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ABSTRACT
We present check50, an open-source, extensible tool for assessing
the correctness of students’ code that provides a simple, functional
framework for writing checks as well as an easy-to-use API that
abstracts away common tasks, among them compiling and running
programs, providing their inputs, and checking their outputs. As a
result, check50 has allowed us to provide students with immediate
feedback on their progress as they complete an assignment while
also facilitating automatic and consistent grading, allowing teaching
staff to spend more time giving tailored, qualitative feedback.

We have found, though, that since introducing check50 in 2012
in CS50 at Harvard, students have begun to perceive the course’s
programming assignments as more time-consuming and difficult
than in years past. We speculate that the feedback that check50
provides prior to students’ submission of each assignment has
compelled students to spend more time debugging than they had
in the past. At the same time, students’ correctness scores are now
higher than ever.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Student assessment; •Applied computing→Computer-
assisted instruction.
KEYWORDS
assessment, autograding, feedback

ACM Reference Format:
Chad Sharp, Jelle van Assema, Brian Yu, Kareem Zidane, and David J. Malan.
2020. An Open-Source, API-Based Framework for Assessing the Correctness
of Code in CS50. In Proceedings of the 2020 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’20), June 15–19, 2020,
Trondheim, Norway. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3341525.3387417

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6874-2/20/06. . . $15.00
https://doi.org/10.1145/3341525.3387417

1 INTRODUCTION
We present an open-source, API-based framework for assessing cor-
rectness of code via functional testing, informed by our own years
of experience with homegrown and third-party alternatives at Har-
vard in CS50, our introductory course for majors and non-majors
alike. Implemented in Python, this framework provides teachers
with an API via which to write checks (i.e., tests) and students with
a command-line tool, check50, via which to execute those checks
against their own code. The framework additionally provides an op-
tional, containerized back-end environment in which students’ code
can be sandboxed, for cases where teachers prefer not to execute
students’ code locally. Via a JSON-based API can checks’ results be
incorporated into one’s own learning management system (LMS)
or other infrastructure.

Since its deployment in 2012, check50 has been used by thou-
sands of students on campus and tens of students online (via a
MOOC). On campus, check50 has not only equipped students with
more-immediate feedback on work, it has also streamlined CS50’s
grading workflows, enabling teaching fellows (TFs) to spend more
time on qualitative feedback for students. In the case of the MOOC,
check50 has enabled feedback itself for students off campus, albeit
less personal.

However, the framework’s deployment has not been without
unforeseen side effects. Based on end-of-term surveys, students
now report spending even more time on the course’s programming
assignments. That students now know, prior to submission, whether
their work is correct, seems to be compelling even more effort. At
the same time, we have found that some students have begun to
rely too heavily on check50, effectively using it as their compiler
(rather than, e.g., clang itself) in lieu of compiling or even testing
their code themselves. We have thus begun to restrict the tool’s use
at term’s start so that students have time to acquire some muscle
memory. Similarly toward term’s end have we begun to restrict use,
instead advising students on how they might test their own code.

With that said, when students do have access to check50, up-
wards of 90% of students’ submissions now receive perfect scores
for correctness on the course’s 5-point scale. To be fair, there might
still be room for improvement in the submitted programs’ design.
And while there are occasionally cases that our own suites of checks
do not catch initially, we iteratively eliminate those oversights each
term as we augment our checks.

In the sections that follow, we elaborate on this framework’s
motivation, detail its design, reflect on results, and propose oppor-
tunities for next steps.
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2 BACKGROUND
Our own workflow for assessment has evolved over time and has
informed our design of check50. Years ago, we simply provided the
course’s TFs with a list of criteria against which to check students’
code. That process, of course, was quite labor-intensive, with TFs
manually compiling and executing students’ code with prescribed
inputs, after which they would record 0s and 1s in a spreadsheet.
Quite quickly, some of the course’s own TFs begin to automate
that process with shell scripts, though each was homegrown for
a particular assignment. Such “spaghetti” code too often proved
unmaintainable year over year.

