
Rapid Detection of Botnets
through Collaborative Networks of Peers

A thesis presented

by

David J. Malan

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

June 2007

c© 2007 – David J. Malan

All rights reserved.

Thesis advisor Author
Michael D. Smith David J. Malan

Rapid Detection of Botnets
through Collaborative Networks of Peers

Abstract

Botnets allow adversaries to wage attacks on unprecedented scales at unprece-
dented rates, motivation for which is no longer just malice but profits instead. The
longer botnets go undetected, the higher those profits.

I present in this thesis an architecture that leverages collaborative networks of
peers in order to detect bots across the same. Not only is this architecture both
automated and rapid, it is also high in true positives and low in false positives. More-
over, it accepts as realities insecurities in today’s systems, tolerating bugs, complexity,
monocultures, and interconnectivity alike. This architecture embodies my own defi-
nition of anomalous behavior: I say a system’s behavior is anomalous if it correlates
all too well with other networked, but otherwise independent, systems’ behavior.

I provide empirical validation that collaborative detection of bots can indeed work.
I validate my ideas in both simulation and the wild. Through simulations with traces
of 9 variants of worms and 25 non-worms, I find that two peers, upon exchanging
summaries of system calls recently executed, can decide that they are, more likely
than not, both executing the same worm as often as 97% of the time. I deploy
an actual prototype of my architecture to a network of 29 systems with which I
monitor and analyze 10,776 processes, inclusive of 511 unique non-worms (873 if
unique versions constitute unique non-worms). Using that data, I expose the utility
of temporal consistency (similarity over time in worms’ and non-worms’ invocations
of system calls) in collaborative detection.

I identify properties with which to distinguish non-worms from worms 99% of
the time. I find that a collaborative network, using patterns of system calls and
simple heuristics, can detect worms running on multiple hosts. And I find that
collaboration among peers significantly reduces the risk of false positives because
of the unlikely, simultaneous appearance across peers of non-worm processes with
worm-like properties.

Contents

Title Page . i
Abstract . iii
Table of Contents . iv
List of Figures . vi
List of Tables . vii
Citations to Previous Publications . viii
Acknowledgments . ix
Dedication . x

1 Introduction 1
1.1 Why Security Is Hard . 3
1.2 Detection of Botnets . 6
1.3 From Botnets to Worms . 7

1.3.1 How Not to Detect Worms . 7
1.3.2 How to Detect Worms . 10

1.4 Contributions . 13

2 Host-Based, Collaborative Detection of Worms 15
2.1 Anomalous Behavior of Worms . 15
2.2 A Behavior-Based, Distributed IDS 16
2.3 Temporal Consistency . 19

2.3.1 System Calls as a Proxy for Behavior 19
2.3.2 Measuring Similarity with Levenshtein Distance 23
2.3.3 Measuring Similarity with Intersection 25

2.4 Related Work . 28
2.5 Discussion of Threats . 29
2.6 Summary . 31

3 True Positives 33
3.1 Questions . 36
3.2 Methodology . 37

iv

Contents v

3.2.1 Wormboy 1.0 . 38
3.2.2 Traces of Worms and Non-Worms 39

3.3 Results . 40
3.3.1 How likely is a worm to look like itself? 40
3.3.2 How likely is a non-worm to look like itself? 43
3.3.3 How likely is a non-worm to look like a worm? 45

3.4 Summary . 46

4 False Positives 49
4.1 Questions . 50
4.2 Methodology . 51

4.2.1 Wormboy 2.0: Peers’ Client 52
4.2.2 Wormboy 2.0: The Snapshot Server 53

4.3 Results . 54
4.3.1 Identifying τ , r, and r′ . 54
4.3.2 Detecting Processes across Peers 57
4.3.3 Avoiding False Positives . 61

4.4 Summary . 63

5 Scalability 67
5.1 Framework for Assessment . 67
5.2 Self-Monitoring By Peers . 68
5.3 Submission of Snapshots . 70
5.4 Analysis of Snapshots . 75

5.4.1 Pairwise Comparison of Snapshots 75
5.4.2 Searching for Cliques . 78

5.5 Summary . 82

6 Conclusions and Future Work 85

Bibliography 88

List of Figures

1.1 A false positive typical of behavior-based IDSes 9

2.1 My vision of collaborative detection 17
2.2 Hypothetical trace of a . . . process’s invocation of . . . system calls . . . 21
2.3 Application of Levenshtein distance to a pair of snapshots 24
2.4 Application of intersection to a pair of snapshots 27

3.1 Traces of one host’s behavior . 35
3.2 Calls to system services by Worm/Lovesan.A 42
3.3 Calls to system services by I-Worm/Sasser.B 43
3.4 Calls to system services by I-Worm/Bagle.Q 44
3.5 Calls to system services by Worm/Lovesan.H per 5-second window . . 46
3.6 Calls to system services by Worm/Lovesan.H per 15-second window . 47
3.7 Degrees, τ , of temporal consistency of worms versus non-worms . . . 48

4.1 Wormboy 2.0’s definition of a snapshot 53
4.2 τ versus r versus r′ for worms and non-worms 58
4.3 Rates of recognition of non-worms . 59
4.4 Average and maximal rates of recognition for non-worms 61
4.5 Snapshots from sshd.exe and I-Worm/Mydoom.F 66

5.1 Sizes of snapshots . 73
5.2 Distribution of system services . 77
5.3 Implementation of snapshots’ comparison 78
5.4 Implementation of 1-bit counting . 79
5.5 Time required for centralized analysis of snapshots for similarity . . . 80
5.6 Probabilities of edges among peers 83
5.7 Time required for discovery of maximal cliques 84

vi

List of Tables

3.1 Worms and non-worms whose traces I analyzed 40
3.2 Probability . . . using Levenshtein distance 41
3.3 Probability . . . using intersection . 45

4.1 Nineteen non-worms that exhibit worm-like behavior 56
4.2 Results of . . . examination of 10,776 non-worm processes 57
4.3 Similarity over time of 14 worm-like non-worms 65

5.1 Results of executing PC World’s WorldBench 5 69
5.2 Snapshots per window per host . 72
5.3 Sizes of snapshots . 74
5.4 Estimates . . . for transmission of . . . snapshots 74

vii

Citations to Previous Publications

Portions of this thesis are adapted or excerpted from these publications.

David J. Malan and Michael D. Smith.
“Host-Based Detection of Worms through Peer-to-Peer Cooperation.”

ACM Workshop on Rapid Malcode.
Fairfax, Virginia. November 2005.

David J. Malan and Michael D. Smith.
“Exploiting Temporal Consistency to Reduce False Positives in

Host-Based, Collaborative Detection of Worms.”
ACM Workshop on Recurring Malcode.

Fairfax, Virginia. November 2006.

Acknowledgments

My thanks to John Dias, Paul Govereau, Kelly Heffner, Glenn Holloway, Kevin
Redwine, and David van Dyk for their support throughout this work.

