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ABSTRACT

In Fall 2008, we moved Harvard College’s introductory computer science course, CS50, into the cloud. Rather than
continue to rely on our own instructional computing infrastructure on campus, we created a load-balanced cluster
of virtual machines (VMs) for our 330 students within Amazon Elastic Compute Cloud (EC2). Our goals were
both technical and pedagogical. As computer scientists, we wanted more control over our course’s infrastructure
(e.g., root access), so that we ourselves could install software at will and respond to students’ needs at any hour
without an IT department between us and our systems. As teachers, we wanted easier access to our students’ work
(as via su) as well as the ability to grow and shrink our infrastructure as problem sets’ computational requirements
demanded. But we also wanted to integrate into the course’s own syllabus discussion of scalability, virtualization,
multi-core processing, and cloud computing itself. What better way to teach topics like those than to have students
actually experience them. Although Amazon supported our experiment financially with credits, it was not without
costs. Serving as our own system administers cost us time, as did some self-induced late-night technical difficulties.
But the upsides proved worth it, as we accomplished our goals. We present in this paper what we did right, what
we did wrong, and how we did both so that others can more easily build their own home in the cloud.

INTRODUCTION

Computer Science 50 is Harvard College’s introductory course for majors and non-majors alike, a one-semester
amalgam of courses generally known as CS1 and CS2. Most of the course’s students (94%) have little or no prior
programming experience. Although the course introduces some fundamentals of programming in Week 0 by way
of Scratch [20], a graphical programming environment developed by MIT’s Media Lab, the course immediately
transitions to C in Week 1, where it spends much of the semester. Among the topics covered during that time
are abstraction, encapsulation, data structures, memory management, and software development. The semester
concludes with an introduction to web programming by way of PHP, SQL, and JavaScript plus XHTML and CSS.

With so much material to cover, the course itself moves quickly, demanding of students upwards of 15 hours per
week outside of class, much of which is spent on programming assignments. With the exception of Problem Set 0,
much of the course’s workload involves a command line. Students write C code with their choice of text editor (e.g.,
emacs, nano, or vim), compile that code using gcc, and then debug that code using gdb and valgrind. Toward
term’s end, httpd and mysqld enter the picture as well.

The course’s problem sets, meanwhile, vary in their computational and I/O needs. Whereas Problem Set 1
has students implement some bite-sized C programs, Problem Set 2 tasks them with implementing ciphers and
cracking DES-encrypted passwords. Problem Set 5 has students recover megabytes of photos from a dd image of
an “accidentally formatted’ CompactFlash card. And Problem Set 6 hands them a 143,091-word dictionary that
they need to load efficiently into a speller-checker.

With 330 undergraduates and 30 teaching fellows, the course tends to consume its share of cycles. Over the
years, the course has relied for its needs on a load-balanced cluster of servers comprising Alphas running Digital
(Tru64) UNIX or, more recently, Xeons running Ubuntu Linux. Via SSH (or, formerly, Telnet) can students log
into that cluster, where a shell (tcsh) and NFS-mounted home directory await. Once done with their homework,
students submit it electronically to the course’s own account on that same cluster via a setuid script.

Unfortunately, those home directories include only 100 MB of storage. Though plenty for source code, it has
proved insufficient for students’ inevitable core dumps as well as for problem sets involving large datasets. Because
we, the course, do not manage the cluster, having those quotas increased is never as easy as would be ideal.

Quite often, too, has the cluster suffered technical difficulties that get resolved no sooner than next business
day. Unfortunately, our students tend to work 24/7, and prolonged technical difficulties not only induce stress, they
affect the syllabus’s tight schedule if we resort to extensions.

