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Abstract

This note deals with the basic mathematical tools commonly used in finance.
Stochastic calculus and its applications will be presented. The best will be done
to present both the PDE and the probabilistic approaches to finance. However, the
focus will be mostly on (vanilla) option pricing and fixed income techniques won’t
really be presented. For additional information such as Girsanov’s Theorem for
instance, I recommend to read Schreve’s book (Volume 2).

1 Introduction to stochastic calculus
How to model prices fluctuations ?

S : price of a stock.
The return St+τ−St

St
is often assumed to be normally distributed with mean µτ

and variance σ2τ .

⇒ St+τ − St = δSt = µStτ + σStεt→t+τ , εt→t+τ ∼ N (0, τ)

We want to write that in continuous terms and we need to introduce the brown-
ian motion.

Definition : A brownian motion is a continuous process W that verifies:

• t 7→ Wt is continuous

• W0 = 0

• ∀s < t, Wt−Ws ∼ N (0, t− s) and Wt−Ws is independent of the past before s

An easy way to represent prices is therefore to write (this has a priori no meaning
except perhaps formally):

dSt = µStdt + σStdWt

More generally we can write:

dSt = µ(t, St)dt + σ(t, St)dWt
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To give a precise sense to that we need to speak about stochastic integral and
that’s not our purpose so we are going to give the basic rule of calculus with a pro-
cess described with a drift and a noisy part modelled with a brownian motion.

The basic rule is the Ito’s formula which states that for f sufficiently smooth
we have :

df(t, St) = ∂tf(t, St)dt + ∂Sf(t, St)µ(t, St)dt + ∂2
SSf(t, St)

σ(t, St)2

2
dt + ∂Sf(t, St)σ(t, St)dWt

The basic idea behind that is that dWt has a standard deviation equal to
√

dt
and "therefore" (dWt)2 can be replaced by dt in any Taylor approximation.

Examples:
Solving the stochastic differential equation for the price:

dSt = µStdt + σStdWt

Idea: consider ln(St). If f = ln then:

d ln(St) = µdt− σ2

2
dt + σdWt

ln(St) = ln(S0) + (µ− σ2

2
)t + σWt

St = S0 exp((µ− σ2

2
)t + σWt)

Another example (try it by yourself): Mean reverting process.

dXt = θ(α−Xt)dt + σdWt

2 Option pricing

2.1 Black-Scholes
There are different ways to price derivatives. The main one is certainly based on the
hypothesis that there is no arbitrage in the market.

Consider an asset S (traded continuously) and a derivative C on that asset,
typically a European call that will pay at date T the maximum between (ST −K)
and 0. (Notation : (ST −K)+).

We will suppose that S follows a geometric brownian motion

dSt = µStdt + σStdWt

To price C, let’s consider the following portfolio at time t:

• A call option of value C

• A short position in ∆ stocks of value S



At time t, the value of the portfolio is:

C(t, St)−∆St

At time t + dt, the gain on that portfolio is:

dC(t, St)−∆dSt

= ∂tC(t, St)dt + ∂SC(t, St)[µStdt + σ(t, St)dWt] + ∂2
SSC(t, St)

σ2S2
t

2
dt−∆dSt

= [∂tC(t, St) + ∂2
SSC(t, St)

σ2S2
t

2
]dt + [∂SC(t, St)−∆]dSt

If we set ∆ = ∂SC(t, St) then our portfolio is not risky and must therefore have
a return equal to rdt. Therefore we have :

∂tC + ∂2
SSC

σ2S2

2
= r(C −∆S)

This is the Black Scholes partial differential equation:

∂tC + rS∂SC +
σ2S2

2
∂2

SSC = rC

Interestingly, there is no consideration about the drift µ : pricing derivatives is
all about σ !!

The price of the call must verify this (parabolic) equation with the condition
∀S > 0, C(T, S) = (S −K)+ corresponding to the payoff.

This equation has a unique solution:

C(t, S) = SN(d1)−K exp(−rτ)N(d2)

τ = T − t, d1 =
ln( S

K ) + (r + σ2

2 )τ
σ
√

τ
, d2 = d1 − σ

√
τ

(N stands for the cdf of a standard normal variable).
This is the famous Black Scholes formula for a call option.

2.2 The Greeks
We used in our derivation of the BS formula a replication portfolio which consists in
having at all times a number of stocks equal to ∆ = ∂SC(t, St).