My thanks to Wellie Chao, Rei Diaz, Anthony DiComo, Breanne Duncan, Kathleen
Durant, Kelly Heffner, Glenn Holloway, Matthew Fluet, Matthew Foroughi, Dianne
Malan, Lauren Malan, Tomas Mikuckis, Gordon Murphy, Daniel Peng, Chris Power,
Roman Rubinstein, Andrew Smith, Samantha Smith, Shane Smith, Lifan Yang, and

Xin-Xin Zeng for welcoming Wormboy into their kernels for this work.

My thanks to Michael Mitzenmacher and Greg Morrisett
for their counsel on this work.

And my thanks and gratitude to Michael D. Smith,
without whom this work would not exist.

dedicated to

Henry H. Leitner

Chapter 1

Introduction

Botnets are networks of systems on which adversaries have somehow installed

software called bots that they can remotely control, typically unbeknownst to those

systems’ own owners [10, 62, 70]. For all intents and purposes, bots are just viruses

or worms that happen to allow remote command and control [22, 32] by adversaries.

The value of botnets to adversaries derives from their size. Not only do they pro-

vide adversaries with cycles and bandwidth for which they need not pay, they allow

adversaries to wage attacks on unprecedented scales at unprecedented rates. Large

numbers of bots are of particular value these days for distributed denial-of-service

(DDoS) attacks [43,74,82], relay of spam [63], and click fraud [22].

Botnets exist because we are not very good at keeping our systems secure. Few

days seem to go by without some announcement of newly discovered vulnerabilities

in some software-based product or service, many of them “critical.” According to

Microsoft, the #3 reason (out of 100) to purchase Windows Vista is that it’s “the

safest version of Windows ever” [50]. However, it’s about Windows Vista that some

of those announcements have been [12–15]. Not just botnets but also viruses, worms,

and spyware seem to have entered the general lexicon, testament to their ubiquity.

1

Chapter 1: Introduction 2

Of course, users might still have trouble distinguishing each of those threats, but they

certainly seem to be worried about them nonetheless. Rightly so, if nearly 90% of

their computers are already infected with some form thereof [89].

To be sure, we, as users, do install anti-this and anti-that. And today’s operating

systems do tend to update themselves automatically. But clearly our adversaries are

still slipping past our defenses. We just make it so easy to do so.

We continue to write buggy software, and it’s in bugs that adversaries typically

find opportunities for malice. We write increasingly complex software, which typically

means more bugs and, thus, more opportunities. We also all run the same software,

and it’s in monocultures that adversaries find identical opportunities.

Of course, we might not be much better at security in the real world. After all,

banks are still robbed and homes are still burgled. But this Internet of ours seems

to exacerbate weaknesses that, in the physical world, are mitigated by distance and

time. In the physical world, banks and homes simply are not within reach of all pos-

sible adversaries. In the physical world, adversaries simply cannot attack all possible

banks and all possible homes in just minutes or seconds. The combination of bugs,

complexity, and monocultures with such extreme interconnectivity certainly means

trouble. In the words of Hoglund and McGraw [31], connectivity and complexity

alone constitute two pillars of a “trinity of trouble.”1

I say trouble because these realities present opportunities not only for malice

but also for profit. Merely crashing systems, perhaps once upon a time interesting,

is not particularly profitable. Far more alluring to adversaries is monetization of

our insecurities. Those “critical” bugs, after all, allow black hats to install their

1The extensibility of today’s systems is McGraw’s third pillar.

Chapter 1: Introduction 3

own software and take control of our systems, often without our knowledge. With

access to the cycles and bandwidth of hundreds or thousands or millions of systems,

adversaries can wage (or sell) any number of attacks [72]. Thus do we have botnets.

In time, new tools and languages may very well help us write code that, while

still complex, nonetheless suffers fewer bugs per line. But bugs and complexity are

probably with us for some time. As for our monocultures, we could diversify our

systems but only to limited extent. After all, choices (of, say, operating systems) and

resources (to, say, support them) are limited.

The challenge, then, is to live with bugs, to live with complexity, to live with

monocultures. The challenge is to live with systems like ours on today’s Internet but

do better than we are currently doing with regard to security, even though it is hard.

This thesis shows that we can. We might not be very good at keeping adversaries,

and thus bots, off of our systems. But I claim that we can detect them rapidly when

they are there.

1.1 Why Security Is Hard

A system that is “powered off, cast in a block of concrete, and sealed in a lead-lined

room with armed guards” [80] might be secure, but it certainly isn’t useful. And so

we take it out and power it on. We network it with other systems and then network

those networks. The net result is, of course, our Internet, the transitive closure of

which is a scary place. Much unlike our physical world, in which oceans and land

keep adversaries at bay, this Internet puts each system quite within reach of every

other, any one of which might prove a threat.

Chapter 1: Introduction 4

We thus guard our systems with software, typically layers of software so that we

have “defense in depth” [53]. We erect firewalls. We brew honeypots. We install

intrusion-detection systems. We deploy virus scanners. And we ready other defenses

still.

We occupy, after all, the so-called “position of the interior” [73]. Whereas we

must find and fill all holes in our systems, our adversaries need find and exploit just

one in the same. And it’s certainly easier to find one than all. Statistics are on our

adversaries’ side. Anderson [6] paints the situation as follows.

. . . suppose a large, complex product such as Windows 2000 has
1,000,000 bugs, each with a MTBF2 of 1,000,000,000 hours. Suppose
that Paddy works for the Irish Republican Army, and his job is to break
into the British Army’s computer to get the list of informers in Belfast;
while Brian is the army assurance guy whose job is to stop Paddy. So he
must learn of the bugs before Paddy does.

Paddy has a day job so he can only do 1000 hours of testing a year. Brian
has full Windows source code, dozens of PhDs, control of the commercial
evaluation labs, an inside track on CERT, an information sharing deal
with other UKUSA member states—and he also runs the government’s
scheme to send round consultants to critical industries such as power and
telecomms to advise them how to protect their systems. Suppose that
Brian benefits from 10,000,000 hours a year worth of testing.

After a year, Paddy finds a bug, while Brian has found 100,000. But
the probability that Brian has found Paddy’s bug is only 10%. After ten
years he will find it—but by then Paddy will have found nine more, and
it’s unlikely that Brian will know all of them. Worse, Brian’s bug reports
will have become such a firehose that Microsoft will have killfiled him.

In other words, Paddy has thermodynamics on his side. Even a very
moderately resourced attacker can break anything that’s at all large and
complex. There is nothing that can be done to stop this, so long as
there are enough different security vulnerabilities to do statistics: differ-
ent testers find different bugs. (The actual statistics are somewhat more
complicated, involving lots of exponential sums; keen readers can find the
details [in Brady et al. [11]].)

2mean time between failures

Chapter 1: Introduction 5

If we accept that our adversaries have this constant advantage, this is, as they

say, a losing battle. Even though there are, according to Anderson, “various ways in

which one might hope to escape this statistical trap.”

