
© Copyright 2001, 2002 by ILOG

This document and the software described in this document are the property of ILOG and are protected as ILOG trade secrets. They are furnished under a
license or non-disclosure agreement, and may be used or copied only within the terms of such license or non-disclosure agreement.

No part of this work may be reproduced or disseminated in any form or by any means, without the prior written permission of ILOG S.A.

Printed in France

ILOG CPLEX 8.1

Getting Started

December 2002

C O N T E N T S
Table of Contents

Preface Introducing ILOG CPLEX . 11

What Is ILOG CPLEX? .12

ILOG CPLEX Technologies .13

Optimizer Options .13

Data Entry Options .14

Solving an LP with CPLEX Technology .15

Using the Interactive Optimizer .15

Concert Technology for C++ Users .16

Concert Technology for Java Users. .18

Using the Callable Library .18

What You Need to Know .21

Manual Organization .21

Notation in this Manual .21

Related Documentation. .22

For More Information. .23

Customer Support .23

Web Site .23

Chapter 1 Setting Up CPLEX. 25

Installing CPLEX .26

Setting Up Licensing .28
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 5

T A B L E O F C O N T E N T S
Using the Component Libraries .28

Chapter 2 Interactive Optimizer Tutorial . 31

Starting ILOG CPLEX .32

Using Help .32

Entering a Problem .34

Entering the Example Problem .34

Using the LP Format .35

Entering Data .37

Displaying a Problem. .38

Displaying Problem Statistics. .39

Specifying Item Ranges .40

Displaying Variable or Constraint Names .40

Ordering Variables .41

Displaying Constraints .41

Displaying the Objective Function .41

Displaying Bounds .42

Solving a Problem .42

Solving the Example Problem .42

Solution Options. .44

Displaying Post-Solution Information .45

Performing Sensitivity Analysis .46

Writing Problem and Solution Files .47

Selecting a Write File Format. .48

Writing LP Files .49

Writing Basis Files .50

Using Path Names .50

Reading Problem Files .51

Selecting a Read File Format. .51

Reading LP Files .51

Using File Extensions. .52

Reading MPS Files .52
6 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

T A B L E O F C O N T E N T S
Reading Basis Files .53

Setting ILOG CPLEX Parameters .54

Adding Constraints and Bounds .55

Changing a Problem .56

Changing Constraint or Variable Names .57

Changing Sense. .57

Changing Bounds. .58

Removing Bounds .58

Changing Coefficients .58

Deleting .59

Executing Operating System Commands .60

Quitting ILOG CPLEX .61

Chapter 3 Concert Technology Tutorial for C++ Users . 63

The Design of CPLEX in Concert Technology .64

Compiling and Linking CPLEX in Concert Technology Applications.65

Testing Your Installation on UNIX .65

Testing Your Installation on Windows .65

In Case of Problems .66

The Anatomy of a Concert Technology Application .66

Constructing the Environment — IloEnv .66

Creating a Model — IloModel. .67

Solving the Model — IloCplex .69

Querying Results .70

Handling Errors .71

Building and Solving a Small LP Model in C++. .72

General Structure of a CPLEX Concert Technology Application .72

Modeling by Rows .73

Modeling by Columns. .73

Modeling by Nonzero Elements .74

Complete Program. .74

Writing and Reading Models and Files .79
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 7

T A B L E O F C O N T E N T S
Selecting an Optimizer .80

Reading a Problem from a File: Example ilolpex2.cpp. .80

Reading the Model from a File .81

Selecting the Optimizer .81

Accessing Basis Information .81

Querying Quality Measures .82

Complete Program. .82

Modifying and Reoptimizing .84

Modifying an Optimization Problem: Example ilolpex3.cpp .85

Setting CPLEX Parameters .86

Modifying an Optimization Problem .86

Starting from a Previous Basis .87

Complete Program. .87

Chapter 4 Concert Technology for Java Users . 89

Compiling CPLEX Applications in Concert Technology .89

In Case Problems Arise .90

The Design of CPLEX in Concert Technology .91

The Anatomy of a Concert Technology Application. .92

Create the Model .93

Solve the Model .94

Query the Results .95

Building and Solving a Small LP Model in Java .95

Modeling by Rows .97

Modeling by Columns. .97

Modeling by Nonzeros .98

Complete Code of LPex1.java. .98

Chapter 5 Callable Library Tutorial. 103

The Design of the ILOG CPLEX Callable Library .103

Compiling and Linking Callable Library Applications .104

Building CPLEX Callable Library Applications on UNIX Platforms .105
8 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

T A B L E O F C O N T E N T S
Building CPLEX Callable Library Applications on Win32 Platforms .105

Building Applications that Use the CPLEX Parallel Optimizers .106

How ILOG CPLEX Works. .106

Opening the ILOG CPLEX Environment .106

Instantiating the Problem Object .107

Populating the Problem Object .107

Changing the Problem Object .107

Creating a Successful Callable Library Application. .108

Prototype the Model .108

Identify the Routines to be Called .108

Test Procedures in the Application .109

Assemble the Data. .109

Choose an Optimizer .110

Observe Good Programming Practices .110

Debug Your Program .110

Test Your Application .111

Use the Examples .111

Building and Solving a Small LP Model in C. .111

Complete Program. .113

Reading a Problem from a File: Example lpex2.c .122

Complete Program. .124

Adding Rows to a Problem: Example lpex3.c .131

Complete Program. .132

Performing Sensitivity Analysis .138

Index . 141
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 9

T A B L E O F C O N T E N T S
10 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

P R E F A C E
Introducing ILOG CPLEX

This preface introduces ILOG CPLEX 8.1. It includes sections on:

◆ What Is ILOG CPLEX?

◆ Solving an LP with CPLEX Technology

◆ What You Need to Know

◆ Manual Organization

◆ Notation in this Manual

◆ Related Documentation

◆ For More Information
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 11

W H A T I S I L O G C P L E X ?
What Is ILOG CPLEX?

ILOG CPLEX is a tool for solving linear optimization problems, commonly referred to as
Linear Programming (LP) problems, of the form:

where ~ can be ≤, ≥, or =, and the upper bounds ui and lower bounds li may be positive
infinity, negative infinity, or any real number.

 The elements of data you provide as input for this LP are:

The optimal solution that CPLEX computes and returns is:

CPLEX also can solve several extensions to LP:

◆ Network Flow problems, a special case of LP that CPLEX can solve much faster by
exploiting the problem structure.

◆ Quadratic Programming (QP) problems, where the LP objective function is expanded to
include quadratic terms.

◆ Mixed Integer Programming (MIP) problems, where any or all of the LP or QP variables
are further restricted to take integer values in the optimal solution (and where MIP itself
is extended to include constructs like Special Ordered Sets (SOS) and semi-continuous
variables).

Maximize (or Minimize) c1x1 + c2x2 +...+ cnxn

subject to a11x1 + a12x2 +...+ a1nxn ~ b1
a21x1 + a22x2 +...+ a2nxn ~ b2
...
am1x1 + am2x2 +...+ amnxn ~ bm

with these bounds l1 ≤ x1 ≤ u1
...
ln ≤ xn ≤ un

Objective function coefficients c1, c2, ... , cn

Constraint coefficients a11, a21, ... , an1
...
am1, am2, ..., amn

Right-hand sides b1, b2, ... , bm

Upper and lower bounds u1, u2, ... , un and l1, l2, ... , ln

Variables x1, x2, ... , xn
12 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

W H A T I S I L O G C P L E X ?
ILOG CPLEX Technologies

 CPLEX comes in three forms to meet a wide range of users' needs:

◆ The CPLEX Interactive Optimizer is an executable program that can read a problem
interactively or from files in certain standard formats, solve the problem, and deliver the
solution interactively or into text files. The program consists of the file cplex.exe on
Windows platforms or cplex on UNIX platforms.

◆ Concert Technology is a set of C++ and Java class libraries offering an API that
includes modeling facilities to allow the programmer to embed CPLEX optimizers in
C++ or Java applications. The library is provided in the files in the table below.

The Concert Technology libraries make use of the Callable Library (described next).

◆ The CPLEX Callable Library is a C library that allows the programmer to embed
CPLEX optimizers in applications written in C, Visual Basic, FORTRAN, or any other
language that can call C functions.The library is provided in files cplex81.lib and
cplex81.dll on Windows platforms, and in libcplex.a, libcplex81.so, and/or
libcplex81.sl on UNIX platforms.

In this manual, the phrase "CPLEX Component Libraries" is used when referring equally to
any of these libraries. While all of the libraries are callable, the term "CPLEX Callable
Library" as used here refers specifically to the C library.

Compatible Platforms

ILOG CPLEX is available on Windows and UNIX platforms. The programming interface
works the same way and provides the same facilities on all platforms.

Installation Requirements

If you have not yet installed ILOG CPLEX on your platform, please consult Chapter 1,
Setting Up CPLEX. It contains instructions for installing ILOG CPLEX.

Optimizer Options

This manual explains how to use all the LP, QP and MIP algorithms that are part of ILOG
CPLEX. Some users may not have access to all algorithms. Such users should consult their
ILOG account manager or the ILOG support web site to determine to which algorithms they
have access.

Table 1: Concert Technologies Class Libraries

MS Windows Unix

C++
ilocplex.lib
concert.lib

libilocplex.a
libconcert.a

Java cplex.jar cplex.jar
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 13

W H A T I S I L O G C P L E X ?
Default settings will result in a call to an optimizer that is appropriate to the class of problem
you are solving. However you may wish to choose a different optimizer for special purposes.
An LP or QP problem can be solved using any of the following CPLEX optimizers: Dual
Simplex, Primal Simplex, Barrier, and perhaps also the Network Optimizer (if the problem
contains an extractable network substructure). Pure network models are all solved by the
Network Optimizer. MIP models are all solved by the Mixed Integer Optimizer, which in
turn may invoke any of the LP or QP optimizers in the course of its computation. Table 2
summarizes these possible choices.

The choice of optimizer or other parameter settings may have a very large effect on the
solution speed of your particular class of problem. The ILOG CPLEX User's Manual
describes the optimizers, provides suggestions for maximizing performance, and notes the
features and algorithmic parameters unique to each optimizer.

Using the Parallel Optimizers

On a computer with multiple CPUs, the Barrier Optimizer and the MIP Optimizer are each
capable of running in parallel, that is, they can apply these additional CPUs to the task of
optimizing the model. The number of CPUs used by an optimizer is controlled by the user;
under default settings these optimizers run in serial (single CPU) mode. When solving small
models, such as those described in this document, the effect of parallelism will generally be
negligible. On larger models, the effect is ordinarily beneficial to solution speed. See the
section Using Parallel Optimizers in the ILOG CPLEX User's Manual for information on
using CPLEX on a parallel computer.

Data Entry Options

CPLEX provides several options for entering your problem data. When using the Interactive
Optimizer, most users will enter problem data from formatted files. CPLEX supports the
industry-standard MPS (Mathematical Programming System) file format as well as CPLEX
LP format, a row-oriented format many users may find more natural. Interactive entry (using
CPLEX LP format) is also a possibility for small problems.

Table 2: Optimizers

LP Network QP MIP

Dual Optimizer ➼ ➼

Primal Optimizer ➼ ➼

Barrier Optimizer ➼ ➼

Mixed Integer Optimizer ➼

Network Optimizer Note 1 ➼ Note 1

Note 1: The problem must contain an extractable network substructure.
14 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

S O L V I N G A N L P W I T H C P L E X T E C H N O L O G Y
Data entry options are described briefly in this manual. File formats are documented in an
appendix of the ILOG CPLEX Reference Manual.

Concert Technology and Callable Library users may read problem data from the same kinds
of files as in the Interactive Optimizer, or they may want to pass data directly into CPLEX to
gain efficiency. These options are discussed in a series of examples that begin with Building
and Solving a Small LP Model in C++, Building and Solving a Small LP Model in Java, and
Building and Solving a Small LP Model in C for the CPLEX Callable Library users.

Solving an LP with CPLEX Technology

To help you learn which CPLEX technology best meets your needs, we briefly demonstrate
here how to create and solve an LP model, using four different interfaces to CPLEX. Full
details of writing a practical program are in the chapters containing the tutorials.

The problem to be solved is:

Using the Interactive Optimizer

The following is screen output from a CPLEX Interactive Optimizer session where the
example model is entered and solved. CPLEX> indicates the CPLEX prompt, and text
following this is user input.

Welcome to CPLEX Interactive Optimizer 8.1.0
 with Simplex, Mixed Integer & Barrier Optimizers
Copyright (c) ILOG 1997-2002
CPLEX is a registered trademark of ILOG

Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.

CPLEX> enter example
Enter new problem ['end' on a separate line terminates]:
maximize x1 + 2 x2 + 3 x3
subject to -x1 + x2 + x3 <= 20
 x1 - 3 x2 + x3 <=30
bounds

Maximize x1 + 2x2 + 3x3

subject to –x1 + x2 + x3 ≤ 20
 x1 – 3x2 + x3 ≤ 30

with these bounds 0 ≤ x1 ≤ 40
0 ≤ x2 ≤ +∞
0 ≤ x3 ≤ +∞
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 15

S O L V I N G A N L P W I T H C P L E X T E C H N O L O G Y
0 <= x1 <= 40
0 <= x2
0 <= x3
end
CPLEX> optimize
Tried aggregator 1 time.
No LP presolve or aggregator reductions.
Presolve time = 0.00 sec.

Iteration log . . .
Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000

Dual simplex - Optimal: Objective = 2.0250000000e+002
Solution time = 0.01 sec. Iterations = 2 (1)

CPLEX> quit

Concert Technology for C++ Users

Here is a C++ program using CPLEX in Concert Technology to solve the example model.
An expanded version of this example is discussed in detail in Chapter 3, Concert Technology
Tutorial for C++ Users.

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

int
main (int argc, char **argv)
{
 IloEnv env;
 try {
 IloModel model(env);
 IloNumVarArray x(env);
 x.add(IloNumVar(env, 0.0, 40.0));
 x.add(IloNumVar(env));
 x.add(IloNumVar(env));
 model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2]));
 model.add(- x[0] + x[1] + x[2] <= 20);
 model.add(x[0] - 3 * x[1] + x[2] <= 30);

 IloCplex cplex(model);
 if (!cplex.solve()) {
 env.error() << "Failed to optimize LP." << endl;
 throw(-1);
 }

 IloNumArray vals(env);
 env.out() << "Solution status = " << cplex.getStatus() << endl;
 env.out() << "Solution value = " << cplex.getObjValue() << endl;
 cplex.getValues(vals, x);
16 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

S O L V I N G A N L P W I T H C P L E X T E C H N O L O G Y
 env.out() << "Values = " << vals << endl;
 }
 catch (IloException& e) {
 cerr << "Concert exception caught: " << e << endl;
 }
 catch (...) {
 cerr << "Unknown exception caught" << endl;
 }

 env.end();

 return 0;
} // END main
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 17

S O L V I N G A N L P W I T H C P L E X T E C H N O L O G Y
Concert Technology for Java Users

Here is a Java program using ILOG Concert Technology to solve the example model. An
expanded version of this example is discussed in detail in Chapter 4, Concert Technology for
Java Users.

Using the Callable Library

Here is a C program using the CPLEX Callable Library to solve the example model. An
expanded version of this example is discussed in detail in Chapter 5, Callable Library
Tutorial.

#include <ilcplex/cplex.h>
#include <stdlib.h>

import ilog.concert.*;
import ilog.cplex.*;

public class Example {
 public static void main(String[] args) {
 try {
 IloCplex cplex = new IloCplex();

 double[] lb = {0.0, 0.0, 0.0};
 double[] ub = {40.0, Double.MAX_VALUE, Double.MAX_VALUE};
 IloNumVar[] x = cplex.numVarArray(3, lb, ub);

 double[] objvals = {1.0, 2.0, 3.0};
 cplex.addMaximize(cplex.scalProd(x, objvals));

 cplex.addLe(cplex.sum(cplex.prod(-1.0, x[0]),
 cplex.prod(1.0, x[1]),
 cplex.prod(1.0, x[2])), 20.0);
 cplex.addLe(cplex.sum(cplex.prod(1.0, x[0]),
 cplex.prod(-3.0, x[1]),
 cplex.prod(1.0, x[2])), 30.0);

 if (cplex.solve()) {
 cplex.out().println("Solution status = " + cplex.getStatus());
 cplex.out().println("Solution value = " + cplex.getObjValue());

 double[] val = cplex.getValues(x);
 int ncols = cplex.getNcols();
 for (int j = 0; j < ncols; ++j)
 cplex.out().println("Column: " + j + " Value = " + val[j]);
 }
 cplex.end();
 }
 catch (IloException e) {
 System.err.println("Concert exception '" + e + "' caught");
 }
 }
}

18 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

S O L V I N G A N L P W I T H C P L E X T E C H N O L O G Y
#include <string.h>

#define NUMROWS 2
#define NUMCOLS 3
#define NUMNZ 6

int
main (int argc, char **argv)
{
 int status = 0;
 CPXENVptr env = NULL;
 CPXLPptr lp = NULL;

 double obj[NUMCOLS];
 double lb[NUMCOLS];
 double ub[NUMCOLS];
 double x[NUMCOLS];
 int rmatbeg[NUMROWS];
 int rmatind[NUMNZ];
 double rmatval[NUMNZ];
 double rhs[NUMROWS];
 char sense[NUMROWS];

 int solstat;
 double objval;

 env = CPXopenCPLEX (&status);
 if (env == NULL) {
 char errmsg[1024];
 fprintf (stderr, "Could not open CPLEX environment.\n");
 CPXgeterrorstring (env, status, errmsg);
 fprintf (stderr, "%s", errmsg);
 goto TERMINATE;
 }

 lp = CPXcreateprob (env, &status, "lpex1");
 if (lp == NULL) {
 fprintf (stderr, "Failed to create LP.\n");
 goto TERMINATE;
 }

 CPXchgobjsen (env, lp, CPX_MAX);

 obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;
 lb[0] = 0.0; lb[1] = 0.0; lb[2] = 0.0;
 ub[0] = 40.0; ub[1] = CPX_INFBOUND; ub[2] = CPX_INFBOUND;

 status = CPXnewcols (env, lp, NUMCOLS, obj, lb, ub, NULL, NULL);
 if (status) {
 fprintf (stderr, "Failed to populate problem.\n");
 goto TERMINATE;
 }
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 19

S O L V I N G A N L P W I T H C P L E X T E C H N O L O G Y
 rmatbeg[0] = 0;
 rmatind[0] = 0; rmatind[1] = 1; rmatind[2] = 2; sense[0] = 'L';
 rmatval[0] = -1.0; rmatval[1] = 1.0; rmatval[2] = 1.0; rhs[0] = 20.0;

 rmatbeg[1] = 3;
 rmatind[3] = 0; rmatind[4] = 1; rmatind[5] = 2; sense[1] = 'L';
 rmatval[3] = 1.0; rmatval[4] = -3.0; rmatval[5] = 1.0; rhs[1] = 30.0;

 status = CPXaddrows (env, lp, 0, NUMROWS, NUMNZ, rhs, sense, rmatbeg,
 rmatind, rmatval, NULL, NULL);
 if (status) {
 fprintf (stderr, "Failed to populate problem.\n");
 goto TERMINATE;
 }

 status = CPXlpopt (env, lp);
 if (status) {
 fprintf (stderr, "Failed to optimize LP.\n");
 goto TERMINATE;
 }

 status = CPXsolution (env, lp, &solstat, &objval, x, NULL, NULL, NULL);
 if (status) {
 fprintf (stderr, "Failed to obtain solution.\n");
 goto TERMINATE;
 }
 printf ("\nSolution status = %d\n", solstat);
 printf ("Solution value = %f\n", objval);
 printf ("Solution = [%f, %f, %f]\n\n", x[0], x[1], x[2]);

TERMINATE:

 if (lp != NULL) {
 status = CPXfreeprob (env, &lp);
 if (status) {
 fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
 }
 }

 if (env != NULL) {
 status = CPXcloseCPLEX (&env);
 if (status) {
 char errmsg[1024];
 fprintf (stderr, "Could not close CPLEX environment.\n");
 CPXgeterrorstring (env, status, errmsg);
 fprintf (stderr, "%s", errmsg);
 }
 }

 return (status);

} /* END main */
20 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

W H A T Y O U N E E D T O K N O W
What You Need to Know

In order to use ILOG CPLEX effectively, you need to be familiar with your operating
system, whether Unix or Windows.

This manual assumes you already know how to create and manage files. In addition, if you
are building an application that uses the Component Libraries, this manual assumes that you
know how to compile, link, and execute programs written in a high-level language. The
Callable Library is written in the C programming language, while Concert Technology is
written in C++ and Java. This manual also assumes that you already know how to program
in the appropriate language and that you will consult a programming guide when you have
questions in that area.

Manual Organization

Chapter 1, Setting Up CPLEX tells how to install CPLEX.

Chapter 2, Interactive Optimizer Tutorial, describes, step by step, how to use the Interactive
Optimizer—how to start it, how to enter problems and data, how to read and save files, how
to modify objective functions and constraints, and how to display solutions and analytical
information.

Chapter 3, Concert Technology Tutorial for C++ Users describes the same activities using
the classes in the C++ version of the CPLEX Concert Technology Library.

Chapter 4, Concert Technology for Java Users describes the same activities using the classes
in the Java version of the CPLEX Concert Technology Library.

Chapter 5, Callable Library Tutorial describes the same activities using the routines in the
ILOG CPLEX Callable Library.

All tutorials use examples that are delivered with the standard distribution.

Notation in this Manual

To make this manual easier to use, we’ve followed a few conventions in notation and names.

◆ Important ideas are italicized the first time they appear.

◆ Text that is entered at the keyboard or displayed on the screen and commands and their
options available through the Interactive Optimizer appear in this typeface, for
example, set preprocessing aggregator n.

◆ Entries that you must fill in appear in this typeface; for example, write filename.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 21

R E L A T E D D O C U M E N T A T I O N
◆ The names of C routines and parameters in the ILOG CPLEX Callable Library begin
with CPX; the names of C++ and Java classes in the CPLEX Concert Technology Library
begin with Ilo; and both appear in this typeface, for example:
CPXcopyobjnames() or IloCplex.

◆ Combinations of keys from the keyboard are hyphenated. For example, control-c
indicates that you should press the control key and the c key simultaneously. The
<return> indicates end of line or end of data entry. On some keyboards, the key is
labeled enter or Enter.

Related Documentation

In addition to this introductory manual, the standard distribution of ILOG CPLEX comes
with the ILOG CPLEX User’s Manual, the ILOG CPLEX Reference Manual, and the
ILOG Concert Technology Documentation Kit. All ILOG documentation is available in an
online version in HTML (hypertext mark-up language). It is delivered with the standard
distribution of the product and accessible through conventional HTML browsers.

◆ The ILOG CPLEX User’s Manual explains the relationship between the Interactive
Optimizer and the Component Libraries. It enlarges on aspects of linear programming
with ILOG CPLEX and shows you how to handle quadratic programming (QP) problems
and mixed integer programming (MIP) problems. It tells you how to control
ILOG CPLEX parameters, debug your applications, and efficiently manage input and
output. It also explains how to use parallel CPLEX optimizers.

◆ The ILOG CPLEX Reference Manual documents the Callable Library routines and their
arguments, the Concert Technology classes, methods, and functions, and the commands
and options of the Interactive Optimizer. The reference manual also contains a table of
parameters that can be modified by parameter routines, a list of error messages, and
details about file formats.

◆ The ILOG CPLEX Java Reference Manual supplies detailed definitions of the Concert
Technology interfaces and CPLEX Java classes. It is available only in online form as
HTML, and Microsoft compiled HTML help (.CHM) form.

◆ The ILOG Concert Technology Documentation Kit includes the ILOG Concert
Technology Reference Manual, which documents the classes, methods, and functions of
the Concert Technology library; the ILOG Concert Technology User’s Manual, which
provides examples that show how to use Concert Technology to model problems; the
ILOG Hybrid Cooperating Optimizers User’s Guide & Reference, which documents the
class IloLinConstraint and shows how to use ILOG’s main algorithm classes,
IloSolver and IloCplex in cooperation; and the ILOG Concert Technology
Migration Guide, which shows how to translate applications created in previous versions
of ILOG products to Concert Technology.
22 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

F O R M O R E I N F O R M A T I O N
As you work with ILOG CPLEX on a long-term basis, you should read the complete User’s
Manual to learn how to design models and implement solutions to your own problems.
Consult the ILOG CPLEX Reference Manual for authoritative documentation of the
Component Libraries and Interactive Optimizer.

For More Information

ILOG offers technical support and comprehensive Web sites for its products.

Customer Support

For technical support of ILOG CPLEX, you should contact your local distributor, or, if you
are a direct ILOG customer, contact the nearest regional office:

We encourage you to use e-mail for faster, better service.

Web Site

The CPLEX Web site at http://www.ilog.com/products/cplex/ offers product
descriptions, press releases, and contact information. It lists services, such as training,
maintenance, technical support, and outlines special programs. In addition, it links you to an
ftp site where you can pick up examples.

Region E-mail Telephone Fax

France cplex-support@ilog.fr 0 800 09 27 91

(numéro vert)

+33 (0)1 49 08 35 62

+33 (0)1 49 08 35 10

Germany cplex-support@ilog.de +49 6172 40 60 33 +49 6172 40 60 10

Spain cplex-support@ilog.es +34 91 710 2480 +34 91 372 9976

United Kingdom cplex-support@ilog.co.uk +44 (0)1344 661600 +44 (0)1344 661601

Other European
countries

cplex-support@ilog.fr +33 (0)1 49 08 35 62 +33 (0)1 49 08 35 10

Japan cplex-support@ilog.co.jp +81 3 5211 5770 +81 3 5211 5771

Singapore cplex-support@ilog.com.sg +65 6773 06 26 +65 6773 04 39

USA cplex-support@ilog.com 1-877-ILOG-TECH

1-877-456-4832

(toll free) or

1-650-567-8080

+1 650 567 8001
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 23

http://www.ilog.com/products/cplex/

F O R M O R E I N F O R M A T I O N
The technical support pages contain FAQ (Frequently Asked/Answered Questions) and the
latest patches for some of our products. Changes are posted in the product mailing list.
Access to these pages is restricted to owners of an ongoing maintenance contract. The
maintenance contract number and the name of the person this contract is sent to in your
company will be needed for access, as explained on the login page.

All three of the following sites contain the same information, but access is localized, so we
recommend that you connect to the site corresponding to your location and select the
“support” page from the home page.

◆ The Americas: http://www.ilog.com

◆ Asia & Pacific nations: http://www.ilog.com.sg

◆ Europe, Africa, and Middle East: http://www.ilog.fr

On those Web pages, you will find additional information about ILOG CPLEX in technical
papers that have also appeared at industrial and academic conferences.
24 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

http://www.ilog.com
http://www.ilog.com
http://www.ilog.fr

C H A P T E R

S
ettin

g
 U

p
 C

P
L

E
X

1

Setting Up CPLEX

You install ILOG CPLEX in two steps: first, transfer the files from the distribution medium
(a CD or an FTP site) into a directory on your local file system; then activate your license.

At that point, all of the features of CPLEX become functional and are available to you. The
chapters that follow this one provide tutorials in the use of each of the Technologies that
CPLEX provides: the Concert Technology Tutorials for C++ and Java users, and the
Callable Library Tutorial for C and other languages.

This chapter provides guidelines for:

◆ Installing CPLEX

◆ Setting Up Licensing

◆ Using the Component Libraries

Important: Please read these instructions in their entirety before beginning the installation.
Remember that most CPLEX distributions will operate correctly only on the specific
platform and operating system version for which they are designed. If you upgrade your
operating system, you may need to obtain a new CPLEX distribution.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 25

I N S T A L L I N G C P L E X
Installing CPLEX

The steps to perform CPLEX installation involve identifying the correct distribution file for
your particular platform, and then executing a command that uses that distribution file. The
identification step is described in the booklet that comes with the CD-ROM, or is provided
with the FTP instructions for download. Once the correct distribution file is at hand, the
installation proceeds as follows.

