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ABSTRACT
We argue in favor of Docker containers as alternatives to clusters of
servers or virtual machines for students in introductory program-
ming courses. We present our experience with the same since 2015
in CS50 at Harvard University as well as the pedagogical and opera-
tional motivations therefor. We present, too, the evolution of our en-
vironments for students over the years, from an on-campus cluster,
to an off-campus cloud, to client-side virtual machines, to Docker
containers, discussing the trade-offs of each. Not only do containers
provide students with a standardized environment, reducing tech-
nical difficulties and frequently asked questions at term’s start, they
also provide instructors with full control over the software in use
and versions thereof, additionally allowing instructors to deploy
updates mid-semester. Particularly for large courses with hundreds
or even thousands of students, containers allow staff to focus more
of their time on teaching than on technical support. And, coupled
with text editors that support extensions or plugins, containers
allow instructors to optimize students’ environment for learning,
while still acquainting students with industry-standard tools. Most
recently implemented atop GitHub Codespaces, a cloud-based ver-
sion of Visual Studio Code, our own container-based solutions have
since been used by more than 700,000 students and teachers, both
on campus and off, and are also freely available to any teacher or
student outside of our own university.
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1 INTRODUCTION
CS50 is Harvard University’s introductory course in programming
for majors and non-majors alike, taught primarily in C toward
its start and primarily in Python toward its end. The course also
introduces students to SQL and JavaScript (along with HTML and
CSS) in preparation for the course’s capstone, a final project for
which most students implement a web application.

The course is among Harvard’s largest, with approximately 500
students each fall, 100 students each spring, and a smaller num-
ber of students each summer. More than half of the students have
never taken a course in computer science before, and more than
half describe themselves as being among “those less comfortable”
with computing. The course itself is intended to be accessible to
students of all backgrounds, with or without prior programming
experience, with different tracks within the course for those less
comfortable and more comfortable alike, whereby students can at-
tend different sections (i.e., recitations) and implement (somewhat)
different programs each week based on their comfort level [31].

With so many students (and, in turn, so many versions of Win-
dows, macOS, and Linux), it would be a challenge to have every-
one install and configure the requisite software on their own for
the course’s assignments, including clang, gdb, valgrind, and
python3. Even Python’s installer, which is perhaps easiest, doesn’t
necessarily update students’ $PATH accordingly. Even in smaller
classes with fewer languages, start-of-term setup has not proved, in
our experience, the best use of time. At worst, the least comfortable
of students might conclude that programming simply isn’t for them
if they can’t even get their computer set up.

We have thus long provided students with a standardized pro-
gramming environment, so as to focus immediately at term’s start
on concepts and implementation thereof rather than technical dif-
ficulties. We first provided such using the university’s own on-
campus cluster of Linux servers on which students had shell ac-
counts and NFS-mounted home directories, accessible via SSH.
Without root access, though, we found it difficult to configure their
accounts exactly as we wanted, and so we transitioned to a similar
topology of our own in the cloud [30]. Managing that cluster our-
selves proved more time-consuming than intended, and so we even-
tually migrated to client-side virtual machines (VMs), a la Stoker
et al. [43] and Harvie et al. [22], with each student running their
own Linux “appliance” [32]. While VMs did standardize students’
environment, they tended to be slow, especially on lower-end lap-
tops. And so we returned to the cloud, this time using Docker [14]
containers, much like Valstar et al. [48] but with an addition of
browser-based graphical user interfaces (GUIs), initially via AWS
Cloud9 [8] and, most recently, Visual Studio Code [9] atop GitHub
Codespaces [10]. Not only did containers enable us to standardize
programming environments, both server-side and client-side, they
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proved far lighter-weight, faster for staff to develop and for stu-
dents to run. Coupled with web-based GUIs (complete with code
editors, file explorers, and terminal windows), they have enabled us
to provide students with full-featured programming environments
in the cloud. And students can even install the same client-side at
term’s end, thereby continuing to write code locally even without
the course’s own infrastructure, and without having had to figure
out how right at term’s start.

In this work, we present our path to containers and web-based
programming environments atop them, including the pedagogical
and technological motivations therefor. In Section 2, we elaborate
on the advantages and disadvantages of our prior approaches. In
Section 3, we explain our motivation for Docker. In Section 4, we
discuss implementation details and trade-offs among them. In Sec-
tion 5, we present our results and next steps. In Section 6, we
conclude.