First, although it’s reasonable to expect a 35,000,000 line program like
Windows 2000 to have 1,000,000 bugs, perhaps only 1% of them are
security-critical. This changes the game slightly, but not much; Paddy
now needs to recruit 100 volunteers to help him (or, more realistically,
swap information in a grey market with other subversive elements). Still,
the effort required of the attacker is still much less than that needed for
effective defense.

Second, there may be a single fix for a large number of the security critical
bugs. For example, if half of them are stack overflows, then perhaps these
can all be removed by a new compiler.

Third, you can make the security critical part of the system small enough
that the bugs can be found. This was understood, in an empirical way,
by the early 1970s. However, the discussion in the above section should
have made clear that a minimal TCB3 is unlikely to be available anytime
soon, as it would make applications harder to develop and thus impair the
platform vendors’ appeal to developers.

“Attack is simply easier than defense,” admits Anderson, at least when it comes to

real-world systems. In the world of cryptography, we tend to enjoy quite the opposite

relationship with our adversaries. Consider a cryptosystem based on two functions,

Enc and Dec, and the secrecy of some key, k, whereby Deck(Enck(m)) = m, where

m is some plaintext. To compromise this cryptosystem via brute force, an adversary

must, on average, try 2|k|−1 possible keys. That is, given c = Enck(m), an adversary

must compute Deck(c) for 2|k|−1 values of k on average. Assuming an adversary of

limited computational resources (i.e., polynomially equivalent to our own), a one-

bit increase in the the size of k therefore doubles the adversary’s running time while,

typically, increasing our own (i.e., that of Enc and Dec) only linearly. In other words,

3trusted computing base

Chapter 1: Introduction 6

that which is linear in cost for us is exponential in cost for our adversary. More to

the point, in this world of cryptography, we have it easier than our adversary.

When it comes to real-world systems, though, we enjoy no such imbalance. Rather,

it’s we who must keep up with our adversaries. We might very well have some

defenses in place for our systems. But each time our adversaries discover means for

circumvention thereof, we must scramble to patch the new leak. And it’s never long

before adversaries spring the next.

Security is hard because this playing field is not level.

1.2 Detection of Botnets

Detection of botnets is not easy. After all, their traffic (e.g., SMTP or HTTP)

tends to resemble that of systems not under adversaries’ control. Spam is just email.

And fraudulent clicks are still clicks. Moreover, victims of botnets’ attacks experience

those attacks from all different directions (i.e., many different IP addresses). How

to distinguish customers from bots is not necessarily obvious when it’s some virtual

store that’s under attack.

But the longer a botnet goes undetected, the more profits our adversaries might

gain. The longer a botnet goes undetected, the more cycles and bandwidth (and

sales) we might lose. Detect botnets quickly, though, and we might lower those

profits. Detect botnets quickly, and we might render our systems, despite all their

flaws, far less attractive to adversaries.

To be sure, an adversary’s profits also tend to grow with a botnet’s size. The

more bots an adversary controls, the more attacks he can wage. We might therefore

Chapter 1: Introduction 7

render botnets less profitable by combatting their size. I focus in this thesis, though,

on time to detection rather than size. After all, the sooner we detect a botnet at all,

the sooner we can impede further growth thereof.

1.3 From Botnets to Worms

Detection of botnets reduces to detection of bots across systems. In different

forms do these bots come, but I focus on worms for this thesis. Unlike viruses, which

require action by humans to propagate, worms travel and execute across systems all

by themselves. And they move quickly.

Worms’ rates of propagation are no longer measured in hours but in minutes [51,

65, 91]. So fast are the fastest that human intervention no longer is possible [81, 82].

Detection must therefore be automated like the adversaries themselves. But with

automation comes a risk of false positives, whereby benign applications (non-worms)

might be misclassified as worms. The question at hand, then, is whether we can build

intrusion-detection systems (IDSes) that are not only automated and rapid but also

high in true positives and low in false positives.

1.3.1 How Not to Detect Worms

Common today are IDSes based on automated recognition of signatures, sequences

of bytes indicating some worm’s presence in memory or network traffic. Such defenses

are fast, and specificity of signatures renders false positives unlikely. But the pro-

tections are limited: systems are safe from only those worms for which researchers

have had time to craft signatures, and signature-based defenses can be defeated by

Chapter 1: Introduction 8

metamorphic or polymorphic worms [38, 90]. Signatures require that we constantly

“dance” with our adversary: for each change that he makes to his worm to avoid

detection, we must respond manually with a step of our own.

Behavior-based defenses offer an attractive alternative. Not only are they effec-

tively automated, they try to stay one step ahead of our adversaries by monitoring

systems for anomalous (e.g., yet unseen) behavior. Moreover, they are perhaps less

susceptible to defeat by mere transformations of text, insofar as they judge the effect

of code more than they do its appearance. But this resilience comes at a cost: accu-

racy or usability. Faced with some anomalous action, behavior-based defenses must

either block that action, potentially impeding desired behavior, or wait for the user’s

judgement. Such defenses can therefore be defeated by users themselves if annoyed

or confounded by too prompts. Figure 1.1 presents one such nuisance. If threats are

judged non-threats, the results are infections. If non-threats are judged threats, the

results are false positives. Consequently, defenses as high in false positives as they

are in true positives are perhaps just as bad as no defenses at all. Both put systems’

usability at risk.

Inherent in IDSes, then, are “virtual knobs.” Settings tailored to known worms’

behaviors tend to produce few false positives but are easier for worms’ authors to

circumvent in future designs. Settings that detect many behaviors (and thus many

worms), meanwhile, tend to produce many false positives. The ideal IDS detects

many behaviors without producing false positives. Today’s IDSes, of course, are far

from ideal. Not only do they suffer false positives, they also suffer false negatives,

whereby actual worms are not detected at all. Examples abound; I offer just two for

Chapter 1: Introduction 9

Figure 1.1: A false positive typical of behavior-based IDSes that monitor systems for
worrisome (e.g., previously unseen) activity. In this particular instance, an attempt to
modify the Windows registry by QuickTime [8] is flagged by Spybot [39] as anomalous
behavior. The user is thus prompted to approve or deny the change even though it
does not constitute an actual threat. Behavior-based defenses tend to “cry wolf” in
this manner so often that they are vulnerable to defeat by users themselves if annoyed
or confounded by too many prompts.

the sake of discussion.

In April 2004, we experienced Sasser (also known as Jobaka), a worm that compels

certain versions of Windows to shut down. Even those systems with Norton AntiVirus

already installed were not safe until Symantec released “virus definitions, version

30/04/04 rev 70 (20040430.070)” [88].

Earlier in 2004 had we already experienced Bagle, a mass-mailing worm. Accord-

ing to Symantec, “Beta definitions 27975, dated February 17, 2004, 5:20AM PT, or

later will detect this threat” [85].

These anecdotes are only to say that Norton AntiVirus failed to detect both

Bagle and Sasser upon their release. To be fair, Symantec’s competition did not

fare any better. McAfee also raced to update its own software upon these worms’

Chapter 1: Introduction 10

discovery [46, 49]. Similarly did Lovesan (otherwise known as Blaster) [47, 86] and

Mydoom [48, 87] go undetected, along with many other worms, until both vendors

updated their products. That such vendors as these update their products’ so-called

“definitions” continually (i.e., daily or weekly) is itself evidence that worms quite

often go undetected by customers’ systems until their defenses are updated.