Installation on UNIX

On UNIX systems CPLEX 8.1 is installed in a subdirectory named cplex81, under the
current working directory where you perform the installation.

Use the cd command to move to the top level directory into which you wish to install the
CPLEX subdirectory. Then type this command:

gzip -dc < path/cplex.tgz | tar xf -

where path is the full path name pointing to the location of the CPLEX distribution file
(either on the CD-ROM or on a disk where you performed the FTP download). On UNIX
systems, both CPLEX and Concert are installed when you execute the above command.

Installation on Windows

Before you install CPLEX, you need to identify the correct distribution file for your
platform. There are instructions on how to identify your distribution in the booklet that
comes with the CD-ROM or with the FTP instructions for download. This booklet also
describes how to start the CPLEX installation on your platform.
26 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

I N S T A L L I N G C P L E X

S
ettin

g
 U

p
 C

P
L

E
X

Directory Structure

After completing the installation, you will have a directory structure like the following:

Figure 1.0 Installation Directory Structures

Be sure to read the readme.html carefully for the latest information on the version of
CPLEX you have installed.

cplex81

<platform>

bin

<platform>

<EXECUTABLE FILES>

examples

data

<CONCERT LIBRARY>

src

include

ilcplex

lib

<platform>

<lib format>

<CPLEX LIBRARY>

concert12

include

ilconcert

<platform>

<lib format>

<lib format>

lib

makefile or MSVC++ project files

<lib format>

(Interactive Optimizer, .dll and .so files)
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 27

S E T T I N G U P L I C E N S I N G
Setting Up Licensing

CPLEX 8.1 runs under the control of the ILOG License Manager (ILM). Before you can run
CPLEX, or any application that calls it, you must have established a valid license that ILM
can read. Licensing instructions are provided in the ILOG License Manager User’s Guide &
Reference, which is included with the standard CPLEX product distribution. The basic steps
are:

1. Install ILM. Normally you obtain ILM distribution media from the same place that you
obtain CPLEX.

2. Run the ihostid program, which is found in the directory where you install ILM.

3. Communicate the output of step 2 to your local ILOG sales administration department.
They will send you a license key in return.

4. Create a file on your system to hold this license key, and set the environment variable
ILOG_LICENSE_FILE so that CPLEX will know where to find the license key. (The
environment variable need not be used if you install the license key in a platform-
dependent default file location.)

Using the Component Libraries

After you have completed the installation and licensing steps, you can verify that everything
is working by running one or more of the examples that are provided with the standard
distribution.

Verifying Installation on UNIX

On a UNIX system, go to the subdirectory examples/<machine>/<libformat> that
matches your particular platform, and in it you will find a file named makefile. Execute
one of the examples, for instance lpex1.c, by doing

make lpex1

lpex1 -r # this example takes one argument, either -r, -c, or -n

If your interest is in running one of the C++ examples, try

make ilolpex1

ilolpex1 -r # this is the same as lpex1 and takes the same arguments.

If your interest is in running one of the Java examples, try

make LPex1.class

java -Djava.library.path=../../../bin/<platform>:
-classpath ../../../lib/cplex.jar: LPex1 -r
28 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

U S I N G T H E C O M P O N E N T L I B R A R I E S

S
ettin

g
 U

p
 C

P
L

E
X

Any of these examples should return an optimal objective function value of 202.5.

Verifying Installation on Windows

On a Windows machine, you can follow a similar process using the facilities of your
compiler interface to compile and then run any of the examples. A project file for each
example is provided, in a format for Microsoft Visual C++ 6 and Visual C++ .NET.

In Case of Errors

If an error occurs during the make or compile step, then check that you are able to access the
compiler and the necessary linker/loader files and system libraries. If an error occurs on the
next step, when executing the program created by make, then the nature of the error message
will guide your actions. If the problem is in licensing, consult the ILOG License Manager
User's Guide and Reference for further guidance. For Windows users, if the program has
trouble locating cplex81.dll, make sure the DLL is stored either in the current directory
or in a directory listed in your PATH environment variable.

The UNIX makefile, or Windows project file, contains useful information regarding
recommended compiler flags and other settings for compilation and linking.

Compiling and Linking Your Own Applications

The source files for the examples and the makefiles provide guidance for how your own
application can call CPLEX. The following chapters give more specific information on the
necessary header files for compilation, and how to link CPLEX and Concert Technology
library files into your application.

◆ Chapter 3, Concert Technology Tutorial for C++ Users contains information and
platform-specific instructions for compiling and linking the Concert Technology Library,
for C++ users.

◆ Chapter 4, Concert Technology for Java Users contains information and platform-
specific instructions for compiling and linking the Concert Technology Library, for Java
users.

◆ Chapter 5, Callable Library Tutorial contains information and platform-specific
instructions for compiling and linking the Callable Library.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 29

U S I N G T H E C O M P O N E N T L I B R A R I E S
30 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C H A P T E R

In
teractive O

p
tim

izer
Tu

to
rial
2

Interactive Optimizer Tutorial

This step-by-step tutorial introduces the major features of the ILOG CPLEX Interactive
Optimizer. In this chapter, you will learn about:

◆ Starting ILOG CPLEX

◆ Using Help

◆ Entering a Problem

◆ Displaying a Problem

◆ Solving a Problem

◆ Performing Sensitivity Analysis

◆ Writing Problem and Solution Files

◆ Reading Problem Files

◆ Setting ILOG CPLEX Parameters

◆ Adding Constraints and Bounds

◆ Changing a Problem

◆ Executing Operating System Commands

◆ Quitting ILOG CPLEX
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 31

S T A R T I N G I L O G C P L E X
Starting ILOG CPLEX

To start the ILOG CPLEX Interactive Optimizer, at your operating system prompt type the
command:

cplex

A message similar to the following one appears on the screen:

The last line, CPLEX>, is the prompt, indicating that the product is running and is ready to
accept one of the available ILOG CPLEX commands. Use the help command to see a list of
these commands.

Using Help

ILOG CPLEX accepts commands in several different formats. You can type either the full
command name, or any shortened version that uniquely identifies that name. For example,
enter help after the CPLEX> prompt, as shown:

CPLEX> help

You will see a list of the ILOG CPLEX commands on the screen.

Since all commands start with a unique letter, you could also enter just the single letter h.

CPLEX> h

ILOG CPLEX does not distinguish between upper and lower case letters, so you could enter
h, H, help, or HELP. All of these variations invoke the help command. The same rules apply
to all ILOG CPLEX commands. You need only type enough letters of the command to
distinguish it from all other commands, and it does not matter whether you type upper and
lower case letters. Throughout this manual, we use lower case letters.

Welcome to CPLEX Interactive Optimizer 8.1.0
 with Simplex, Mixed Integer & Barrier Optimizers
Copyright (c) ILOG 1997-2002
CPLEX is a registered trademark of ILOG

Type help for a list of available commands.
Type help followed by a command name for more
information on commands.

CPLEX>
32 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

U S I N G H E L P
After you type the help command, a list of available commands with their descriptions
appears on the screen, like this:

To find out more about a specific command, type help followed by the name of that
command. For example, to learn more about the primopt command type:

help primopt

Typing the full name is unnecessary. Alternatively, you can try:

h p

The following message appears to tell you more about the use and syntax of the primopt
command:

Summary

The syntax for the help command is:

help command name

add add constraints to problem
baropt solve using barrier algorithm
change change the problem
display display problem, solution, or parameter settings
enter enter a new problem
help provide information on CPLEX commands
mipopt solve a mixed integer program
netopt solve the problem using network method
optimize solve the problem
primopt solve using the primal method
quit leave CPLEX
read read problem or basis information from a file
set set parameters
tranopt solve using the dual method
write write problem or solution info. to a file
xecute execute a command from the operating system

Enter enough characters to uniquely identify commands & options.
Commands can be entered partially (CPLEX will prompt you for
further information) or as a whole.

The PRIMOPT command solves the current problem using
a primal simplex method or crosses over to a basic solution
if a barrier solution exists.

Syntax: PRIMOPT

A problem must exist in memory (from using either the
ENTER or READ command) in order to use the PRIMOPT
command.

Sensitivity information (dual price and reduced-cost
information) as well as other detailed information about
the solution can be viewed using the DISPLAY command,
after a solution is generated.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 33

E N T E R I N G A P R O B L E M
Entering a Problem

Most users with larger problems enter problems by reading data from formatted files. That
practice is described in Reading Problem Files on page 51. For now, let's enter a smaller
problem from the keyboard by using the enter command. The process is described step-by-
step in the topics:

◆ Entering the Example Problem

◆ Using the LP Format

◆ Entering Data

Entering the Example Problem

As an example, we will use the following problem:

This problem has three variables (x1, x2, and x3) and two less-than-or-equal-to constraints.

The enter command is used to enter a new problem from the keyboard. The procedure is
almost as simple as typing the problem on a page. At the CPLEX> prompt type:

enter

A prompt appears on the screen asking you to give a name to the problem that you are about
to enter.

Naming a Problem

The problem name may be anything that is allowed as a file name in your operating system.
If you decide that you do not want to enter a new problem, just press the <return> key
without typing anything. The CPLEX> prompt will reappear without causing any action. The
same can be done at any CPLEX> prompt. If you do not want to complete the command,
simply press the <return> key. For now, type in the name example at the prompt.

Enter name for problem: example

The following message appears:

Enter new problem ['end' on a separate line terminates]:

and the cursor is positioned on a blank line below it where you can enter the new problem.

Maximize x1 + 2x2 + 3x3

subject to –x1 + x2 + x3 ≤ 20
 x1 – 3x2 + x3 ≤ 30

with these bounds 0 ≤ x1 ≤ 40
0 ≤ x2 ≤ +∞
0 ≤ x3 ≤ +∞
34 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

E N T E R I N G A P R O B L E M
You can also type the problem name directly after the enter command and avoid the
intermediate prompt.

Summary

The syntax for entering a problem is:

enter problem name

Using the LP Format

Entering a new problem is basically like typing it on a page, but there are a few rules to
remember. These rules conform to the ILOG CPLEX LP file format and are documented in
the ILOG CPLEX Reference Manual. We use LP format throughout this tutorial.

The problem should be entered in the following order:

1. Objective Function

2. Constraints

3. Bounds

Objective Function

Before entering the objective function, you must state whether the problem is a minimization
or maximization. For this example, you type:

maximize
x1 + 2x2 + 3x3

You may type minimize or maximize on the same line as the objective function, but you
must separate them by at least one space.

Variable Names

In the example, the variables are named simply x1, x2, x3, but you can give your variables
more meaningful names such as cars or gallons. The only limitations on variable names
in LP format are that the names must be no more than 255 characters long and use only the
alphanumeric characters (a-z, A-Z, 0-9) and certain symbols: ! " # $ % & () , . ; ? @ _ ‘ ’ { }
~. Any line with more than 510 characters is truncated.

A variable name cannot begin with a number or a period, and there is one character
combination that cannot be used: the letter e or E alone or followed by a number or another
e, since this notation is reserved for exponents. Thus, a variable cannot be named e24 nor
e9cats nor eels nor any other name with this pattern. This restriction applies only to
problems entered in LP format.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 35

E N T E R I N G A P R O B L E M
Constraints

Once you have entered the objective function, you can move on to the constraints. However,
before you start entering the constraints, you must indicate that the subsequent lines are
constraints by typing:

subject to

or

st

These terms can be placed alone on a line or on the same line as the first constraint if
separated by at least one space. Now you can type in the constraints in the following way:

st
-x1 + x2 + x3 <= 20
x1 - 3x2 + x3 <= 30

Constraint Names

In this simple example, it is easy to keep track of the small number of constraints, but for
many problems, it may be advantageous to name constraints so that they are easier to
identify. You can do so in ILOG CPLEX by typing a constraint name and a colon before the
actual constraint. If you do not give the constraints explicit names, ILOG CPLEX will give
them the default names c1, c2, . . . , cn. In the example, if we want to call the
constraints time and labor, for example, we enter the constraints like this:

st
time: -x1 + x2 + x3 <= 20
labor: x1 - 3x2 + x3 <= 30

Constraint names are subject to the same guidelines as variable names. They must have no
more than 16 characters, consist of only allowed characters, and not begin with a number, a
period, or the letter e followed by a positive or negative number or another e.

Objective Function Names

The objective function can be named in the same manner as constraints. The default name
for the objective function is obj. ILOG CPLEX assigns this name if no other is entered.

Bounds

Finally, you must enter the lower and upper bounds on the variables. If no bounds are
specified, ILOG CPLEX will automatically set the lower bound to 0 and the upper bound to
+∞. You must explicitly enter bounds only when the bounds differ from the default values. In
our example, the lower bound on x1 is 0, which is the same as the default. The upper bound
40, however, is not the default, so you must enter it explicitly. You must type bounds on a
separate line before you enter the bound information:

bounds
x1 <= 40
36 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

E N T E R I N G A P R O B L E M
Since the bounds on x2 and x3 are the same as the default bounds, there is no need to enter
them. You have finished entering the problem, so to indicate that the problem is complete,
type:

end

on the last line.

The CPLEX> prompt returns, indicating that you can again enter a ILOG CPLEX command.

Summary

Entering a problem in ILOG CPLEX is straightforward, provided that you observe a few
simple rules:

◆ The terms maximize or minimize must precede the objective function; the term
subject to must precede the constraints section; both must be separated from the
beginning of each section by at least one space.

◆ The word bounds must be alone on a line preceding the bounds section.

◆ On the final line of the problem, end must appear.

Entering Data

You can use the <return> key to split long constraints, and ILOG CPLEX still interprets
the multiple lines as a single constraint. When you split a constraint in this way, do not press
<return> in the middle of a variable name or coefficient. The following is acceptable:

time: -x1 + x2 + <return>
x3 <= 20 <return>
labor: x1 - 3x2 + x3 <= 30 <return>

The entry below, however, is incorrect since the <return> key splits a variable name.

time: -x1 + x2 + x <return>
3 <= 20 <return>
labor: x1 - 3x2 + x3 <= 30 <return>

If you type a line that ILOG CPLEX cannot interpret, a message describing the problem will
appear, and the entire line will be ignored. You must then re-enter the line.

The final thing to remember when you are entering a problem is that once you have pressed
<return>, you can no longer directly edit the characters that precede the <return>. As
long as you have not pressed the <return> key, you can use the <backspace> key to go
back and change what you typed on that line. Once <return> has been pressed, the change
command must be used to modify the problem. The change command is described in
Changing a Problem on page 56.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 37

D I S P L A Y I N G A P R O B L E M
Displaying a Problem

Now that you have entered a problem using ILOG CPLEX, you must verify that the problem
was entered correctly. To do so, use the display command. At the CPLEX> prompt type:

display

A list of the items that can be displayed then appears. Some of the options display parts of
the problem description, while others display parts of the problem solution. Options about
the problem solution are not available until after the problem has been solved. The list looks
like this:

If you type problem in reply to that prompt, that option will list a set of problem
characteristics, like this:

Enter the option all to display the entire problem.

Display Options:

iis display infeasibility diagnostics (IIS constraints)
problem display problem characteristics
sensitivity display sensitivity analysis
settings display parameter settings
solution display existing solution

Display what:

Display Problem Options:

all display entire problem
binaries display binary variables
bounds display a set of bounds
constraints display a set of constraints or node supply/demand values
generals display general integer variables
histogram display a histogram of row or column counts
integers display integer variables
names display names of variables or constraints
qpvariables display quadratic variables
semi-continuous display semi-continuous and semi-integer variables
sos display special ordered sets
stats display problem statistics
variable display a column of the constraint matrix

Display which problem characteristic:

Maximize
 obj: x1 + 2 x2 + 3 x3
Subject To
 c1: - x1 + x2 + x3 <= 20
 c2: x1 - 3 x2 + x3 <= 30
Bounds
 0 <= x1 <= 40
All other variables are >= 0.
38 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

D I S P L A Y I N G A P R O B L E M
The default names obj, c1, c2, are provided by ILOG CPLEX.

If that is what you want, you are ready to solve the problem. If there is a mistake, you must
use the change command to modify the problem. The change command is described in
Changing a Problem on page 56.

Summary

Display problem characteristics by entering the command:

display problem

Displaying Problem Statistics

When the problem is as small as our example, it is easy to display it on the screen; however,
many real problems are far too large to display. For these problems, the stats option of the
display problem command is helpful. When you select stats, information about the
attributes of the problem appears, but not the entire problem itself. These attributes include:

◆ the number and type of constraints

◆ variables

◆ nonzero constraint coefficients

Try this feature by typing:

display problem stats

For our example, the following information appears:

This information tells us that in the example there are two constraints, three variables, and
six nonzero constraint coefficients. The two constraints are both of the type less-than-or-
equal-to. Two of the three variables have the default nonnegativity bounds (0 ≤x ≤+∞) and
one is restricted to a certain range (a box variable). In addition to a constraint matrix nonzero
count, there is a count of nonzero coefficients in the objective function and on the right-hand
side. Such statistics can help to identify errors in a problem without displaying it in its
entirety.

Another way to avoid displaying an entire problem is to display a specific part of it by using
one of the following three options of the display problem command:

◆ names, described in Displaying Variable or Constraint Names on page 40, can be used
to display a specified set of variable or constraint names;

Problem Name: example

Constraints : 2 [Less: 2]
Variables : 3 [Nneg: 2, Box: 1]
Constraint nonzeros: 6
Objective nonzeros: 3
RHS nonzeros: 2
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 39

D I S P L A Y I N G A P R O B L E M
◆ constraints, described in Displaying Constraints on page 41, can be used to display a
specified set of constraints;

◆ bounds, described in Displaying Bounds on page 42, can be used to display a specified
set of bounds.

Specifying Item Ranges

For some options of the display command, you must specify the item or range of items
you want to see. Whenever input defining a range of items is required, ILOG CPLEX
expects two indices separated by a hyphen (the range character -). The indices can be names
or matrix index numbers. You simply enter the starting name (or index number), a hyphen
(–), and finally the ending name (or index number). ILOG CPLEX automatically sets the
default upper and lower limits defining any range to be the highest and lowest possible
values. Therefore, you have the option of leaving out either the upper or lower name (or
index number) on either side of the hyphen. To see every possible item, you would simply
enter –.

Displaying Variable or Constraint Names

You can display a variable name by using the display command with the options
“problem names variables.” If you do not enter the word “variables,” ILOG CPLEX
prompts you to specify whether you wish to see a constraint or variable name.

Type:

display problem names variables

In response, ILOG CPLEX prompts you to specify a set of variable names to be displayed,
like this:

Display which variable name(s):

Specify these variables by entering the names of the variables or the numbers corresponding
to the columns of those variables. A single number can be used or a range such as 1-2. All
of the names can be displayed at once if you type a hyphen (the character -). Try this by
entering a hyphen at the prompt and pressing the <return> key.

Display which variable name(s): -

In the example, there are three variables with default names. CPLEX displays these three
names:

x1 x2 x3

If you want to see only the second and third names, you could either enter the range as 2-3
or specify everything following the second variable with 2-. Try this technique:

display problem names variables
Display which variable name(s): 2-
40 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

D I S P L A Y I N G A P R O B L E M
x2 x3

If you enter a number without a hyphen, you will see a single variable name:

display problem names variables
Display which variable name(s): 2
x2

Summary

◆ You can display variable names by entering the command:

display problem names variables

◆ You can display constraint names by entering the command:

display problem names constraints

Ordering Variables

In the example problem there is a direct correlation between the variable names and their
numbers (x1 is variable 1, x2 is variable 2, etc.); that is not always the case. The internal
ordering of the variables is based on their order of occurrence when the problem is entered.
For example, if x2 had not appeared in the objective function, then the order of the variables
would be x1, x3, x2.

You can see the internal ordering by using the hyphen when you specify the range for the
variables option. The variables are displayed in the order corresponding to their internal
ordering.

All of the options of the display command can be entered directly after the word display
to eliminate intermediate steps. The following command is correct, for example:

display problem names variables 2-3

Displaying Constraints

To view a single constraint within the matrix, use the command and the constraint number.
For example, type the following:

 display problem constraints 2

The second constraint appears:

c2: x1 - 3 x2 + x3 <= 30

Displaying the Objective Function

When you want to display only the objective function, you must enter its name (obj by
default) or an index number of 0.

display problem constraints
Display which constraint name(s): 0
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 41

S O L V I N G A P R O B L E M
Maximize
 obj: x1 + 2 x2 + 3 x3

Displaying Bounds

To see only the bounds for the problem, type the following command (don’t forget the
hyphen character):

display problem bounds -

The result is:

0 <= x1 <= 40
All other variables are >= 0.

Summary

The general syntax of the display command is:

display option [option2] identifier [identifier2]

Solving a Problem

The problem is now correctly entered, and ILOG CPLEX can be used to solve it. We
continue our example with the following topics:

◆ Solving the Example Problem

◆ Solution Options

◆ Displaying Post-Solution Information

Solving the Example Problem

The optimize command tells ILOG CPLEX to solve the LP problem. CPLEX uses the dual
simplex optimizer, unless another method has been specified by setting the LPMETHOD
parameter.

Entering the Optimize Command

At the ILOG CPLEX prompt, type the command:

optimize

Preprocessing

First, ILOG CPLEX tries to simplify or reduce the problem using its presolver and
aggregator. If any reductions are made, a message will appear. However, in our small
example, no reductions are possible.
42 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

S O L V I N G A P R O B L E M
Monitoring the Iteration Log

Next, an iteration log appears on the screen. ILOG CPLEX reports its progress as it solves
the problem. The solution process involves two stages:

◆ during Phase I, ILOG CPLEX searches for a feasible solution

◆ in Phase II, ILOG CPLEX searches for the optimal feasible solution.

The iteration log periodically displays the current iteration number and either the current
scaled infeasibility during Phase I, or the objective function value during Phase II. Once the
optimal solution has been found, the objective function value, solution time, and iteration
count (total, with Phase I in parentheses) are displayed. This information can be useful for
monitoring the rate of progress.

The iteration log display can be modified by the set simplex display command to
display differing amounts of data while the problem is being solved.

Reporting the Solution

After it finds the optimal solution, ILOG CPLEX reports:

◆ the objective function value

◆ the problem solution time in seconds

◆ the total iteration count

◆ the Phase I iteration count (in parentheses)

Optimizing our example problem produces a report like the following one (although the
solution times vary with each computer):

In our example, ILOG CPLEX finds an optimal solution with an objective value of 202.5 in
two iterations. For this simple problem, 1 Phase I iteration was required.

Summary

To solve an LP problem, use the command:

optimize

Tried aggregator 1 time.
No presolve or aggregator reductions.
Presolve Time = 0.00 sec.

Iteration Log . . .
Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000

Dual simplex - Optimal: Objective = 2.0250000000e+02
Solution Time = 0.00 sec. Iterations = 2 (1)

CPLEX>
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 43

S O L V I N G A P R O B L E M
Solution Options

We describe here some of the basic options in solving linear programming problems.
Although the tutorial example does not make use of these options, you will find them useful
when handling larger, more realistic problems. The topics are:

◆ Filing Iteration Logs

◆ Re-Solving

◆ Using Alternative Optimizers

◆ Interrupting the Optimization Process

For detailed information on performance options, refer to the ILOG CPLEX User’s Manual.

Filing Iteration Logs

Every time ILOG CPLEX solves a problem, much of the information appearing on the
screen is also directed into a log file. This file is automatically created by ILOG CPLEX
with the name cplex.log. If there is an existing cplex.log file in the directory where
ILOG CPLEX is launched, ILOG CPLEX will append the current session data to the
existing file. If you want to keep a unique log file of a problem session, you can change the
default name with the set logfile command. (See the ILOG CPLEX User’s Manual.)
The log file is written in standard ASCII format and can be edited with any text editor.

Re-Solving

You may re-solve the problem by reissuing the optimize command. ILOG CPLEX restarts
the solution process from the previous optimal basis, and thus requires zero iterations. If you
do not wish to restart the problem from an advanced basis, use the set advance command
to turn off the advanced start indicator.

Remember that a problem must be present in memory (entered via the enter command or
read from a file) before you issue the optimize command.

Using Alternative Optimizers

In addition to the optimize command, ILOG CPLEX can use the primal simplex optimizer
(primopt command), the dual simplex optimizer (tranopt command), the barrier
optimizer (baropt command) and the network optimizer (netopt command). Many
problems can be solved faster using these alternative optimizers, which are described in
more detail in the ILOG CPLEX User’s Manual. If you want to solve a mixed integer
programming problem, the optimize command is equivalent to the mipopt command.

Interrupting the Optimization Process

Our short example was solved very quickly. However, larger problems, particularly mixed
integer problems, can take much longer. Occasionally it may be useful to interrupt the
optimization process. ILOG CPLEX allows such interruptions if you use control-c. (The
control and c keys must be pressed simultaneously.) Optimization is interrupted, and
44 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

S O L V I N G A P R O B L E M
ILOG CPLEX issues a message indicating that the process was stopped and displays
progress information. If you issue another optimization command in the same session, ILOG
CPLEX will resume optimization from where it was interrupted.

Displaying Post-Solution Information

Once an optimal solution is found, ILOG CPLEX can provide many different kinds of
information for viewing and analyzing the results. This information is accessed via the
display command and via some write commands.

Information about the following is available with the display solution command:

◆ objective function value;

◆ solution values;

◆ slack values;

◆ reduced costs;

◆ dual values (shadow prices);

◆ basic rows and columns.

For information on the write commands, see Writing Problem and Solution Files on
page 47. Sensitivity analysis can also be performed in analyzing results, as described in
Performing Sensitivity Analysis on page 46.

For example, to view the optimal value of each variable, enter the command:

display solution variables —

In response, the list of variable names with the solution value for each variable is displayed,
like this:

To view the slack values of each constraint, enter the command:

display solution slacks -

The resulting message indicates that for this problem the slack variables are all zero.

To view the dual values (sometimes called shadow prices) for each constraint, enter the
command:

display solution dual -

Variable Name Solution Value
x1 40.000000
x2 17.500000
x3 42.500000

All slacks in the range 1-2 are 0.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 45

P E R F O R M I N G S E N S I T I V I T Y A N A L Y S I S
The list of constraint names with the solution value for each constraint appears, like this:

Summary

Display solution characteristics by entering a command with the syntax:

display solution identifier

Performing Sensitivity Analysis

Sensitivity analysis of the objective function and right-hand side provides meaningful
insight about ways in which the optimal solution of a problem changes in response to small
changes in these parts of the problem data.

Sensitivity analysis can be performed on the following:

◆ objective function;

◆ right-hand side values;

◆ bounds.

To view the sensitivity analysis of the objective function, enter the command:

display sensitivity obj -

For our example, ILOG CPLEX displays the following ranges for sensitivity analysis of the
objective function:

ILOG CPLEX displays each variable, its reduced cost and the range over which its objective
function coefficient can vary without forcing a change in the optimal basis. The current
value of each objective coefficient is also displayed for reference. Objective function
sensitivity analysis is useful to determine how sensitive the optimal solution is to the cost or
profit associated with each variable.

Similarly, to view sensitivity analysis of the right-hand side, type the command:

display sensitivity rhs -

Constraint Name Dual Price
c1 2.750000
c2 0.250000

 OBJ Sensitivity Ranges

Variable Name Reduced Cost Down Current Up
x1 3.5000 -2.5000 1.0000 +infinity
x2 zero -5.0000 2.0000 3.0000
x3 zero 2.0000 3.0000 +infinity
46 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial
W R I T I N G P R O B L E M A N D S O L U T I O N F I L E S
For our example, ILOG CPLEX displays the following ranges for sensitivity analysis of the
right-hand side (RHS):

ILOG CPLEX displays each constraint, its dual price, and a range over which its right-hand
side coefficient can vary without changing the optimal basis. The current value of each RHS
coefficient is also displayed for reference. Right-hand side sensitivity information is useful
for determining how sensitive the optimal solution and resource values are to the availability
of those resources.