2 PRIOR APPROACHES
Whether on-campus or off-campus, server-side or client-side, CS50
has long sought to standardize students’ programming environ-
ments to minimize technical difficulties at term’s start. We present
in this section our prior approaches to motivate our recommended
approach in Section 3 so that others need not reinvent wheels.

Were CS50 entirely focused on Python, or even a language like
JavaScript, students could write and execute code with a browser
alone [5, 36, 37, 42, 46], without any server-side infrastructure (be-
yond a static website). But we have not found browser-based com-
pilers or interpreters for C to be nearly as robust, although technolo-
gies like WebAssembly [50] with Emscripten [18] are promising.
And, pedagogically, we indeed prefer to start with C and end with
Python, so that students ultimately understand the abstractions
that higher-level languages provide. We’d ideally like students to
acquire experience with a full-fledged Linux command line as well,
though browser-based emulation of Linux tends to be slow and
lacking in support for libraries and package management [26, 51].
In-browser solutions would also complicate CS50 students’ devel-
opment of web apps in Python with Flask [19] at course’s end, as
browsers’ security models do not allow in-browser code to create
and bind to TCP/IP sockets, preventing students from serving their
app during development and testing.

We have thus found that the course’s pedagogical aims are served
best by providing students with a full-fledged Linux environment
in some form, even in 2024.

2.1 On-Campus Cluster
As of 2007, students in CS50 (and other courses at Harvard) all
had shell accounts and NFS-mounted home directories on an on-
campus cluster of Linux servers to which they could connect via
SSH, managed by the university itself. We ourselves did not have
root access and were thus reliant on the university’s own staff for
any installations and updates, which were slow to happen, if only
because others might be fixated on other versions.

Starting in 2007, then, we began to install our own versions of
software within the course’s own home directory, directing students
to run a single command at term’s start (e.g., ~cs50/setup.sh),
which would modify their $PATH accordingly by editing one of

their dotfiles. Of course, we still didn’t have root access, which
meant installing all software locally from source, rather than more
conveniently via package managers. And the servers invariably ex-
perienced technical difficulties outside of the university’s business
hours, which meant delays for fixes, if not extensions for students,
even if we ourselves were awake and willing to fix.

2.2 Off-Campus Cloud
In 2008, we thus moved CS50 into the cloud, recreating the on-
campus cluster virtually with Amazon Web Services (AWS) [41],
using Elastic Compute Cloud (EC2) [16] for virtual machines (VMs)
and Elastic Block Store (EBS) [15] for students’ home directories [30],
with Simple Storage Service (S3) [40] for backups. On this virtual
Linux cluster did students have their own CS50-specific shell ac-
counts, managed by the course’s own LDAP server, also imple-
mented within a VM. And we installed all software globally, so
students’ accounts automatically worked as intended.

Via educational grants from AWS [20] (available by applica-
tion to all educators), this solution was free. But we underappre-
ciated the time involved in administering our own cluster. And,
by 2011, we daresay the novelty had worn off. By that time, too,
did the course have a growing OpenCourseWare audience, with
the course’s videos, slides, problem sets, and more freely available
to the public at large. But, with shell accounts restricted to stu-
dents at Harvard, “taking” the course via OpenCourseWare was
a fairly passive experience, as only the most comfortable of stu-
dents online were inclined to figure out how to install clang, gdb,
valgrind, and the like locally in order to engage actively with the
course’s problem sets and final project. We thus began to develop
a client-side alternative to the course’s virtual cluster that anyone
on the internet could download and use, including our on-campus
students.

2.3 Client-Side Virtual Machines
In 2011, we phased out the course’s cloud-based cluster, instead pro-
viding students with a downloadable VM, a “CS50 Appliance,” not
unlike Griffin et al. [21] and Laadan et al. [28], preconfigured with
all of the course’s software that students could run locally on their
PC or Mac simply by installing a hypervisor like VirtualBox [49].
The appliance enabled students to run Linux within a window on
their own computer (initially Fedora, subsequently Ubuntu) and
even a desktop environment (Xfce, which enabled graphical prob-
lem sets), with clang, gdb, valgrind, and more already installed.