I again claim that we can do better. The architecture that I herein propose offers

to detect such worms as these without this inherent need for continual updates.

1.3.2 How to Detect Worms

Rather than focus on adjustment of knobs, I propose a new take on anomalous

behavior altogether. Conventional behavior-based defenses dictate that hosts evaluate

some current action vis-à-vis prior actions or blacklisted actions. A host’s behavior

is deemed anomalous if it differs from that host’s prior behavior or resembles activity

deemed worrisome a priori by some authority (e.g., McAfee [45] or Symantec [84]).

The implication, though, is that a host’s behavior might be deemed anomalous simply

because:

• some process followed a new, but benign, code path for the first time;

• some new, but benign, application is installed for which the host has no history

of behavior; or

• some process behaves in a way that might be, but isn’t necessarily, worrisome

(as in Figure 1.1).

Chapter 1: Introduction 11

In none of these situations do users want prompts, let alone false positives. These

defenses are limited, then, by their own design. Periodic updates of blacklists (or

signatures) aside, today’s defenses operate largely in isolation, focusing more on the

security of one system rather than on that system plus others like it. These defenses

fail to consider all available information. When in doubt as to the nature of some

process, systems tend not to consult each other for “advice,” hints as to whether some

behavior is indeed worthy of concern. By definition, though, worms do not execute

on systems one at a time. I claim, then, that if multiple systems suddenly share some

concern (i.e., within some window of just a few seconds), that in itself is an additional

hint that some behavior might belong to a worm.

I thus offer an alternative definition of anomalous behavior. I propose that a host

evaluate some current action vis-à-vis its peers’ current actions; a host’s behavior

should be deemed anomalous if it correlates all too well with other, otherwise inde-

pendent, hosts’ behavior. To be sure, this definition immediately puts the behavior

of distributed applications and popular applications (that are running across many

systems at once) at risk of being classified as anomalous. But I do not claim that

this approach should be used instead of all others. It can certainly complement more

traditional techniques. Moreover, we could tolerate coordinated behavior in distrib-

uted applications (e.g., Entropia [16]) and even popular applications by maintaining

whitelists for software known not to be worms, as with read-only hashes of benign

executables. (Some distributed applications already provide protections in their vir-

tual machines against ill-behaved and malicious grid programs anyway.) However,

my focus in this thesis is on more generalized techniques than these.

Chapter 1: Introduction 12

I thus present in this thesis the design for an IDS that detects this distributed

form of anomalous behavior. I show that, by leveraging collaboration among inter-

networked peers, we can achieve high rates of true positives and low rates of false

positives.

Worms can be distinguished from non-worms by their simplicity and periodicity:

their design is to spread, and their execution is cyclical. Of course, even non-worms

can manifest cyclical behavior reminiscent of worms’, but I claim that we are less

likely to see such behavior simultaneously on networked, but otherwise independent,

hosts, unless it’s on purpose. Worms’ actions are so relatively few that we are more

likely to detect them operating in parallel on multiple peers than the actions of more

complicated applications with many more code paths. After all, bounded by time as

are fast-moving worms by definition, there are only so many ways for them to achieve

some effect on a host quickly.

Through cooperation among peers, then, we can lower our risk of false positives by

requiring that individual hosts no longer decide a worm’s presence but a cooperative

instead. By monitoring collective behavior of many hosts for similarities, we can avoid

misclassifying non-worms that might otherwise look like worms from the perspective

of a single host. We need not continue to dance with our adversary. He can still make

those changes to his worm, but if he releases the result across peers, we are prepared

by design to detect the new behavior.

To be sure, worms do try not to be noticed. On individual systems, they might

indeed be able to hide. But the more those worms spread, the more they begin to

stand out. We can use our adversaries’ own greed to our advantage.

Chapter 1: Introduction 13

1.4 Contributions

No, we are not very good at keeping our systems secure. Indeed, many of us

already have bots on our systems. But rapid detection of botnets is possible through

collaborative networks of peers. The contributions of this thesis are ultimately three-

fold:

(1) I provide empirical validation that we can indeed detect behaviors, and thus

bots, across peers.

(2) I present an architecture that leverages collaboration among peers to detect

worms. It is automated, rapid, high in true positives, and low in false positives.

It also scales.

(3) I demonstrate that we can, in the course of detection of botnets, tolerate bugs,

complexity, monocultures, and interconnectivity alike.

In the chapter that follows, I elaborate on my proposal for host-based, collabo-

rative detection of worms and reference work related thereto. In Chapter 3, I focus

on my architecture’s potential for true positives. I find through simulation that we

can indeed detect worms by leveraging collaborative analysis of peers’ runtime be-

havior while still reducing the collective’s risk of false positives. Specifically, I find

that two peers, upon exchanging snapshots of their internal behavior, can decide that

they are, more likely than not, both executing the same worm between 76% and 97%

of the time. Moreover, I find that, while certain non-worms can exhibit sufficiently

cyclical behavior as to be potentially mistaken by peers for worms themselves, such

Chapter 1: Introduction 14

mistakes can be avoided. And I find that two peers are unlikely to mistake a non-

worm executing on one for a worm executing on the other. In Chapter 4, I transition

from simulation to actual implementation and deployment of a prototype system in

order to focus on false positives. With it, I identify properties that distinguish worms

from non-worms that allow me to classify accurately 99% of processes as non-worms.

Moreover, I find that a collaborative architecture, using patterns of system calls and

simple heuristics, can detect worms running on multiple peers. And, because of the

unlikely appearance on many peers simultaneously of non-worm processes with worm-

like properties, I confirm that collaboration among peers does significantly reduce the

risk of false positives. In Chapter 5, I demonstrate that my architecture can indeed

scale to hundreds or thousands of hosts, much like the botnets it seeks to combat. In

Chapter 6, I conclude and propose directions for future work.

Chapter 2

Host-Based, Collaborative
Detection of Worms

In this chapter, I elaborate on my proposal for host-based, collaborative detection

of worms. The characteristics that I intend for my proposed IDS to embody are high

rates of true positives and low rates of false positives, along with inherent resistance

to circumvention.

2.1 Anomalous Behavior of Worms

Host-based IDSes tend to evaluate a host’s actions vis-à-vis prior actions or black-

listed actions: a host’s behavior is deemed anomalous if it differs from that host’s

prior actions or a pre-determined list of blacklisted actions. I eschew such reliance

on history and aspire instead to generalize the problem of worms’ discovery away

from recognition of pre-determined actions (and pre-defined signatures) toward more

generalized detection of widespread and coordinated behavior. I again offer my alter-

native definition of anomalous behavior: a host’s behavior is anomalous if it correlates

all too well with other networked, but otherwise independent, hosts’ behavior.