ILOG CPLEX can also display lower bound sensitivity ranges with the command

display sensitivity lb

and upper bound sensitivity with the command

display sensitivity ub

Summary

Display sensitivity analysis characteristics by entering a command with the syntax:

display sensitivity identifier

Writing Problem and Solution Files

The problem or its solution can be saved by using the write command. This command
writes the problem statement or a solution report to a file.

We continue with the tutorial example in the topics:

◆ Selecting a Write File Format

◆ Writing LP Files

◆ Writing Basis Files

◆ Using Path Names

 RHS Sensitivity Ranges

Constraint Name Dual Price Down Current Up
c1 2.7500 -36.6667 20.0000 +infinity
c2 0.2500 -140.0000 30.0000 100.0000
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 47

W R I T I N G P R O B L E M A N D S O L U T I O N F I L E S
Selecting a Write File Format

When you type the write command in the Interactive Optimizer, ILOG CPLEX displays a
menu of options and prompts you for a file format, like this:

◆ The BAS format is used for storing basis information and is described in Writing Basis
Files on page 50. See also Reading Basis Files on page 53.

◆ The BIN and TXT options create solution files. The BIN option writes a binary format
solution file, while the TXT option writes an ASCII text file.

◆ The DPE and PPE options are used for saving perturbed problems (in SAV format).

◆ DUA writes out the dual formulation of a problem (in MPS format).

◆ EMB writes a file for an embedded network (in MPS format).

◆ The IIS format is used for infeasibility diagnostics.

◆ The LP format was discussed in Using the LP Format on page 35. Using this format is
described in Writing LP Files on page 49 and Reading LP Files on page 51.

◆ The MIN format was developed by DIMACS to represent minimum-cost network flow
problems.

◆ The MPS format is described in Reading MPS Files on page 52.

◆ The MST format allows an integer feasible solution to be saved.

File Type Options:

bas INSERT format basis file
bin Binary solution file
dpe Binary format for dual-perturbed problem
dua MPS format of explicit dual of problem
emb MPS format of (embedded) network
iis Irreducibly inconsistent set (LP format)
lp LP format problem file
min DIMACS min-cost network-flow format of (embedded) network
mps MPS format problem file
mst MIP start file
net CPLEX network format of (embedded) network
ord Integer priority order file
ppe Binary format for primal-perturbed problem
pre Binary format for presolved problem
qp Quadratic coefficient matrix file
rew MPS format problem with generic names
sav Binary matrix and basis file
sos Special ordered sets file
tre Branch-and-bound treesave file
txt Text solution file
vec Vector solution format file

File type:
48 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial
W R I T I N G P R O B L E M A N D S O L U T I O N F I L E S
◆ NET writes a file for an embedded network (in ILOG CPLEX format).

◆ The ORD format allows an integer priority order file to be written.

◆ PRE writes out a presolved version of the problem in SAV format.

◆ The QP format specifies the quadratic coefficient matrix elements.

◆ The REW option creates an MPS format problem file with generic names.

◆ The SAV format is a special binary format which facilitates very fast problem reading
and writing. Because SAV format is binary (rather than ASCII text), it is not possible for
you to view and edit SAV files using standard editors.

◆ The SOS format specifies the special ordered sets of a model.

◆ The TRE format saves the branch-and-bound tree for restart purposes.

◆ The VEC format saves the solution to a pure barrier solution, as a restart to a later
crossover step.

Writing LP Files

When you enter the write command. the following message appears:

Name of file to write:

Enter the problem name "example", and CPLEX will ask you to select from a list of options.
For this example, choose LP. CPLEX displays a confirmation message, like this:

Problem written to file 'example'.

If you would like to save the file with a different name, you can simply use the write
command with the new file name as an argument. Try this, using the name example2. This
time we avoid intermediate prompts by specifying an LP problem type, like this:

write example2 lp

Another way of avoiding the prompt for a file format is by specifying the file type explicitly
in the file name extension. Try the following as an example:

write example.lp

Using a file extension to indicate the file type is the recommended naming convention. This
makes it easier to keep track of your problem and solution files.

When the file type is specified by the file name extension, ILOG CPLEX ignores subsequent
file type information issued within the write command. For example, ILOG CPLEX
responds to the following command by writing an LP format problem file:

Reminder: All these file formats are described in more detail in the ILOG CPLEX
Reference Manual.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 49

W R I T I N G P R O B L E M A N D S O L U T I O N F I L E S
write example.lp mps

Writing Basis Files

Another optional file format is BAS. Unlike the LP and MPS formats, this format is not used
to store a description of the problem statement. Rather, it is used to store information about
the solution to a problem, information known as a basis. Even after changes are made to the
problem, using a prior basis to jump-start the optimization can speed solution time
considerably. A basis can be written only after a problem has been solved. Try this now with
the following command:

write example.bas

In response, ILOG CPLEX displays a confirmation message, like this:

Basis written to file 'example.bas'.

When a very large problem is being solved by the primal or dual simplex optimizer, a file
with the format extension .xxx is automatically written after every 50,000 iterations (a
frequency that can be adjusted by the set simplex basisinterval command). This
periodically written basis can be useful as insurance against the possibility that a long
optimization may be unexpectedly interrupted due to power failure or other causes, because
the optimization can then be restarted using this advanced basis.

Using Path Names

A full path name may also be included to indicate on which drive and directory any file
should be saved. The following might be a valid write command if the disk drive on your
system contains a root directory named problems:

write /problems/example.lp

Summary

The general syntax for the write command is:

write filename file_format

or

write filename.file_extension

where file_extension indicates the format in which the file is to be saved.
50 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

R E A D I N G P R O B L E M F I L E S
Reading Problem Files

When you are using ILOG CPLEX to solve linear optimization problems, you may
frequently enter problems by reading them from files instead of entering them from the
keyboard.

Continuing the tutorial from Writing Problem and Solution Files on page 47, the topics are:

◆ Selecting a Read File Format

◆ Reading LP Files

◆ Using File Extensions

◆ Reading MPS Files

◆ Reading Basis Files

Selecting a Read File Format

When you type the read command in the Interactive Optimizer, ILOG CPLEX displays the
following prompt about file formats on the screen:

Reading LP Files

At the CPLEX> prompt type:

read

The following message appears requesting a file name:

File Type Options:

bas INSERT format basis file
lp LP format problem file
min DIMACS min-cost network-flow format file
mps MPS format problem file
mst MIP start file
net CPLEX Network-flow format file
ord Integer priority order file
qp Quadratic coefficient matrix file
sav Binary matrix and basis file
sos Special ordered sets file
tre Branch-and-bound treesave file
vec Vector solution format file

File Type Options:

Reminder: All these file formats are described in more detail in the ILOG CPLEX
Reference Manual.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 51

R E A D I N G P R O B L E M F I L E S
Name of file to read:

Four files have been saved at this point in our tutorial:

example

example2

example.lp

example.bas

Specify the file named example that you saved while practicing the write command.

You recall that the example problem was saved in LP format, so in response to the file type
prompt, enter:

lp

ILOG CPLEX displays a confirmation message, like this:

Problem 'example' read.
Read Time = 0.03 sec.

The example problem is now in memory, and you can manipulate it with ILOG CPLEX
commands.

Using File Extensions

If the file name has an extension that corresponds to one of the supported file formats, ILOG
CPLEX automatically reads it without your having to specify the format. Thus, the
following command automatically reads the problem file example.lp in LP format:

read example.lp

Reading MPS Files

ILOG CPLEX can also read industry-standard MPS formatted files. We use a problem
called afiro.mps (provided in the ILOG CPLEX distribution) as an example. If you
include the .mps extension in the file name, ILOG CPLEX will recognize the file as being
in MPS format. If you omit the extension, you must specify that the file is of the type MPS.

read afiro mps

Tip: The intermediate prompts for the read command can be avoided by entering the
entire command on one line, like this:

read example lp
52 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

R E A D I N G P R O B L E M F I L E S
Once the file has been read, the following message appears:

ILOG CPLEX reports additional information when it reads MPS formatted files. Since these
files can contain multiple objective function, right-hand side, bound, and other information,
ILOG CPLEX displays which of these is being used for the current problem. See the ILOG
CPLEX User’s Manual to learn more about special considerations for using MPS formatted
files.

Reading Basis Files

In addition to other file formats, the read command is also used to read basis files. These
files contain information for ILOG CPLEX that tells the simplex method where to begin the
next optimization. Basis files usually correspond to the result of some previous optimization
and help to speed re-optimization. They are particularly helpful when you are dealing with
very large problems if small changes are made to the problem data.

Writing Basis Files on page 50 showed you how to save a basis file for the example after it
was optimized. For this tutorial, first read the example.lp file. Then read this basis file by
typing the following command:

read example.bas

The message of confirmation:

Basis 'example.bas' read.

indicates that the basis file was successfully read. If the advanced basis indicator is on, this
basis will be used as a starting point for the next optimization, and any new basis created
during the session will be used for future optimizations. If the basis changes during a
session, you can save it by using the write command.

Summary

The general syntax for the read command is:

read filename file_format

 or

read filename.file_extension

where file_extension corresponds to one of the allowed file formats.

Selected objective sense: MINIMIZE
Selected objective name: obj
Selected RHS name: rhs
Problem 'afiro' read.
Read time = 0.01 sec.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 53

S E T T I N G I L O G C P L E X P A R A M E T E R S
Setting ILOG CPLEX Parameters

ILOG CPLEX users can vary parameters by means of the set command. This command is
used to set ILOG CPLEX parameters to values different from their default values. The
procedure for setting a parameter is similar to that of other commands. Commands can be
carried out incrementally or all in one line from the ILOG CPLEX prompt. Whenever a
parameter is set to a new value, ILOG CPLEX inserts a comment in the log file that indicates
the new value.

Setting a Parameter

To see the parameters that can be changed, type:

set

The parameters that can be changed are displayed with a prompt, like this:

If you press the <return> key without entering a parameter name, the following message is
displayed:

No parameters changed.

Resetting Defaults

After making parameter changes, it is possible to reset all parameters to default values by
issuing one command:

set defaults

This resets all parameters to their default values, except for the name of the log file.

Available Parameters:

advance set indicator for advanced starting information
barrier set parameters for barrier optimization
clocktype set type of clock used to measure time
defaults set all parameter values to defaults
logfile set file to which results are printed
lpmethod set method for linear optimization
mip set parameters for mixed integer optimization
network set parameters for network optimizations
output set extent and destinations of outputs
preprocessing set parameters for preprocessing
qpmethod set method for quadratic optimization
read set problem read parameters
sifting set parameters for sifting optimization
simplex set parameters for primal and dual simplex optimizations
threads set default parallel thread count
timelimit set time limit in seconds
workdir set directory for working files
workmem set memory available for working storage (in megabytes)

Parameter to set:
54 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

A D D I N G C O N S T R A I N T S A N D B O U N D S
Summary

The general syntax for the set command is:

set parameter option new_value

Displaying Parameter Settings

The current values of the parameters can be displayed with the command:

display settings all

A list of parameters with settings that differ from the default values can be displayed with
the command:

display settings changed

For a description of all parameters and their default values, see the Parameter Table in the
ILOG CPLEX Reference Manual. For examples of how to set parameters, see the
ILOG CPLEX User’s Manual.

ILOG CPLEX also accepts customized system parameter settings via a parameter
specification file. See the ILOG CPLEX User’s Manual for a description of the parameter
specification file and its use.

Adding Constraints and Bounds

If you wish to add either new constraints or bounds to your problem, use the add command.
This command is similar to the enter command in the way it is used, but it has one
important difference: the enter command is used to start a brand new problem, whereas the
add command only adds new information to the current problem.

Suppose that in the example you need to add a third constraint:

x1 + 2x2 + 3x3 ≥ 50

You may do either interactively or from a file.

Adding Interactively

Type the add command, then enter the new constraint on the blank line. After validating the
constraint, the cursor moves to the next line. You are in an environment identical to that of
the enter command after having issued subject to. At this point you may continue to
add constraints or you may type bounds and enter new bounds for the problem. For the
present example, type end to exit the add command. Your session should look like this:

add
Enter new constraints and bounds ['end' terminates]:
x1 + 2x2 + 3x3 >= 50
end
Problem addition successful.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 55

C H A N G I N G A P R O B L E M
When the problem is displayed again, the new constraint appears, like this:

Adding from a File

Alternatively, you may read in new constraints and bounds from a file. If you enter a file
name after the add command, ILOG CPLEX will read a file matching that name. The file
contents must comply with standard ILOG CPLEX LP format. ILOG CPLEX does not
prompt for a file name if none is entered. Without a file name, interactive entry is assumed.

Summary

The general syntax for the add command is:

add
or

add filename

Changing a Problem

The enter and add commands allow you to build a problem from the keyboard, but they do
not allow you to change what you have built. You make changes with the change command.

The change command can be used for:

◆ Changing Constraint or Variable Names

◆ Changing Sense

◆ Changing Bounds and Removing Bounds

◆ Changing Coefficients

◆ Deleting entire constraints or variables

Start out by changing the name of the constraint that you added with the add command. In
order to see a list of change options, type:

change

display problem all

Maximize
 obj: x1 + 2 x2 + 3 x3
Subject To
 c1: - x1 + x2 + x3 <= 20
 c2: x1 - 3 x2 + x3 <= 30
 c3: x1 + 2 x2 + 3 x3 >= 50
Bounds
 0 <= x1 <= 40
 All other variables are >= 0.
end
56 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

C H A N G I N G A P R O B L E M
The elements that can be changed are displayed like this:

Changing Constraint or Variable Names

Enter name at the Change to make: prompt to change the name of a constraint:

Change to make: name

The present name of the constraint is c3. In the example, you can change the name to new3
to differentiate it from the other constraints using the following entries:

The name of the constraint has been changed.

The problem can be checked with a display command (for example,
display problem constraints new3) to confirm that the change was made.

This same technique can also be used to change the name of a variable.

Changing Sense

Next, change the sense of the new3 constraint from ≥ to ≤ using the sense option of the
change command. At the CPLEX> prompt type:

change sense

ILOG CPLEX prompts you to specify a constraint. There are two ways of specifying this
constraint: if you know the name (for example, new3), you can enter the name; if you do not
know the name, you can specify the number of the constraint. In this example, the number is
3 for the new3 constraint. Try the first method and type:

Change sense of which constraint: new3
Sense of constraint 'new3' is '>='.

Change options:

bounds change bounds on a variable
coefficient change a coefficient
delete delete some part of the problem
name change a constraint or variable name
objective change objective function value
problem change problem type
qpterm change a quadratic objective term
rhs change a right-hand side or network supply/demand value
sense change objective function or a constraint sense
type change variable type

Change to make:

Change a constraint or variable name ['c' or 'v']: c
Present name of constraint: c3
New name of constraint: new3
The constraint 'c3' now has name 'new3'.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 57

C H A N G I N G A P R O B L E M
ILOG CPLEX tells you the current sense of the selected constraint. All that is left now is to
enter the new sense, which can be entered as <=, >=, or =. You can also type simply
< (interpreted as ≤) or > (interpreted as ≥). The letters l, g, and e are also interpreted as ≤, ≥,
and = respectively.

New sense ['<=' or '>=' or '=']: <=
Sense of constraint 'new3' changed to '<='.

The sense of the constraint has been changed.

The sense of the objective function may be changed by specifying the objective function
name (its default is obj) or the number 0 when ILOG CPLEX prompts you for the
constraint. You are then prompted for a new sense. The sense of an objective function can
take the value maximum or minimum or the abbreviation max or min.

Changing Bounds

When the example was entered, bounds were set specifically only for the variable x1. The
bounds can be changed on this or other variables with the bounds option. Again, start by
selecting the command and option.

change bounds

Select the variable by name or number and then select which bound you would like to
change. For the example, change the upper bound of variable x2 from +∞ to 50.

Removing Bounds

To remove a bound, set it to +∞ or –∞. Interactively, use the identifiers inf and -inf
instead of the symbols. To change the upper bound on x2 back to +∞, use the one line
command:

change bounds x2 u inf

You receive the message:

New bounds on variable 'x2': The indicated variable is >= 0.

The bound is now the same as it was when the problem was originally entered.

Changing Coefficients

Up to this point all of the changes that have been made could be referenced by specifying a
single constraint or variable. In changing a coefficient, however, a constraint and a variable

Change bounds on which variable: x2
Present bounds on variable x2: The indicated variable is >= 0.
Change lower or upper bound, or both ['l', 'u', or 'b']: u
Change upper bound to what ['+inf' for no upper bound]: 50
New bounds on variable 'x2': 0 <= x2 <= 50
58 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

C H A N G I N G A P R O B L E M
must be specified in order to identify the correct coefficient. As an example, let's change the
coefficient of x3 in the new3 constraint from 3 to 30.

As usual, you must first specify which change command option to use:

change coefficient

You must now specify both the constraint row and the variable column identifying the
coefficient you wish to change. Enter both the constraint name (or number) and variable
name (or number) on the same line, separated by at least one space. The constraint name is
new3 and the variable is number 3, so in response to the following prompt, type new3 and 3,
like this, to identify the one to change:

The final step is to enter the new value for the coefficient of x3.

Objective & RHS Coefficients

To change a coefficient in the objective function, or in the right-hand side, use the
corresponding change command option, objective or rhs. For example, to specify the
right-hand side of constraint 1 to be 25.0, we could enter the following (but for this tutorial,
do not enter this now):

change rhs 1 25.0

Deleting

Another option to the change command is delete. This option is used to remove an entire
constraint or a variable from a problem. Return the problem to its original form by removing
the constraint you added earlier. Type:

change delete

ILOG CPLEX displays a list of delete options.

At the first prompt, specify that you want to delete a constraint.

 Deletion to make: constraints

Change which coefficient ['constraint' 'variable']: new3 3
Present coefficient of constraint 'new3', variable '3' is 3.000000.

Change coefficient of constraint 'new3', variable '3' to what: 30
Coefficient of constraint 'new3', variable '3' changed to 30.000000.

Delete Options:

constraints delete range of constraints
variables delete range of variables
equality delete range of equality constraints
greater-than delete range of greater-than constraints
less-than delete range of less-than constraints
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 59

E X E C U T I N G O P E R A T I N G S Y S T E M C O M M A N D S
At the next prompt, enter a constraint name or number, or a range as you did when you used
the display command. Since the constraint we want to delete is named new3, we enter that
name:

Delete which constraint(s): new3
Constraint 3 deleted.

Check to be sure that the correct range or number is specified when you perform this
operation, since constraints are permanently removed from the problem. Indices of any
constraints that appeared after a deleted constraint will be decremented to reflect the
removal of that constraint.

The last message indicates that the operation is complete. The problem can now be checked
to see if it has been changed back to its original form.

When you remove a constraint with the delete option, that constraint no longer exists in
memory; however, variables that appear in the deleted constraint are not removed from
memory. If a variable from the deleted constraint appears in the objective function, it may
still influence the solution process. If that is not what you want, these variables can be
explicitly removed using the delete option.

Summary

The general syntax for the change command is:

change option identifier [identifier2] new value

Executing Operating System Commands

The execute command (“xecute”) is simple but useful. It is used to execute operating
system commands outside of the ILOG CPLEX environment. By using xecute, you avoid
having to save a problem and quit ILOG CPLEX in order to carry out a system function
(such as viewing a directory, for example).

display problem all

Maximize
 obj: x1 + 2 x2 + 3 x3
Subject To
 c1: - x1 + x2 + x3 <= 20
 c2: x1 - 3 x2 + x3 <= 30
Bounds
 0 <= x1 <= 40
All other variables are >= 0.
60 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

In
teractive O

p
tim

izer
Tu

to
rial

Q U I T T I N G I L O G C P L E X
As an example, if you wanted to check whether all of the files saved in the last session are
really in the current working directory, the following ILOG CPLEX command shows the
contents of the current directory in a UNIX operating system, using the UNIX command ls:

After the command is executed, the CPLEX> prompt returns, indicating that you are still in
ILOG CPLEX. Most commands that can normally be entered from the prompt for your
operating system can also be entered with the xecute command. The command may be as
simple as listing the contents of a directory or printing the contents of a file, or as complex as
starting a text editor to modify a file. Anything that can be entered on one line after the
operating system prompt can also be executed from within ILOG CPLEX. However, this
command differs from other ILOG CPLEX commands in that it must be entered on a single
line. No prompt will be issued. In addition, the operating system may fail to carry out the
command if insufficient memory is available. In that case, no message is issued by the
operating system, and the result is a return to the CPLEX> prompt.

Summary

The general syntax for the xecute command is:

xecute command line

Quitting ILOG CPLEX

When you are finished using ILOG CPLEX and want to leave it, type:

quit

If a problem has been modified, be sure to save the file before issuing a quit command.
ILOG CPLEX will not prompt you to save your problem.

xecute ls -l
total 7448
-r--r--r-- 1 3258 Jul 14 10:34 afiro.mps
-rwxr-xr-x 1 3783416 Apr 22 10:32 cplex
-rw-r--r-- 1 3225 Jul 14 14:21 cplex.log
-rw-r--r-- 1 145 Jul 14 11:32 example
-rw-r--r-- 1 112 Jul 14 11:32 example.bas
-rw-r--r-- 1 148 Jul 14 11:32 example.lp
-rw-r--r-- 1 146 Jul 14 11:32 example2
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 61

Q U I T T I N G I L O G C P L E X
62 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C H A P T E R

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial
3

Concert Technology Tutorial for C++ Users

This tutorial shows you how to write C++ programs using CPLEX with Concert
Technology. In this chapter you will learn about:

◆ The Design of CPLEX in Concert Technology

◆ Compiling and Linking CPLEX in Concert Technology Applications

◆ The Anatomy of a Concert Technology Application

◆ Building and Solving a Small LP Model in C++

◆ Writing and Reading Models and Files

◆ Selecting an Optimizer

◆ Reading a Problem from a File: Example ilolpex2.cpp

◆ Modifying and Reoptimizing

◆ Modifying an Optimization Problem: Example ilolpex3.cpp
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 63

T H E D E S I G N O F C P L E X I N C O N C E R T T E C H N O L O G Y
The Design of CPLEX in Concert Technology

A clear understanding of C++ objects is fundamental to using Concert Technology with
CPLEX to build and solve optimization models. These objects can be divided into two
categories:

1. Modeling objects are used to define the optimization problem. Generally an application
creates multiple modeling objects to specify one optimization problem. Those objects are
grouped into an IloModel object representing the complete optimization problem.

2. IloCplex objects are used to solve the problems that have been created with the
modeling objects. An IloCplex object reads a model and extracts its data to the
appropriate representation for the CPLEX optimizer. Then the IloCplex object is ready
to solve the model it extracted and be queried for solution information.

Thus, the modeling and optimization parts of a user-written application program are
represented by a group of interacting C++ objects created and controlled within the
application. Figure 3.1 shows a picture of an application using CPLEX with Concert
Technology to solve optimization problems.

Figure 3.1

Figure 3.1 A View of CPLEX with Concert Technology

The CPLEX database includes the computing environment, its communication channels,
and your problem objects.

In this chapter we give a brief tutorial illustrating the modeling and solution classes provided
by Concert Technology and CPLEX. More extensive coverage of the modeling classes can
be found in the chapter about IloCplex in the ILOG Concert Technology User’s Manual
and in the ILOG Concert Technology Reference Manual. More information about the

Concert Technology
modeling objects

User-Written Application

IloCplex object

CPLEX database
64 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

C O M P I L I N G A N D L I N K I N G C P L E X I N C O N C E R T T E C H N O L O G Y A P P L I C A T I O N S
algorithm class IloCplex and its nested classes can be found in the ILOG CPLEX User’s
Manual and ILOG CPLEX Reference Manual.

Compiling and Linking CPLEX in Concert Technology Applications

To exploit a C++ library like ILOG CPLEX in Concert Technology, you need to tell your
compiler where to find the ILOG CPLEX and Concert include files (that is, the header files),
and you also need to tell the linker where to find the ILOG CPLEX and Concert libraries.
The sample projects and makefiles illustrate how to carry out these crucial steps for the
examples in the standard distribution. They use relative path names to indicate to the
compiler where the header files are, and to the linker where the libraries are.

Testing Your Installation on UNIX

To run the test, follow these steps.

1. First check the readme.html file in the standard distribution to locate the right subdirec-
tory containing a makefile appropriate for your platform.

2. Go to that subdirectory.

3. Then use the sample makefile located there to compile and link the examples that came
in the standard distribution.

4. Execute one of the compiled examples.

Testing Your Installation on Windows

To run the test on a Windows platform, first consult the readme.html file in the standard
distribution. That file will tell you where to find another text file that contains information
about your particular platform. That second file will have an abbreviated name that
corresponds to a particular combination of machine, architecture, and compiler. For
example, if you are working on a personal computer with Windows NT and Microsoft
Visual C++ compiler, version 6, then the readme.html file will direct you to the
msvc.html file where you will find detailed instructions about how to create a project to
compile, link, and execute the examples in the standard distribution.

The examples have been tested repeatedly on all the platforms compatible with ILOG
CPLEX, so if you successfully compile, link, and execute them, then you can be sure that
your installation is correct.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 65

T H E A N A T O M Y O F A C O N C E R T T E C H N O L O G Y A P P L I C A T I O N
In Case of Problems

If you encounter difficulty when you try this test, then there is a problem in your installation,
and you need to correct it before you begin real work with ILOG CPLEX.

For example, if you get a message from the compiler such as

ilolpex3.cpp 1: Can’t find include file ilcplex/ilocplex.h

then you need to verify that your compiler knows where you have installed ILOG CPLEX
and its include files (that is, its header files).

If you get a message from the linker, such as

ld: -lcplex: No such file or directory

then you need to verify that your linker knows where the ILOG CPLEX library is located on
your system.

If you get a message such as

ilm: CPLEX: no license found for this product

or

ilm: CPLEX: invalid encrypted key "MNJVUXTDJV82" in "/usr/ilog/ilm/
access.ilm";run ilmcheck

then there is a problem with your license to use ILOG CPLEX. Review the ILOG License
Manager User’s Guide and Reference to see whether you can correct the problem. If not,
call the technical support hotline and repeat the error message there.

If you successfully compile, link, and execute one of the examples in the standard
distribution, then you can be sure that your installation is correct, and you can begin to use
ILOG CPLEX in Concert Technology seriously.

The Anatomy of a Concert Technology Application

Concert Technology is a C++ class library, and therefore Concert Technology applications
consist of interacting C++ objects. This section gives a short introduction to the most
important classes that are usually found in a complete Concert Technology CPLEX
application.

Constructing the Environment — IloEnv

An IloEnv is typically the first object created in any Concert Technology application.
66 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

T H E A N A T O M Y O F A C O N C E R T T E C H N O L O G Y A P P L I C A T I O N
You construct an IloEnv object by declaring a variable of type IloEnv. For example, to
create an environment named env, you do this:

IloEnv env;.

The environment object is of central importance and needs to be available to the constructor
of all other Concert Technology classes because (among other things) it provides optimized
memory management for objects of Concert Technology classes. This provides a boost in
performance compared to using the system memory management system.

As is the case for most Concert Technology classes, IloEnv is a handle class. This means
that the variable env is a pointer to an implementation object, which is created at the same
time as env in the above declaration. One advantage of using handles is that if you assign
handle objects, all that is assigned is a pointer. So the statement

IloEnv env2 = env;

creates a second handle pointing to the implementation object that env already points to.
Hence there may be an arbitrary number of IloEnv handle objects all pointing to the same
implementation object. When terminating the Concert Technology application, the
implementation object must be destroyed as well. This must be done explicitly by the user
by calling

env.end();

for just ONE of the IloEnv handles pointing to the implementation object to be destroyed.
The call to env.end() is generally the last Concert Technology operation in an application.

Creating a Model — IloModel

After creating the environment, we are ready to create one or more optimization models.
Doing so consists of creating a set of modeling objects to describe each optimization model.