This quantity, called ∆ (Delta) is utterly important for practitioners and can be
written as (it’s not as obvious as it seems):

∆ = N(d1)

Other Greeks are important to practitioners. The Gamma Γ is defined by ∂2
SSC.

The Vega ν is defined by ∂σC and is positive.
Other Greeks can be used (Θ, ρ, ...).



2.3 Probabilistic representation
There are two main approaches to pricing: PDE’s and probability theory and there
is a complete equivalence between the two (see Feynman-Kac theorem for the deep
reasons below these results).

The probabilistic approach needs the introduction of a new probability called
risk-neutral probability Q for which discounted prices are martingales that is:

∀s < t, EQ
s [e−rtSt] = e−rsSs

(This is linked to the no-arbitrage hypothesis)
The idea is that under this probability:

dSt = rStdt + σStdWt

where the brownian motion is a brownian motion under Q (see Girsanov’s Theorem
for the change of probability).

The idea is just that the pricing has to be done with the probability Q with just
a dicounting reasoning and we have the formula :

Ct = EQ
t [e−r(T−t)(ST −K)+]

This allows to derive the Black Scholes formula directly and to show for example
that N(d2) is just the probability (using Q) that the stock price is above the strike.

3 Limits of Black Scholes. Models beyond Black
& Scholes.
The BS Formula allowed us to price a call given (St,K, r, T, σ).
All these parameters are data except the volatility σ. We have however seen that
the Greek ν was positive and therefore that the call price was an increasing function
of σ.
It’s thus easy to consider several options actually traded in the market (with the
same maturity T and different strikes K, say) and to reverse the formula.

That is we can obtain for various K what is the volatility parameter implied by
the market.

If the BS formula were correct, the function K 7→ σimp(K) would be constant.
Unfortunately, it is never the case and we commonly observe a skewed smile instead
of a straight horizontal line.

Since ν = ∂σC > 0 this means that call options for very low or very large strikes
K can seem relatively expensive compared to other options for reasonable strikes.
In economic terms, this means that extreme events are valued by the market and
indeed it’s reasonable to think that the normal hypothesis underlying the brownian
model is a bad approximation: we need to consider fat/heavy tails !



3.1 Levy Flights
The discussion above have shown that it was necessary to take into account the fat
tails in the distribution of returns.
The tails, in the gaussian case, decrease very rapidly, like e−

x2

2 . A better idea could
be to introduce processes with fat tails such that the pdf decreases as a polynomial
: 1
|x|1+α . This is not completely easy and requires a lot of technical work (The basic

ideas for the introduction of the stable Levy’s distribution is rooted in generalizations
of the CLT for r.v. without variance).
We can see on Figure 5.10 in the readings (Voit) that these tails are too fat so the
problem is not solved.

3.2 A stochastic volatility model : The Heston Model
Another way to introduce fat tails is to consider stochastic volatility models. This
can be done in discrete time using ARCH and GARCH models (this is useful to
model volatility clustering) and in continuous time, this is often done using a model
after Heston.

The idea is simple and consists in modelling prices like this:

dSt = rStdt + σtStdWt

where σt is a random variable driven by the following mean reverting stochastic
differential equation:

dvt = θ(α− vt)dt + η
√

vtdW̃t, vt = σ2
t

where the two brownian motions can either be independent or correlated.
This model is more complex and requires the calibration of three parameters

(θ, α, η) using data on the markets (let’s consider the two brownians are independent
to simplify).

This can be done using the probabilistic approach and Monte Carlo simulations.
Remarkably however, it’s easy to derive from this model a nearly closed form

pricing formula for the call that resembles BS one:

C(t, S, v) = Sf(t, ln(S), v)−Ke−r(T−t)g(t, ln(S), v)

where f and g can easily be computed numerically:

f(t, x, v) = Q[XT ≥ ln(K)|Xt = x, vt = v]

dXt = (r +
1
2
vt)dt +

√
vtdWt

dvt = θ(α− vt)dt + η
√

vtdW̃t

and

g(t, x, v) = Q[X ′
T ≥ ln(K)|X ′

t = x, vt = v]

dX ′
t = (r − 1

2
vt)dt +

√
vtdWt

dvt = θ(α− vt)dt + η
√

vtdW̃t