Because this cluster is used not only by our students but also by other students, faculty, and staff, we do not
have root access. When students need help, they must email us their code or go through the process of submitting
electronically, neither of which is ideal for efficiency. System-wide installation of software, meanwhile, requires
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the help of IT, who often prefer not to install or upgrade software, lest it affect other users. And so we often
resort to installing (sometimes with ease, sometimes with difficulty) software we need in the course’s own account
(e.g., within /home/cs50/pub/), thereafter altering students’ $LD_LIBRARY_PATH, $LD_RUN_PATH, $LIBRARY_PATH,
$MANPATH, and $PATH via a .cshrc that their shells source upon login.

And so we have long craved our own cluster of systems that we could optimize for the course’s technical and
pedagogical goals. But with that vision comes a need not only for cash but also for space, power, and cooling, none
of which we, as a course, have in any supply. In fact, the university’s own supply of those resources is increasingly
limited. Moreover, we would prefer not to assume responsibility for technical problems (e.g., failed hardware) that
might otherwise distract us from our students. And we simply do not need an entire cluster of systems every day
of the year, as our computational needs vary with problem sets’ deadlines.

We thus moved CS50 into the cloud, building within Amazon Elastic Compute Cloud (EC2) [3] our own load-
balanced cluster of x86-based virtual machines (VMs) running Fedora Core 8. Not only did we gain the autonomy
we sought, we also gained pedagogical conveniences, every one of which helps with 330 students. The ability to
see and help students debug code prior to submission in situ (as via su), by itself, proved invaluable, eliminating
unnecessary exchanges of code via email and premature electronic submissions.

In the section that follows, we elaborate on what it means to move into the cloud and provide background on
EC2 specifically. We then offer implementation details on how we built our new home in the cloud. Thereafter, we
present our results and admit to mistakes we made during the term. We then conclude and reveal our plans for
next year.

BACKGROUND

Although it once represented, often in cartoon form, any network beyond one’s own LAN, “the cloud” now refers
to on-demand computational resources whose provision usually relies on virtualization. In more real terms, cloud
computing means that courses like ours (or, more generally, users) can pay for access to servers when and only
when we actually need them. Those servers just so happen to be VMs, otherwise known as virtual private servers
(VPSes), that live alongside other customers’ VPSes on hardware that we ourselves do not own.

Amazon EC2 offers precisely this service, as does an exploding number of competitors (e.g., Linode [16],
unixshell# [24], and VPSLAND [25]). One of the largest providers, though, EC2 offers multiple availability zones,
“distinct locations that are engineered to be insulated from failures,” in two regions (US and Europe). In the event
that some availability zone becomes, if ironically, unavailable, an EC2 instance (Amazon’s parlance for a virtual
machine) can be re-launched in another zone altogether. Users need not even be informed of such changes thanks
to EC2’s elastic IP addresses, which can be re-mapped within minutes from unavailable instances to available ones.

An instance, meanwhile, can boot any one of several operating systems by loading at startup an Amazon Machine
Image (AMI). Amazon currently offers AMIs pre-configured with Debian, Fedora, Gentoo Linux, OpenSolaris,
openSUSE Linux, Red Hat Enterprise Linux, Oracle Enterprise Linux, Ubuntu Linux, and Windows Server [3], but
customers can create [7] and share [6] their own too. Instances’ (virtual) disks are typically ephemeral, though,
whereby any changes made to an instance’s filesystem (vis-á-vis some AMI) are lost upon shutdown (though not
upon restart). But EC2 provides persistent storage via a service it calls Elastic Block Store (EBS) [2], whereby an
EBS volume (which can be 1 GB to 1 TB in size) can be attached as a block device to any one instance. Changes
to that volume persist even after an instance is shut down, and that volume can be re-attached later to another
instance altogether. EBS also supports snapshots, whereby copies of volumes can be archived using Amazon Simple
Storage Service (S3) [4].

Instances can be created and managed from any networked computer using EC2’s Web-based management
console, Java-based command-line tools [10], or SOAP- and HTTP-based APIs [7]. A number of third-party tools
facilitate management too [8]. We ourselves are fans of the Elasticfox Firefox Extension [9]. Links to the EC2
resources we found most helpful appear in this paper’s appendix.