Modeling objects, like IloEnv objects, are handles to implementation objects. Though you
will be dealing only with the handle objects, it is the implementation objects that contain the
data that specifies the optimization model. If you need to remove an implementation object
from memory, you need to call the end() method for one of its handle objects.

We also refer to modeling objects as extractables. This is because it is the individual
modeling objects that are extracted one by one when you extract an optimization model to
IloCplex. So, extractables are characterized by the possibility of being extracted to
algorithms such as IloCplex. In fact, they all are inherited from the class
IloExtractable. In other words, IloExtractable is the base class of all classes of
extractables or modeling objects.

Note: The environment object created in a Concert Technology application is different from
the environment created in the CPLEX C library by calling the routine CPXopenCPLEX().
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 67

T H E A N A T O M Y O F A C O N C E R T T E C H N O L O G Y A P P L I C A T I O N
The most fundamental extractable class is IloModel. Objects of this class are used to
describe a complete optimization model that can later be extracted to an IloCplex object.
You create a model by constructing a variable of type IloModel. For example, to construct
a modeling object named model, within an existing environment named env, you would do
the following:

IloModel model(env);

At this point we would like to point out that the environment is passed as a parameter to the
constructor. There is also a constructor that does not use the environment parameter, but this
constructor creates an empty handle, the handle corresponding to a NULL pointer. Empty
handles cannot be used for anything but for assigning other handles to them. We mention
this, because it is a common mistake to try to use empty handles for other things.

Once an IloModel object has been constructed, it is populated with the extractables that
define the optimization model. The most important classes here are:

You create objects of these classes for each variable, constraint, and objective function of
your optimization problem. Then you add the objects to the model by calling

model.add(obj);

for each extractable obj. There is no need to explicitly add the variable objects to a model,
as they are implicitly considered when they are used in the range constraints (instances of
IloRange) or the objective. At most one objective can be used in a model with IloCplex.

Modeling variables are constructed as objects of class IloNumVar, by defining variables of
type IloNumVar. Concert Technology provides several constructors for doing this; the most
flexible version, for example, is:

IloNumVar x1(env, 0.0, 40.0, ILOFLOAT);

This definition creates the modeling variable x1 with lower bound 0.0, upper bound 40.0
and type ILOFLOAT, which indicates the variable is continuous. Other possible variable
types include ILOINT for integer variables and ILOBOOL for boolean variables.

For each variable in the optimization model a corresponding object of class IloNumVar
must be created. Concert Technology provides a wealth of ways to help you construct all the
IloNumVar objects.

Once all the modeling variables have been constructed, they can be used to build
expressions, which in turn are used to define objects of class IloObjective and
IloRange. For example,

IloObjective obj = IloMinimize(env, x1 + 2*x2 + 3*x3);

IloNumVar representing modeling variables;

IloRange describing constraints of the form l <= expr <= u, where expr is
some sort of linear expression; and

IloObjective representing an objective function.
68 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

T H E A N A T O M Y O F A C O N C E R T T E C H N O L O G Y A P P L I C A T I O N
This creates the extractable obj of type IloObjective which represents the objective
function of the example presented in Introducing ILOG CPLEX.

Let us look in more detail what this line does. The function IloMinimize takes the
environment and an expression as arguments, and constructs a new IloObjective object
from it that describes the objective function to minimize the expression. This new object is
returned and assigned to the new handle obj.

After an objective extractable is created, it must be added to the model. As noted above this
is done with the add() method of IloModel. If this is all we need variable obj for, we can
instead write more compactly:

model.add(IloMinimize(env, x1 + 2*x2 + 3*x3));

This way there is no need for the program variable obj and the program is shorter. If in
contrast, the objective function is needed later, for example, to change it and reoptimize the
model when doing scenario analysis, the variable obj must be created in order to refer to the
objective function. (From the standpoint of algorithmic efficiency, the two approaches are
comparable.)

Creating constraints and adding them to the model can be done just as easily with the
following statement:

model.add(-x1 + x2 + x3 <= 20);

The part -x1 + x2 + x3 <= 20 creates an object of class IloRange that is immediately
added to the model by passing it to the method IloModel::add(). Again, if a reference to
the IloRange object is needed later, an IloRange handle object must be stored for it.
Concert Technology provides flexible array classes for storing data, such as these IloRange
objects. As with variables, Concert Technology provides a variety of constructors that help
create range constraints.

While the above examples use expressions with modeling variables directly for modeling, it
should be pointed out that such expressions are themselves represented by yet another
Concert Technology class, IloExpr. Like most Concert Technology objects, IloExpr
objects are handles. Consequently, method end() must be called when the object is no
longer needed. The only exceptions are implicit expressions, where the user does not create
an IloExpr object, such as when writing (for example) x1 + 2*x2. For such implicit
expressions, method end() should not be called. The importance of the class IloExpr
becomes clear when expressions can no longer be fully spelled out in the source code but
need instead to be built up in a loop. Operators like += provide an efficient way to do this.

Solving the Model — IloCplex

Once the optimization problem has been created in an IloModel object, it is time to create
the IloCplex object for solving the problem. This is done by creating a variable of type
IloCplex. For example, to create an object named cplex, do the following:
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 69

T H E A N A T O M Y O F A C O N C E R T T E C H N O L O G Y A P P L I C A T I O N
IloCplex cplex(env);

again using the environment env as parameter. The CPLEX object can then be used to
extract the model to be solved. This can be done by calling cplex.extract(model).
However, we recommend a shortcut that performs the construction of the cplex object and
the extraction of the model in one line:

IloCplex cplex(model);

This works because the modeling object model contains within it the reference to the
environment named env.

After this line, object cplex is ready to solve the optimization problem described by model.
Solving the model is done by calling:

cplex.solve();

This method returns an IloBool value, where IloTrue indicates that cplex successfully
found a feasible (yet not necessarily optimal) solution, and IloFalse indicates that no
solution was found. More precise information about the outcome of the last call to method
solve() can be obtained by calling:

cplex.getStatus();

The returned value tells you what CPLEX found out about the model: whether it found the
optimal solution or only a feasible solution, whether it proved the model to be unbounded or
infeasible, or whether nothing at all has been determined at this point. Even more detailed
information about the termination of the solve call is available through method
IloCplex::getCplexStatus().

Querying Results

After successfully solving the optimization problem, you probably are interested in
accessing the solution. The following methods can be used to query the solution value for a
variable or a set of variables:

IloNum IloCplex::getValue(IloNumVar var) const;
void IloCplex::getValues(IloNumArray val,
 const IloNumVarArray var) const;

 For example:

IloNum val1 = cplex.getValue(x1);

stores the solution value for the modeling variable x1 in variable val1. Other methods are
available for querying other solution information. For example, the objective function value
of the solution can be accessed using:

IloNum objval = cplex.getObjValue();
70 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

T H E A N A T O M Y O F A C O N C E R T T E C H N O L O G Y A P P L I C A T I O N
Handling Errors

Concert Technology provides two lines of defense for dealing with error conditions, suited
for addressing two kind of errors. The first kind covers simple programming errors.
Examples of this kind are: trying to use empty handle objects or passing arrays of
incompatible lengths to functions.

This kind of error is usually an oversight and should not occur in a correct program. In order
not to pay any runtime cost for correct programs asserting such conditions, the conditions
are checked using assert() statements. The checking is disabled for production runs if
compiled with the -DNDEBUG compiler option.

The second kind of error is more complex and cannot generally be avoided by correct
programming. An example is memory exhaustion. The data may simply require too much
memory, even when the program is correct. This kind of error is always checked at runtime.
In cases where such an error occurs, Concert Technology throws a C++ exception.

In fact, Concert Technology provides a hierarchy of exception classes that all derive from
the common base class IloException. Exceptions derived from this class are the only kind
of exceptions that are thrown by Concert Technology. The exceptions thrown by IloCplex
objects all derive from class IloAlgorithm::Exception or IloCplex::Exception.

To gracefully handle exceptions in a Concert Technology application we advise including all
of the code in a try/catch clause:

IloEnv env;
try {
// ...
} catch (IloException& e) {
cerr << "Concert Exception: " << e << endl;
} catch (...) {
cerr << "Other Exception" << endl;
}
env.end();

If code other than Concert Technology code is used in the part of the above example denoted
by ..., we catch all other exceptions with the statement catch(...). Doing so is good
practice, as it assures that no exception is unhandled.

Note: The construction of the environment comes before the try/catch clause. In case of
an exception, env.end() must still be called. To protect against failure during the
construction of the environment, another try/catch clause may be added.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 71

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C + +
Building and Solving a Small LP Model in C++

A complete example of building and solving a small LP model can now be presented. This
example demonstrates:

◆ General Structure of a CPLEX Concert Technology Application

◆ Modeling by Rows

◆ Modeling by Columns

◆ Modeling by Nonzero Elements

Example ilolpex1.cpp, which is one of the example programs in the standard CPLEX
distribution, is an extension of the example presented in Introducing ILOG CPLEX. It shows
three different ways of creating a Concert Technology LP model, how to solve it using
IloCplex, and how to access the solution. Here is the problem that the example optimizes:

General Structure of a CPLEX Concert Technology Application

The first operation is to create the environment object env, and the last operation is to
destroy it by calling env.end(). The rest of the code is enclosed in a try/catch clause to
gracefully handle any errors that may occur.

First the example creates the model object and, after checking the correctness of command
line parameters, it creates empty arrays for storing the variables and range constraints of the
optimization model. Then, depending on the command line parameter, the example calls one
of the functions populatebyrow(), populatebycolumn(), or populatebynonzero(),
to fill the model object with a representation of the optimization problem. These functions
return the variable and range objects in the arrays var and con which are passed to them as
parameters.

After the model has been populated, the IloCplex algorithm object cplex is created and
the model is extracted to it. The following call of method solve() invokes the optimizer. If
it fails to generate a solution, an error message is issued to the error stream of the
environment, cplex.error(), and the integer -1 thrown as exception.

IloCplex provides the output streams out() for general logging, warning() for warning
messages, and error() for error messages. They are preconfigured to cout, cerr, and

Maximize x1 + 2x2 + 3x3

subject to –x1 + x2 + x3 ≤ 20
 x1 – 3x2 + x3 ≤ 30

with these bounds 0 ≤ x1 ≤ 40
0 ≤ x2 ≤ +∞
0 ≤ x3 ≤ +∞
72 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C + +
cerr respectively. Thus by default you will see logging output on the screen when invoking
the method solve(). This can be turned off by calling
cplex.setOut(env.getNullStream()), that is, by redirecting the out() stream of the
IloCplex object cplex to the null stream of the environment.

If a solution is found, solution information is output through the channel, env.out() which
is initialized to cout by default. The output operator << is defined for type
IloAlgorithm::Status as returned by the call to cplex.getStatus(). It is also
defined for IloNumArray, the Concert Technology class for an array of numerical values,
as returned by the calls to cplex.getValues(), cplex.getDuals(),
cplex.getSlacks(), and cplex.getReducedCosts(). In general, the output operator
is defined for any Concert Technology array of elements if the output operator is defined for
the elements.

The functions named populateby* are purely about modeling and are completely
decoupled from the algorithm IloCplex. In fact, they don’t use the cplex object, which is
created only after executing one of these functions.

Modeling by Rows

The function populatebyrow creates the variables and adds them to the array x. Then the
objective function and the constraints are created using expressions on the variables stored
in x. The range constraints are also added to the array of constraints c. The objective object
and the constraints are added to the model.

Modeling by Columns

Function populatebycolumn can be viewed as the transpose of populatebyrow. While
for simple examples like this one population by rows may seem the most straightforward
and natural approach, there are some models where modeling by column is a more natural or
more efficient approach.

When modeling by columns, range objects are created with their lower and upper bound
only. No expression is given—which is impossible since the variables are not yet created.
Similarly, the objective function is created with only its intended optimization sense, and
without any expression. Next the variables are created and installed in the already existing
ranges and objective.

The description of how the newly created variables are to be installed in the ranges and
objective is by means of column expressions, which are represented by the class
IloNumColumn. Column expressions consist of objects of class IloAddNumVar linked
together with operator +. These IloAddNumVar objects are created using operator() of the
classes IloObjective and IloRange. They describe how to install a new variable to the
invoking objective or range objects. For example obj(1.0) creates an IloAddNumVar
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 73

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C + +
capable of adding a new modeling variable with a linear coefficient of 1.0 to the expression
in obj. Column expressions can be built in loops using operator +=.

Column expressions (objects of class IloNumColumn) are handle objects, like most other
Concert Technology objects. The method end() must therefore be called to delete the
associated implementation object when it is no longer needed. However, for implicit column
expressions, where no IloNumColumn object is explicitly created, such as the ones used in
this example, method end() should not be called.

The column expression is passed as a parameter to the constructor of class IloNumVar. For
example the constructor IloNumVar(obj(1.0) + c[0](-1.0) + c[1](1.0), 0.0,
40.0) creates a new modeling variable with lower bound 0.0, upper bound 40.0 and, by
default, type ILOFLOAT, and adds it to the objective obj with a linear coefficient of 1.0, to
the range c[0] with a linear coefficient of -1.0 and to c[1] with a linear coefficient of 1.0.
Column expressions can be used directly to construct numerical variables with default
bounds [0, IloInfinity] and type ILOFLOAT, as in the following statement:

x.add(obj(2.0) + c[0](1.0) + c[1](-3.0));

where IloNumVar does not need to be explicitly written. Here, the C++ compiler recognizes
that an IloNumVar object needs to be passed to the add method and therefore automatically
calls the constructor IloNumVar(IloNumColumn) in order to create the variable from the
column expression.

Modeling by Nonzero Elements

The last of the three functions that can be used to build the model is
populatebynonzero(). It creates objects for the objective and the ranges without
expressions, and variables without columns. Then methods IloObjective::setCoef()
and IloRange::setCoef() are used to set individual nonzero values in the expression of
the objective and the range constraints. As usual, the objective and ranges must be added to
the model.

Complete Program

The complete program follows. You can also view it online in the file ilolpex1.cpp.

// -- -*- C++ -*-
// File: examples/src/ilolpex1.cpp
// Version 8.1
// --
// Copyright (C) 1999-2002 by ILOG.
// All Rights Reserved.
// Permission is expressly granted to use this example in the
// course of developing applications that use ILOG products.
// --
//
// ilolpex1.cpp - Entering and optimizing a problem. Demonstrates different
74 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C + +
// methods for creating a problem. The user has to choose the method
// on the command line:
//
// ilolpex1 -r generates the problem by adding rows
// ilolpex1 -c generates the problem by adding columns
// ilolpex1 -n generates the problem by adding a list of coefficients

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

static void
 usage (const char *progname),
 populatebyrow (IloModel model, IloNumVarArray var, IloRangeArray con),
 populatebycolumn (IloModel model, IloNumVarArray var, IloRangeArray con),
 populatebynonzero (IloModel model, IloNumVarArray var, IloRangeArray con);

int
main (int argc, char **argv)
{
 IloEnv env;
 try {
 IloModel model(env);

 if ((argc != 2) ||
 (argv[1][0] != ’-’) ||
 (strchr ("rcn", argv[1][1]) == NULL)) {
 usage (argv[0]);
 throw(-1);
 }

 IloNumVarArray var(env);
 IloRangeArray con(env);

 switch (argv[1][1]) {
 case ’r’:
 populatebyrow (model, var, con);
 break;
 case ’c’:
 populatebycolumn (model, var, con);
 break;
 case ’n’:
 populatebynonzero (model, var, con);
 break;
 }

 IloCplex cplex(model);

 // Optimize the problem and obtain solution.
 if (!cplex.solve()) {
 env.error() << "Failed to optimize LP" << endl;
 throw(-1);
 }
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 75

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C + +
 IloNumArray vals(env);
 env.out() << "Solution status = " << cplex.getStatus() << endl;
 env.out() << "Solution value = " << cplex.getObjValue() << endl;
 cplex.getValues(vals, var);
 env.out() << "Values = " << vals << endl;
 cplex.getSlacks(vals, con);
 env.out() << "Slacks = " << vals << endl;
 cplex.getDuals(vals, con);
 env.out() << "Duals = " << vals << endl;
 cplex.getReducedCosts(vals, var);
 env.out() << "Reduced Costs = " << vals << endl;

 cplex.exportModel("lpex1.lp");
 }
 catch (IloException& e) {
 cerr << "Concert exception caught: " << e << endl;
 }
 catch (...) {
 cerr << "Unknown exception caught" << endl;
 }

 env.end();

 return 0;
} // END main

static void usage (const char *progname)
{
 cerr << "Usage: " << progname << " -X" << endl;
 cerr << " where X is one of the following options:" << endl;
 cerr << " r generate problem by row" << endl;
 cerr << " c generate problem by column" << endl;
 cerr << " n generate problem by nonzero" << endl;
 cerr << " Exiting..." << endl;
} // END usage

// To populate by row, we first create the variables, and then use them to
// create the range constraints and objective.

static void
populatebyrow (IloModel model, IloNumVarArray x, IloRangeArray c)
{
 IloEnv env = model.getEnv();

 x.add(IloNumVar(env, 0.0, 40.0));
 x.add(IloNumVar(env));
 x.add(IloNumVar(env));
 model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2]));

 c.add(- x[0] + x[1] + x[2] <= 20);
76 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C + +
 c.add(x[0] - 3 * x[1] + x[2] <= 30);
 model.add(c);

} // END populatebyrow

// To populate by column, we first create the range constraints and the
// objective, and then create the variables and add them to the ranges and
// objective using column expressions.

static void
populatebycolumn (IloModel model, IloNumVarArray x, IloRangeArray c)
{
 IloEnv env = model.getEnv();

 IloObjective obj = IloMaximize(env);
 c.add(IloRange(env, -IloInfinity, 20.0));
 c.add(IloRange(env, -IloInfinity, 30.0));

 x.add(IloNumVar(obj(1.0) + c[0](-1.0) + c[1](1.0), 0.0, 40.0));
 x.add(IloNumVar(obj(2.0) + c[0](1.0) + c[1](-3.0)));
 x.add(IloNumVar(obj(3.0) + c[0](1.0) + c[1](1.0)));

 model.add(obj);
 model.add(c);

} // END populatebycolumn

// To populate by nonzero, we first create the rows, then create the
// columns, and then change the nonzeros of the matrix 1 at a time.

static void
populatebynonzero (IloModel model, IloNumVarArray x, IloRangeArray c)
{
 IloEnv env = model.getEnv();

 IloObjective obj = IloMaximize(env);
 c.add(IloRange(env, -IloInfinity, 20.0));
 c.add(IloRange(env, -IloInfinity, 30.0));

 x.add(IloNumVar(env, 0.0, 40.0));
 x.add(IloNumVar(env));
 x.add(IloNumVar(env));

 obj.setCoef(x[0], 1.0);
 obj.setCoef(x[1], 2.0);
 obj.setCoef(x[2], 3.0);

 c[0].setCoef(x[0], -1.0);
 c[0].setCoef(x[1], 1.0);
 c[0].setCoef(x[2], 1.0);
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 77

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C + +
 c[1].setCoef(x[0], 1.0);
 c[1].setCoef(x[1], -3.0);
 c[1].setCoef(x[2], 1.0);

 model.add(obj);
 model.add(c);

} // END populatebynonzero
78 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

W R I T I N G A N D R E A D I N G M O D E L S A N D F I L E S
Writing and Reading Models and Files

In example ilolpex1.cpp we left one line unexplained:

cplex.exportModel("lpex1.lp");

This statement causes cplex to write the model it has currently extracted to the file called
lpex1.lp. In this case, the file will be written in LP format (whose usage is described in
detail in the ILOG CPLEX Reference Manual). Other formats supported for writing
problems to a file are MPS and SAV (also described in the ILOG CPLEX Reference
Manual). IloCplex decides which file format to write based on the extension of the file
name.

IloCplex also supports reading of files through one of its importModel methods. A call
to cplex.importModel(model, "file.lp") causes CPLEX to read a problem from the
file file.lp and add all the data in it to model as new objects. (Again, MPS and SAV
format files are also supported.) In particular, CPLEX creates an instance of

If you also need access to the modeling objects created by importModel(), two additional
signatures are provided:

void IloCplex::importModel(IloModel& m,
 const char* filename,
 IloObjective& obj,
 IloNumVarArray vars,
 IloRangeArray rngs) const;

and

void IloCplex::importModel(IloModel& m,
 const char* filename,
 IloObjective& obj,
 IloNumVarArray vars,
 IloRangeArray rngs,
 IloSOS1Array sos1,
 IloSOS2Array sos2) const;

They provide additional parameters so that the newly created modeling objects will be
returned to the caller. Example program ilolpex2.cpp gives an example of how to use
method importModel().

IloObjective for the objective function found in file.lp,

IloNumVar for each variable found in file.lp, except

IloSemiContVar for each semi-continuous or semi-integer variable found in file.lp,

IloRange for each row found in file.lp,

IloSOS1 for each SOS of type 1 found in file.lp, and

IloSOS2 for each SOS of type 2 found in file.lp.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 79

S E L E C T I N G A N O P T I M I Z E R
Selecting an Optimizer

IloCplex treats all problems it solves as Mixed Integer Programming (MIP) problems.
The algorithm used by IloCplex for solving MIP is known as branch & cut (referred to in
some contexts as branch & bound) and is described in more detail in the ILOG CPLEX
User’s Manual. For this tutorial, it is sufficient to know that this consists of solving a
sequence of LPs or QPs that are generated in the course of the algorithm. The first LP or QP
to be solved is known as the root, while all the others are referred to as nodes and are derived
from the root or from other nodes. If the model extracted to the cplex object is a pure LP or
QP (no integer variables), then it will be fully solved at the root.

As mentioned in Optimizer Options on page 13, various optimizer options are provided for
solving LPs and QPs. While the default optimizer works well for a wide variety of models,
IloCplex allows you to control which option to use for solving the root and for solving the
nodes, respectively, by the following lines:

void IloCplex::setParam(IloCplex::RootAlg, alg)
void IloCplex::setParam(IloCplex::NodeAlg, alg)

where IloCplex::Algorithm is an enumeration type. It defines the following symbols
with their meaning:

For QP models, only the AutoAlg, Dual, Primal, Barrier, and Network algorithms are
applicable.

The optimizer option used for solving pure LPs and QPs is controlled by setting the root
algorithm parameter. This is demonstrated next, in example ilolpex2.cpp.

Reading a Problem from a File: Example ilolpex2.cpp

This example shows how to read an optimization problem from a file, and solve it with a
specified optimizer option. It prints solution information, including a Simplex basis, if
available. Finally it prints the maximum infeasibility of any variable of the solution.

IloCplex::AutoAlg allow CPLEX to choose the algorithm

IloCplex::Dual use the dual simplex algorithm

IloCplex::Primal use the primal simplex algorithm

IloCplex::Barrier use the barrier algorithm

IloCplex::Network use the network simplex algorithm for the embedded
network

IloCplex::Sifting use the sifting algorithm

IloCplex::Concurrent allow CPLEX to use multiple algorithms on multiple
computer processors
80 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E I L O L P E X 2 . C P P
The file to read and the optimizer choice are passed to the program via command line
parameters. For example, this command:

ilolpex2 example.mps d

reads the file example.mps and solves the problem with the dual simplex optimizer.

Example ilolpex2 demonstrates:

◆ Reading the Model from a File

◆ Selecting the Optimizer

◆ Accessing Basis Information

◆ Querying Quality Measures

The general structure of this example is the same as for example ilolpex1.cpp. It starts by
creating the environment and terminates with destroying it by calling the end() method.
The code in between is enclosed in try/catch statements for error handling.

Reading the Model from a File

The model is created by reading it from the file specified as the first command line argument
argv[1]. This is done using the method importModel() of an IloCplex object. Here the
IloCplex object is used as a model reader rather than an optimizer. Calling
importModel() does not extract the model to the invoking cplex object. This must be
done later by calling cplex.extract(model). We pass objects obj, var, and rng to
importModel() to be able to access the variables later on when querying results.

Selecting the Optimizer

The selection of the optimizer option is done in the switch statement controlled by the
second command line parameter. A call to setParam(IloCplex::RootAlg, alg)
selects the desired IloCplex::Algorithm option.

Accessing Basis Information

After solving the model by calling method solve(), the results are accessed in the same
way as in ilolpex1.cpp, with the exception of basis information for the variables. It is
important to understand that not all optimizer options compute basis information, and thus it
cannot be queried in all cases. In particular, basis information is not available when the
model is solved using the barrier optimizer (IloCplex::Barrier) without crossover
(parameter IloCplex::BarCrossAlg set to IloCplex::NoAlg).
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 81

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E I L O L P E X 2 . C P P
Querying Quality Measures

Finally, the program prints the maximum primal infeasibility or bound violation of the
solution. To cope with the finite precision of the numerical computations done on the
computer, IloCplex allows some tolerances by which (for instance) optimality conditions
may be violated. A long list of other quality measures is available.

Complete Program

The complete program follows. You can also view it online in the file ilolpex2.cpp.

// -- -*- C++ -*-
// File: examples/src/ilolpex2.cpp
// Version 8.1
// --
// Copyright (C) 1999-2002 by ILOG.
// All Rights Reserved.
// Permission is expressly granted to use this example in the
// course of developing applications that use ILOG products.
// --
//
// ilolpex2.cpp - Reading in and optimizing a problem
//
// To run this example, command line arguments are required.
// i.e., ilolpex2 filename method
// where
// filename is the name of the file, with .mps, .lp, or .sav extension
// method is the optimization method
// o default
// p primal simplex
// d dual simplex
// h barrier with crossover
// b barrier without crossover
// n network with dual simplex cleanup
// s sifting
// c concurrent
// Example:
// ilolpex2 example.mps o
//

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

static void usage (const char *progname);

int
main (int argc, char **argv)
{
 IloEnv env;
 try {
 IloModel model(env);
82 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E I L O L P E X 2 . C P P
 IloCplex cplex(env);

 if ((argc != 3) ||
 (strchr ("podhbnsc", argv[2][0]) == NULL)) {
 usage (argv[0]);
 throw(-1);
 }

 switch (argv[2][0]) {
 case ’o’:
 cplex.setParam(IloCplex::RootAlg, IloCplex::AutoAlg);
 break;
 case ’p’:
 cplex.setParam(IloCplex::RootAlg, IloCplex::Primal);
 break;
 case ’d’:
 cplex.setParam(IloCplex::RootAlg, IloCplex::Dual);
 break;
 case ’b’:
 cplex.setParam(IloCplex::RootAlg, IloCplex::Barrier);
 cplex.setParam(IloCplex::BarCrossAlg, IloCplex::NoAlg);
 break;
 case ’h’:
 cplex.setParam(IloCplex::RootAlg, IloCplex::Barrier);
 break;
 case ’n’:
 cplex.setParam(IloCplex::RootAlg, IloCplex::Network);
 break;
 case ’s’:
 cplex.setParam(IloCplex::RootAlg, IloCplex::Sifting);
 break;
 case ’c’:
 cplex.setParam(IloCplex::RootAlg, IloCplex::Concurrent);
 break;
 default:
 break;
 }

 IloObjective obj;
 IloNumVarArray var(env);
 IloRangeArray rng(env);
 cplex.importModel(model, argv[1], obj, var, rng);

 cplex.extract(model);
 if (!cplex.solve()) {
 env.error() << "Failed to optimize LP" << endl;
 throw(-1);
 }

 IloNumArray vals(env);
 cplex.getValues(vals, var);
 env.out() << "Solution status = " << cplex.getStatus() << endl;
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 83

M O D I F Y I N G A N D R E O P T I M I Z I N G
 env.out() << "Solution value = " << cplex.getObjValue() << endl;
 env.out() << "Solution vector = " << vals << endl;

 try { // basis may not exist
 IloCplex::BasisStatusArray cstat(env);
 cplex.getBasisStatuses(cstat, var);
 env.out() << "Basis statuses = " << cstat << endl;
 } catch (...) {
 }

 env.out() << "Maximum bound violation = "
 << cplex.getQuality(IloCplex::MaxPrimalInfeas) << endl;
 }
 catch (IloException& e) {
 cerr << "Concert exception caught: " << e << endl;
 }
 catch (...) {
 cerr << "Unknown exception caught" << endl;
 }

 env.end();
 return 0;
} // END main

static void usage (const char *progname)
{
 cerr << "Usage: " << progname << " filename algorithm" << endl;
 cerr << " where filename is a file with extension " << endl;
 cerr << " MPS, SAV, or LP (lower case is allowed)" << endl;
 cerr << " and algorithm is one of the letters" << endl;
 cerr << " o default" << endl;
 cerr << " p primal simplex" << endl;
 cerr << " d dual simplex " << endl;
 cerr << " b barrier " << endl;
 cerr << " h barrier with crossover" << endl;
 cerr << " n network simplex" << endl;
 cerr << " s sifting" << endl;
 cerr << " c concurrent" << endl;
 cerr << " Exiting..." << endl;
} // END usage

Modifying and Reoptimizing

In many situations, the solution to a model is only the first step. One of the important
features of Concert Technology is the ability to modify and then re-solve the model even
after it has been extracted and solved one or more times.
84 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

M O D I F Y I N G A N O P T I M I Z A T I O N P R O B L E M : E X A M P L E I L O L P E X 3 . C P P
A look back to examples ilolpex1.cpp and ilolpex2.cpp reveals that we have been
performing modification operations on models all along. Each time we add an extractable to
a model we are changing the model. However, those examples made all such changes before
the model was extracted to cplex.

