Mechanism Design II

David C. Parkes
School of Engineering and Applied Science,
Harvard University

CS 286r–Spring 2007
Positive & Negative Results

• We have seen two positive results:
 – median-choice, single-peaked preferences [Pareto optimal; Dominant]
 – Groves; VCG mechanism [Efficient; Dominant]

• Much of the mechanism design literature considers a class of agent types, and asks which SCF’s can be implemented in a particular solution concept.
Outline

• Negative:
 – Gibbard-Satterthwaite; Green-Laffont; Myerson-Satterthwaite

• Positive:
 – Groves; Median; Shapley/Cost-share; Optimal auctions.

• Could go either way: Roberts’ theorem
Gibbard-Satterthwaite Impossibility

[Arrow 51, Gibbard & Satterthwaite 73, 75]

Consider SCF, \(f(\theta) \), and an outcome space \(\mathcal{O} \). Let \(R_f \subseteq \mathcal{O} \) denote the range of \(f \), i.e.
\[
R_f = \{ o \in \mathcal{O} : \exists \theta \in \Theta \text{ s.t. } o = f(\theta) \}.
\]

Let \(o^*_i \in \mathcal{O} \) denote the outcome that maximizes the value, \(u_i(o, \theta_i) \), over \(o \in R_f \).

Def. [Dictatorial] SCF \(f(\theta) \) is dictatorial if there is an agent, \(h \), s.t. \(f(\theta) = o^*_h \), for all \(\theta \).

[Gibbard-Satterthwaite Impossibility] Suppose that the types include all possible strict orderings over \(\mathcal{O} \). A SCF, \(f(\theta) \), with \(|R_f| > 2 \), is implementable in dominant strategies (strategyproof) if and only if it is dictatorial.
Implications

Introducing Transfers

[Groves; special-case in which non-dicatorial strategyproof is possible]

Define the outcome space, $\mathcal{O} = \mathcal{K} \times \mathbb{R}^N$, such that an outcome rule, $o = (k, t_1, \ldots, t_N)$, defines a choice, $k(s) \in \mathcal{K}$, and a transfer, $t_i(s) \in \mathbb{R}$ from agent i to the mechanism, given strategy profile $s \in S$.

Assume \textbf{quasilinear} preferences,

$$u_i(o, \theta_i) = v_i(k, \theta_i) - t_i$$

where $v_i(k, \theta_i)$ is the valuation function of agent i.

General/No-transfer \supset Quasi-linear/Transfer

\rightarrow

easier
Roberts’ Theorem

TO DO!
But, what about “Budget Balance”?

Introduce constraints over the total transfers made from agents to the mechanism. Let $s^*(\theta)$ denote the equilibrium strategy of a mechanism. **Flavors:**

- **no-deficit (or “weak”)**
 - *ex post:* $\sum_i t_i(s^*(\theta)) \geq 0$, for all θ
 - *ex ante:* $E_{\theta \in \Theta} \left[\sum_i t_i(s^*(\theta)) \right] \geq 0$

- **strong BB**
 - *ex post:* $\sum_i t_i(s^*(\theta)) = 0$, for all θ
 - *ex ante:* $E_{\theta \in \Theta} \left[\sum_i t_i(s^*(\theta)) = 0 \right]$

- ex ante weak \supset ex post weak
 - U
 - ex ante weak \supset ex post weak
 - ex ante strong \supset ex post strong
 - harder
Efficiency & Budget-balance Tension

[Hurwicz 75; Green & Laffont 79]

Def. [Efficiency] A choice rule, $k^* : \Theta \rightarrow \mathcal{K}$, is (ex post) efficient if for all $\theta \in \Theta$, $k^*(\theta)$ maximizes $\sum_{k \in \mathcal{K}} v_i(k, \theta_i)$.

Thm. [Green-Laffont Impossibility] If Θ allows all valuation functions from \mathcal{K} to \mathbb{R}, then no mechanism can implement an efficient and ex post strong budget-balanced SCF in dominant strategy.

\Rightarrow impossible to implement “fully ex post efficient” SCFs in dominant strategy in general case.

Approaches: (a) restrict space of preferences; (b) weaken budget-balance or efficiency requirement; (c) weaken implementation concept.
Bayesian-Nash Implementation

Idea: drop dominant-strategy implementation, try to achieve budget-balance. Introduce interim IR.

Bilateral trading problem: single seller, single buyer. One good. Values drawn from $v_1 \in [0, 1], v_2 \in [0, 1]$.

Thm. [Myerson-Satterthwaite 83] In the bilateral trading problem, no mech. can implement an efficient, interim IR, and *ex post* (weak) budget-balanced SCF, even in Bayes-Nash eq.

Proof. via VCG mechanism.

*** VCG provides a useful unification here! **
Expected Externality Mechanism

[Arrow79,d’Aspremont&Gerard-Varet79] **Retain** Bayesian-Nash, but **relax** interim IR to ex ante IR.

The d’AGVA mechanism (or *expected-Groves* mechanism), uses the same allocation as the Groves, but computes a transfer term averaged across all possible types of agents.

Thm. The d’AGVA mechanism is efficient, *ex post* (strong) budget-balanced, but only *ex ante* IR.