Although “cloud” computing is perhaps the buzzword du jour, we have found that few, if any, services offer
precisely what EC2 does: an ability to provision on demand within seconds any number of (Linux) VMs without
human assistance or additional contracts. Perhaps related in spirit to EC2, though, are “grid” frameworks like
Google’s App Engine [14], Microsoft’s Windows Azure [19], University of Chicago’s Globus Toolkit [13], University
of California’s BOINC [11], Princeton’s PlanetLab [23], and University of Washington’s Seattle [12]. But frameworks
like these, inasmuch as they provide APIs and managed environments for execution of distributed applications and
services more than they do familiar command lines and binaries, represent solutions to problems that we did not
have. We simply wanted some VMs that we could wire together in order to implement a topology and workflow
already familiar to us, per Figure 1.
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Figure 1: Our cluster in the cloud comprised one “front-end” VM providing LDAP, NAT, and NFS services
to multiple “back-end” VMs. From their laptops on campus or elsewhere, students SSHed throughout the
semester to cloud.cs50.net, which mapped via DNS to an elastic IP address bound to our front-end VM,
which routed each student to the back-end VM with the fewest connections.

IMPLEMENTATION DETAILS

For an introductory course like ours, it was not our goal to provide every student with his or her own VM but,
rather, to provide, for the sake of uniform experience, a managed environment in which all students could implement
problem sets. Although our own local infrastructure was imperfect, its overarching design had always worked well:
a load-balanced cluster on which each student had his or her own shell account and home directory. And so we
sought to replicate that design inside the cloud, thereafter improving upon it.

Although EC2 provides firewalling services between instances and the Internet at large (via what it calls security
groups), it does not offer load balancing (except on high-numbered ports) for non-HTTP traffic, which we very
much needed for SSH’s sake. And so we had to implement our own load balancer. (In the interests of simplicity
for students, we were not willing to run sshd on a port other than 22.) We were determined to avoid a DNS-based
solution (whereby a fully qualified domain name resolves, via an A record, to multiple IP addresses), as DNS caching
by servers and clients can induce dead ends lasting hours or days.1 Prior to term’s start, we knew of no non-DNS
solutions in use within EC2’s cloud, and so we set out to implement our own.2

After much trial and error, we came up with a solution. We first spawned two instances using EC2’s AMI for a
32-bit installation of Fedora Core 8 (ami-2b5fba42).3 We then created a TCP tunnel between those two instances
using VTun [18].4 We assigned one end of the tunnel an IP address of 192.168.1.1 (much like a home router) and the
other an IP address of 192.168.1.10. We henceforth referred to 192.168.1.1 as our “front-end” VM and 192.168.1.10
as a “back-end” VM, per Figure 1. We next enabled IP forwarding on the front-end:

echo "1" > /proc/sys/net/ipv4/ip_forward
echo "0" > /proc/sys/net/ipv4/conf/all/send_redirects
echo "0" > /proc/sys/net/ipv4/conf/default/send_redirects
echo "0" > /proc/sys/net/ipv4/conf/eth0/send_redirects
echo "0" > /proc/sys/net/ipv4/conf/tun0/send_redirects

Meanwhile, we told the back-end to route any traffic from the front-end back through the front-end:

echo 80 lvs >> /etc/iproute2/rt_tables
ip route add default via 192.168.1.1 dev tun0 table lvs
ip rule add from 192.168.1.10 table lvs

We repeated this process for additional back-ends (with IP addresses 192.168.1.11, 192.168.1.12, etc.). Next,
using Linux Virtual Server (LVS) [26], we told the front-end to route incoming SSH connections to one of the
back-ends according to LVS’s Weighted Least-Connection heuristic, whereby the back-end with the fewest existing
connections wins the next one:5,6

1In the event a host in a cluster goes down, its IP address can certainly be removed from a load-balancing A record. If some client
(or some other DNS server between it and the host) has cached that address, though, the client may continue to look for the host at
that address until the cache actually expires.