Via open-source software, this solution was free. But develop-
ment of this appliance was incredibly time-consuming. Even with
the build process automated via Kickstart [45] initially and our own
packages subsequently, each update thereto might take us hours
to export and test. The appliance’s disk image, meanwhile, was
nearly 2 GB (even with unneeded packages pruned) and slow for
students to download, especially off campus. While the appliance’s
post-installation performance was fine on most students’ laptops,
lower-end netbooks (at the time) struggled under its weight. And
the appliance was slow on most laptops to boot up.

Windows updates at the time, too, had a tendency to break VMs’
virtual network adapters, causing headaches for web apps. Worst,
though, at the time were bugs in VirtualBox itself: at one point,



closing the lid of one’s laptopwith the VM still running could “brick”
it entirely. We mitigated some disasters by encouraging students
to back up their work, as via Dropbox within the appliance, but
downloading a new image to replace a bricked one was still a slow
process. (And Dropbox eventually deprecated their Linux client.)
The course’s teaching staff therefore too often found themselves
troubleshooting virtual disk images and virtual network adapters
in the middle of office hours, when we preferred to focus on help-
ing students with actual code. Those difficulties, and frequently
asked questions, were only magnified at scale via OpenCourseWare.
We eventually transitioned to VMware Player (for Windows) and
VMware Fusion (for macOS) for on-campus students, both of which
proved more stable than VirtualBox at the time, but the latter was
not always available for free to the OpenCourseWare audience too.

Despite these shortcomings, the appliance proved necessary in
2012, when the course became even more broadly available as a
massive open online course (MOOC) via edX [17]. Without a client-
side solution already in place, the course could not have scaled
during the heyday of MOOCs to so many thousands of learners all
of a sudden.

Virtual Machine Virtual Machine Virtual Machine
Guest OS Guest OS Guest OS

Hypervisor

Host OS

Bare Metal

Figure 1: Virtual machines (VMs) tend to be heavier-weight
than containers, in part because each VM runs an entire
operating system (OS), a guest OS that runs atop a (type-2)
hypervisor, which runs atop a host OS, which runs atop bare
metal. Whereas a server might have ample resources only to
run, e.g., 3 VMs, that same servermight have ample resources
to run, e.g., 14 containers, as in Figure 2.
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Figure 2: Containers tend to be lighter-weight than virtual
machines (VMs), in part because containers share OS kernels
via Docker, which runs atop a host OS, which runs atop bare
metal (or even a virtual machine). Whereas a server might
have ample resources to run, e.g., 14 containers, that same
server might only have ample resources to run, e.g., 3 VMs,
as in Figure 1.

3 TOWARD CONTAINERIZATION
By 2015, we were eager to transition away from the client-side ap-
pliance, even though it had proved precisely the solution we needed
up until then. By that time, too, a web-based alternative seemed
an obvious direction, but most of the in-browser programming
environments available struck us as oversimplified pedagogically,
with file systems flattened and terminal commands like clang ab-
stracted away entirely as buttons. User-friendly, perhaps, but we
were reluctant to provide students with a “toy” environment, lest
they not know how or where to write code after term’s end.

Any web-based alternative, we felt, should still have a terminal
window, with the browser providing students not only with a GUI
but a command-line interface (CLI) to Linux as well. We could not
imagine backing each terminal window with a server-side VM,
though, as via EC2. With hundreds of students on campus and
thousands of students online, the cost of a VM-per-student model
would likely exceed any educational grants. Even so, we preferred
not to revert to a multiuser model like our on-campus cluster or
off-campus cloud, as it had proved helpful for every student to
have root access via sudo to their appliance, so that they could
install packages at will, particularly for end-of-course final projects.
And we appreciated that VMs sandboxed potentially malicious (or
buggy) code more so than one multiuser system alone.

For an alternative back end, we thus turned to Docker, which
implements OS-level virtualization instead, via which multiple “con-
tainers” can run in parallel on a host, all of them sharing the same
OS kernel. Whereas a virtual machine might take minutes to boot
(as was often the case with our own appliance), a container might
only take seconds, in large part because the underlying OS is already
running. By contrast, each VM on a host must boot its own OS.
Containers are much lighter-weight. Per Figures 1 and 2, inspired by
Docker’s own [25], whereas a host might have sufficient resources
to run a few VMs in parallel, that same host might have sufficient
resources to run more containers by an order of magnitude. Docker
ultimately allows applications and their dependencies (or, in our
case, programming environments) to be “containerized” (i.e., pack-
aged) in an “image” that can be started quickly and portably in
production. The containers themselves can even run within a VM,
as is now commonplace among cloud providers.