15

Chapter 2: Host-Based, Collaborative Detection of Worms 16

I argue that anomalous behavior, induced by some worm, can be detected because

of worms’ temporal consistency, similarity in behavior over time (i.e., low temporal

variance). As I demonstrate in the chapter that follows, worms stand out among

other processes not so much for their novelty but for their simplicity and periodicity.

I exploit these characteristics in my IDS’s design. Of course, non-worms’ behavior,

on occasion, can resemble that of worms. But so relatively few are a worms’ actions,

we are more likely to detect them in near lockstep on multiple hosts than those of

larger, more complicated applications with more code paths. Through cooperation

among hosts, then, can detect the behavior of worms.

2.2 A Behavior-Based, Distributed IDS

I therefore propose an IDS that is not only behavior-based but also distributed

across some population of hosts, per Figure 2.1. I refer to those systems as peers.

Each of these peers runs software that constantly takes snapshots of its processes’

behavior during narrow windows of time, successive n-second intervals. (I define

behavior more precisely in Section 2.3.1.) So that detection is rapid, n is meant to be

small (e.g., 30). After all, with worms now infecting entire populations in just hours

or minutes [51, 65, 91], we cannot afford many seconds at all if we are to thwart a

resulting botnet’s attacks. These intervals need not be synchronized, but n, for this

thesis’s purposes, is assumed constant across peers so that we can compare snapshots

from all of those peers.

Snapshots effectively summarize the behavior of a peer’s processes over the past n

seconds. (Each peer gathers one snapshot for each of its processes.) Every n seconds,

Chapter 2: Host-Based, Collaborative Detection of Worms 17

Figure 2.1: My vision of collaborative detection of fast-moving worms. Depicted
here is a network of (gray-colored) peers, each of which constantly run software that
monitors the behavior of its processes. Every n seconds, each peer submits a set of
snapshots (i.e., summaries) of the past n seconds’ worth of those processes’ behavior
to a (black-colored) snapshot server. The snapshot server then analyzes the snapshots
for similarities. Too many similarities across peers suggest anomalous behavior (e.g.,
a worm’s presence).

peers submit their most recent window’s worth of snapshots to a snapshot server, a

central node responsible for analysis of those peers’ behavior. (If some peer is running

m processes during a particular n-second window, that peer submits m snapshots for

that window.) I assume this centrality, despite potential threats thereto (Section 2.5),

so that I can later explore lower bounds on my architecture’s scalability (Chapter 5).

Upon receipt of these sets of snapshots from peers, the snapshot server searches

the snapshots for evidence of similar behavior across peers. More formally, this server

effectively treats snapshots like nodes in a graph, whereby edges are assumed to exist

Chapter 2: Host-Based, Collaborative Detection of Worms 18

between each pair of snapshots deemed by the server to be “similar” according to

some measure. To find evidence of worms, the server effectively searches this graph

for cliques (or simply dense subgraphs, per Chapter 5). If the server finds a clique

exceeding some threshold, it concludes that peers’ behavior is anomalous (i.e., a worm

might be present), so a “red flag” is raised. I elaborate on this threshold in Chapter 4.

The form of that flag is beyond the scope of this thesis, but the flag represents any

form of response that might impede a botnet’s otherwise unabated attack (e.g., con-

tainment [52, 96] or throttling [92, 97]). A true positive, then, is a flag that is raised

when a worm is indeed present. A false positive, meanwhile, is a flag that is raised

when a worm is not present.

Of course, finding cliques is not necessarily easy. In fact, finding maximum cliques

is NP-hard. But I nonetheless emphasize cliques for the sake of discussion, as they

perfectly capture k-wise similarity among k peers. In practice, my architecture can

employ approximations (Section 5.4.2).

In summary, my proposed architecture operates as follows.

1. Each system (i.e., peer) constantly runs software that monitors the behavior of

its processes.

2. Every n seconds, each peer submits to a snapshot server a set of snapshots

(i.e., summaries) of the past n seconds’ worth of those processes’ activity.

3. The snapshot server then compares the snapshots from each peer against those

from every other peer. The snapshot server treats all peers like nodes in a

graph. If a pair of peers boasts a pair of similar snapshots, the snapshot server

assumes an edge between those two nodes.

Chapter 2: Host-Based, Collaborative Detection of Worms 19

4. The snapshot server then searches this graph for cliques. If some clique’s size

exceeds some pre-determined threshold, a worm is assumed present. Some form

of red flag is raised so that response can begin.

Behind this design is this thesis’s most significant assumption. Among otherwise

independent hosts, we are unlikely to see identical (or, more generally, similar) be-

havior within narrow windows of time unless it is triggered by some external threat.

By leveraging cooperation among peers, then, we should be able to avoid misclassi-

fying non-worms that might otherwise look like worms if judged (à la QuickTime by

SpyBot) by individual hosts operating independently of all others.

It is this assumption that Chapters 3 and 4 ultimately validate. The intuition

behind it, though, derives from worms’ temporal consistency.

2.3 Temporal Consistency

Thus far have I treated worms’ behavior as some form of history that can be

analyzed for similarity. I now define more precisely behavior and similarity thereof.

Along the way, I refine my definition of snapshots and propose metrics for their

comparison. In turn, I define temporal consistency in terms of the same.

2.3.1 System Calls as a Proxy for Behavior

System calls are functions that applications can invoke in order to request services

of an operating system (e.g., opening and closing of sockets). I look for this thesis, as

have others before me [21,30,61,78,79], to system calls as proxies for hosts’ behavior.

Chapter 2: Host-Based, Collaborative Detection of Worms 20

To the extent that they circumscribe kernel space, system calls enable summarization

of code into low-level, but still semantically cogent, building blocks. And so I define

snapshots in terms of processes’ calls into kernel space, per Figure 2.2. That figure, in

fact, depicts the “worm-like” behavior (i.e., simplicity and periodicity) that I intend

for my IDS to detect. Put simply, snapshots contain the names of (or, for efficiency,

unique IDs for) of all system calls executed during some window of time. I consider

the cost of this particular representation in Chapter 5.

For privacy’s sake, snapshots do not contain system calls’ arguments, one downside

of which I present in Section 4.2.1. To be sure, a system’s submission of snapshots

will still leak information as to what that system is doing. But system calls are

sufficiently distant from application-layer functionality that the loss of privacy is

arguably minimal.

Alternative definitions of systems’ behavior are certainly possible. It is common

practice in today’s literature and IDSes alike, for instance, to view behavior in terms of

hosts’ network traffic [37, 55, 75]. Increasingly common, though, is application-layer

encryption of traffic, the effect of which is that packets’ payloads appear random.

The danger, of course, is that those payloads might actually contain worms. Packets’

headers alone might still offer hints as to the nature of some traffic, but what remains

as true today as ever is that payloads, to be worrisome, must ultimately execute

on hosts. Worms might indeed slip past network-based defenses, but, to be useful

to adversaries, they must eventually begin executing. For precisely this reason does

this thesis thus focus on host-based detection. However, my proposed IDS does not

obviate network-based defenses; they remain complementary.