We considered standardizing on a unit-test framework (e.g., CU-
nit for assignments in C), though any such framework would re-
quire that we (or students themselves) instrument students’ code
for the particular framework. And for the course’s earliest weeks,
we were disinclined pedagogically to prescribe that students break
up relatively small programs into even smaller functions solely for
the sake of testing. That paradigm, we felt, could come later in the
course.

Of particular interest, then, was to design a standardized frame-
work via which the course’s staff could automate assessment of
correctness and feedback that would not impose conventions on stu-
dents’ own code. Similarly did we not want to impose a monolithic
system or UI on fellow teachers who might adopt our framework
themselves, and so another design goal was to ensure that all results
could be extracted via simple API calls.

Indeed, we now use check50 ourselves as just one component
in our own grading pipeline. When students submit their work to
a server, that triggers an automatic execution of check50, whose
results are then stored, via an API call, in the course’s own data-
base. (Via a configuration file could those results be stored in any
other teacher’s database.) And an additional tool automatically lints
students’ code and provides feedback on style.

3 RELATEDWORK
Courses in programming have long automated assessment thereof.
Many automatic assessment systems exist and new ones are con-
tinuously created [1, 3, 8], not only for operational efficiency but
educational value as well. Edwards [5], for instance, advocates for
test-driven development, whereby students submit tests of their
own along with their code. Of course, those tests should be, ideally,
simple to write. Or, better yet, unnecessary to write.

Singh et al. [15], for instance, offer a tool for automated genera-
tion of feedback based on reference implementations of problems.
Piech et al. [12] apply machine learning toward the same. And
Dewey et al. [4] propose how to evaluate the efficacy of hand-
generated tests.

Although other open-source (and commercial) frameworks exist
for automated testing of students’ code, among our goals in devel-
oping check50 was to optimize the pedagogical usefulness of the
system for less-comfortable students. Gradescope [6] and OK [11],
two of the more popular code-checking systems that support the
writing of arbitrary test code, display relatively limited information
when student’s code fails to pass tests. Indeed, when students’ code
fails to pass a test case, students are generally presented only with
the assertion error that triggered the failure.

CodeLab by Turing’s Craft [2], meanwhile, analyzes both the
syntax of students’ submissions via lexical analysis and the runtime
behavior of students’ code. It then offers suggestions and rhetorical
questions in order to advise students on how to achieve desired
behavior, not unlike check50’s own approach.

Vocareum [16], a service that offers grading automation as part
of its learning management system, supports a simple user interface
for generating tests that check for expected output and expected
exit status, also allowing instructors to write arbitrary tests via
their own grading scripts.

Autolab [13], meanwhile, offers functionality similar to check50
but with the requirement of a back end.

A limitation of some of these tools, meanwhile, including Grade-
scope and OK, is that tests run independently, without support for
some tests depending upon others. For several of our use cases in
CS50, we found it valuable for some checks to depend upon the suc-
cess and potential side effects of previously run checks. Accordingly,
students can focus on just a limited set of failed checks rather than
those that failed only because their dependencies did. For instance,
in some cases, we wanted a check first to assess whether a student’s
code compiled and another check to assess some other behavior
that’s dependent on the code having passed that first check.

We also drew inspiration for the design of checks in check50
from Python’s built-in unittest framework, ultimately deciding
to implement checks as Python methods, to use docstrings as de-
scriptions of the functionality being tested, and to support “skipped”
checks (that only run if their dependencies pass).

Unlike most other tools, check50’s own dependencies are mini-
mal, and the tool itself can run locally. All that’s required is a Python
interpreter and Git. Teachers can write checks to test programs
written in any language, so long as a compiler or interpreter for
that language is installed locally as well.

Of course, a downside of any framework that uses human-written
test cases, is the difficulty and human cost of writing test cases that
cover a wide-enough spectrum of errors. To support easy updates,
then, checks for check50 can be hosted online on any repository
on GitHub. The result is a collaborative workflow where teachers,
TFs, and perhaps even students can independently create issues
and submit contributions to the checks.