On any server (or desktop or laptop) with Docker Engine [35]
installed (for free), you can start one such container running Ubuntu
Linux, for instance, with an interactive terminal attached, with just:
docker run -it ubuntu

By default, very few packages are preinstalled, so you can alterna-
tively prepare your own custom image by creating a text file called
Dockerfile like:
FROM ubuntu
RUN apt update && apt install -y clang gdb valgrind

You can then “build” and that image with
docker build -t NAME .

and “push” it to a registry [38] with
docker push NAME

wherein NAME is a unique identifier for that image. Thereafter, any-
one can “pull” and start a container running that same image with
just



docker run -it NAME

with clang, gdb, and valgrind already installed for them.

Figure 3: CS50’s first web-based programming environment,
CS50 IDE, was ultimately built atop AWS Cloud9, backed
by a Kubernetes cluster of Docker containers. Upon login,
students were allocated a newly created container to which
their own home directory was attached. Students could then
write, debug, and execute code within that container via a
web-based UI, complete with a code editor, file explorer, and
terminal window, with AWS Cloud9’s default UI both simpli-
fied and enhanced for teaching and learning via the course’s
own plugins.

4 IMPLEMENTATION DETAILS
For students, however, it wasn’t a headless, client-side CLI that
we wanted but a web-based GUI plus CLI instead, so that students
would not need to install any software themselves. Containers
running on servers only offered a potential back end.We just needed
a front end to which to connect those containers.

4.1 CS50 IDE
For a front end, we initially used Cloud9 IDE [12], an open-source
integrated development environment (IDE), complete with code ed-
itor, file explorer, and terminal window, backed by per-user Docker
containers server-side, precisely the model we had in mind. At
the time, it was hosted, along with the back-end containers, by an
Amsterdam-based startup, with whom we collaborated to build our
own “CS50 IDE” in the cloud, with each student’s container based
on our own Docker image. Using Cloud9’s SDK to write plugins,
we customized the IDE’s GUI for teaching and learning, hiding
features that students would not need, lest they otherwise confuse
or overwhelm, and adding features like a “presentation mode” (with
enlarged text) for teaching assistants’ sections and a graphical de-
bugger for students, built atop GDB/MI [24]. We also implemented
a virtual rubber duck that would just quack pseudorandomly to
encourage rubber-duck debugging [23].

In time, Cloud9 was acquired by AWS, and Cloud9 IDE evolved
into AWS Cloud9. Unfortunately, AWS Cloud9 assumed a VM-per-
user model, but, to reduce computational costs by an order of mag-
nitude, we ultimately reconstructed a container-per-student model,

using Kubernetes [27] to orchestrate a cluster of containers our-
selves, each connected to the IDE’s front end.

The end result was a full-fledged Linux environment per student
in the cloud, tailored to the course’s instructional needs, requiring
only that students create an account and log in at term’s start,
using only a browser. Once logged in, a container running the
course’s own image awaited, to which a persistent home directory
was attached for the student, atop which was a GUI, per Figure 3.
Educational grants from AWS (available, as before, by application
to all educators) covered the cost.

4.2 Visual Studio Code for CS50
Upon AWS’s acquisition of Cloud9, we found ourselves to be system
administrators again, with CS50 IDE’s cluster of containers no
longer managed by Cloud9 but by us, a distraction from teaching
that we had hoped to avoid. Unfulfilled, too, was a desire to offboard
students from CS50 IDE to their own PCs and Macs at term’s end
so that they could continue to program client-side without the
course’s own infrastructure. We encouraged students to install a
popular [44] (and free) editor like Visual Studio (VS) Code along
with, for instance, a Python interpreter, but that transition from
cloud to computer was not nearly as smooth as we would have
liked, particularly with the user interfaces so different. Students
could alternatively install Docker and run an offline version of CS50
IDE locally, but we preferred that they “graduate” instead from the
course’s own interface.