Demonstrates: (a) *ex ante* IR makes MD easier than *interim* IR (compare Myerson-Satterthwaite with d’AGVA)

(b) Bayes-Nash implementation makes MD easier than DSE (compare Green-Laffont with d’AGVA).
Summary

<table>
<thead>
<tr>
<th>Name</th>
<th>Preferences</th>
<th>Solution</th>
<th>Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>no transfers</td>
<td>dominant</td>
<td>Parto opt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>single-peaked</td>
<td></td>
</tr>
<tr>
<td>Groves</td>
<td>quasi-linear</td>
<td>dominant</td>
<td>Eff</td>
</tr>
<tr>
<td>dAGVA</td>
<td>quasi-linear</td>
<td>Bayesian-Nash</td>
<td>Eff, BB, ex ante IR</td>
</tr>
<tr>
<td>Clarke</td>
<td>quasi-linear</td>
<td>dominant</td>
<td>Eff & IR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Preferences</th>
<th>Solution</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>GibSat</td>
<td>general</td>
<td>dominant</td>
<td>Non-dictatorial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>general</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(incl. Pareto Optimal)</td>
</tr>
<tr>
<td>HGL</td>
<td>quasi-linear</td>
<td>dominant</td>
<td>Eff & BB</td>
</tr>
<tr>
<td>MyerSat</td>
<td>quasi-linear</td>
<td>Bayesian-Nash</td>
<td>Eff & weak BB & IR</td>
</tr>
</tbody>
</table>

Eff: ex post efficiency; BB: ex post strong budget-balance; IR: interim IR.
Goal: maximize expected payoff of one agent. Allocation rule \(g : \Theta \rightarrow \Delta(K) \), payment rule \(p : \Theta \rightarrow \mathbb{R}^n \). By revelation principle, formulate MD problem as:

\[
\max_{g, p} V_0(g, p) + \sum_{i} m_i(p)
\]

s.t \(U_i(g, p, \theta_i|\theta_i) \geq U_i(g, p, \hat{\theta}_i|\theta_i), \ \forall i, \forall \theta_i, \forall \hat{\theta}_i \neq \theta_i \)

(additional constraints)

where

\[
m_i(p) = \mathbb{E}_{\theta} p_i(\theta) \quad \text{(ex ante payment)}
\]

\[
U_i(g, p, \hat{\theta}_i|\theta_i) = \mathbb{E}_{\theta_{-i}} v_i(g(\hat{\theta}_i, \theta_{-i}), \theta_i) - \mathbb{E}_{\theta_{-i}} p_i(\hat{\theta}_i, \theta_{-i}) \quad \text{(interim payoff)}
\]

\[
V_0(g, p) = \mathbb{E}_{\theta} v_0(g(\theta)) \quad \text{(ex ante seller value)}
\]
Solving the Problem

• **Decompose** into a subproblem and a masterproblem.
 – **subproblem**: take a particular allocation rule g' and compute the optimal payment rule given g' subject to IC and other constraints.
 – **masterproblem**: determine an allocation rule to maximize the value of the subproblem.

• But, set of allocation rules need not be finite or countable.

• Solutions known only for special cases: single-item allocation problems (Myerson 81), simple multiattribute allocation problems (Che 93).
Optimal Single Item Auction

\[
\max_g E_\theta \left[\sum_i (J_i(\theta_i) - \theta_0) \pi_{g,i}(\theta) \right]
\]

s.t. \(Q_i(g, \theta'_i) \leq Q_i(g, \theta''_i), \ \forall i, \theta'_i < \theta''_i \)

where

\[
J_i(\theta_i) = \theta_i - \frac{1 - F_i(\theta_i)}{f_i(\theta_i)}
\]

(virtual val.)

and \(\pi_{g,i}(\theta) \) is the prob that \(i \) gets the item, and \(Q_i(g, \theta'_i) \) is the conditional prob that \(i \) will get the item when reporting type \(\theta'_i \) in equilibrium, and \(f_i \) is the p.d.f. for type of agent \(i \), \(F_i \) is the c.d.f.
Solving this...

- The seller should sell the item to the agent with the highest $J_i(\theta_i)$ whenever that is larger than θ_0.
 - a technical condition (regularity) ensures that the monotonicity constraint is automatically satisfied.

- The buyer pays the smallest $\hat{\theta}_i$ it could have bid and still won the auction (i.e. s.t. $J_i(\hat{\theta}_i) \geq \theta_0$ and $J_i(\hat{\theta}_i) \geq \max_{j \neq i} J_j(\theta_j)$).

Comments: (a) if agents symmetric, this is a Vickrey auction with reserve price $p_0 = J^{-1}(\theta_0)$; (b) the optimal auction is NOT efficient; (c) in the general asymmetric case the auction is biased in favor of agents that *a priori* are expected to have lower values; (d) the seller needs to have information about the distribution over agent types.
Additional Stability Properties

- **Group strategyproofness.** No coalition of agents can usefully deviate (one must be worse off).

- Consider a setting in which agents either receive a service or not, and the decision problem is to select the receiver set $R \subseteq I$ and share the cost $C(R)$. Agents announce values. If the cost function, $C(S)$, is *submodular*, i.e.
 \[C(i \cup T) - C(T) \leq C(i \cup S) - C(S) \]
 for all $S \subseteq T \subseteq I$ and $i \neq S$, then the Shapley value defines a GSP and BB mechanism together with the Moulin-Shenker (99) cost-sharing mechanism.

- **Core.** A mechanism satisfies the *core* conditions if there is no incentive for a *subset* of agents to break away from the mechanism and work amongst themselves. [[“group individual-rationality constraint”]]
What is Missing?

- No computational constraints
- Focus on efficiency (social-welfare), little considerations of alternative objectives (e.g. fairness, max-min, make-span, etc.)
- Little discussion of special preference structure in resource allocation (beyond quasilinear preferences, some concavity assumptions)
- No use of randomization in the mechanism itself
- Revelation principle is the central paradigm, and there is no attention to *indirect* mechanisms