Concert Technology maintains a link between the model and all IloCplex objects that may
have extracted it. This link is known as notification. Each time a modification of the model
or one of its extractables occurs, the change is notified to the IloCplex objects that
extracted the model. They then track the modification in their internal representations.

Moreover, IloCplex tries to maintain as much information from a previous solution as is
possible and reasonable, when the model is modified, in order to have a better start when
solving the modified model. In particular, when solving LPs or QPs with a simplex method,
IloCplex attempts to maintain a basis which will be used the next time method solve() is
invoked, with the aim of making subsequent solves go faster.

Modifying an Optimization Problem: Example ilolpex3.cpp

This example demonstrates:

◆ Setting CPLEX Parameters

◆ Modifying an Optimization Problem

◆ Starting from a Previous Basis

Here is the problem example ilolpex3 solves:

Minimize c*x

subject to Hx = d

Ax = b

1 ≤ x ≤ u
where H = (-1 0 1 0 1 0 0 0) d = (-3)

 (1 -1 0 1 0 0 0 0) (1)

 (0 1 -1 0 0 1 -1 0) (4)

 (0 0 0 -1 0 -1 0 1) (3)

 (0 0 0 0 -1 0 1 -1) (-5)

 A = (2 1 -2 -1 2 -1 -2 -3) b = (4)

 (1 -3 2 3 -1 2 1 1) (-2)

I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 85

M O D I F Y I N G A N O P T I M I Z A T I O N P R O B L E M : E X A M P L E I L O L P E X 3 . C P P
The constraints Hx=d represent a pure network flow. The example solves this problem in
two steps:

1. The CPLEX Network Optimizer is used to solve

2. The constraints Ax=b are added to the problem, and the dual simplex optimizer is used to
solve the full problem, starting from the optimal basis of the network problem. The dual
simplex method is highly effective in such a case because this basis remains dual feasible
after the slacks (artificial variables) of the added constraints are initialized as basic.

Notice that the 0 values in the data are omitted in the example program. CPLEX makes
extensive use of sparse matrix methods and, although CPLEX correctly handles any explicit
zero coefficients given to it, most programs solving models of more than modest size benefit
(in terms of both storage space and speed) if the natural sparsity of the model is exploited
from the very start.

Before the model is solved, the network optimizer is selected by setting the RootAlg
parameter to the value IloCplex::Network, as shown in example ilolpex2.cpp. The
simplex display parameter IloCplex::SimDisplay is set so that the simplex algorithm
issues logging information as it executes.

Setting CPLEX Parameters

IloCplex provides a variety of parameters that allow you to control the solution process.
They can be categorized into boolean, integer, numerical and string parameters and are
represented by the enumeration types IloCplex::BoolParam, IloCplex::IntParam,
IloCplex::NumParam, and IloCplex::StringParam, respectively.

Modifying an Optimization Problem

After the simple model is solved and the resulting objective value is passed to the output
channel cplex.out(), the remaining constraints are created and added to the model. At
this time the model has already been extracted to cplex. As a consequence, whenever the
model is modified by adding a constraint, this addition is immediately reflected in the
cplex object via notification.

 c = (-9 1 4 2 -8 2 8 12)

 l = (0 0 0 0 0 0 0 0)

 u = (50 50 50 50 50 50 50 50)

Minimize c*x

subject to Hx = d

1 ≤ x ≤ u
86 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
L

ib
raryTu

to
rial

M O D I F Y I N G A N O P T I M I Z A T I O N P R O B L E M : E X A M P L E I L O L P E X 3 . C P P
Starting from a Previous Basis

Before solving the modified problem, example ilolpex3.cpp sets the optimizer option to
IloCplex::Dual, as this is the algorithm that can generally take best advantage of the
optimal basis from the previous solve after the addition of constraints.

Complete Program

The complete program follows. You can also view it online in the file ilolpex3.cpp.

// -- -*- C++ -*-
// File: examples/src/ilolpex3.cpp
// Version 8.1
// --
// Copyright (C) 1999-2002 by ILOG.
// All Rights Reserved.
// Permission is expressly granted to use this example in the
// course of developing applications that use ILOG products.
// --
//
// ilolpex3.cpp, example of adding constraints to solve a problem
//
// Modified example from Chvatal, "Linear Programming", Chapter 26.
// minimize c*x
// subject to Hx = d
// Ax = b
// l <= x <= u
// where
//
// H = (-1 0 1 0 1 0 0 0) d = (-3)
// (1 -1 0 1 0 0 0 0) (1)
// (0 1 -1 0 0 1 -1 0) (4)
// (0 0 0 -1 0 -1 0 1) (3)
// (0 0 0 0 -1 0 1 -1) (-5)
//
// A = (2 1 -2 -1 2 -1 -2 -3) b = (4)
// (1 -3 2 3 -1 2 1 1) (-2)
//
// c = (-9 1 4 2 -8 2 8 12)
// l = (0 0 0 0 0 0 0 0)
// u = (50 50 50 50 50 50 50 50)
//
//
//
// Treat the constraints with A as the complicating constraints, and
// the constraints with H as the "simple" problem.
//
// The idea is to solve the simple problem first, and then add the
// constraints for the complicating constraints, and solve with dual.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 87

M O D I F Y I N G A N O P T I M I Z A T I O N P R O B L E M : E X A M P L E I L O L P E X 3 . C P P
#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

int main()
{
 IloEnv env;
 try {
 IloModel model(env, "chvatal");

 IloNumVarArray x(env, 8, 0, 50);
 model.add(IloMinimize(env,-9*x[0] + x[1] + 4*x[2] + 2*x[3]
 -8*x[4] + 2*x[5] + 8*x[6] + 12*x[7]));
 model.add(-x[0] + x[2] + x[4] == -3);
 model.add(x[0] - x[1] + x[3] == 1);
 model.add(x[1] - x[2] + x[5] - x[6] == 4);
 model.add(- x[3] - x[5] + x[7] == 3);
 model.add(- x[4] + x[6] - x[7] == -5);

 IloCplex cplex(model);
 cplex.setParam(IloCplex::SimDisplay, 2);
 cplex.setParam(IloCplex::RootAlg, IloCplex::Network);
 cplex.solve();
 cplex.out() << "After network optimization, objective is "
 << cplex.getObjValue() << endl;

 model.add(2*x[0] + 1*x[1] - 2*x[2] - 1*x[3] +
 2*x[4] - 1*x[5] - 2*x[6] - 3*x[7] == 4);
 model.add(1*x[0] - 3*x[1] + 2*x[2] + 3*x[3] -
 1*x[4] + 2*x[5] + 1*x[6] + 1*x[7] == -2);

 cplex.setParam(IloCplex::RootAlg, IloCplex::Dual);
 cplex.solve();

 IloNumArray vals(env);
 cplex.getValues(vals, x);
 cplex.out() << "Solution status " << cplex.getStatus() << endl;
 cplex.out() << "Objective value " << cplex.getObjValue() << endl;
 cplex.out() << "Solution is: " << vals << endl;

 cplex.exportModel("lpex3.sav");
 }
 catch (IloException& e) {
 cerr << "Concert exception caught: " << e << endl;
 }
 catch (...) {
 cerr << "Unknown exception caught" << endl;
 }

 env.end();
 return 0;
} // END main

88 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C H A P T E R

C
o

n
cert Tech

n
o

lo
g

y
fo

r Java U
sers
4

Concert Technology for Java Users

This chapter is an introduction to using ILOG CPLEX through Concert Technology in the
Java programming language. It gives you an overview of a typical application program, and
describes procedures for:

◆ Creating a model

◆ Solving that model

◆ Querying results after solving

◆ Handling error conditions

ILOG Concert Technology allows your application to call CPLEX directly, through the JNI
(Java Native Interface). This Java interface supplies a rich functionality allowing you to use
Java objects to build your optimization model.

The IloCplex class implements the Concert Technology interface for creating variables
and constraints. It also provides functionality for solving Mathematical Programing (MP)
problems and accessing solution information.

Compiling CPLEX Applications in Concert Technology

When compiling a Java program that uses ILOG CPLEX Concert Technology, you need to
inform the Java compiler where to find the file cplex.jar containing the ILOG CPLEX
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 89

C O M P I L I N G C P L E X A P P L I C A T I O N S I N C O N C E R T T E C H N O L O G Y
Concert Technology class library. To do this, you add the cplex.jar file to your classpath.
This is most easily done by passing the command-line option

-classpath <path_to_cplex.jar>

to the Java compiler javac. If you need to include other Java class libraries, you should add
the corresponding jar files to the classpath as well. Ordinarily, you should also include the
current directory '.' to be part of the Java classpath.

At execution time, the same classpath setting is needed. Additionally, since CPLEX is
implemented via JNI, you need to instruct the Java Virtual Machine (JVM) where to find the
shared library (or dynamic link library) containing the native code to be called from Java.
This may be done with the command line option

-Djava.library.path=<path_to_shared_library>

to the java command. Note that, unlike the cplex.jar file, the shared library is system
dependent; thus the exact pathname, of the location for the library to be used, differs
depending on the platform you are using.

Pre-configured compilation and runtime commands are provided in the standard
distribution, through the Unix makefiles and Windows "javamake" file for Nmake.
However, these scripts presume a certain relative location for the files mentioned above, and
for application development most users will have their source files in some other location.

Below are suggestions for establishing build procedures for your application.

1. First check the readme.html file in the standard distribution, under the Supported
Platforms heading to locate the <machine> and <libformat> entry for your Unix
platform, or the compiler and library format combination for Windows.

2. Go to the subdirectory under the examples directory where CPLEX is installed on your
machine. On Unix this will be <machine>/<libformat>, and on Windows it will be
<compiler>\<libformat>. This subdirectory will contain a makefile or javamake
appropriate for your platform.

3. Then use these files to compile the examples that came in the standard distribution by
calling make execute_java (Unix) or nmake -f javamake execute (Windows).

4. Carefully note the locations of the needed files, both during compilation and at run time,
and convert the relative path names to absolute path names for use in your own working
environment.

In Case Problems Arise

If a problem occurs in the compilation phase, make sure your java compiler is correctly set
up and that your classpath includes the cplex.jar file.

If compilation is successful and the problem occurs when executing your application, there
are three likely causes:
90 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
fo

r Java U
sers

T H E D E S I G N O F C P L E X I N C O N C E R T T E C H N O L O G Y
1. If you get a message like java.lang.NoClassDefFoundError your classpath is not
correctly set up. Make sure you use -classpath <path_to_cplex.jar> in your
java command.

2. If you get a message like java.lang.UnsatisfiedLinkError you need to set up the
path correctly so that the JVM can locate the CPLEX shared library. Make sure you use
-Djava.library.path=<path_to_shared_library> in your java command.

3. If you get a message like ilm: CPLEX: no license found for this product or
ilm: CPLEX: invalid encrypted key "MNJVUXTDJV82" in "/usr/ilog/

ilm/ access.ilm" run ilmcheck then there is a problem with your license to use
ILOG CPLEX. Review the ILOG License Manager User’s Guide and Reference to see
whether you can correct the problem. If you have verified your system and license setup
but continue to experience problems, contact ILOG Technical Support and report the
error messages.

The Design of CPLEX in Concert Technology

Figure 4.1

Figure 4.1 A View of CPLEX in Concert Technology

Figure 4.1 illustrates the design of Concert Technology and how a user program uses it.
Concert Technology defines a set of interfaces for modelling objects. Such interfaces do not

Concert Technology
modeling interfaces

User-Written Application

IloCplex

CPLEX database
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 91

T H E A N A T O M Y O F A C O N C E R T T E C H N O L O G Y A P P L I C A T I O N
actually consume memory (this is the reason the box in the figure has a dotted outline).
When creating a Concert Technology modelling object using CPLEX, an object is created in
the CPLEX database that implements the interface defined by Concert Technology.
However, a user application never accesses such objects directly but only communicates
with them through the interfaces defined by Concert Technology.

The only Concert Technology objects directly created and accessed by a user are objects
from class IloCplex. This class implements two interfaces, IloModeler and
IloMPModeler, that allow you to create modelling objects. The class IloCplex also
provides methods to solve models and query solutions.

The Anatomy of a Concert Technology Application

To use the CPLEX Java interfaces, you need to import the appropriate packages into your
application. This is done with the lines:

import ilog.concert.*;

import ilog.cplex.*;

As for every Java application, a CPLEX application is implemented as a method of a class.
In this discussion, we will assume the method to be the static main method. The first task is
to create an IloCplex object. It is used to create all the modeling objects needed to
represent the model. For example, an integer variable with bounds 0 and 10 is created by
calling cplex.intVar(0, 10), where “cplex” is the IloCplex object.

Since Java error handling in CPLEX is done using exceptions, you should include the
Concert Technology part of an application in a try/catch statement. All the exceptions
thrown by any Concert Technology method are derived from IloException. Thus
IloException should be caught in the catch statement.

In summary, here is the structure of a Java application that calls CPLEX:

 import ilog.concert.*;
 import ilog.cplex.*;
 static public class Application {
 static public main(String[] args) {
 try {
 IloCplex cplex = new IloCplex();
 // create model and solve it
 } catch (IloException e) {
 System.err.println("Concert exception caught: " + e);
 }
 }
 }
92 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
fo

r Java U
sers

T H E A N A T O M Y O F A C O N C E R T T E C H N O L O G Y A P P L I C A T I O N
Create the Model

The IloCplex object provides the functionality to create an optimization model that can be
solved with IloCplex. The interface functions for doing so are defined by the Concert
Technology interface IloModeler and its extension IloMPModeler. These interfaces
define the constructor functions for modeling objects of the following types, which can be
used with IloCplex:

Modeling variables are represented by objects implementing the IloNumVar interface
defined by Concert Technology. Here is how to create three continuous variables, all with
bounds 0 and 100:

 IloNumVar[] x = cplex.numVarArray(3, 0.0, 100.0);

There is a wealth of other functions for creating arrays or individual modeling variables. The
documentation for IloModeler and IloMPModeler will give you the complete list.

Modeling variables are typically used to build expressions, of type IloNumExpr, for use in
constraints or the objective function of an optimization model. For example the expression:

 x[0] + 2*x[1] + 3*x[2]

can be created like this:

IloNumExpr expr = cplex.sum(x[0], cplex.prod(2.0, x[1]),
 cplex.prod(3.0, x[2]));

Another way of creating an object representing the same expression is to use an
IloLinearNumExpr expression. Here is how:

 IloLinearNumExpr expr = cplex.linearNumExpr();

 expr.addTerm(1.0, x[0]);

 expr.addTerm(2.0, x[1]);

 expr.addTerm(3.0, x[2]);

The advantage of using IloLinearNumExpr over the first way is that you can more easily
build up your linear expression in a loop, which is what is typically needed in more complex
applications. Interface IloLinearNumExpr is an extension of IloNumExpr, and thus can
be used anywhere an expression can be used.

As mentioned before, expressions can be used to create constraints or an objective function
for a model. Here is how to create a minimization objective for the above expression:

 IloObjective obj = cplex.minimize(expr);

 IloNumVar modeling variables

 IloRange ranged constraints of the type lb <= expr <= ub

 IloObjective optimization objective

 IloNumExpr expression using variables
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 93

T H E A N A T O M Y O F A C O N C E R T T E C H N O L O G Y A P P L I C A T I O N
In addition to creating an objective, IloCplex must be instructed to use it in the model it
solves. This is done by adding the objective to IloCplex via:

 cplex.add(obj);

Every modeling object that is to be used in a model must be added to the IloCplex object.
The variables need not be explicitly added as they are treated implicitly when used in the
expression of the objective. More generally, every modeling object that is referenced by
another modeling object which itself has been added to IloCplex, is implicitly added to
IloCplex as well.

There is a shortcut notation for creating and adding the objective to IloCplex:

 cplex.addMinimize(expr);

Since we don't need to access the objective otherwise, we can avoid storing it in variable
obj.

Adding constraints to the model is just as easy. For example, the constraint
 -x[0] + x[1] + x[2] <= 20.0
can be added by calling:

 cplex.addLe(cplex.sum(cplex.negative(x[0]), x[1], x[2]), 20);

Again, many methods are provided for adding other constraint types, including equality
constraints, greater than or equal to constraints, and ranged constraints. Internally, they are
all represented as IloRange objects with appropriate choices of bounds, which is why all
these methods return IloRange objects. Also, note that the expressions above could have
been created in many different ways, including the use of IloLinearNumExpr.

Solve the Model

So far we have discussed some methods of IloCplex for creating models. All such
methods are defined in the interfaces IloModeler and its extension IloMPModeler.
However, IloCplex not only implements these interfaces but also provides additional
methods for solving a model and querying its results.

After a model has been created as described in the previous section, the IloCplex object
cplex is ready to solve the model, which consists of all the modeling objects that have been
added to it. Invoking the optimizer is as simple as calling method solve.

Method solve returns a Boolean indicating whether the optimization succeeded in finding a
solution. If no solution was found, false is returned. If true is returned, then CPLEX
found a feasible solution, though it is not necessarily an optimal solution. More precise
information about the outcome of the last call to method solve can be obtained by calling:

 IloCplex.getStatus();

The returned value tells you what CPLEX found out about the model: whether it found the
optimal solution or only a feasible solution, whether it proved the model to be unbounded or
94 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
fo

r Java U
sers

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N J A V A
infeasible, or whether nothing at all has been determined at this point. Even more detailed
information about the termination of the solver call is available through the method:

 IloCplex.getCplexStatus();

Query the Results

If the solve method succeeded in finding a solution, you will then want to access that
solution. The objective value of that solution can be queried using method:

 double objval = cplex.getObjValue();

Similarly, solution values for all the variables in the array x can be queried by calling:

 double[] xval = cplex.getValues(x);

More solution information can be queried from IloCplex, including slacks and, depending
on the algorithm that was applied for solving the model, duals, reduced cost information,
and basis information.

Building and Solving a Small LP Model in Java

The example LPex1.java, which is distributed with the installation files for CPLEX, is a
program that builds a specific small LP model and then solves it. This example follows the
general structure found in many CPLEX Concert Technology applications, and demonstrates
three main ways to construct a model:

● modeling by rows,

● modeling by columns, and

● modeling by nonzero elements.

Example LPex1.java is an extension of the example presented on page 34:

After an initial check that a valid option string was provided as a calling argument, the
program begins by enclosing all executable statements that follow in a try/catch pair of
statements. In case of an error CPLEX Concert Technology will throw an exception of type
IloException, which the catch statement then processes. In this simple example, an

Maximize x1 + 2x2 + 3x3

subject to –x1 + x2 + x3 ≤ 20
 x1 – 3x2 + x3 ≤ 30

with these bounds 0 ≤ x1 ≤ 40
0 ≤ x2 ≤ +∞
0 ≤ x3 ≤ +∞
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 95

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N J A V A
exception triggers the printing of a line stating “Concert exception ‘e’ caught”, where ‘e’ is
the specific exception.

We first create the model object cplex by executing the statement

 IloCplex cplex = new IloCplex();

At this point, the cplex object represents an empty model, that is a model with no variables,
constraints or other content. The model is then populated in one of several ways depending
on the command line argument. The possible choices are implemented in the methods

● populateByRow

● populateByColumn

● populateByNonzero

All these methods pass the same three arguments. The first argument is the cplex object to
be populated. The second and third arguments correspond to the variables (var) and range
constraints (rng) respectively; the methods will write to var[0] and rng[0] an array of all
the variables and constraints in the model, for later access.

After the model has been created in the cplex object, it is ready to be solved by calling
cplex.solve(). The solution log will be output to the screen; this is because IloCplex
prints all logging information to the OutputStream cplex.out(), which by default is
initialized to System.out. You can change this by calling the method cplex.setOut().
In particular, you can turn off logging by setting the output stream to null, i.e. by calling
cplex.setOut(null). Similarly, IloCplex issues warning messages to
cplex.warning(), and cplex.setWarning() can be used to change (or turn off) the
OutputStream that will be used.

If the solve() method finds a solution for the active model, it returns true and we enter
the section of code that accesses the solution. The method cplex.getValues(var[0])
returns an array of primal solution values for all the variables. This array is stored as
double[] x. The values in x are ordered such that x[j] is the primal solution value for
variable var[0][j]. Similarly, the reduced costs, duals, and slack values are queried and
stored in arrays dj, pi, and slack, respectively. Finally, the solution status of the active
model and the objective value of the solution are queried with the methods
IloCplex.getStatus() and IloCplex.getObjValue(), respectively. The program
then concludes by printing the values that have been obtained in the previous steps, and
terminates after calling cplex.end() to free the memory used by the model object; the
catch method of IloException provides screen output in case of any error conditions
along the way.

The remainder of the example source code is devoted to the details of populating the model
object, mentioned above, and the following three sections provide details on how the
methods work.
96 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
fo

r Java U
sers

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N J A V A
Modeling by Rows

The method populateByRow creates the model by adding the finished constraints and
objective function to the active model, one by one. It does so by first creating the variables
with the method cplex.numVarArray(). Then the minimization objective function is
created, and added to the active model, with the method IloCplex.addMinimize(). The
expression that defines the objective function is created by a method,
IloCplex.scalProd(), that forms a scalar product using an array of objective
coefficients times the array of variables. Finally, each of the two constraints of the model are
created and added to the active model with the method IloCplex.addLe. For building the
constraint expression, the methods IloCplex.sum() and IloCplex.prod() are used, as
a contrast to the approach used in constructing the objective function.

Modeling by Columns

While for many examples population by rows may seem most straightforward and natural,
there are some models where population by columns is a more natural or more efficient
approach to implement. For example problems with network structure typically lend
themselves well to modeling by column. Readers familiar with matrix algebra may view the
method populateByColumn() as the transpose of populateByRow().

Range objects are created for modeling by column with only their lower and upper bound.
No expressions are given — building them at this point would be impossible since the
variables have not been created yet. Similarly, the objective function is created only with its
intended optimization sense, and without any expression.

Next the variables are created and installed in the existing ranges and objective. These newly
created variables are introduced into the ranges and the objective by means of column
objects, which are implemented in the class IloColumn. Objects of this class are created
with the methods IloCplex.column(), and can be linked together with the method
IloColumn.and() to form aggregate IloColumn objects.

An IloColumn object created with the method IloCplex.column() contains information
about how to use this column to introduce a new variable into an existing modeling object.
For example if obj is an IloObjective object, cplex.column(obj, 2.0) creates an
IloColumn object containing the information to install a new variable in the expression of
the IloObjective object obj with a linear coefficient of 2.0. Similarly, for an IloRange
constraint rng, the method call cplex.column(rng, -1.0) creates an IloColumn
object containing the information to install a new variable into the expression of rng, as a
linear term with coefficient -1.0.

When using a modeling by column approach, new columns are created and installed as
variables in all existing modeling objects where they are needed. To do this with Concert
Technology you create an IloColumn object for every modeling object in which you want
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 97

C O M P L E T E C O D E O F L P E X 1 . J A V A
to install a new variable, and link them together with the method IloColumn.and(). For
example the first variable in populateByColumn is created like this:
 var[0][0] = model.numVar(model.column(obj, 1.0).and(
 model.column(r0, -1.0).and(
 model.column(r1, 1.0))),
 0.0, 40.0);
The three methods model.column() create IloColumn objects for installing a new
variable in the objective obj and in the constraints r0 and r1, with linear coefficients 1.0, -
1.0, and 1.0, respectively. They are all linked to an aggregate column object using the
method and(). This aggregate column object is passed as the first argument to the method
numVar(), along with the bounds 0.0 and 40.0 as the other two arguments. The method
numVar now creates a new variable and immediately installs it in the modeling objects obj,
r0, and r1 as described by the aggregate column object. Once installed, the new variable is
returned and stored in var[0][0].

Modeling by Nonzeros

The last of the three functions for building the model is populateByNonzero(). In this
function we create the variables with only their bounds, and the empty constraints, that is,
ranged constraints only with lower and upper bound but with no expression. Only after that
do we construct the expressions, in a manner similar to the ones already described, using
these existing variables and install them in the existing constraints with the method
IloRange.setExpr().