4 IMPLEMENTATION
In their systematic literature review, Ihantola et al. [8] describe
eight features of automatic assessment tools. In Table 1, we list a
description of check50’s support for those features.

In order to check their code for correctness, students simply
run check50 in the directory containing their code, passing as a
command-line argument a unique slug (i.e., string) corresponding
to the problem on which they are working. For example, a student
taking CS50 at Harvard in Fall 2019 who was currently working on
a problem called cash would have executed check50 per Figure 1.
The smile indicates that a check has passed, whereas the frown
indicates that a check has failed.

All of check50’s checks are hosted on GitHub, and the slug
serves to uniquely identify the repository and path in which checks
are located. Adding checks to check50 is thus as simple as adding to
or creating a newGitHub repository. Indeed, check50 expects a slug
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Feature check50
Programming Languages Teachers can write checks to test programs written in any language, so long as a compiler or

interpreter for that language is installed locally as well.
Learning Management Systems (LMS) Via a JSON-based API can checks’ results be incorporated into one’s LMS.
Defining Tests Checks are written by humans and hosted on GitHub.
Possibility for Manual Assessment There is no support for manual assessment within the framework. That feature is left to the

consumer of the framework’s API.
Resubmissions There are no limitations on resubmissions.
Sandboxing The framework provides an optional, containerized back-end environment in which students’

code can be sandboxed.
Distribution and Availability check50 is available as open source at https://github.com/cs50/check50. Use of the tool, includ-

ing its remote component, does not require approval from the authors.
Specialty The framework can be extended independently from the main project with any pip-installable

package, thereby allowing others to add support for specialty use cases, such as SQL, web
programming, and GUIs, without needing to change existing code.

Table 1: check50’s support for the features described by Ihantola et al. [8].

Figure 1: Sample execution of check50 for a problem called
cash in Fall 2019 of CS50.

to be formatted as :organization/:repository/:branch/:path,
as in Figure 1. Even though a check’s branch and path may contain
arbitrarily many slashes, Git and, by extension, GitHub do not allow
a repository to contain a branch that is a subpath of another. So
each slug necessarily maps uniquely to a repository, branch, and
path on GitHub.

check50 is implemented in Python, which itself is increasingly
used in introductory programming courses [9]. Installation of check50
on a system with Python installed is as simple as installing any
Python package: pip install check50. Checks themselves are
implemented in Python, as in Figure 2.

Once installed, check50 can operate in two modes: local or re-
mote. The default is remote, but if teachers or students wish to run
check50 locally (e.g., for privacy concerns or lack of an internet
connection), it suffices to add --local as a command-line argu-
ment. The behavior of check50 is the same in both modes; any
check that passes or fails will pass or fail independent of the mode
selected.

check50’s remote mode is implemented by running check50
within a cloud-based container. This implementation detail is ab-
stracted away, though, via the optional back end. To use check50

import check50
import check50.c

@check50.check()
def exists():

"""hello.c exists."""
check50.exists("hello.c")

@check50.check(exists)
def compiles():

"""hello.c compiles."""
check50.c.compile("hello.c")

@check50.check(compiles)
def world():

"""responds to stdin."""
check50.run("./hello").stdin("world")

.stdout("hello, world").exit()

Figure 2: An example of a check written in check50’s Python
format.

remotely, a student need only register for a (free) GitHub account
and join an “organization” that’s been set up by a course or univer-
sity.

A principal design goal of check50 is to optimize the pedagogical
usefulness of the system for less-comfortable students. In part, we
achieve such by allowing teachers to control the output of check50,
not only by defining a description for each check, but also defining,
in advance, helpful hints for common mistakes, as in Figure 1. A
common mistake that students make in CS50’s cash problem, for
instance, is not correctly rounding floating-point numbers, which
results in an off-by-one error. check50 allows a check writer to add
additional, case-specific help messages when a check fails, thereby
empowering teachers to give helpful hints at just the right moment.

https://github.com/cs50/check50
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5 CHALLENGES
Implementation of check50 was not without challenges.