Chapter 2: Host-Based, Collaborative Detection of Worms 21

Figure 2.2: Hypothetical trace of a worm-like process’s invocation of three system
calls, each of which is plotted as a separate line. Point (i, j) indicates j invocations of
some system call around time i. Shaded are two samples, representative of snapshots
that might be exchanged by two peers. The more peers that exchange snapshots
similar to these, the more correlated is their behavior, and the more likely are they
infected by some worm. My proposed IDS is designed to detect behavior like that
depicted here.

To validate my proposed IDS, I need only one model for behavior that enables me

to distinguish worms from non-worms. Indeed, others might even yield better results

(e.g., even higher rates of true positives and even lower rates of false positives),

particularly ones borrowed outright from the field of artificial intelligence. In theory,

a model might “learn” what non-worms’ behavior is generally like. For this thesis’s

purposes, though, the particulars of behavior effectively constitute a module that

might very well be swapped out for another. What is important for this thesis,

though, is that my choice of models have at least two characteristics, the first related

to time, the second related to space:

Chapter 2: Host-Based, Collaborative Detection of Worms 22

(1) It must be possible to gather and compare snapshots rapidly. After all, my

proposed IDS aims to confine detection to n-second windows of time.

(2) It must be possible to store snapshots efficiently. After all, peers must not only

gather these snapshots but transmit them to a snapshot server rapidly as well.

That snapshot server, in turn, must itself be able to receive large numbers of

snapshots.

I model peers’ behavior in terms of system calls because invocations thereof during

n-second windows can be modeled quite simply as finite sets of unique IDs. As I

explain further in Chapter 5, this simplicity not only brings with it characteristics

(1) and (2), it allows my IDS to scale.

With behavior hereby defined in terms of system calls, it remains to define the

similarity thereof so that I can quantify the likelihood that snapshots of calls into

kernel space do, in fact, belong to the same executable (and, thus, worm).

I recognize, though, that execution of some worm within a network of peers might

not be perfectly synchronized, as hosts might not have become infected at the same

moment in time. Moreover, I make no assumption of synchronization in peers’ sub-

mission of snapshots. Even though peers are to submit their sets of snapshots every

n seconds, they might actually submit at different moments within n-second windows

of time. Any definition of similarity must therefore tolerate some difference in timing.

In the subsections that follow, I present two different measures of similarity, both

of which are tolerant of offsets in timing. Neither measure expects perfect matches in

peers’ sequences of system calls, lest it be too sensitive to slight variance in worms’ ex-

ecution. Only after experimentation with both measures (Chapter 3) do I ultimately

Chapter 2: Host-Based, Collaborative Detection of Worms 23

find that the second is superior. The first, though, is nonetheless enlightening, as it

reveals that some worms’ behavior is not perfectly cyclical.

Here, again, might alternatives be possible, among them variations of my own two

metrics. But I need only one metric that allows me to express, with some degree of

precision, the similarity of snapshots. It, like snapshots themselves, must allow for

rapid comparisons. Alternative metrics are but new knobs that we can turn in the

future.

2.3.2 Measuring Similarity with Levenshtein Distance

My first measure of similarity treats snapshots of hosts’ behavior as ordered sets

of system calls, enumerated according to their frequencies of execution during some

window of time. Each such set is of the form

S = (s0, s1, . . . , sn−1),

where each si is a unique token (i.e., ID) representing some system call, and the

relative frequency of si within the snapshot is greater than or equal to that of sj, for

i < j.

I judge the similarity of two snapshots by way of the Levenshtein (i.e., edit)

distance between them, which I define here as the number of insertions, deletions,

and substitutions required to transform one set of tokens into the other. Inasmuch

as this distance, d, is thus bounded by the larger of |S1| and |S2|, for two snapshots,

Chapter 2: Host-Based, Collaborative Detection of Worms 24

Figure 2.3: Application of Levenshtein distance to a pair of snapshots, each of size
6, that differ only in relative frequencies. The distance, d, between these snapshots
is 3, as transformation of S1 into S2 only requires 3 operations (e.g., one deletion,
one insertion, and one substitution). The percentage of similarity between these
snapshots is thus λ(S1, S2) = 1 − d

max(|S1|,|S2|) = 1 − 3
max(6,6)

= 0.5. These snapshots

happen to be based on I-Worm/Sasser.B, depicted in Chapter 3’s Figure 3.3. They
are padded with whitespace for visual clarity.

S1 and S2, I define the percentage of similarity between the snapshots as

λ(S1, S2) = 1− d

max(|S1|, |S2|) .

For example, Figure 2.3 presents two snapshots, S1 and S2, each of size 6, that differ

only in relative frequencies. As transformation of one into the other only requires 3

operations (e.g., one deletion, one insertion, and one substitution), it follows that

λ(S1, S2) = 1− d

max(|S1|, |S2|) = 1− 3

max(6, 6)
= 0.5

for that particular pair of snapshots.

If λ(S1, S2) > 0.5 for τ percent of pairs of snapshots over time, I say that the

process to which the snapshots pertain is temporally consistent with degree τ . I

choose 0.5 as my threshold insofar as values above it imply that two snapshots are

“mostly” the same. It thus serves as a baseline but could certainly be defined as a

Chapter 2: Host-Based, Collaborative Detection of Worms 25

parameter. Informally, then, a value for τ of, say, 0.9 would imply that two processes

behave “mostly the same 90% of the time.” This rate, τ , is thus the probability with

which two peers, upon exchanging snapshots of their internal behavior, can decide

using the Levenshtein distance between snapshots that they are, more likely than

not, both executing the same process during some window of time. The underlying

assumption here, of course, is that processes can be identified, at least with some

confidence, by their distribution of system calls. I spend much of the next chapter

validating that assumption.

In that it considers invocations of system calls in the aggregate (summarizing

system calls by relative frequency), this measure finds similarity where comparison

of complete traces (that list every single system call in order of invocation) might

fail. But it nonetheless remains sensitive to fluctuations in system calls’ frequencies,

as might be induced by branches in a worm’s call graph, network latencies, or other

forms of nondeterministic input.

2.3.3 Measuring Similarity with Intersection

I therefore present an alternative metric that I further evaluate in the chapters that

follow. This one, by nature, is more tolerant of slight differences in processes’ behavior

during narrow windows of time. After all, network delays, CPU scheduling, and other

non-deterministic influences might result in worms executing slightly differently across

hosts over time. This metric tends to yield higher values for τ .

Chapter 2: Host-Based, Collaborative Detection of Worms 26

My second measure of similarity treats snapshots of hosts’ behavior as unordered

sets of system calls invoked during some window of time (Figure 2.4). Each such set

is again of the form

S = (s0, s1, . . . , sn−1),

where each si is a unique token representing some system call, but no ordering is

imposed on the set. (In practice, I tend to order such snapshots numerically by ID

for the sake of discussion or efficiency.) A system call (or, rather, its unique ID)

appears in a process’s snapshot if it is executed at least once during that snapshot’s

window of time. Relative frequencies of invocation are ignored altogether. These

snapshots effectively identify processes by the sets of system calls they invoke.