Complete Code of LPex1.java

// --
// File: examples/src/LPex1.java
// Version 8.1
// --
// Copyright (C) 2001-2002 by ILOG.
// All Rights Reserved.
// Permission is expressly granted to use this example in the
// course of developing applications that use ILOG products.
// --
//
// LPex1.java - Entering and optimizing an LP problem
//
// Demonstrates different methods for creating a problem. The user has to
// choose the method on the command line:
//
// java LPex1 -r generates the problem by adding constraints
// java LPex1 -c generates the problem by adding variables
// java LPex1 -n generates the problem by adding expressions
//

import ilog.concert.*;
98 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
fo

r Java U
sers

C O M P L E T E C O D E O F L P E X 1 . J A V A
import ilog.cplex.*;

public class LPex1 {
 static void usage() {
 System.out.println("usage: LPex1 <option>");
 System.out.println("options: -r build model row by row");
 System.out.println("options: -c build model column by column");
 System.out.println("options: -n build model nonzero by nonzero");
 }

 public static void main(String[] args) {
 if (args.length != 1 || args[0].charAt(0) != ’-’) {
 usage();
 return;
 }

 try {
 // Create the modeler/solver object
 IloCplex cplex = new IloCplex();

 IloNumVar[][] var = new IloNumVar[1][];
 IloRange[][] rng = new IloRange[1][];

 // Evaluate command line option and call appropriate populate method.
 // The created ranges and variables are returned as element 0 of arrays
 // var and rng.
 switch (args[0].charAt(1)) {
 case ’r’: populateByRow(cplex, var, rng);
 break;
 case ’c’: populateByColumn(cplex, var, rng);
 break;
 case ’n’: populateByNonzero(cplex, var, rng);
 break;
 default: usage();
 return;
 }

 // write model to file
 cplex.exportModel("lpex1.lp");

 // solve the model and display the solution if one was found
 if (cplex.solve()) {
 double[] x = cplex.getValues(var[0]);
 double[] dj = cplex.getReducedCosts(var[0]);
 double[] pi = cplex.getDuals(rng[0]);
 double[] slack = cplex.getSlacks(rng[0]);

 cplex.out().println("Solution status = " + cplex.getStatus());
 cplex.out().println("Solution value = " + cplex.getObjValue());

 int ncols = cplex.getNcols();
 for (int j = 0; j < ncols; ++j) {
 cplex.out().println("Column: " + j +
 " Value = " + x[j] +
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 99

C O M P L E T E C O D E O F L P E X 1 . J A V A
 " Reduced cost = " + dj[j]);
 }

 int nrows = cplex.getNrows();
 for (int i = 0; i < nrows; ++i) {
 cplex.out().println("Row : " + i +
 " Slack = " + slack[i] +
 " Pi = " + pi[i]);
 }
 }
 cplex.end();
 }
 catch (IloException e) {
 System.err.println("Concert exception ’" + e + "’ caught");
 }
 }

 // The following methods all populate the problem with data for the following
 // linear program:
 //
 // Maximize
 // x1 + 2 x2 + 3 x3
 // Subject To
 // - x1 + x2 + x3 <= 20
 // x1 - 3 x2 + x3 <= 30
 // Bounds
 // 0 <= x1 <= 40
 // End
 //
 // using the IloMPModeler API

 static void populateByRow(IloMPModeler model,
 IloNumVar[][] var,
 IloRange[][] rng) throws IloException {
 double[] lb = {0.0, 0.0, 0.0};
 double[] ub = {40.0, Double.MAX_VALUE, Double.MAX_VALUE};
 IloNumVar[] x = model.numVarArray(3, lb, ub);
 var[0] = x;

 double[] objvals = {1.0, 2.0, 3.0};
 model.addMaximize(model.scalProd(x, objvals));

 rng[0] = new IloRange[2];
 rng[0][0] = model.addLe(model.sum(model.prod(-1.0, x[0]),
 model.prod(1.0, x[1]),
 model.prod(1.0, x[2])), 20.0);
 rng[0][1] = model.addLe(model.sum(model.prod(1.0, x[0]),
 model.prod(-3.0, x[1]),
 model.prod(1.0, x[2])), 30.0);
 }

 static void populateByColumn(IloMPModeler model,
 IloNumVar[][] var,
 IloRange[][] rng) throws IloException {
100 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
o

n
cert Tech

n
o

lo
g

y
fo

r Java U
sers

C O M P L E T E C O D E O F L P E X 1 . J A V A
 IloObjective obj = model.addMaximize();

 rng[0] = new IloRange[2];
 rng[0][0] = model.addRange(-Double.MAX_VALUE, 20.0);
 rng[0][1] = model.addRange(-Double.MAX_VALUE, 30.0);

 IloRange r0 = rng[0][0];
 IloRange r1 = rng[0][1];

 var[0] = new IloNumVar[3];
 var[0][0] = model.numVar(model.column(obj, 1.0).and(
 model.column(r0, -1.0).and(
 model.column(r1, 1.0))),
 0.0, 40.0);
 var[0][1] = model.numVar(model.column(obj, 2.0).and(
 model.column(r0, 1.0).and(
 model.column(r1, -3.0))),
 0.0, Double.MAX_VALUE);
 var[0][2] = model.numVar(model.column(obj, 3.0).and(
 model.column(r0, 1.0).and(
 model.column(r1, 1.0))),
 0.0, Double.MAX_VALUE);
 }

 static void populateByNonzero(IloMPModeler model,
 IloNumVar[][] var,
 IloRange[][] rng) throws IloException {
 double[] lb = {0.0, 0.0, 0.0};
 double[] ub = {40.0, Double.MAX_VALUE, Double.MAX_VALUE};
 IloNumVar[] x = model.numVarArray(3, lb, ub);
 var[0] = x;

 double[] objvals = {1.0, 2.0, 3.0};
 model.add(model.maximize(model.scalProd(x, objvals)));

 rng[0] = new IloRange[2];
 rng[0][0] = model.addRange(-Double.MAX_VALUE, 20.0);
 rng[0][1] = model.addRange(-Double.MAX_VALUE, 30.0);

 rng[0][0].setExpr(model.sum(model.prod(-1.0, x[0]),
 model.prod(1.0, x[1]),
 model.prod(1.0, x[2])));
 rng[0][1].setExpr(model.sum(model.prod(1.0, x[0]),
 model.prod(-3.0, x[1]),
 model.prod(1.0, x[2])));
 }
}

I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 101

C O M P L E T E C O D E O F L P E X 1 . J A V A
102 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C H A P T E R

C
allab

le L
ib

rary
Tu

to
rial
5

Callable Library Tutorial

This tutorial shows how to write programs that use the CPLEX Callable Library. In this
chapter you will learn about:

◆ The Design of the ILOG CPLEX Callable Library

◆ Compiling and Linking Callable Library Applications

◆ How ILOG CPLEX Works

◆ Creating a Successful Callable Library Application

◆ Building and Solving a Small LP Model in C

◆ Reading a Problem from a File: Example lpex2.c

◆ Adding Rows to a Problem: Example lpex3.c

◆ Performing Sensitivity Analysis

The Design of the ILOG CPLEX Callable Library

Figure 5.1 shows a picture of the ILOG CPLEX world. The ILOG CPLEX Callable Library
together with the ILOG CPLEX database make up the ILOG CPLEX core. The core
becomes associated with your application through Callable Library routines. The ILOG
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 103

C O M P I L I N G A N D L I N K I N G C A L L A B L E L I B R A R Y A P P L I C A T I O N S
CPLEX environment and all problem-defining data are established inside the ILOG CPLEX
core.

Figure 5.1

Figure 5.1 A View of the CPLEX Callable Library

The ILOG CPLEX Callable Library includes several categories of routines:

◆ optimization and result routines for defining a problem, optimizing it, and getting the
results;

◆ utility routines for addressing application programming matters;

◆ problem modification routines to change a problem once it has been created within the
ILOG CPLEX database;

◆ problem query routines to access information about a problem once it has been created;

◆ file reading and writing routines to move information from the file system into your
application or out of your application to the file system;

◆ parameter setting and query routines to access and modify the values of control
parameters maintained by ILOG CPLEX.

Compiling and Linking Callable Library Applications

Each Callable Library is distributed as a single library file libcplex.a or cplex81.lib.
Use of the library file is similar to that with .o or .obj files. Simply substitute the library
file in the link procedure. This procedure simplifies linking and ensures that the smallest
possible executable is generated.

User-Written Application

CPLEX Callable Library

CPLEX database
104 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

C O M P I L I N G A N D L I N K I N G C A L L A B L E L I B R A R Y A P P L I C A T I O N S
The following compilation and linking instructions assume that the example source
programs and CPLEX Callable Library files are in the directories associated with a default
installation of the software. If this is not true, additional compile and link flags would be
required to point to the locations of the include file cplex.h, and Callable Library files
respectively.

Building CPLEX Callable Library Applications on UNIX Platforms

To compile and execute an example (lpex1) do the following:

 % cd examples/<machine>/<libformat>
 % make lpex1 # to compile and execute the first CPLEX example

A list of all the examples that can be built this way is to be found in the makefile by looking
for C_EX (C examples), or you can view the files listed in examples/src.

The makefile contains recommended compiler flags and other settings for your particular
computer, which you can find by searching in it for "Compiler options" and use in your
applications that call CPLEX.

Building CPLEX Callable Library Applications on Win32 Platforms

Building a CPLEX application using MS Visual C++ Integrated Development Environment,
or the MS Visual C++ command line compiler are explained here.

Microsoft Visual C++ IDE

To make a CPLEX Callable Library application using Visual C++, first create or open a
project in the Visual C++ Integrated Development Environment (IDE). Project files are
provided for each of the examples found in the directory examples\msvc6\<libformat>
and examples\msvc6\<libformat>. For details on the build process, refer to the
information file msvc.html, which is found in the top of the installed CPLEX directory
structure.

Microsoft Visual C++ Command Line Compiler

If the Visual C++ command line compiler is used outside of the IDE, the command should
resemble the following example. The example command assumes that the file
cplex81.lib is in the current directory with the source file lpex1.c, and that the line in

Note: The instructions below were current at the time of publication. As compilers, linkers
and operating systems are released, different instructions may apply. Be sure to check the
Release Notes that come with your CPLEX distribution for any changes. Also check the
CPLEX web page (http://www.ilog.com/products/cplex).

Note: The distributed application must be able to locate cplex81.dll at run time.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 105

H O W I L O G C P L E X W O R K S
the source file "#include <ilcplex/cplex.h>" correctly points to the location of the
include file or else has been modified to do so (or that the directories containing these files
have been added to the environment variables LIB and INCLUDE respectively).

cl lpex1.c cplex81.lib

This command will create the executable file lpex1.exe.

Using Dynamic Loading

Some projects require more precise control over the loading and unloading of DLLs. For
information on loading and unloading DLLs without using static linking, please refer to the
compiler documentation or to a book such as Advanced Windows by Jeffrey Richter from
Microsoft Press. If this is not a requirement, the static link implementations mentioned
above are easier to use.

Building Applications that Use the CPLEX Parallel Optimizers

When compiling and linking programs that use the CPLEX Parallel Optimizers, it is
especially important to review the relevant flags for the compiler and linker. These are found
in the makefile provided with UNIX distributions or in the sample project files provided
with Windows distributions. We recommend you also review the section on Using Parallel
Optimizers in the ILOG CPLEX User’s Manual for important details pertaining to each
specific parallel optimizer.

How ILOG CPLEX Works

When your application uses routines of the ILOG CPLEX Callable Library, it must first
open the ILOG CPLEX environment, then create and populate a problem object before it
solves a problem. Before it exits, the application must also free the problem object and
release the ILOG CPLEX environment. The following sections explain those steps.

Opening the ILOG CPLEX Environment

ILOG CPLEX requires a number of internal data structures in order to execute properly.
These data structures must be initialized before any call to the ILOG CPLEX Callable
Library. The first call to the ILOG CPLEX Callable Library is always to the function
CPXopenCPLEX(). This routine checks for a valid ILOG CPLEX license and returns a
pointer to the ILOG CPLEX environment. This pointer is then passed to every ILOG
CPLEX Callable Library routine, except CPXmsg().

The application developer must make an independent decision as to whether the variable
containing the environment pointer is a global or local variable. Multiple environments are
allowed, but extensive opening and closing of environments may create significant overhead
on the licensor and degrade performance; typical applications make use of only one
106 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

H O W I L O G C P L E X W O R K S
environment for the entire execution, since a single environment may hold as many problem
objects as the user wishes. After all calls to the Callable Library are complete, the
environment is released by the routine CPXcloseCPLEX(). This routine indicates to ILOG
CPLEX that all calls to the Callable Library are complete, any memory allocated by ILOG
CPLEX is returned to the operating system, and the use of the ILOG CPLEX license is
ended for this run.

Instantiating the Problem Object

A problem object is instantiated (created and initialized) by ILOG CPLEX when you call the
routine CPXcreateprob(). It is destroyed when you call CPXfreeprob(). ILOG CPLEX
allows you to create more than one problem object, although typical applications will use
only one. Each problem object is referenced by a pointer returned by CPXcreateprob()
and represents one specific problem instance. All Callable Library functions (except
parameter setting functions and message handling functions) require a pointer to a problem
object.

Populating the Problem Object

The problem object instantiated by CPXcreateprob() represents an empty problem that
contains no data; it has zero constraints, zero variables, and an empty constraint matrix. This
empty problem object must be populated with data. This step can be carried out in several
ways.

◆ The problem object can be populated by assembling arrays of data and then calling
CPXcopylp() to copy the data into the problem object. (For example, see Building and
Solving a Small LP Model in C on page 111.)

◆ Alternatively, you can populate the problem object by sequences of calls to the routines
CPXnewcols(), CPXnewrows(), CPXaddcols(), CPXaddrows(), and
CPXchgcoeflist(); these routines may be called in any order that is convenient. (For
example, see Adding Rows to a Problem: Example lpex3.c on page 131.)

◆ If the data already exist in a file using MPS format or LP format, you can use
CPXreadcopyprob() to read the file and copy the data into the problem object. (For
example, see Reading a Problem from a File: Example lpex2.c on page 122.)

Changing the Problem Object

A major consideration in the design of ILOG CPLEX is the need to efficiently re-optimize
modified linear programs. In order to accomplish that, ILOG CPLEX must be aware of
changes that have been made to a linear program since it was last optimized. Problem
modification routines are available in the Callable Library.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 107

C R E A T I N G A S U C C E S S F U L C A L L A B L E L I B R A R Y A P P L I C A T I O N
Do not change the problem by changing the original problem data arrays and then making a
call to CPXcopylp(). Instead, change the problem using the problem modification routines,
allowing ILOG CPLEX to make use of as much solution information as possible from the
solution of the problem before the modifications took place.

For example, suppose that a problem has been solved, and that the user has changed the
upper bound on a variable through an appropriate call to the ILOG CPLEX Callable Library.
A re-optimization would then begin from the previous optimal basis, and if that old basis
were still optimal, then that information would be returned without even the need to refactor
the old basis.

Creating a Successful Callable Library Application

Callable Library applications are created to solve a wide variety of problems. Each
application shares certain common characteristics, regardless of its apparent uniqueness.
The following steps can help you minimize development time and get maximum
performance from your programs:

1. Prototype the Model

2. Identify the Routines to be Called

3. Test Procedures in the Application

4. Assemble the Data

5. Choose an Optimizer

6. Observe Good Programming Practices

7. Debug Your Program

8. Test Your Application

9. Use the Examples

Prototype the Model

Create a small version of the model to be solved. An algebraic modeling language is
sometimes helpful during this step.

Identify the Routines to be Called

By separating the application into smaller parts, you can easily identify the tools needed to
complete the application. Part of this process consists of identifying the Callable Library
routines that will be called.
108 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

C R E A T I N G A S U C C E S S F U L C A L L A B L E L I B R A R Y A P P L I C A T I O N
In some applications, the Callable Library is a small part of a larger program. In that case,
the only ILOG CPLEX routines needed may be for:

◆ problem creation;

◆ optimizing;

◆ obtaining results.

In other cases the Callable Library is used extensively in the application. If so, Callable
Library routines may also be needed to:

◆ modify the problem;

◆ set parameters;

◆ determine input and output messages and files;

◆ query problem data.

Test Procedures in the Application

It is often possible to test the procedures of an application in the ILOG CPLEX Interactive
Optimizer with a small prototype of the model. Doing so will help identify the Callable
Library routines required. The test may also uncover any flaws in procedure logic before
you invest significant development effort.

Trying the ILOG CPLEX Interactive Optimizer is an easy way to determine the best
optimization procedure and parameter settings.

Assemble the Data

You must decide which approach to populating the problem object is best for your
application. Reading an MPS or LP file may reduce the coding effort but can increase the
run-time and disk-space requirements of the program. Building the problem in memory and
then calling CPXcopylp() avoids time consuming disk-file reading. Using the routines
CPXnewcols(), CPXnewrows(), CPXaddcols(), CPXaddrows(), and
CPXchgcoeflist() can lead to modular code that may be more easily maintained than if
you assemble all model data in one step.

Another consideration is that if the Callable Library application reads an MPS or LP
formatted file, usually another application is required to generate that file. Particularly in the
case of MPS files, the data structures used to generate the file could almost certainly be used
to build the problem-defining arrays for CPXcopylp() directly. The result would be less
coding and a faster, more efficient application. These observations suggest that formatted
files may be useful when prototyping your application, while assembling the arrays in
memory may be a useful enhancement for a production version.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 109

C R E A T I N G A S U C C E S S F U L C A L L A B L E L I B R A R Y A P P L I C A T I O N
Choose an Optimizer

Once a problem object has been instantiated and populated, it can be solved using one of the
optimizers provided by the ILOG CPLEX Callable Library. The choice of optimizer depends
on the problem type.

◆ LP and QP problems can be solved by:

● the primal simplex optimizer;

● the dual simplex optimizer; and

● the barrier optimizer;

◆ LP problems can also be solved by:

● the sifting optimizer; and

● the concurrent optimizer.

LP problems with a substantial network, can also be solved by a special network
optimizer.

◆ If the problem includes integer variables, branch & cut must be used.

There are also many different possible parameter settings for each optimizer. The default
values will usually be the best for linear programs. Integer programming problems are more
sensitive to specific settings, so additional experimentation will often be useful.

Choosing the best way to solve the problem can dramatically improve performance. For
more information, refer to the sections about tuning LP performance and trouble-shooting
MIP performance in the ILOG CPLEX User’s Manual.

Observe Good Programming Practices

Using good programming practices will save development time and make the program easier
to understand and modify. A list of good programming practices is provided in the
ILOG CPLEX User’s Manual.

Debug Your Program

Your program may not run properly the first time you build it. Learn to use a symbolic
debugger and other widely available tools that support the creation of error-free code. Use
the list of debugging tips provided in the ILOG CPLEX User’s Manual to find and correct
problems in your Callable Library application.
110 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
Test Your Application

Once an application works correctly, it still may have errors or features that inhibit execution
speed. To get the most out of your application, be sure to test its performance as well as its
correctness. Again, the ILOG CPLEX Interactive Optimizer can help. Since the Interactive
Optimizer uses the same routines as the Callable Library, it should take the same amount of
time to solve a problem as a Callable Library application.

Use the CPXwriteprob() routine with the SAV format to create a binary representation of
the problem object, then read it in and solve it with the Interactive Optimizer. If the
application sets optimization parameters, use the same settings with the Interactive
Optimizer. If your application takes significantly longer than the Interactive Optimizer,
performance within your application can probably be improved. In such a case, possible
performance inhibitors include fragmentation of memory, unnecessary compiler and linker
options, and coding approaches that slow the program without causing it to give incorrect
results.

Use the Examples

The ILOG CPLEX Callable Library is distributed with a variety of examples that illustrate
the flexibility of the Callable Library. The C source of all examples is provided in the
standard distribution. For explanations about the examples of quadratic programming
problems (QPs), mixed integer programming problems (MIPs) and network flows, see the
ILOG CPLEX User’s Manual. Explanations of the following examples of LPs appear in this
manual:

We strongly encourage you to compile, link, and run all of the examples provided in the
standard distribution.

Building and Solving a Small LP Model in C

The example lpex1.c shows you how to use problem modification routines from the ILOG
CPLEX Callable Library in three different ways to build a model. The application in the
example takes a single command line argument that indicates whether to build the constraint

lpex1.c illustrates various ways of generating a problem object.

lpex2.c demonstrates how to read a problem from a file, optimize it via a
choice of several means, and obtain the solution.

lpex3.c demonstrates how to add rows to a problem object and reoptimize.
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 111

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
matrix by rows, columns, or nonzeros. After building the problem, the application optimizes
it and displays the solution. Here is the problem that the example optimizes:

Before any ILOG CPLEX Callable Library routine can be called, your application must call
the routine CPXopenCPLEX() to get a pointer (called env) to the ILOG CPLEX
environment. Your application will then pass this pointer to every Callable Library routine.
If this routine fails, it returns an error code. This error code can be translated to a string by
the routine CPXgeterrorstring().

After the ILOG CPLEX environment is initialized, the ILOG CPLEX screen indicator
parameter (CPX_PARAM_SCRIND) is turned on by the routine CPXsetintparam(). This
causes all default ILOG CPLEX output to appear on the screen. If this parameter is not set,
then ILOG CPLEX will generate no viewable output on the screen or in a file.

At this point, the routine setproblemdata() is called to create an empty problem object.
Based on the problem-building method selected by the command-line argument, the
application then calls a routine to build the matrix by rows, by columns, or by nonzeros. The
routine populatebyrow() first calls CPXnewcols() to specify the column-based problem
data, such as the objective, bounds, and variables names. The routine CPXaddrows() is
then called to supply the constraints. The routine populatebycolumn() first calls
CPXnewrows() to specify the row-based problem data, such as the right-hand side values
and sense of constraints. The routine CPXaddcols() is then called to supply the columns of
the matrix and the associated column bounds, names, and objective coefficients. The routine
populatebynonzero() calls both CPXnewrows() and CPXnewcols() to supply all the
problem data except the actual constraint matrix. At this point, the rows and columns are
well defined, but the constraint matrix remains empty. The routine CPXchgcoeflist() is
then called to fill in the nonzero entries in the matrix.

Once the problem has been specified, the application optimizes it by calling the routine
CPXlpopt(). Its default behavior is to use the ILOG CPLEX Dual Simplex Optimizer. If
this routine returns a nonzero result, then an error occurred. If no error occurred, the
application allocates arrays for solution values of the primal variables, dual variables, slack
variables, and reduced costs; then it obtains the solution information by calling the routine
CPXsolution(). This routine returns the status of the problem (whether optimal,
infeasible, or unbounded, and whether a time limit or iteration limit was reached), the
objective value and the solution vectors. The application then displays this information on
the screen.

Maximize x1 + 2x2 + 3x3

subject to –x1 + x2 + x3 ≤ 20
 x1 – 3x2 + x3 ≤ 30

with these bounds 0 ≤ x1 ≤ 40
0 ≤ x2 ≤ +∞
0 ≤ x3 ≤ +∞
112 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
As a debugging aid, the application writes the problem to a ILOG CPLEX LP file (named
lpex1.lp) by calling the routine CPXwriteprob(). This file can be examined to
determine whether any errors occurred in the setproblemdata() or CPXcopylp()
routines. CPXwriteprob() can be called at any time after CPXcreateprob() has created
the lp pointer.

The label TERMINATE: is used as a place for the program to exit if any type of failure occurs,
or if everything succeeds. In either case, the problem object represented by lp is released by
the call to CPXfreeprob(), and any memory allocated for solution arrays is freed. The
application then calls CPXcloseCPLEX(); it tells ILOG CPLEX that all calls to the Callable
Library are complete. If an error occurs when this routine is called, then a call to
CPXgeterrorstring()is needed to determine the error message, since
CPXcloseCPLEX() causes no screen output.

Complete Program

The complete program follows. You can also view it online in the file lpex1.c.

/*--*/
/* File: examples/src/lpex1.c */
/* Version 8.1 */
/*--*/
/* Copyright (C) 1997-2002 by ILOG. */
/* All Rights Reserved. */
/* Permission is expressly granted to use this example in the */
/* course of developing applications that use ILOG products. */
/*--*/

/* lpex1.c - Entering and optimizing a problem. Demonstrates different
 methods for creating a problem. The user has to choose the method
 on the command line:

 lpex1 -r generates the problem by adding rows
 lpex1 -c generates the problem by adding columns
 lpex1 -n generates the problem by adding a list of coefficients
 */

/* Bring in the CPLEX function declarations and the C library
 header file stdio.h with the following single include. */

#include <ilcplex/cplex.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#endif

/* Bring in the declarations for the string functions */

#include <string.h>
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 113

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
/* Include declaration for functions at end of program */

static int
 populatebyrow (CPXENVptr env, CPXLPptr lp),
 populatebycolumn (CPXENVptr env, CPXLPptr lp),
 populatebynonzero (CPXENVptr env, CPXLPptr lp);

static void
 free_and_null (char **ptr),
 usage (char *progname);

int
main (int argc, char **argv)
{
 /* Declare and allocate space for the variables and arrays where we
 will store the optimization results including the status, objective
 value, variable values, dual values, row slacks and variable
 reduced costs. */

 int solstat;
 double objval;
 double *x = NULL;
 double *pi = NULL;
 double *slack = NULL;
 double *dj = NULL;

 CPXENVptr env = NULL;
 CPXLPptr lp = NULL;
 int status = 0;
 int i, j;
 int cur_numrows, cur_numcols;

 /* Check the command line arguments */

 if ((argc != 2) ||
 (argv[1][0] != ’-’) ||
 (strchr ("rcn", argv[1][1]) == NULL)) {
 usage (argv[0]);
 goto TERMINATE;
 }

 /* Initialize the CPLEX environment */

 env = CPXopenCPLEX (&status);

 /* If an error occurs, the status value indicates the reason for
 failure. A call to CPXgeterrorstring will produce the text of
 the error message. Note that CPXopenCPLEX produces no output,
 so the only way to see the cause of the error is to use
 CPXgeterrorstring. For other CPLEX routines, the errors will
114 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
 be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

 if (env == NULL) {
 char errmsg[1024];
 fprintf (stderr, "Could not open CPLEX environment.\n");
 CPXgeterrorstring (env, status, errmsg);
 fprintf (stderr, "%s", errmsg);
 goto TERMINATE;
 }

 /* Turn on output to the screen */

 status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
 if (status) {
 fprintf (stderr,
 "Failure to turn on screen indicator, error %d.\n", status);
 goto TERMINATE;
 }

 /* Turn on data checking */

 status = CPXsetintparam (env, CPX_PARAM_DATACHECK, CPX_ON);
 if (status) {
 fprintf (stderr,
 "Failure to turn on data checking, error %d.\n", status);
 goto TERMINATE;
 }

 /* Create the problem. */

 lp = CPXcreateprob (env, &status, "lpex1");

 /* A returned pointer of NULL may mean that not enough memory
 was available or there was some other problem. In the case of
 failure, an error message will have been written to the error
 channel from inside CPLEX. In this example, the setting of
 the parameter CPX_PARAM_SCRIND causes the error message to
 appear on stdout. */

 if (lp == NULL) {
 fprintf (stderr, "Failed to create LP.\n");
 goto TERMINATE;
 }

 /* Now populate the problem with the data. For building large
 problems, consider setting the row, column and nonzero growth
 parameters before performing this task. */

 switch (argv[1][1]) {
 case ’r’:
 status = populatebyrow (env, lp);
 break;
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 115

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
 case ’c’:
 status = populatebycolumn (env, lp);
 break;
 case ’n’:
 status = populatebynonzero (env, lp);
 break;
 }

 if (status) {
 fprintf (stderr, "Failed to populate problem.\n");
 goto TERMINATE;
 }

 /* Optimize the problem and obtain solution. */

 status = CPXlpopt (env, lp);
 if (status) {
 fprintf (stderr, "Failed to optimize LP.\n");
 goto TERMINATE;
 }

 /* The size of the problem should be obtained by asking CPLEX what
 the actual size is, rather than using sizes from when the problem
 was built. cur_numrows and cur_numcols store the current number
 of rows and columns, respectively. */

 cur_numrows = CPXgetnumrows (env, lp);
 cur_numcols = CPXgetnumcols (env, lp);

 x = (double *) malloc (cur_numcols * sizeof(double));
 slack = (double *) malloc (cur_numrows * sizeof(double));
 dj = (double *) malloc (cur_numcols * sizeof(double));
 pi = (double *) malloc (cur_numrows * sizeof(double));

 if (x == NULL ||
 slack == NULL ||
 dj == NULL ||
 pi == NULL) {
 status = CPXERR_NO_MEMORY;
 fprintf (stderr, "Could not allocate memory for solution.\n");
 goto TERMINATE;
 }

 status = CPXsolution (env, lp, &solstat, &objval, x, pi, slack, dj);
 if (status) {
 fprintf (stderr, "Failed to obtain solution.\n");
 goto TERMINATE;
 }

 /* Write the output to the screen. */

 printf ("\nSolution status = %d\n", solstat);
 printf ("Solution value = %f\n\n", objval);
116 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
 for (i = 0; i < cur_numrows; i++) {
 printf ("Row %d: Slack = %10f Pi = %10f\n", i, slack[i], pi[i]);
 }

 for (j = 0; j < cur_numcols; j++) {
 printf ("Column %d: Value = %10f Reduced cost = %10f\n",
 j, x[j], dj[j]);
 }

 /* Finally, write a copy of the problem to a file. */

 status = CPXwriteprob (env, lp, "lpex1.lp", NULL);
 if (status) {
 fprintf (stderr, "Failed to write LP to disk.\n");
 goto TERMINATE;
 }

TERMINATE:

 /* Free up the solution */

 free_and_null ((char **) &x);
 free_and_null ((char **) &slack);
 free_and_null ((char **) &dj);
 free_and_null ((char **) &pi);

 /* Free up the problem as allocated by CPXcreateprob, if necessary */

 if (lp != NULL) {
 status = CPXfreeprob (env, &lp);
 if (status) {
 fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
 }
 }

 /* Free up the CPLEX environment, if necessary */

 if (env != NULL) {
 status = CPXcloseCPLEX (&env);

 /* Note that CPXcloseCPLEX produces no output,
 so the only way to see the cause of the error is to use
 CPXgeterrorstring. For other CPLEX routines, the errors will
 be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

 if (status) {
 char errmsg[1024];
 fprintf (stderr, "Could not close CPLEX environment.\n");
 CPXgeterrorstring (env, status, errmsg);
 fprintf (stderr, "%s", errmsg);
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 117