5.1 Performance
By default, check50 ships with a simple API that facilitates start-
ing processes, sending standard input to them, and checking their
standard output and exit code. Of course, this style of black-box
testing results in a significant portion of time spent waiting on
I/O. To combat such, check50 runs checks in parallel by default, in
contrast with frameworks like unittest, pytest, and nose2, which
do not support parallel tests natively but could through third-party
extensions.

Inspired by the implementation of functional programming such
as Haskell, check50 parallelizes the checks automatically where
possible, albeit with the constraint that checks in check50 should
be written as pure functions without side effects.

Of course, side effects are sometimes warranted. For instance,
it’s convenient to compile code once in one check and then pass
the compiled program to other checks for functional testing. And
so check50 indeed allows checks to depend on one other check,
with the dependent check inheriting (a copy of) the other check’s
side effects. Parallel checking can also be disabled as needed.

5.2 Varying Technical Audiences
Another challenge that we faced when designing check50 was the
varying technical comfort of teachers (i.e., prospective check writ-
ers). We consider our use of Python for check50 an implementation
detail justified by its current popularity [9]. (And checks themselves
can be written, in Python, to test programs written in any language.)
We do, however, acknowledge that not all teachers are comfort-
able with Python. As such, in similar spirit to Codevolve’s and
Vocareum’s tests, check50 supports a simpler, if limited, method
for writing checks. Checks can alternatively be implemented in
YAML, a text format based on key-value pairs, as in Figure 3. These
YAML-based checks are more limited by design: they only support
running programs, sending them input, and checking their output
and exit code.

With that said, to ease the potential transition for teachers from
YAML to richer Python-based checks, and to ensure equivalent be-
havior, check50 actually compiles YAML checks to human-readable
Python checks, which are themselves then executed. As a result,
transitioning from YAML to Python is as simple as changing a
configuration option.

check50:
checks:

- run: python hello.py # run `python hello.py`
stdin: world # input "world"

stdout: hello, world # expect output "hello, world"
exit: 0 # expect exit code 0

Figure 3: An example check written in check50’s YAML for-
mat.

5.3 Extensibility
To accommodate other use cases, check50 itself can be extended
with new features by simply installing additional Python pack-
ages via pip. check50 achieves such through a configuration op-
tion that takes a list of pip-installable dependencies, similar in
spirit to Python’s convention of including them in a file called
requirements.txt. Such a list enables check50 to install all de-
pendencies even when running remotely. Via this mechanism can
check50 be extended with support for different programming lan-
guages or tools, without needing anyone’s server-side approval or
needing to change existing code.

For instance, at the University of Amsterdam, there is now a
data science course that extended check50 with Jupyter Notebook.
The extension automatically generates checks from test cells in
Notebook and then runs all cells in a Jupyter kernel. The result
is a lightweight alternative to nbgrader [7] for assessing code in
notebooks, without the overhead of setting up a course in nbgrader
or the need to host one’s own server. The extension also enables
students to add checks of their own that can then be tested by
check50.

6 RESULTS
check50 has helped our course’s staff improve both the efficiency
and the consistency of grading of students’ assignments. Whereas,
previously, the course’s staff would spend hours running a dozen
or more tests manually on each of their students’ submissions,
check50’s automation of the correctness-checking process has
helped us ensure that the correctness of all students’ code is evalu-
ated on the same metrics. Moreover, it has freed up more human
time for staff to spend on qualitative feedback and interactions with
students.

However, when we first deployed check50 in 2012, we did ob-
serve that students began to spend more time on the course’s as-
signments, so much so that they began to perceive them more
negatively, based on end-of-term feedback. At the end of each term,
students are asked to rate the course’s assignments on a scale from
1 (unsatisfactory) to 5 (excellent). In 2011, the course’s assignments
averaged a score of 4.24, whereas in 2012, the assignments aver-
aged a score of 3.86. (In both years did the course have hundreds of
students.) We speculate that this change was, at least in part, the
result of students perceiving assignments as more difficult. With
check50, students were now empowered to check their own code
before submission, discovering errors and corner cases that, in pre-
vious years, might have gone unnoticed. The course’s assignments
effectively became more difficult, but only insofar as students now
knew, before submission, that their solutions were not yet quite
right.

