{BL}, \pi_{BR} \geq 0$ together with the following so-called "rationality" constraints:

$-1\pi_{TL} + 2\pi_{TR} \geq 0$

$1\pi_{BL} - 2\pi_{BR} \geq 0$

$-1\pi_{TL} + 2\pi_{BL} \geq 0$

$1\pi_{TR} - 2\pi_{BR} \geq 0$

These are constraints, need an objective
Multiple Equilibria

• There are many equilibria (can be much more than Nash!)
• Need a way to break ties
• Can ensure equilibrium value is the same (although maybe not equilibrium policy)
• 4 variants
 – Maximize the sum of players’ rewards (uCE-Q)
 – Maximin of the players rewards (eCE-Q)
 – Maximax of the players rewards (rCE-Q)
 – Maximize the maximum of each individual player (lCE-Q)
Experiments

3 grid games
- Exists both deterministic and nondeterministic equilibrium
- Q-values converged (in 500000+ iterations)
- \{u,e,r\}CE-Q with best score performance (discount factor of 0.9)

Soccer game
- Zero-sum, no deterministic eq.
- uCE (and others) still converges
Where are we?

- Some positive results, but highly enforced coordination
- Problem: multiplicity of equilibria
- Are these results useful for anything? Why should we care?
Cyclic Equilibria in Markov Games

Zinkervich, Greenwald, Littman

• Setting: General sum Markov games
• Negative result: Q-values alone is insufficient to guarantee convergence
• Positive result: Can often get to cyclic equilibrium
• Assumptions: offline (what happened to learning?)

• How do we interpret these results? Why should we care?
Policy

- Stationary policy - set distribution for state, action vector pairs
- Non-stationary policy - a sequence of policies played at each iteration
- Cyclic policy - a non-stationary policy that is cyclic
Policy

• Stationary policy - set distribution for state, action vector pairs
• Non-stationary policy - a sequence of policies played at each iteration
• Cyclic policy - a non-stationary policy that is cyclic
Figure 1: An example of a NoSDE game. Here, $S = \{1, 2\}$, $A_{1,1} = A_{2,2} = \{keep, send\}$, $A_{1,2} = A_{2,1} = \{noop\}$, $T(1, \text{keep, noop}) = 1$, $T(1, \text{send, noop}) = 2$, $T(2, \text{noop, keep}) = 2$, $T(2, \text{noop, send}) = 1$, and $\gamma = 3/4$. In the unique stationary equilibrium, Player 1 sends with probability $2/3$ and Player 2 sends with probability $5/12$.
NoSDE game (nasty)

• Turn-taking game
• No deterministic stationary policy
• Every NoSDE game has a unique nondeterministic stationary equilibrium policy
• Negative result
 For any NoSDE game, there exists another NoSDE game (differing in only rewards) with its own stationary policy such that the Q values are equal but the policies are different and the values are different.
• How do we interpret this?
Cyclic Equilibria

• Cyclic correlated equilibrium: a cyclic policy that is a correlated equilibrium
• CE: for any round in the cycle, playing based on observed signal has higher value (based on Q’s) than deviating.
• Can use value iteration to derive cyclic CE
Value Iteration

2. Use V's from last iteration to update current Q's
3. Compute policy using $f(Q)$
4. Update current V's using current Q's
GetCycle

1. Run value iteration
2. Find minimal distance between final round V_T and any other round (that is less than maxCycles away), where distance is max difference between any state
3. Set the policies to the policies between these two rounds
Fact 1 If \(d(V^T, V^{T-1}) = \epsilon \) in \textit{GetStrategy}, then \textit{GetStrategy} returns an \(\frac{\epsilon \gamma}{1-\gamma} \)-correlated equilibrium.

Fact 2 If \textit{GetCycle} returns a cyclic policy of length \(k \) and \(d(V^T, V^{T-k}) = \epsilon \), then \textit{GetCycle} returns an \(\frac{\epsilon \gamma}{1-\gamma^k} \)-correlated cyclic equilibrium.
Theorems

Theorem 2: Given selection rule uCE, for every NoSDE game, there exists a cyclic CE.

Theorem 3: Given selection rule uCE, for any NoSDE game, ValueIteration does not converge to the optimal stationary policy.

Theorem 4: Given the game in Figure 1, no equilibrium selection rule f converges to the optimal stationary policy.

Strong? Weak? Which one?
Experiments

• Check convergence by running metric:

\[
\max_{t \in \{1, \ldots, k\}} d_{\Gamma}(V^{1001-t}, V^{1001-(t+k)}) \leq 0.0001,
\]

Check if deterministic equilibria exist by enumerating over every deterministic policy and running policy evaluation for 1000 iterations to estimate V and Q.
Results

Test on turn based game and small simultaneous games, reached Cyclic CE with uCE almost always. With 10 states and 3 actions in simultaneous games, no techniques converged
What does this all mean?

• How negative are the results?
• How do we feel about all the assumptions?
• What are the positive results? Are they useful? Why are cyclic equilibria interesting?

• What about policy iteration?
The End :)