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
 }
 }

 return (status);

} /* END main */

/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */

static void
free_and_null (char **ptr)
{
 if (*ptr != NULL) {
 free (*ptr);
 *ptr = NULL;
 }
} /* END free_and_null */

static void
usage (char *progname)
{
 fprintf (stderr,"Usage: %s -X\n", progname);
 fprintf (stderr," where X is one of the following options: \n");
 fprintf (stderr," r generate problem by row\n");
 fprintf (stderr," c generate problem by column\n");
 fprintf (stderr," n generate problem by nonzero\n");
 fprintf (stderr," Exiting...\n");
} /* END usage */

/* These functions all populate the problem with data for the following
 linear program:

 Maximize
 obj: x1 + 2 x2 + 3 x3
 Subject To
 c1: - x1 + x2 + x3 <= 20
 c2: x1 - 3 x2 + x3 <= 30
 Bounds
 0 <= x1 <= 40
 End
 */

#define NUMROWS 2
#define NUMCOLS 3
#define NUMNZ 6

/* To populate by row, we first create the columns, and then add the
 rows. */
118 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
static int
populatebyrow (CPXENVptr env, CPXLPptr lp)
{
 int status = 0;
 double obj[NUMCOLS];
 double lb[NUMCOLS];
 double ub[NUMCOLS];
 char *colname[NUMCOLS];
 int rmatbeg[NUMROWS];
 int rmatind[NUMNZ];
 double rmatval[NUMNZ];
 double rhs[NUMROWS];
 char sense[NUMROWS];
 char *rowname[NUMROWS];

 CPXchgobjsen (env, lp, CPX_MAX); /* Problem is maximization */

 /* Now create the new columns. First, populate the arrays. */

 obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;

 lb[0] = 0.0; lb[1] = 0.0; lb[2] = 0.0;
 ub[0] = 40.0; ub[1] = CPX_INFBOUND; ub[2] = CPX_INFBOUND;

 colname[0] = "x1"; colname[1] = "x2"; colname[2] = "x3";

 status = CPXnewcols (env, lp, NUMCOLS, obj, lb, ub, NULL, colname);
 if (status) goto TERMINATE;

 /* Now add the constraints. */

 rmatbeg[0] = 0; rowname[0] = "c1";

 rmatind[0] = 0; rmatind[1] = 1; rmatind[2] = 2; sense[0] = ’L’;
 rmatval[0] = -1.0; rmatval[1] = 1.0; rmatval[2] = 1.0; rhs[0] = 20.0;

 rmatbeg[1] = 3; rowname[1] = "c2";
 rmatind[3] = 0; rmatind[4] = 1; rmatind[5] = 2; sense[1] = ’L’;
 rmatval[3] = 1.0; rmatval[4] = -3.0; rmatval[5] = 1.0; rhs[1] = 30.0;

 status = CPXaddrows (env, lp, 0, NUMROWS, NUMNZ, rhs, sense, rmatbeg,
 rmatind, rmatval, NULL, rowname);
 if (status) goto TERMINATE;

TERMINATE:

 return (status);

} /* END populatebyrow */
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 119

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
/* To populate by column, we first create the rows, and then add the
 columns. */

static int
populatebycolumn (CPXENVptr env, CPXLPptr lp)
{
 int status = 0;
 double obj[NUMCOLS];
 double lb[NUMCOLS];
 double ub[NUMCOLS];
 char *colname[NUMCOLS];
 int matbeg[NUMCOLS];
 int matind[NUMNZ];
 double matval[NUMNZ];
 double rhs[NUMROWS];
 char sense[NUMROWS];
 char *rowname[NUMROWS];

 CPXchgobjsen (env, lp, CPX_MAX); /* Problem is maximization */

 /* Now create the new rows. First, populate the arrays. */

 rowname[0] = "c1";
 sense[0] = ’L’;
 rhs[0] = 20.0;

 rowname[1] = "c2";
 sense[1] = ’L’;
 rhs[1] = 30.0;

 status = CPXnewrows (env, lp, NUMROWS, rhs, sense, NULL, rowname);
 if (status) goto TERMINATE;

 /* Now add the new columns. First, populate the arrays. */

 obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;

 matbeg[0] = 0; matbeg[1] = 2; matbeg[2] = 4;

 matind[0] = 0; matind[2] = 0; matind[4] = 0;
 matval[0] = -1.0; matval[2] = 1.0; matval[4] = 1.0;

 matind[1] = 1; matind[3] = 1; matind[5] = 1;
 matval[1] = 1.0; matval[3] = -3.0; matval[5] = 1.0;

 lb[0] = 0.0; lb[1] = 0.0; lb[2] = 0.0;
 ub[0] = 40.0; ub[1] = CPX_INFBOUND; ub[2] = CPX_INFBOUND;

 colname[0] = "x1"; colname[1] = "x2"; colname[2] = "x3";

 status = CPXaddcols (env, lp, NUMCOLS, NUMNZ, obj, matbeg, matind,
 matval, lb, ub, colname);
120 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

B U I L D I N G A N D S O L V I N G A S M A L L L P M O D E L I N C
 if (status) goto TERMINATE;

TERMINATE:

 return (status);

} /* END populatebycolumn */

/* To populate by nonzero, we first create the rows, then create the
 columns, and then change the nonzeros of the matrix 1 at a time. */

static int
populatebynonzero (CPXENVptr env, CPXLPptr lp)
{
 int status = 0;
 double obj[NUMCOLS];
 double lb[NUMCOLS];
 double ub[NUMCOLS];
 char *colname[NUMCOLS];
 double rhs[NUMROWS];
 char sense[NUMROWS];
 char *rowname[NUMROWS];
 int rowlist[NUMNZ];
 int collist[NUMNZ];
 double vallist[NUMNZ];

 CPXchgobjsen (env, lp, CPX_MAX); /* Problem is maximization */

 /* Now create the new rows. First, populate the arrays. */

 rowname[0] = "c1";
 sense[0] = ’L’;
 rhs[0] = 20.0;

 rowname[1] = "c2";
 sense[1] = ’L’;
 rhs[1] = 30.0;

 status = CPXnewrows (env, lp, NUMROWS, rhs, sense, NULL, rowname);
 if (status) goto TERMINATE;

 /* Now add the new columns. First, populate the arrays. */

 obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;

 lb[0] = 0.0; lb[1] = 0.0; lb[2] = 0.0;
 ub[0] = 40.0; ub[1] = CPX_INFBOUND; ub[2] = CPX_INFBOUND;

 colname[0] = "x1"; colname[1] = "x2"; colname[2] = "x3";

 status = CPXnewcols (env, lp, NUMCOLS, obj, lb, ub, NULL, colname);
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 121

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E L P E X 2 . C
 if (status) goto TERMINATE;

 /* Now create the list of coefficients */

 rowlist[0] = 0; collist[0] = 0; vallist[0] = -1.0;
 rowlist[1] = 0; collist[1] = 1; vallist[1] = 1.0;
 rowlist[2] = 0; collist[2] = 2; vallist[2] = 1.0;
 rowlist[3] = 1; collist[3] = 0; vallist[3] = 1.0;
 rowlist[4] = 1; collist[4] = 1; vallist[4] = -3.0;
 rowlist[5] = 1; collist[5] = 2; vallist[5] = 1.0;

 status = CPXchgcoeflist (env, lp, 6, rowlist, collist, vallist);

 if (status) goto TERMINATE;

TERMINATE:

 return (status);

} /* END populatebynonzero */

Reading a Problem from a File: Example lpex2.c

The previous example, lpex1.c shows a way to copy problem data into a ILOG CPLEX
problem object as part of an application that calls routines from the ILOG CPLEX Callable
Library. Frequently, however, a file already exists containing a linear programming problem
in the industry standard MPS format, the ILOG CPLEX LP format, or the ILOG CPLEX
binary SAV format. In example lpex2.c, ILOG CPLEX file-reading and optimization
routines read such a file to solve the problem.

Example lpex2.c uses command line arguments to determine the name of the input file and
the optimizer to call.

Usage: lpex2 filename optimizer

Where: filename is a file with extension MPS, SAV, or LP (lower case is allowed), and
 optimizer is one of the following letters:

o default

p primal simplex

d dual simplex

n network with dual simplex cleanup

h barrier with crossover

b barrier without crossover
122 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E L P E X 2 . C
For example, this command:

lpex2 example.mps d

reads the file example.mps and solves the problem with the dual simplex optimizer.

To illustrate the ease of reading a problem, the example uses the routine
CPXreadcopyprob(). This routine detects the type of the file, reads the file, and copies the
data into the ILOG CPLEX problem object that is created with a call to CPXcreateprob().
The user need not be concerned with the memory management of the data. Memory
management is handled transparently by CPXreadcopyprob().

After calling CPXopenCPLEX() and turning on the screen indicator by setting the
CPX_PARAM_SCRIND parameter to CPX_ON, the example creates an empty problem object
with a call to CPXcreateprob(). This call returns a pointer, lp, to the new problem object.
Then the data is read in by the routine CPXreadcopyprob(). After the data is copied, the
appropriate optimization routine is called, based on the command line argument.

After optimization, the status of the solution is determined by a call to CPXgetstat(). The
cases of infeasibility or unboundedness in the model are handled in a simple fashion here; a
more complex application program might treat these cases in more detail. With these two
cases out of the way, the program then calls CPXsolninfo() to determine the nature of the
solution. Once it has been determined that a solution in fact exists, then a call to
CPXgetobjval() is made, to obtain the objective function value for this solution and
report it.

Next, preparations are made to print the solution value and basis status of each individual
variable, by allocating arrays of appropriate size; these sizes are determined by calls to the
routines CPXgetnumcols() and CPXgetnumrows(). Note that a basis is not guaranteed to
exist, depending on which optimizer was selected at run time, so some of these steps,
including the call to CPXgetbase(), are dependent on the solution type returned by
CPXsolninfo().

The primal solution values of the variables are obtained by a call to CPXgetx(), and then
these values (along with the basis statuses if available) are printed, in a loop, for each
variable. After that, a call to CPXgetdblquality() provides a measure of the numerical
roundoff error present in the solution, by obtaining the maximum amount by which any
variable's lower or upper bound is violated.

After the TERMINATE: label, the data for the solution (x, cstat, and rstat) are freed.
Then the problem object is freed by CPXfreeprob(). After the problem is freed, the ILOG
CPLEX environment is freed by CPXcloseCPLEX().

s sifting

c concurrent
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 123

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E L P E X 2 . C
Complete Program

The complete program follows. You can also view it online in the file lpex2.c.

/*--*/
/* File: examples/src/lpex2.c */
/* Version 8.1 */
/*--*/
/* Copyright (C) 1997-2002 by ILOG. */
/* All Rights Reserved. */
/* Permission is expressly granted to use this example in the */
/* course of developing applications that use ILOG products. */
/*--*/

/* lpex2.c - Reading in and optimizing a problem */

/* To run this example, command line arguments are required.
 i.e., lpex2 filename method
 where
 filename is the name of the file, with .mps, .lp, or .sav extension
 method is the optimization method
 o default
 p primal simplex
 d dual simplex
 n network with dual simplex cleanup
 h barrier with crossover
 b barrier without crossover
 s sifting
 c concurrent
 Example:
 lpex2 example.mps o
 */

/* Bring in the CPLEX function declarations and the C library
 header file stdio.h with the following single include. */

#include <ilcplex/cplex.h>

/* Bring in the declarations for the string and character functions
 and malloc */

#include <ctype.h>
#include <stdlib.h>
#include <string.h>

/* Include declarations for functions in this program */

static void
 free_and_null (char **ptr),
 usage (char *progname);
124 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E L P E X 2 . C
int
main (int argc, char *argv[])
{
 /* Declare and allocate space for the variables and arrays where we will
 store the optimization results including the status, objective value,
 maximum bound violation, variable values, and basis. */

 int solnstat, solnmethod, solntype;
 double objval, maxviol;
 double *x = NULL;
 int *cstat = NULL;
 int *rstat = NULL;

 CPXENVptr env = NULL;
 CPXLPptr lp = NULL;
 int status = 0;
 int j;
 int cur_numrows, cur_numcols;
 int method;

 char *basismsg;

 /* Check the command line arguments */

 if ((argc != 3) ||
 (strchr ("podhbnsc", argv[2][0]) == NULL)) {
 usage (argv[0]);
 goto TERMINATE;
 }

 /* Initialize the CPLEX environment */

 env = CPXopenCPLEX (&status);

 /* If an error occurs, the status value indicates the reason for
 failure. A call to CPXgeterrorstring will produce the text of
 the error message. Note that CPXopenCPLEX produces no output,
 so the only way to see the cause of the error is to use
 CPXgeterrorstring. For other CPLEX routines, the errors will
 be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

 if (env == NULL) {
 char errmsg[1024];
 fprintf (stderr, "Could not open CPLEX environment.\n");
 CPXgeterrorstring (env, status, errmsg);
 fprintf (stderr, "%s", errmsg);
 goto TERMINATE;
 }

 /* Turn on output to the screen */

 status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 125

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E L P E X 2 . C
 if (status) {
 fprintf (stderr,
 "Failure to turn on screen indicator, error %d.\n", status);
 goto TERMINATE;
 }

 /* Create the problem, using the filename as the problem name */

 lp = CPXcreateprob (env, &status, argv[1]);

 /* A returned pointer of NULL may mean that not enough memory
 was available or there was some other problem. In the case of
 failure, an error message will have been written to the error
 channel from inside CPLEX. In this example, the setting of
 the parameter CPX_PARAM_SCRIND causes the error message to
 appear on stdout. Note that most CPLEX routines return
 an error code to indicate the reason for failure. */

 if (lp == NULL) {
 fprintf (stderr, "Failed to create LP.\n");
 goto TERMINATE;
 }

 /* Now read the file, and copy the data into the created lp */

 status = CPXreadcopyprob (env, lp, argv[1], NULL);
 if (status) {
 fprintf (stderr, "Failed to read and copy the problem data.\n");
 goto TERMINATE;
 }

 /* Optimize the problem and obtain solution. */

 switch (argv[2][0]) {
 case ’o’:
 method = CPX_ALG_AUTOMATIC;
 break;
 case ’p’:
 method = CPX_ALG_PRIMAL;
 break;
 case ’d’:
 method = CPX_ALG_DUAL;
 break;
 case ’n’:
 method = CPX_ALG_NET;
 break;
 case ’h’:
 method = CPX_ALG_BARRIER;
 break;
 case ’b’:
 method = CPX_ALG_BARRIER;
 status = CPXsetintparam (env, CPX_PARAM_BARCROSSALG, CPX_ALG_NONE);
 if (status) {
126 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E L P E X 2 . C
 fprintf (stderr,
 "Failed to set the crossover method, error %d.\n",
status);
 goto TERMINATE;
 }
 break;
 case ’s’:
 method = CPX_ALG_SIFTING;
 break;
 case ’c’:
 method = CPX_ALG_CONCURRENT;
 break;
 default:
 method = CPX_ALG_NONE;
 break;
 }

 status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, method);
 if (status) {
 fprintf (stderr,
 "Failed to set the optimization method, error %d.\n", status);
 goto TERMINATE;
 }

 status = CPXlpopt (env, lp);
 if (status) {
 fprintf (stderr, "Failed to optimize LP.\n");
 goto TERMINATE;
 }

 solnstat = CPXgetstat (env, lp);

 if (solnstat == CPX_STAT_UNBOUNDED) {
 printf ("Model is unbounded\n");
 goto TERMINATE;
 }
 else if (solnstat == CPX_STAT_INFEASIBLE) {
 printf ("Model is infeasible\n");
 goto TERMINATE;
 }
 else if (solnstat == CPX_STAT_INForUNBD) {
 printf ("Model is infeasible or unbounded\n");
 goto TERMINATE;
 }

 status = CPXsolninfo (env, lp, &solnmethod, &solntype, NULL, NULL);
 if (status) {
 fprintf (stderr, "Failed to obtain solution info.\n");
 goto TERMINATE;
 }
 printf ("Solution status %d, solution method %d\n", solnstat, solnmethod);
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 127

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E L P E X 2 . C
 if (solntype == CPX_NO_SOLN) {
 fprintf (stderr, "Solution not available.\n");
 goto TERMINATE;
 }

 status = CPXgetobjval (env, lp, &objval);
 if (status) {
 fprintf (stderr, "Failed to obtain objective value.\n");
 goto TERMINATE;
 }
 printf ("Objective value %.10g.\n", objval);

 /* The size of the problem should be obtained by asking CPLEX what
 the actual size is. cur_numrows and cur_numcols store the
 current number of rows and columns, respectively. */

 cur_numcols = CPXgetnumcols (env, lp);
 cur_numrows = CPXgetnumrows (env, lp);

 /* Retrieve basis, if one is available */

 if (solntype == CPX_BASIC_SOLN) {
 cstat = (int *) malloc (cur_numcols*sizeof(int));
 rstat = (int *) malloc (cur_numrows*sizeof(int));
 if (cstat == NULL || rstat == NULL) {
 fprintf (stderr, "No memory for basis statuses.\n");
 goto TERMINATE;
 }

 status = CPXgetbase (env, lp, cstat, rstat);
 if (status) {
 fprintf (stderr, "Failed to get basis; error %d.\n", status);
 goto TERMINATE;
 }
 }
 else {
 printf ("No basis available\n");
 }

 /* Retrieve solution vector */

 x = (double *) malloc (cur_numcols*sizeof(double));
 if (x == NULL) {
 fprintf (stderr, "No memory for solution.\n");
 goto TERMINATE;
 }

 status = CPXgetx (env, lp, x, 0, cur_numcols-1);
 if (status) {
 fprintf (stderr, "Failed to obtain primal solution.\n");
 goto TERMINATE;
128 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E L P E X 2 . C
 }

 /* Write out the solution */

 for (j = 0; j < cur_numcols; j++) {
 printf ("Column %d: Value = %17.10g", j, x[j]);
 if (cstat != NULL) {
 switch (cstat[j]) {
 case CPX_AT_LOWER:
 basismsg = "Nonbasic at lower bound";
 break;
 case CPX_BASIC:
 basismsg = "Basic";
 break;
 case CPX_AT_UPPER:
 basismsg = "Nonbasic at upper bound";
 break;
 case CPX_FREE_SUPER:
 basismsg = "Superbasic, or free variable at zero";
 break;
 default:
 basismsg = "Bad basis status";
 break;
 }
 printf (" %s",basismsg);
 }
 printf ("\n");
 }

 /* Display the maximum bound violation. */

 status = CPXgetdblquality (env, lp, &maxviol, CPX_MAX_PRIMAL_INFEAS);
 if (status) {
 fprintf (stderr, "Failed to obtain bound violation.\n");
 goto TERMINATE;
 }
 printf ("Maximum bound violation = %17.10g\n", maxviol);

TERMINATE:

 /* Free up the basis and solution */

 free_and_null ((char **) &cstat);
 free_and_null ((char **) &rstat);
 free_and_null ((char **) &x);

 /* Free up the problem, if necessary */

 if (lp != NULL) {
 status = CPXfreeprob (env, &lp);
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 129

R E A D I N G A P R O B L E M F R O M A F I L E : E X A M P L E L P E X 2 . C
 if (status) {
 fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
 }
 }

 /* Free up the CPLEX environment, if necessary */

 if (env != NULL) {
 status = CPXcloseCPLEX (&env);

 /* Note that CPXcloseCPLEX produces no output,
 so the only way to see the cause of the error is to use
 CPXgeterrorstring. For other CPLEX routines, the errors will
 be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

 if (status) {
 char errmsg[1024];
 fprintf (stderr, "Could not close CPLEX environment.\n");
 CPXgeterrorstring (env, status, errmsg);
 fprintf (stderr, "%s", errmsg);
 }
 }

 return (status);

} /* END main */

/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */

static void
free_and_null (char **ptr)
{
 if (*ptr != NULL) {
 free (*ptr);
 *ptr = NULL;
 }
} /* END free_and_null */

static void
usage (char *progname)
{
 fprintf (stderr,"Usage: %s filename algorithm\n", progname);
 fprintf (stderr," where filename is a file with extension \n");
 fprintf (stderr," MPS, SAV, or LP (lower case is allowed)\n");
 fprintf (stderr," and algorithm is one of the letters\n");
 fprintf (stderr," o default\n");
 fprintf (stderr," p primal simplex\n");
 fprintf (stderr," d dual simplex\n");
 fprintf (stderr," n network simplex\n");
130 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

A D D I N G R O W S T O A P R O B L E M : E X A M P L E L P E X 3 . C
 fprintf (stderr," b barrier\n");
 fprintf (stderr," h barrier with crossover\n");
 fprintf (stderr," s sifting\n");
 fprintf (stderr," c concurrent\n");
 fprintf (stderr," Exiting...\n");
} /* END usage */

Adding Rows to a Problem: Example lpex3.c

This example illustrates how to develop your own solution algorithms with routines from the
Callable Library. It also shows you how to add rows to a problem object. Here is the problem
example lpex3 solves:

The constraints Hx=d represent a pure network flow. The example solves this problem in
two steps:

1. The ILOG CPLEX Network Optimizer is used to solve

Minimize c*x

subject to Hx = d

Ax = b

1 ≤ x ≤ u
where H = (-1 0 1 0 1 0 0 0) d = (-3)

 (1 -1 0 1 0 0 0 0) (1)

 (0 1 -1 0 0 1 -1 0) (4)

 (0 0 0 -1 0 -1 0 1) (3)

 (0 0 0 0 -1 0 1 -1) (-5)

 A = (2 1 -2 -1 2 -1 -2 -3) b = (4)

 (1 -3 2 3 -1 2 1 1) (-2)

 c = (-9 1 4 2 -8 2 8 12)

 l = (0 0 0 0 0 0 0 0)

 u = (50 50 50 50 50 50 50 50)

Minimize c*x

subject to Hx = d

l ≤ x ≤ u
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 131

A D D I N G R O W S T O A P R O B L E M : E X A M P L E L P E X 3 . C
2. The constraints Ax=b are added to the problem, and the dual simplex optimizer is used to
solve the new problem, starting at the optimal basis of the simpler network problem.

The data for this problem consists of the network portion (using variable names beginning
with the letter H) and the complicating constraints (using variable names beginning with the
letter A).

The example first calls CPXopenCPLEX() to create the environment and then turns on the
ILOG CPLEX screen indicator (CPX_PARAM_SCRIND). Next it sets the simplex display level
(CPX_PARAM_SIMDISPLAY) to 2 to indicate iteration-by-iteration output, so that the
progress of each iteration of the hybrid optimizer can be observed. Setting this parameter to
2 is not generally recommended; the example does so only for illustrative purposes.

The example creates a problem object by a call to CPXcreateprob(). Then the network
data is copied via a call to CPXcopylp(). After the network data is copied, the parameter
CPX_PARAM_LPMETHOD is set to CPX_ALG_NET and the routine CPXlpopt() is called to
solve the network part of the optimization problem using the network optimizer. The
objective value of this problem is retrieved by CPXgetobjval().

Then the extra rows are added by calling CPXaddrows(). For convenience, the total
number of nonzeros in the rows being added is stored in an extra element of the array
rmatbeg, and this element is passed for the parameter nzcnt. The name arguments to
CPXaddrows() are NULL, since no variable or constraint names were defined for this
problem.

After the CPXaddrows() call, parameter CPX_PARAM_LPMETHOD is set to CPX_ALG_DUAL
and the routine CPXlpopt() is called to re-optimize the problem using the dual simplex
optimizer. After re-optimization, CPXsolution() is called to determine the solution status,
the objective value, and the primal solution. NULL is passed for the other solution values,
since they are not printed by this example.

At the end, the problem is written as a SAV file by CPXwriteprob(). This file can then be
read into the ILOG CPLEX Interactive Optimizer to analyze whether the problem was
correctly generated. Using a SAV file is recommended over MPS and LP files, as SAV files
preserve the full numeric precision of the problem.

After the TERMINATE: label, CPXfreeprob() releases the problem object, and
CPXcloseCPLEX() releases the ILOG CPLEX environment.

Complete Program

The complete program follows. You can also view it online in the file lpex3.c.