But I now judge the similarity of two snapshots, S1 and S2, by way of S1 ∩ S2.

Specifically, I define the percentage of similarity between two snapshots as

λ(S1, S2) =
|S1 ∩ S2|

max(|S1|, |S2|) ,

which is effectively a measure of the number of system calls common to both snap-

shots.

For example, Figure 2.4 presents two snapshots, S1 and S2, each of size 6. But no

longer are calls ordered according to their relative frequency of invocation. (In this

example, they are ordered without significance according to ID.) As the snapshots

are now identical, it follows that

Chapter 2: Host-Based, Collaborative Detection of Worms 27

Figure 2.4: Application of intersection to a pair of snapshots, each of size 6, that
are identical in composition. The percentage of similarity between these snapshots is
thus λ(S1, S2) = |S1∩S2|

max(|S1|,|S2|) = 6
max(6,6)

= 1.0. In that this measure, unlike that based
on Levenshtein distance, overlooks calls’ relative frequencies, it is less sensitive to
fluctuations in processes’ behavior. Accordingly, its measurements of similarity tend
to be higher. These snapshots happen to be based on I-Worm/Sasser.B, depicted in
Chapter 3’s Figure 3.3.

λ(S1, S2) =
|S1 ∩ S2|

max(|S1|, |S2|) =
6

max(6, 6)
= 1.0

for that particular pair of snapshots.

If λ(S1, S2) > 0.5 for τ percent of pairs of snapshots over time, I again say that

the process to which the snapshots pertain is temporally consistent with degree τ . In

this case, τ is thus the probability with which two peers, upon exchanging snapshots

of their internal behavior, can decide using intersection of snapshots that they are,

more likely than not, both executing the same worm during some window of time.

I again choose 0.5 as my threshold as it now implies a majority of system calls in

common.

Blind as this measure is to order, it allows for the emergence of patterns despite

slight differences in execution, as I demonstrate in Chapter 3.

Chapter 2: Host-Based, Collaborative Detection of Worms 28

2.4 Related Work

Woven throughout this thesis are citations to related works, but I highlight in this

section those of particular interest to my host-based, collaborative architecture.

In that I generalize the problem of worms’ discovery as a problem of detection of

widespread and coordinated behavior, my work aligns with research generally focused

on anomaly or intrusion detection. Although literature in this space has focused more

on Linux, UNIX, and TCP/IP itself than it has on Windows, ideas therein are of

particular relevance to my own work.

Somayaji et al. [78, 79] describe pH, a kernel extension for Linux that monitors

processes’ execution for unexpected sequences of system calls, though only with re-

spect to a host’s own prior behavior. It was pH that inspired my own work’s focus on

system calls. An outgrowth of that work is research by Hofmeyr [29,30], whose Sana

Security, Inc. [69] provides “instant protection against a targeted, emerging attack

class.” Lee et al. [40] similarly extend this work of Somayaji et al.

Eskin [20] focuses on anomaly detection using learned probability distributions,

an approach that could lend itself to more dynamic definitions of snapshots. Of com-

mercial relevance are, again, products from Symantec [84] and McAfee [45], the latter

of which offers “zero-day protection against new attacks” by combining behavioral

rules with signatures, though clearly imperfectly.

Chapter 2: Host-Based, Collaborative Detection of Worms 29

Though more network- than host-based, Autograph [37] and Polygraph [55] gen-

erate signatures for novel and polymorphic worms, respectively. These systems in

particular inspired my own work on automation. Both run into potential trouble,

though, when entire flows are encrypted (as with SSL or SSH). Thus have I focused

on hosts’ actual runtime behavior.

Related more in spirit than in approach to worms’ detection are works by sev-

eral others. Singh et al. [75] propose methods for automated worm fingerprinting.

Ellis et al. [19] propose a network application architecture. Jung et al. [36] sug-

gest sequential hypothesis testing for scanning worms’ detection, while Schechter

et al. [71] offer improvements on the same. Weaver et al. [96] advance cooperative

algorithms for worms’ containment. Anderson and Li [5] endeavor to separate worm

traffic from benign. Williamson [97] proposes throttling viruses, while Twycross and

Williamson [92], again, explore implementation of the same. Apap et al. [7] and

Stolfo et al. [83] focus on Windows, as will I, offering algorithms for anomaly de-

tection within the Windows registry. Hu and Mok [33], meanwhile, leverage kernel

activity, as do I, to detect mass-mailing viruses.

2.5 Discussion of Threats

As with most host-based defenses, adversaries tend to adapt to the latest heuris-

tics. My vision, like others, certainly comes with its own risks. I consider in this

section some of the most significant risks.

Chapter 2: Host-Based, Collaborative Detection of Worms 30

Worms designed to vary the frequencies of their calls into kernel space are perhaps

the most obvious threat to my vision’s design. Superfluous calls to system services

might render one snapshot’s intersection with another entirely negligible, the impli-

cation of which might be a failure to detect. To mitigate this latter threat, though, I

could require that calls be not only present but in some proportion as well. In fact,

though some of today’s kernels include hundreds of system calls, relatively few tend

to be executed within narrow windows of time (Section 5.4.1). To catch adversaries

that try to invoke large numbers of system calls in order to cover their tracks, we

could consider a snapshot’s variance with expected distributions of calls.

Moreover, the more peers in a network, the more likely it is to detect correlations,

even in the face of adversarial randomness. I am helped by inherent boundaries in

my proxy for behavior: with only finitely many system calls, a worm can only vary

so much and still achieve some goal quickly. The strength of my proposed system

derives from the nature of worms. Bounded by time as are fast-moving worms by

their own definition, there are only so many ways for them to achieve some effect on

a host quickly.

Of course, an adversary might simply slow his worm’s spread so that its period

(i.e., cyclicity) is “spread” over more than one window of time, thereby rendering my

IDS’s form of detection less effective. But if adversaries’ response to this new form of

defense is to slow botnets’ actions, then my IDS has successfully achieved its goal of

interfering with profits. The net effect resembles that of Hewlett-Packard’s proposed

virus throttles [92].

Chapter 2: Host-Based, Collaborative Detection of Worms 31

On the other hand, the most virulent of worms might attack hosts’ ability to take

or submit snapshots. After all, disabling software tends not to be difficult, as it is not

uncommon for Windows users to log in with administrative rights (the implication

of which is that worms, upon infection, might execute with those same rights). But

recent advances by Intel [35] and AMD [2] in virtualization might mitigate this threat

by allowing IDSes to operate below worms’ radar.

Of course, my proposed architecture’s snapshot server invites potential denial-of-

service attacks, but no more so than other services with any centrality (e.g., DNS).

Similarly might worms attack the overall architecture through submission of bogus

or forged snapshots, a defense against which would be authentication thereof, albeit

at some computational cost.

And what about worms whose spread is so fast that they infect every one of my

peers in less than one window of time? My architecture need not match pace with

these fastest of worms; it remains useful when worms spread even that fast. My goal,

after all, is to detect execution of bots, not just installation thereof.