2We are indebted to M. David Peterson [17] for his help with our quest.
3We avoided EC2’s 64-bit AMIs lest we discover mid-semester (i.e., too late) that some software we want only exist in a 32-bit flavor.
4We also considered OpenVPN [22] but preferred the simplicity of VTun.
5We utilized Weighted Least-Connection instead of LVS’s Least-Connection heuristic so that we could take back-ends out of rotation

temporarily simply by setting their weights to 0.
6So that the course’s staff could still SSH to the front-end itself, we ran its instance of sshd on a TCP port other than 22.
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CPU Disk I/O Requests Bandwidth Cost

Sep 2,275 Hrs 125 GB 45,348 14 GB $274

Oct 3,425 Hrs 108 GB 93,257,314 191 GB $657

Nov 5,484 Hrs 199 GB 337,019,916 239 GB $1,252

Dec 5,206 Hrs 300 GB 427,639,962 52 GB $1,184

Jan 5,208 Hrs 300 GB 1,502,614,186 62 GB $1,298

Table 1: Resources consumed by our virtual cluster between September 2008 and January 2009. CPU refers
to the number hours our instances collectively ran; between October and November, we transitioned from
single-core instances to dual-core instances. Disk refers to space used (for home directories and snapshots)
on EBS volumes. I/O Requests refer to our I/O activity on our EBS volumes, as measured by iostat.
Bandwidth refers to network traffic to and from our cluster. Per the upward trends over time, our students’
utilization of cloud resources rose with problem sets’ computational needs.

ipvsadm -C
ipvsadm -A -t 10.253.131.161:22 -s wlc
ipvsadm -a -t 10.253.131.161:22 -r 192.168.1.10:22 -m -w 1
ipvsadm -a -t 10.253.131.161:22 -r 192.168.1.11:22 -m -w 1
ipvsadm -a -t 10.253.131.161:22 -r 192.168.1.12:22 -m -w 1

At the time, 10.253.131.161 was the private IP address that EC2 itself had assigned to our front-end instance.
Finally, we enabled network address translation (NAT) on our front-end:

iptables -t nat -F
iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to 10.253.131.161

And we mapped cloud.cs50.net via DNS to an elastic IP address bound to our front-end.
Not only did our front-end ultimately serve as a load-balancing NAT router, it also provided LDAP and NFS

services to our back-ends as well. Usernames and groups lived in a tree on the front-end, and home directories lived
on an EBS volume attached to the front-end that was then exported to each of the back-ends. Backups, meanwhile,
were managed by rsnapshot [21]. In fact, even though we preached the virtues of source control to our students,
we took it upon ourselves to take snapshots of their home directories every 5 minutes. Thanks to its use of rsync
and hard links, rsnapshot maintains snapshots efficiently; it does not maintain multiple copies of files that have
not changed. The sheer number of panic attacks we averted among students by empowering them to access so many
versions of their code easily justified the additional gigabytes.

We installed on each of our back-ends gcc, gdb, valgrind, and more.7 On all of our instances did we also
install Webmin [15], a web-based GUI that facilitates system administration. Ultimately, we relied entirely on
freely available software and tools, almost all of it installed via rpm and yum.

It’s worth noting that EC2 offers different types of instances (i.e., classes of virtual hardware). We began Fall
2008 running 3 “small instances” (m1.small), each of which had 1 (virtual) core rated at 1 EC2 Compute Unit
(the equivalent of a 1.0 – 1.2 GHz 2007 Opteron or 2007 Xeon processor) and 1.7 GB of RAM. Because problem
sets’ computational needs rose over time, we ended the term running as many as 6 high-CPU medium instances
(c1.medium) at once, each of which had 1.7 GB of RAM and 2 (virtual) cores, each rated at 2.5 EC2 Compute
Units (i.e., 2.5 – 3.0 GHz).