/*--*/
/* File: examples/src/lpex3.c */
/* Version 8.1 */
/*--*/
/* Copyright (C) 1997-2002 by ILOG. */
/* All Rights Reserved. */
132 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

A D D I N G R O W S T O A P R O B L E M : E X A M P L E L P E X 3 . C
/* Permission is expressly granted to use this example in the */
/* course of developing applications that use ILOG products. */
/*--*/

/* lpex3.c, example of using CPXaddrows to solve a problem */

/* Bring in the CPLEX function declarations and the C library
 header file stdio.h with the following single include. */

#include <ilcplex/cplex.h>

/* Bring in the declarations for the string functions */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#endif

/* Modified example from Chvatal, "Linear Programming", Chapter 26.
 * minimize c*x
 * subject to Hx = d
 * Ax = b
 * l <= x <= u
 * where
 *
 * H = (-1 0 1 0 1 0 0 0) d = (-3)
 * (1 -1 0 1 0 0 0 0) (1)
 * (0 1 -1 0 0 1 -1 0) (4)
 * (0 0 0 -1 0 -1 0 1) (3)
 * (0 0 0 0 -1 0 1 -1) (-5)
 *
 * A = (2 1 -2 -1 2 -1 -2 -3) b = (4)
 * (1 -3 2 3 -1 2 1 1) (-2)
 *
 * c = (-9 1 4 2 -8 2 8 12)
 * l = (0 0 0 0 0 0 0 0)
 * u = (50 50 50 50 50 50 50 50)
 *
 *
 *
 * Treat the constraints with A as the complicating constraints, and
 * the constraints with H as the "simple" problem.
 *
 * The idea is to solve the simple problem first, and then add the
 * constraints for the complicating constraints, and solve with dual.
 *
 */

#define COLSORIG 8
#define ROWSSUB 5
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 133

A D D I N G R O W S T O A P R O B L E M : E X A M P L E L P E X 3 . C
#define NZSUB (2*COLSORIG)
#define ROWSCOMP 2
#define NZCOMP (ROWSCOMP*COLSORIG)
#define ROWSTOT (ROWSSUB+ROWSCOMP)
#define NZTOT (NZCOMP+NZSUB)

int
main()
{
 /* Data for original problem. Arrays have to be big enough to hold
 problem plus additional constraints. */

 double Hrhs[ROWSTOT] = { -3, 1, 4, 3, -5};
 double Hlb[COLSORIG] = { 0, 0, 0, 0, 0, 0, 0, 0};
 double Hub[COLSORIG] = { 50, 50, 50, 50, 50, 50, 50, 50 };
 double Hcost[COLSORIG] = { -9, 1, 4, 2, -8, 2, 8, 12 };
 char Hsense[ROWSTOT] = { ’E’, ’E’, ’E’, ’E’, ’E’ };
 int Hmatbeg[COLSORIG] = { 0, 2, 4, 6, 8, 10, 12, 14};
 int Hmatcnt[COLSORIG] = { 2, 2, 2, 2, 2, 2, 2, 2};
 int Hmatind[NZTOT] = { 0, 1, 1, 2, 0, 2, 1, 3,
 0, 4, 2, 3, 2, 4, 3, 4};
 double Hmatval[NZTOT] = { -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0,
 1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0 };

 /* Data for CPXaddrows call */

 double Arhs[ROWSCOMP] = { 4, -2};
 char Asense[ROWSCOMP] = { ’E’, ’E’ };
 /* Note - use a trick for rmatbeg by putting the total nonzero count in
 the last element. This is not required by the CPXaddrows call. */
 int Armatbeg[ROWSCOMP+1] = { 0, 8, 16};
 int Armatind[NZCOMP] = { 0, 1, 2, 3, 4, 5, 6, 7,
 0, 1, 2, 3, 4, 5, 6, 7 };
 double Armatval[NZCOMP] = { 2.0, 1.0, -2.0, -1.0,
 2.0, -1.0, -2.0, -3.0,
 1.0, -3.0, 2.0, 3.0,
 -1.0, 2.0, 1.0, 1.0 };

 double x[COLSORIG];

 CPXENVptr env = NULL;
 CPXLPptr lp = NULL;

 int j;
 int status, lpstat;
 double objval;

 /* Initialize the CPLEX environment */

 env = CPXopenCPLEX (&status);

 /* If an error occurs, the status value indicates the reason for
134 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

A D D I N G R O W S T O A P R O B L E M : E X A M P L E L P E X 3 . C
 failure. A call to CPXgeterrorstring will produce the text of
 the error message. Note that CPXopenCPLEX produces no output,
 so the only way to see the cause of the error is to use
 CPXgeterrorstring. For other CPLEX routines, the errors will
 be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

 if (env == NULL) {
 char errmsg[1024];
 fprintf (stderr, "Could not open CPLEX environment.\n");
 CPXgeterrorstring (env, status, errmsg);
 fprintf (stderr, "%s", errmsg);
 goto TERMINATE;
 }

 /* Turn on output to the screen */

 status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
 if (status) {
 fprintf (stderr,
 "Failure to turn on screen indicator, error %d.\n", status);
 goto TERMINATE;
 }

 status = CPXsetintparam (env, CPX_PARAM_SIMDISPLAY, 2);
 if (status) {
 fprintf (stderr,"Failed to turn up simplex display level.\n");
 goto TERMINATE;
 }

 /* Create the problem */

 lp = CPXcreateprob (env, &status, "chvatal");

 if (lp == NULL) {
 fprintf (stderr,"Failed to create subproblem\n");
 status = 1;
 goto TERMINATE;
 }

 /* Copy network part of problem. */

 status = CPXcopylp (env, lp, COLSORIG, ROWSSUB, CPX_MIN, Hcost, Hrhs,
 Hsense, Hmatbeg, Hmatcnt, Hmatind, Hmatval,
 Hlb, Hub, NULL);

 if (status) {
 fprintf (stderr, "CPXcopylp failed.\n");
 goto TERMINATE;
 }

 status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, CPX_ALG_NET);
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 135

A D D I N G R O W S T O A P R O B L E M : E X A M P L E L P E X 3 . C
 if (status) {
 fprintf (stderr,
 "Failed to set the optimization method, error %d.\n", status);
 goto TERMINATE;
 }

 status = CPXlpopt (env, lp);
 if (status) {
 fprintf (stderr, "Failed to optimize LP.\n");
 goto TERMINATE;
 }

 status = CPXgetobjval (env, lp, &objval);
 if (status) {
 fprintf (stderr,"CPXgetobjval failed\n");
 goto TERMINATE;
 }

 printf ("After network optimization, objective is %.10g\n", objval);

 /* Now add the extra rows to the problem. */

 status = CPXaddrows (env, lp, 0, ROWSCOMP, Armatbeg[ROWSCOMP],
 Arhs, Asense, Armatbeg, Armatind, Armatval,
 NULL, NULL);
 if (status) {
 fprintf (stderr,"CPXaddrows failed.\n");
 goto TERMINATE;
 }

 /* Because the problem is dual feasible with the rows added, using
 the dual simplex method is indicated. */

 status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, CPX_ALG_DUAL);
 if (status) {
 fprintf (stderr,
 "Failed to set the optimization method, error %d.\n", status);
 goto TERMINATE;
 }

 status = CPXlpopt (env, lp);
 if (status) {
 fprintf (stderr, "Failed to optimize LP.\n");
 goto TERMINATE;
 }

 status = CPXsolution (env, lp, &lpstat, &objval, x, NULL, NULL, NULL);
 if (status) {
 fprintf (stderr,"CPXsolution failed.\n");
 goto TERMINATE;
 }

 printf ("Solution status %d\n",lpstat);
136 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

A D D I N G R O W S T O A P R O B L E M : E X A M P L E L P E X 3 . C
 printf ("Objective value %g\n",objval);
 printf ("Solution is:\n");
 for (j = 0; j < COLSORIG; j++) {
 printf ("x[%d] = %g\n",j,x[j]);
 }

 /* Put the problem and basis into a SAV file to use it in the
 * Interactive Optimizer and see if problem is correct */

 status = CPXwriteprob (env, lp, "lpex3.sav", NULL);
 if (status) {
 fprintf (stderr, "CPXwriteprob failed.\n");
 goto TERMINATE;
 }

TERMINATE:

 /* Free up the problem as allocated by CPXcreateprob, if necessary */

 if (lp != NULL) {
 status = CPXfreeprob (env, &lp);
 if (status) {
 fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
 }
 }

 /* Free up the CPLEX environment, if necessary */

 if (env != NULL) {
 status = CPXcloseCPLEX (&env);

 /* Note that CPXcloseCPLEX produces no output,
 so the only way to see the cause of the error is to use
 CPXgeterrorstring. For other CPLEX routines, the errors will
 be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

 if (status) {
 char errmsg[1024];
 fprintf (stderr, "Could not close CPLEX environment.\n");
 CPXgeterrorstring (env, status, errmsg);
 fprintf (stderr, "%s", errmsg);
 }
 }

 return (status);

} /* END main */
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 137

P E R F O R M I N G S E N S I T I V I T Y A N A L Y S I S
Performing Sensitivity Analysis

In Performing Sensitivity Analysis on page 46, there is a discussion of how to perform
sensitivity analysis in the Interactive Optimizer. As with most interactive features of ILOG
CPLEX, there is a direct approach to this task from the Callable Library. Here we modify the
example lpex1.c on page 111 to show how to perform sensitivity analysis with routines
from the Callable Library.

We suggest that you make a copy of lpex1.c, and edit this new source file. Among the
declarations (for example, immediately after the declaration for dj) insert these additional
declarations:

At some point after the call to CPXlpopt(), (for example, just before the call to
CPXwriteprob()), perform sensitivity analysis on the objective function and on the right-
hand side coefficients by inserting this fragment of code:

This sample is familiarly known as “throw away” code. For production purposes, you
probably want to observe good programming practices such as freeing these allocated arrays
at the TERMINATE label in the application.

A bound value of 1e+20 (CPX_INFBOUND) is treated as infinity within ILOG CPLEX, so this
is the value printed by our sample code in cases where the upper or lower sensitivity range

double *lowerc = NULL, *upperc = NULL;
double *lowerr = NULL, *upperr = NULL;

upperc = (double *) malloc (cur_numcols * sizeof(double));
lowerc = (double *) malloc (cur_numcols * sizeof(double));
status = CPXobjsa (env, lp, 0, cur_numcols-1, lowerc, upperc);
if (status) {
 fprintf (stderr, "Failed to obtain objective sensitivity.\n");
 goto TERMINATE;
}
printf ("\nObjective coefficient sensitivity:\n");
for (j = 0; j < cur_numcols; j++) {
 printf ("Column %d: Lower = %10g Upper = %10g\n",
 j, lowerc[j], upperc[j]);
}

upperr = (double *) malloc (cur_numrows * sizeof(double));
lowerr = (double *) malloc (cur_numrows * sizeof(double));
status = CPXrhssa (env, lp, 0, cur_numrows-1, lowerr, upperr);
if (status) {
 fprintf (stderr, "Failed to obtain RHS sensitivity.\n");
 goto TERMINATE;
}
printf ("\nRight-hand side coefficient sensitivity:\n");
for (i = 0; i < cur_numrows; i++) {
 printf ("Row %d: Lower = %10g Upper = %10g\n",
 i, lowerr[i], upperr[i]);
}

138 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

C
allab

le L
ib

rary
Tu

to
rial

P E R F O R M I N G S E N S I T I V I T Y A N A L Y S I S
on a row or column is infinite; a more sophisticated program might print a string, such
as -inf or +inf, when negative or positive CPX_INFBOUND is encountered as a value.

Similar code could be added to perform sensitivity analysis with respect to bounds via
CPXboundsa().
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 139

P E R F O R M I N G S E N S I T I V I T Y A N A L Y S I S
140 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

I N D E X
Index

A

accessing
basic rows and columns of solution 45
basis information 81
dual values 45
objective function value 45
reduced costs 45
slack values 45
solution values 45, 70

add Interactive Optimizer command 55
syntax 56

add(obj) 94
adding

bounds 55
constraint to model 86
constraints 55
from a file 56
interactively 55
objective function to model 69
rows to a problem 131

addLe 97
addMinimize() 97
addMinimize(expr) 94
advanced basis

advanced start indicator 44
using 50

algorithm
automatic (AutoAlg) 80
creating object 69, 72

and() 98
application

and Callable Library 13
and Concert Technology 13
compiling and linking Callable Library 104
compiling and linking Component Libraries 29
compiling and linking Concert Technology 65
development steps 108
error handling 71, 110

B

baropt Interactive Optimizer command 44
barrier optimizer

availability 44
selecting 80

BAS file format 50, 53
basis

accessing information 81
basis information 95
periodically written 50
starting from previous 87

basis file
reading 53
writing 50

BIN file format 48
boolean parameter 86
boolean variable

representing in model 68
bound
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 141

I N D E X
adding 55
changing 58
default values 36
displaying 42
entering in LP format 36
removing 58
sensitivity analysis 47, 139

box variable 39
branch & bound 80
branch & cut 80

C

Callable Library 103 to 139
application development steps 108
compiling and linking applications 104
conceptual design 103
CPLEX operation 106
description 13
distribution file 104
error handling 110
example model 18
opening CPLEX 106
see also individual CPXxxx routines 22

change Interactive Optimizer command 56
bounds 58
change options 56
coefficient 59
delete 59

delete options 59
objective 59
rhs 59
sense 57
syntax 60

changing
bounds 58
coefficients 58
constraint names 57
parameters 54, 86
problem 56
sense 57
variable names 57

choosing
optimizer 44, 80, 110

class library 90

classpath 91
command line option 90

coefficient
changing 58

column
expressions 73

command
executing from operating system 60
input formats 32
Interactive Optimizer list 33

compiler
-DNDEBUG option 71
error messages 66
Microsoft Visual C++ Command Line 105
using with CPLEX 65

compiling
applications 29
Callable Library applications 104
Concert Technology applications 65

Component Libraries
defined 13
running examples 28
verifying installation 28

Concert Technology Library 63 to 88
C++ classes 66
C++ objects 64
compiling and linking applications 65
CPLEX design in 64
description 13
error handling 71
example model 16
running examples 65
see also individual Iloxxx routines 22

constraint
adding 55, 86
changing names 57
changing sense 57
creating 73
default names 36
deleting 59
displaying 41
displaying names 40
displaying nonzero coefficients 39
displaying number of 39
displaying type 39
142 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

I N D E X
entering in LP format 36
name limitations 36
naming 36
range 73
representing in model 68

constraints
adding to a model 94

continuous variable
representing 68

cost
reduced 95

CPLEX
compatible platforms 13
Component Libraries 13
description 12
directory structure 27
installing 26
licensing 28
problem types 12
quitting 61
setting up 25
starting 32
technologies 13
Web site 23

cplex
solve the model 94

cplex command 32
cplex.jar

location 89
cplex.log file 44
cplex.numVarArray() 97
cplex.out 96
cplex.setOut 96
cplex.setWarning() 96
cplex.solve() 96
cplex.warning 96

CPX

CPXaddcols routine 107, 109, 112
CPXaddrows routine 107, 109, 112, 132
CPXboundsa routine 139
CPXchgcoeflist routine 107, 109, 112
CPXcloseCPLEX routine 107, 113, 123, 132
CPXcopylp routine 107, 108, 109, 113, 132

CPXcreateprob routine 107, 123, 132
CPXfreeprob routine 107, 113, 123, 132
CPXgeterrorstring routine 112, 113
CPXgetobjval routine 132
CPXlpopt routine 112, 132, 138
CPXmsg routine 106
CPXnewcols routine 107, 109, 112
CPXnewrows routine 107, 109, 112
CPXopenCPLEX routine 106, 112, 123, 132
CPXreadcopyprob routine 107, 123
CPXsetintparam routine 112
CPXsolution routine 112, 132
CPXwriteprob routine 111, 113, 132, 138

C (continued)

create
model 93

creating
algorithm object 69, 72
automatic log file 44
binary problem representation 111
constraint 73
environment 132
environment object 66, 72
model (IloModel) 67
model object 72
objective function 73, 79
optimization model 67, 68
problem files 47
problem object 107, 132
solution files 48
SOS 79
variable 79

D

data
entering 37
entry options 14

deleting
constraints 59
problem options 59
variables 59

directory
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 143

I N D E X
installation structure 27
display Interactive Optimizer command 38, 57

display options 38
problem 38

bounds 42
constraints 41
display problem options 38
names 40, 41
stats 39
syntax 39

sensitivity 46
syntax 47

settings 55
solution 45

syntax 46
specifying item ranges 40
syntax 42

displaying
basic rows and columns 45
bounds 42
constraint names 40
constraints 41
nonzero constraint coefficients 39
number of constraints 39
objective function 41
optimal solution 43
parameter settings 55
post-solution information 45
problem 38
problem options 38
problem part 39
problem statistics 39
sensitivity analysis 46, 138
type of constraint 39
variable names 40
variables 39

DPE file format 48
DUA file format 48
dual simplex optimizer

as default 42
availability 44
finding a solution 112
selecting 80

dual values
accessing 45

duals 95

E

EMB file format 48
enter Interactive Optimizer command 34

bounds 36
maximize 35
minimize 35
subject to 36, 55
syntax 35

entering
bounds 36
constraint names 36
constraints 36
example problem 34
item ranges 40
keyboard data 37
objective function 35, 36
objective function names 36
problem 34, 35
problem name 34
variable bounds 36
variable names 35

Environment
construct 66

environment object
creating 66, 72
destroying 67
memory management and 67

equality constraints
add to a model 94

Error
NoClassDefFoundError 91

error
invalid encrypted key 91
no license found 91
UnsatisfiedLinkError 91

error handling
programming errors 71
runtime errors 71
testing installation 29, 66

error message
compiler 66
license manager 66
144 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

I N D E X
linker 66
example

adding rows to a problem 131
entering a problem 34
entering and optimizing a problem 111
ilolpex2.cpp 80
ilolpex3.cpp 85
lpex1.c 111
lpex2.c 122
lpex3.c 131
modifying an optimization problem 85
reading a problem file 122
reading a problem from a file 80
running Callable Library 105
running Component Libraries 28
running Concert Technology 65
running from standard distribution 105
solving a problem 42

exception
handling 71

executing
operating system commands 60

exportModel member function
IloCplex class 79

expression
column 73

F

False 94
feasible solution 94
file format

read options 51
write options 48

file name
extension 49, 52, 79

G

getCplexStatus 95
getCplexStatus member function

IloCplex class 70
getDuals member function

IloCplex class 73
getObjValue member function

IloCplex class 70
getReducedCosts member function

IloCplex class 73
getSlacks member function

IloCplex class 73
getStatus 94
getStatus member function

IloCplex class 70, 73
getValue member function

IloCplex class 70
getValues member function

IloCplex class 73
greater than equal to constraints

add to a model 94

H

handle class
definition 67
empty handle 68

handling
errors 71, 110
exceptions 71

help Interactive Optimizer command 32
syntax 33

I

IIS file format 48

IloA

IloAddNumVar class 73
IloAlgorithm::Exception class 71
IloAlgorithm::Status enumeration 73

IloC

IloColumn.and() 98
IloCplex

add modeling object 94
class 89

IloCplex class 64, 69
exportModel member function 79
getCplexStatus member function 70
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 145

I N D E X
getDuals member function 73
getObjValue member function 70
getReducedCosts member function 73
getSlacks member function 73
getStatus member function 70, 73
getValue member function 70
getValues member function 73
importModel member function 79, 81
setParam member 80
setRootAlgorithm member function 81
solve member function 70, 73, 81, 85

IloCplex.addLe 97
IloCplex.addMinimize() 97
IloCplex.prod() 97
IloCplex.scalProd() 97
IloCplex.sum() 97
IloCplex::Algorithm enumeration 80
IloCplex::BoolParam enumeration 86
IloCplex::Exception class 71
IloCplex::IntParam enumeration 86
IloCplex::NumParam enumeration 86
IloCplex::StringParam enumeration 86

IloE

IloEnv class 66
end member function 67

IloException class 71
IloExpr class 69
IloExtractable class 67

IloG

ILOG
technical support 23
Web sites 23

ILOG License Manager (ILM)
CPLEX and 28

ILOG_LICENSE_FILE environment variable 28

IloL

IloLinearNumExpr 93

IloM

IloMinimize function 69
IloModel class 64, 68

add member function 68, 69

IloN

IloNumArray class 73
IloNumColumn class 73
IloNumExpr 93
IloNumVar 93
IloNumVar class 68, 74, 79

IloO

IloObjective 93
IloObjective class 68, 73, 79

setCoef member function 74

IloR

IloRange 93
IloRange class 68, 69, 73, 79

setCoef member function 74
IloRange.setExpr() 98

IloS

IloSemiContVar class 79
IloSOS1 class 79
IloSOS2 class 79

I (continued)

importModel member function
IloCplex class 79, 81

infeasible 95
installing CPLEX 25 to 29

testing installation 28
integer parameter 86
integer variable

optimizer used 110
representing in model 68

Interactive Optimizer 31 to 61
146 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

I N D E X
command formats 32
commands 33
description 13
example model 15
quitting 61
starting 32

invalid encrypted key 91
iteration log 43, 44

J

Java Native Interface 89
Java Virtual Machine 90
javamake 90
JNI 89
JVM 90

L

libformat 90
licensing

CPLEX 28
linear optimization 12
link

Concert Technology library files 29
CPLEX library files 29

linker
error messages 66
using with CPLEX 65

linking
applications 29
Callable Library applications 104
Concert Technology applications 65

log file
adding to 54
cplex.log 44
creating 44
iteration log 43, 44

LP
creating a model 15
node 80
problem format 12
root 80
solving a model 15
solving pure 80

LP file
reading 51
writing 49

LP file format 35
lpex1.c 138
LPex1.java 95
LPMETHOD parameter 42

M

makefile 90
maximization

in LP problem 35
memory management

by environment object 67
MIN file format 48
minimization

in LP problem 35
MIP

description 12
solving 80

MIP optimizer
availability 44

mipopt Interactive Optimizer command 44
Model

creating 67
model

adding constraints 86
creating IloModel 67
extracting 72
modifying 85
reading from file 79, 81
solving 81
writing to file 79

model object
creating 72

model.column() 98
modeling

by column 73
by nonzerows 74
objects 64

modeling
by columns 97

Modeling by Columns 72
modeling by columns 95
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 147

I N D E X
Modeling by Nonzero Elements 72
modeling by nonzeros 95, 98
Modeling by Rows 72
modeling by rows 73, 95, 97
modeling variables 93
modifying

problem object 107
monitoring

iteration log 43
MPS file format 52
MST file format 48
multiple algorithms

selecting 80

N

NET file format 49
netopt Interactive Optimizer command 44
network

description 12
flow 86

network optimizer
availability 44
selecting 80
solving with 86

Nmake 90
no license found 91
NoClassDefFoundError 91
node LP

solving 80
nonzeros

modeling by 74
notation in this manual 21
notification 85
numeric parameter 86
numVar() 98
numVarArray() 97

O

objective function
accessing value 45
adding to model 69
changing coefficient 59
changing sense 58

creating 73, 79
default name 36
displaying 41
entering 36
entering in LP format 35
name 36
representing in model 68
sensitivity analysis 46, 138

operator() 73
operator+ 73
optimal solution 94
optimization

interrupting 44
optimization model

creating 67
defining extractable objects 68
extracting 67

optimization problem
reading from file 80
representing 72
solving with IloCplex 69

optimize Interactive Optimizer command 42
re-solving 44
syntax 43

optimizer
choosing 44, 80, 81, 110
options 13
parallel 14, 106

ORD file format 49
ordering

variables 41
OutputStream 96

P

parallel
optimizers 14, 106

parameter
boolean 86
changing 54, 86
displaying settings 55
integer 86
list of settable 54
numeric 86
resetting to defaults 54
148 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

I N D E X
string 86
parameter specification file 55
path names

using 50
populateByColumn 96
populateByNonzero 96
populateByNonzero() 98
populateByRow 96
PPE file format 48
PRE file format 49
primal simplex optimizer

availability 44
selecting 80

primopt Interactive Optimizer command 44
problem

change options 57
changing 56
creating binary representation 111
data entry options 14
display options 38
displaying 38
displaying a part 39
displaying statistics 39
entering from the keyboard 34
entering in LP format 35
naming 34
reading files 122
solving 42, 112
verifying entry 38, 57

problem file
reading 51
writing 47

problem formulation
lpex1.c 112

problem object
creating 107
modifying 107

problem type
solved by CPLEX 12

prod() 97

Q

QP
description 12

solving pure 80
QP file format 49
QP model

applicable solution algorithms 80
quit Interactive Optimizer command 61
quitting

ILOG CPLEX 61
Interactive Optimizer 61

R

range constraint 73
ranged constraints

add to a model 94
read Interactive Optimizer command 51, 52, 53

file type options 51
syntax 53

reading
file format for 51
LP files 51
model from file 79, 81
MPS files 52
problem files 51, 122

reduced cost 95
reduced costs

accessing 45
removing bounds 58
representing

optimization problem 72
re-solving 44
REW file format 49
right-hand side (RHS)

changing coefficient 59
sensitivity analysis 46, 138

root LP
solving 80

S

SAV file format 49, 132
saving

problem files 47
solution files 47

scalProd() 97
sense
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 149

I N D E X
changing 57
sensitivity analysis

performing 46, 138
set Interactive Optimizer command 54

advance 44
available parameters 54
defaults 54
logfile 44
simplex 43

basisinterval 50
syntax 55

setExpr() 98
setRootAlgorithm member function

IloCplex class 81
setting

parameters 54, 86
parameters to default 54

sifting
select algorithm 80

slack
accessing values 45

slacks 95
solution

accessing basic rows and columns 45
accessing values 45
displaying 45
displaying basic rows and columns 45
outputting 73
process 43
querying results 70
reporting optimal 43
restarting 44
sensitivity analysis 46, 138

solution file
writing 47

solve 94
solve member function

IloCplex class 70, 73, 81, 85
solving

model 69, 81
node LP 80
problem 42, 112
root LP 80
with network optimizer 86

SOS

creating 79
SOS file format 49
sparse matrix 86
starting

CPLEX 32
from previous basis 87
Interactive Optimizer 32
new problem 34

string parameter 86
structure of a CPLEX application 92
Supported Platforms 90
System.out 96

T

technical support 23
tranopt Interactive Optimizer command 44
TRE file format 49
True 94
TXT file format 48

U

unbounded 94
UNIX

building Callable Library applications 105
executing commands 61
installation directory 26
installing CPLEX 26
testing CPLEX in Concert Technology 65
verifying installation 28

UnsatisfiedLinkError 91

V

variable
boolean 68
box 39
changing bounds 58
changing names 57
continuous 68
creating 79
deleting 59
displaying 39
displaying names 40
150 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

I N D E X
entering bounds 36
entering names 35
integer 68
name limitations 35
ordering 41
removing bounds 58
representing in model 68

variables
modeling 93

VEC solution File format 49

W

Web site 23
Windows

building Callable Library applications 105
dynamic loading 106
installing CPLEX 26
Microsoft Visual C++ compiler 105
Microsoft Visual C++ IDE 105
testing CPLEX in Concert Technology 65
verifying installation 29

write Interactive Optimizer command 47, 48, 49
file type options 48
syntax 50

writing
basis files 50
file format for 48
LP files 49
model to file 79
problem files 47
solution files 47

X

xecute Interactive Optimizer command 60
syntax 61

xxx file format 50
I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D 151

152 I L O G C P L E X 8 . 1 — G E T T I N G S T A R T E D

I N D E X

	ILOG CPLEX�8.1 Getting Started
	Introducing ILOG�CPLEX
	What Is ILOG�CPLEX?
	ILOG�CPLEX Technologies
	Optimizer Options
	Data Entry Options

	Solving an LP with CPLEX Technology
	Using the Interactive Optimizer
	Concert Technology for C++ Users
	Concert Technology for Java Users
	Using the Callable Library

	What You Need to Know
	Manual Organization
	Notation in this Manual
	Related Documentation
	For More Information
	Customer Support
	Web Site

	Setting Up CPLEX
	Installing CPLEX
	Setting Up Licensing
	Using the Component Libraries

	Interactive Optimizer Tutorial
	Starting ILOG�CPLEX
	Using Help
	Entering a Problem
	Entering the Example Problem
	Using the LP Format
	Entering Data

	Displaying a Problem
	Displaying Problem Statistics
	Specifying Item Ranges
	Displaying Variable or Constraint Names
	Ordering Variables
	Displaying Constraints
	Displaying the Objective Function
	Displaying Bounds

	Solving a Problem
	Solving the Example Problem
	Solution Options
	Displaying Post-Solution Information

	Performing Sensitivity Analysis
	Writing Problem and Solution Files
	Selecting a Write File Format
	Writing LP Files
	Writing Basis Files
	Using Path Names

	Reading Problem Files
	Selecting a Read File Format
	Reading LP Files
	Using File Extensions
	Reading MPS Files
	Reading Basis Files

	Setting ILOG�CPLEX Parameters
	Adding Constraints and Bounds
	Changing a Problem
	Changing Constraint or Variable Names
	Changing Sense
	Changing Bounds
	Removing Bounds
	Changing Coefficients
	Deleting

	Executing Operating System Commands
	Quitting ILOG�CPLEX

	Concert Technology Tutorial for C++ Users
	The Design of CPLEX in Concert Technology
	Compiling and Linking CPLEX in Concert Technology Applications
	Testing Your Installation on UNIX
	Testing Your Installation on Windows
	In Case of Problems

	The Anatomy of a Concert Technology Application
	Constructing the Environment — IloEnv
	Creating a Model — IloModel
	Solving the Model — IloCplex
	Querying Results
	Handling Errors

	Building and Solving a Small LP Model in C++
	General Structure of a CPLEX Concert Technology Application
	Modeling by Rows
	Modeling by Columns
	Modeling by Nonzero Elements
	Complete Program

	Writing and Reading Models and Files
	Selecting an Optimizer
	Reading a Problem from a File: Example ilolpex2.cpp
	Reading the Model from a File
	Selecting the Optimizer
	Accessing Basis Information
	Querying Quality Measures
	Complete Program

	Modifying and Reoptimizing
	Modifying an Optimization Problem: Example ilolpex3.cpp
	Setting CPLEX Parameters
	Modifying an Optimization Problem
	Starting from a Previous Basis
	Complete Program

	Concert Technology for Java Users
	Compiling CPLEX Applications in Concert Technology
	In Case Problems Arise

	The Design of CPLEX in Concert Technology
	The Anatomy of a Concert Technology Application
	Create the Model
	Solve the Model
	Query the Results

	Building and Solving a Small LP Model in Java
	Modeling by Rows
	Modeling by Columns
	Modeling by Nonzeros

	Complete Code of LPex1.java

	Callable Library Tutorial
	The Design of the ILOG CPLEX Callable Library
	Compiling and Linking Callable Library Applications
	Building CPLEX Callable Library Applications on UNIX Platforms
	Building CPLEX Callable Library Applications on Win32 Platforms
	Building Applications that Use the CPLEX Parallel Optimizers

	How ILOG CPLEX Works
	Opening the ILOG CPLEX Environment
	Instantiating the Problem Object
	Populating the Problem Object
	Changing the Problem Object

	Creating a Successful Callable Library Application
	Prototype the Model
	Identify the Routines to be Called
	Test Procedures in the Application
	Assemble the Data
	Choose an Optimizer
	Observe Good Programming Practices
	Debug Your Program
	Test Your Application
	Use the Examples

	Building and Solving a Small LP Model in C
	Complete Program

	Reading a Problem from a File: Example lpex2.c
	Complete Program

	Adding Rows to a Problem: Example lpex3.c
	Complete Program

	Performing Sensitivity Analysis

	Index