In 2021, though, GitHub launched Codespaces [10], a cloud-
based version of VS Code backed by Docker containers. Using
Codespaces, we realized, not only could we provide students with
a standardized programming environment at term’s start, we could
also transition them at term’s end to a nearly identical client-side
installation thereof. (Alternatives like Replit [39] and Codio [11]
offer the former but not the latter.) We thus re-implemented most
of CS50 IDE’s plugins as VS Code extensions using the VS Code
API [4]. And we developed a web application at https://cs50.dev/
that, using GitHub’s Codespaces API [2], automates the process
of creating, within the course’s own “organization” on GitHub,
one “repository” per student, each with its own “codespace” (i.e.,
container) based on our own Docker image, cs50/codespace, and
redirecting them thereto, with the containers themselves hosted by
GitHub, per Figure 4. (See Appendix for image’s Dockerfile.) Via a
.devcontainer.json file [34] that we “commit” to each student’s
repository via GitHub’s Repos API [3], the course’s extensions are
preinstalled in each codespace, and VS Code’s interface is precon-
figured with the course’s recommended settings [47]. For instance,
we are able to preinstall extensions for C and Python and configure
students’ terminal windows to use Bash by default via JSON like
the below. (See Appendix for complete .devcontainer.json.)

{
"extensions": [

"ms-vscode.cpptools", "ms-python.python"
],
"settings": {
"terminal.integrated.defaultProfile.linux": "bash"

}
}

https://cs50.dev/


If we happen to update the course’s image mid-semester, we deploy
the update to students via a VS Code extension, which prompts
them to rebuild their container, preserving their own files therein.

Per Figure 5, the end result is, again, a full-fledged Linux en-
vironment per student with VS Code as its front end, this time
implemented as software as a service (SaaS) managed by GitHub
rather than infrastructure as a service (IaaS) orchestrated by us.

CS50’s adaptation of VS Code is freely available to all teachers
and students, per the Appendix, and can be used to write, debug, and
execute code in any language for which a compiler or interpreter
is installed, either in advance in our image or manually thereafter,
with (or without) any learning management system. We ourselves
have students download problem sets into their codespaces via
curl and submit them via another command (or manual upload) to
us. In addition to C and Python, our own image includes support for
C++, Java, JavaScript (via Node.js), R, Ruby, and SQL (via SQLite). A
preinstalled X server and VNC client provide support for graphics
as well, as via Swing or Tkinter. The interface automatically de-
tects users’ time zones. And, via language packs, the interface is
automatically localized for more than a dozen (human) languages
in addition to English.

Offline Support
By way of VS Code’s Remote Development extension pack [13] can
students even run VS Code locally when offline but still connect
via SSH to their codespace in the cloud when online. If comfortable
installing Docker as well, students can even run their own contain-
ers locally, completely offline. For those more-comfortable students
and especially staff, the course also has a headless image, cs50/cli,
that students can use offline without VS Code. (See Appendix for
image’s Dockerfile.) The course further provides a command-line
tool written in Python, cli50, otherwise known as CS50 CLI, that
automates the creation of client-side containers using that image.
While the CLI lacks, by design, VS Code’s GUI, it enables students
to start, within seconds, a Linux container on their PC or Mac,
mounting within it their current working directory. CS50 CLI is
also freely available to teachers and students, per the Appendix.

DIY Options
Each of Docker, VS Code, and Codespaces can be used (at no cost
by teachers and students) without any dependencies on CS50 itself.
Per Section 3, any teacher can create their own Dockerfile and, in
turn, image, based or not based on our own. Students can run that
same image with docker alone or the teacher’s own command-line
wrapper, with or without VS Code. Several of CS50’s extensions
can also be independently installed [33]. And any teacher can sign
up for GitHub Global Campus [6] to use Codespaces for free in
their classes via GitHub Classroom [7], a web application via which
students can “accept” a teacher’s assignment, which itself is just a
repository with its own codespace, preconfigured with the teacher’s
own .devcontainer.json, per GitHub’s own documentation.