Our front-end was indeed a potential single point of failure in our cluster. However, because an EBS volume
(e.g., students’ home directories) can only be attached to one instance anyway, we considered that weakness an
acceptable risk, particularly since we could re-spawn an identical instance within minutes if necessary, in a different
availability zone no less. Anecdotally, we’re happy to say that our front-end never actually went down.

RESULTS

At the very start of Fall 2008, we briefly relied, as usual, on our local cluster of systems. On 3 October 2008,
though, cloud.cs50.net debuted among a subset of students. Two weeks later, we moved all 330 students into the
cloud, where they remained until term’s end in January 2009. Table 1 details our cluster’s consumption of resources
during that time.

We ultimately judged our new home in the cloud a success, as we gained precisely the technical autonomy and
pedagogical conveniences that we had set out to claim. Not only did the cloud empower us to install software and
change settings at will, it allowed us to examine students’ code and reproduce errors therein in situ via su and
sudo, thereby expediting a common scenario. To be sure, we could have had these same powers on campus had we
run our own cluster with actual hardware. But cloud.cs50.net required no space, no power, no cooling from us.
Someone else (i.e., Amazon) kept an eye on the hardware’s hard drives and fans. And provisioning more capacity

7For efficiency’s sake, we actually configured just one back-end initially, thereafter burning our own AMI based on it, and then
spawning additional instances of that new AMI.
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for students was as simple as clicking a button. In a word, reliability and scalability proved easy (or, at least, easier)
in this cloud. In fact, EC2’s own Service Level Agreement (SLA) [1] commits to 99.95% uptime, which, we daresay,
is even higher than we’ve experienced on campus in terms past.

But our experience was not without hiccups, most the result of mistakes made by this paper’s author. Simply
preparing the cluster took multiple weeks (perhaps 80 hours in total), largely because we tackled at once so many
packages unfamiliar to us. Our quest to implement a load-balancing NAT router within EC2’s confines took
particularly long but proved well worth the journey. We temporarily ran out of disk space on our EBS volume
midway through term, the result of our having been conservative with space. And we experienced I/O delays around
some problem sets’ deadlines until we realized that OpenLDAP’s slapd was keeping open too many file descriptors.

Although throughput between our virtual cluster and computers on campus was high, we did suffer latency,
whereby X applications (e.g., emacs) performed poorly. We are not yet confident that we can eliminate that
particular problem next time around.

Our time in the cloud cost us less than $5,000 (roughly $15 per student), although Amazon defrayed those costs
with EC2 credits. In fact, Amazon now offers Teaching Grants “supporting free usage of [EC2] for students in
eligible courses” [5], so our arrangements are by no means exclusive. Had we been more conservative with VMs
and more attentive to usage, scaling our cluster’s size up and down more frequently, we are confident that we could
have accomplished our goals for less, perhaps even half this amount.

CONCLUSION

In Fall 2008, we moved Harvard College’s CS50 into the cloud via Amazon EC2. We turned to the cloud in search
of technical autonomy and pedagogical conveniences, both of which we realized in our new home. We even added
capacity to our virtual cluster as the semester progressed. Yet we did not need to find space, power, or cooling
on campus for cloud.cs50.net. And we did not even need to find dollars, thanks to support Amazon has since
institutionalized for educators at large.

To be sure, building this new home did cost us time, but we think it time very well spent. Not only did
we accomplish our goals, we introduced 330 students first-hand to the cloud. We not only told students about
scalability, virtualization, multi-core processing, and cloud computing, we had them experience each. Ironically,
had we not told them that cloud.cs50.net lived somewhere other than campus, most would not ever have known.
But that in itself perhaps speaks to the potential of cloud computing itself.

In Fall 2009, not only will we continue to spend time in the cloud, we will also make available a stand-alone
replica of cloud.cs50.net, a virtual machine that students can download and run on their own Macs and PCs,
even offline. Our goal now is to distribute a whole “course in a box.”

APPENDIX

To get started with EC2, we recommend these resources:

Amazon Elastic Compute Cloud
http://aws.amazon.com/ec2/

Getting Started Guide
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

Developer Guide
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/
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