With that said, students in CS50 have taken significant advan-
tage of the instantaneous feedback on code’s correctness provided
by check50 to verify that their code is, in fact, correct before sub-
mission, per Figure 4. In Fall 2017, for instance, when 10,951 sub-
missions were made (by 671 students) for problems that supported
check50 testing, 9,901 of those submissions—or 90% of the total—
received perfect correctness scores. Another 458 submissions—or
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4% of the total–received a score of 4 out of 5 on correctness, indicat-
ing nearly perfectly correct code, and fewer than 6% of submissions
received a score of 3 or lower.

Figure 4: Distribution of correctness scores

However, even as we found that students were using check50
to verify the correctness of their code before submission, we also
observed that students were perhaps over-using check50 because
of its ease of use. Usage of check50 averaged as few as 6.5 in-
vocations on some problems and as many as 28.1 invocations on
others. But during office hours (one-on-one opportunities for help
for students), the course’s staff also noticed that some students were
frequently not even compiling their own code, choosing instead to
run check50 on their submission to see whether or not it would
compile. For those students, check50 unintentionally became a
proxy of sorts for commands like clang (for C programs). Some
staff members worried that, in providing such a readily available
correctness-checking tool to students, students were failing to estab-
lish their own habit of compiling, running, testing, and debugging
their own code for themselves.

To mitigate that risk, we have begun to restrict check50’s use
at term’s start, introducing it only after students have developed
somemuscle memory for compiling, running, and testing their code
themselves. And we have also implemented support for “private”
checks, which will enable us (and teachers more generally) to test
submissions with checks that students do not themselves see, in
order to motivate additional testing on their own.

7 FUTUREWORK
check50 can be extended via any pip-installable package. However,
there is no method to install arbitrary software, besides Python
packages, in check50’s remote operation. In our testing, it proved
too time-consuming to install other types of packages as each server-
side container would have to download and re-install each package.
Instead, we propose to add support for custom container images,

giving complete control to teachers employing check50 over the
environment in which check50 runs.

Currently, check50 cannot handle data files that are larger than
2GB or heavy computing tasks that requires specialty hardware,
both of which, we recognize, are common in data science classes.
We propose, then, to add an ability to configure one’s own back
end for check50, effectively achieving extensibility in hardware as
well.

Given our own experience, we do worry that the availability
and ease of use of check50 fosters all too much of a trial-and-error
strategy for some students. We are encouraged to explore methods
to have students establish their own habit of compiling, running,
testing, and debugging. Indeed, others have tackled precisely this
problem themselves. Edwards [5] suggests that students should
submit tests along with their code, to foster a reflection-in-action
strategy. In the Scheme-Robo automatic assessment system, Saikko-
nen et al. [14] purposefully lengthen the run time to ten minutes
to encourage students to test their code before submitting. And
Karavirta et al. [10] suggest both limiting the number of attempts
and randomizing the inputs for the problem after each run.

8 CONCLUSION
Homegrown and third-party solutions for auto assessment abound,
but we present in this work a framework that is, by design, open-
source and extensible in hopes that we, as a community, can rein-
vent fewer wheels. While we ourselves use the framework to test
code written in C and Python in CS50 at Harvard, the framework
itself is language-agnostic, and extensions for additional languages
are welcome.While check50’s deployment in CS50 seemed straight-
forward initially, it has not been without side effects, nearly all of
them behavioral but manageable pedagogically. There is surely a
balance to be struck, then, between such any tool’s upsides and
downsides, and with each passing term do we refine our own usage.
And with the framework’s cloud-based back end now accumulating
so many submissions, we anticipate that we can ultimately provide
automated feedback not only on correctness but also design, the
latter informed by TFs’ own qualitative assessment of past students’
submissions that resemble those present.
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APPENDIX
check50 is available at https://github.com/cs50/check50 as open-
source software.
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