5 RESULTS
Prior to its deprecation, CS50 IDE was used by more than 500,000
students and teachers. And, since its debut in late 2021, CS50’s adap-
tation of VS Code has been used by more than 700,000 students

and teachers so far, most recently averaging more than 1,000 active
per day and more than 10,000 per week. Not only has VS Code
atop Codespaces supported our pedagogical goals of providing stu-
dents with a standardized environment for C, Python, and other
languages, too, it has also eliminated the need for system administra-
tion on our end. Via our own Dockerfile and devcontainer.js
file can we still customize students’ containers, preinstalling pack-
ages and extensions. That they are containers, too, and not virtual
machines, means that students’ codespaces start in just seconds,
allowing students to focus on their own work as well. In students’
own words, meanwhile, CS50’s adaptation of VS Code has proved
“accessible,” “easy to use,” and “helpful,” and it has “helped with
providing ‘training wheels.”’ Per one student, “I love how it allowed
us to just focus on coding rather than setting up.” Per another, “It
made the whole setup process a lot easier, so the focus was more on
the learning.” And, as another concluded, “everything just worked.”

Among the few downsides to date is that VS Code’s API for
extensions is less featureful in some ways than was Cloud9’s own,
and we have not been able to simplify VS Code’s interface to the
extent that we would like. We would prefer to hide even more icons
and buttons that we do not expect students will use (yet), lest they
distract early on. VS Code’s API allows for some customizations,
though, that Cloud9 did not, and we anticipate integrating auto-
mated feedback for students into VS Code’s UI beyond the graphical
debugger alone. Despite our goal of offboarding students from the
cloud to their own PCs and Macs toward term’s end, we’ve realized
that we ourselves might not have facilitated such sufficiently. Per
one student, “Not really sure how to set up an IDE on my computer
directly.” We plan to remedy through additional documentation and
guidance in future terms.

Since our transition to VS Code atop Codespaces in late 2021, we
have already found ourselves with far more (human) cycles than
we previously had, enabling us, finally, to focus all the more time on
students themselves as well as on development of future extensions
for teaching and learning. We now hope, as well, to use GitHub
Actions [1], which also supports Docker, to autograde students’
work in containers identical to students’ own.

6 CONCLUSION
For CS50 at Harvard University, we have long provided students
with standardized programming environments to reduce technical
difficulties at term’s start, to enable students to focus on learn-
ing and, ideally, teachers to focus on teaching. What began as an
on-campus cluster of Linux servers evolved into a cloud-based
implementation of the same, which itself evolved into client-side
virtual machines, which most recently evolved into Docker contain-
ers with web-based GUIs back in the cloud. Both pedagogically and
technologically, our current adaptation of VS Code atop Codespaces
is already proving the most successful implementation to date. Not
only has the SaaS-based solution allowed us to focus more time on
students, without nearly as much time spent on system administra-
tion, it has also enabled us to provide students with an experience
that begins in the cloud but ends on their own PC or Mac.

Thanks to containerization, students’ programming environ-
ments now start within seconds rather than minutes. And we can
develop and deploy updates in far less time than before. In fact, we



Figure 4: CS50’s adaptation of VS Code is built atop GitHub Codespaces. When students visit https://cs50.dev/ with their browser,
they are routed via an application load balancer (ALB) to one of several front-end web servers. A database stores metadata like
the IDs of students’ codespaces, while a GitHub repository stores backups of their home directories. GitHub Codespaces itself
provides students with containers.

Figure 5: CS50’s adaptation of VS Code atop GitHub Codespaces provides students with a web-based version of VS Code,
connected to a Docker container running the course’s own image, its default UI simplified and enhanced for teaching and
learning via the course’s own extensions and settings. The programming environment can also be installed client-side as well.

are currently experimenting with our own AI-based chatbot within
the same [29]. All of our solutions are freely available to teachers
and students alike, per the Appendix.

We argue, ultimately, that teachers elsewhere should consider
containerization as a compelling alternative to any cluster- or VM-
based environments, at least for introductory courses. Courses
requiring specialized architectures might still benefit from other so-
lutions. But just as containers have commoditized how applications
can be packaged for production, so might containers standardize
more easily than ever programming environments for students.

APPENDIX
The course’s adaptation of VS Code atop GitHub Codespaces is
freely available for teachers and students at https://cs50.dev/; its

Dockerfile and .devcontainer.json are at https://github.com/
cs50/codespace. CS50 CLI is freely available for teachers and stu-
dents at https://pypi.org/project/cli50/; its Dockerfile is at https:
//github.com/cs50/cli.
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