2.6 Summary

I have presented in this chapter an architecture for host-based, collaborative of

worms in the form of a behavior-based IDS that seeks to actualize the vision put forth

in Chapter 1. I have introduced temporal consistency as a property of worms that can

be exploited to detect worms across multiple peers. I have proposed system calls and

snapshots thereof as proxies for systems’ behavior so that peers might summarize their

Chapter 2: Host-Based, Collaborative Detection of Worms 32

behavior over windows of time for a server’s analysis. And I have presented metrics

for similarity, one based on Levenshtein distance and one based on set intersection,

that will allow me in Chapters 3 and 4 to measure the degrees of correlation in peers’

behavior.

Chapter 3

True Positives

I proceed in this chapter and next to validate my claim that host-based, collab-

orative detection of worms is indeed viable, with high rates of true positives and

low rates of false positives. I validate this claim in this chapter through simulation,

focusing particularly on my proposed IDS’s potential for true positives.

It is worth noting that rates of true and false positives are inherently linked to

rates of false and true negatives, respectively. High rates of false negatives (recall

Bagle and Sasser) result from low rates of true positives. Formally, if some process

in question is actually a worm,

Pr(true positive | worm) + Pr(false negative | worm) = 1.

Similarly do low rates of true negatives result from high rates of false positives.

33

Chapter 3: True Positives 34

Formally, if some process in question is actually a non-worm,

Pr(true negative | non-worm) + Pr(false positive | non-worm) = 1.

For clarity’s sake, though, I hereafter speak only in terms of true and false positives.

As my approach to detection does not require perfect synchronization among

peers, I am able to evaluate my proposal’s viability with traces of hosts’ behavior; I do

not require the experimental overhead of an actual network of peers. By sampling one

host’s behavior at different moments in time can I simulate sampling multiple hosts’

behavior at one moment in time (Figure 3.1). With traces of just one worm-infected

host’s system calls over multiple windows of time, then, I can simulate the exchange

of snapshots between pairs of peers. By measuring the similarity of snapshots derived

from those traces, I can compute probabilities with which actual peers would decide

that they are, more likely than not, both executing the same worm.

Moreover, I rely here on simulations so as to control my experiments. Using traces

of worms and non-worms alike, I can repeat my own experiments with identical inputs

(to compare, for instance, my two measures of snapshots’ similarity) in order to max-

imize my true positives. In my controlled environment, during simulations of systems

based on traces of known worms and non-worms, I also know what to expect, as all

inputs are under my control. I need not worry about yet unseen processes (e.g., ac-

tual new worms) appearing among my snapshots, potentially clouding my results.

Moreover, simulations allow me to fine-tune heuristics with which to avoid false pos-

itives. After all, I had better be able to avoid false positives in my own simulations!

I do transition in Chapter 4, though, from simulation to actual implementation of a

Chapter 3: True Positives 35

(a)

(b)

Figure 3.1: Traces of one host’s behavior allow me to assess my architecture’s po-
tential for true positives without the experimental overhead of an actual network of
peers. By sampling the behavior of some binary on one host at different moments in
time, as in (a), I can simulate sampling the behavior of that binary on multiple hosts
at one moment in time, as in (b), as though the binary began executing on those
hosts at different times (i.e., at different T0).

prototype system, in order to focus on my proposed IDS’s risk of false positives in

the actual wild.

I select Windows XP with Service Pack 2 (SP2) for my simulation of peers, as the

platform offers a richness of available worms (important in any behavioral study) and

is a perpetual recipient of innovative attacks. And I utilize that platform’s native API,

the nearest equivalent of Linux’s and UNIX’s system calls, as my proxy for behavior.

For some time, patterns of system calls have proven to be effective summaries of

processes’ behavior on Linux and UNIX [21, 30, 61, 78, 79]. With Windows’s native

API officially undocumented, not to mention closed-source, monitoring thereof does

prove a challenge itself (Sections 3.2.1 and 4.2.1). Using traces of calls into kernel

Chapter 3: True Positives 36

space by 9 worms and 25 non-worms, I ultimately apply my two measures of similarity

to quantify the likelihood that snapshots of calls into kernel space do, in fact, belong

to the same executable.

To be sure, mere traces of processes might not perfectly reflect “normal activity,”

if such can even be said to exist. But, insofar as I gather my traces in environments

as deterministic as possible, I argue that they actually allow me to estimate lower

bounds on peers’ ability to detect or mistake worms; it’s hard to imagine programs

more cyclical (and thus worm-like) than those executing repeated tests or taking no

input.

In the section that follows, I pose a trio of questions that collectively motivate

my simulations. In Section 3.2, I present the methodology with which I approached

those questions. In Section 3.3, I present my results.

3.1 Questions

To detect novel worms by leveraging collaborative analysis of peers’ runtime be-

havior, I must demonstrate that worms tend to stand out in traces of system behavior

based on calls to system services. Given two or more samples from those very same

traces (i.e., snapshots of behavior), distinguishing an attacking worm from an other-

wise benevolent application reduces to the following three questions.

(1) How likely is a worm to look like itself? The more similar a worm’s execution

during some window of time to its execution during any other, the more capa-

ble should peers be to correlate actions. Moreover, the more similar a worm

Chapter 3: True Positives 37

with respect to itself, the less it should matter when peers sample their behav-

ior. I thus inquire as to whether worms are temporally consistent. The more

temporally consistent, the higher my architecture’s chances of true positives.

(2) How likely is a non-worm to look like itself? The more similar a non-worm’s

execution during some window of time to its execution during any other, the

more likely might peers be to think it a worm. I thus inquire as to whether non-

worms are temporally consistent. The more temporally consistent, the higher

my architecture’s chances of false positives.

(3) How likely is a non-worm to look like a worm? The more similar a non-worm’s

execution to that of a worm, the more likely might peers be to mistake the be-

nign for the malevolent, I thus inquire as to whether worms manifest similarities

with non-worms. The more similar actual worms are to actual non-worms, the

more likely my architecture is to overstate an outbreak’s severity by mistaking

the latter for former.

3.2 Methodology

Windows XP SP2’s native API comprises 284 functions, known also as system

services, implemented in kernel space by NTOSKRL.EXE and exposed with stubs in

user space by NTDLL.DLL, against which most higher-level Win32 APIs are linked.

When called to invoke a system service, a stub in NTDLL.DLL invokes

SharedUserData!SystemCallStub after moving into register EAX the service’s service

ID and into register EDX a pointer to the call’s arguments. To trap from user- to kernel-

Chapter 3: True Positives 38

mode, SharedUserData!SystemCallStub then executes Intel’s SYSENTER instruction

(for the Pentium II and newer) or AMD’s SYSCALL instruction (for the K7 or newer).1

Control is ultimately passed to _KiSystemService, which dispatches control to the

appropriate service by indexing into _KeServiceDescriptorTable for the service’s

address and number of parameters using the value in EAX. By inserting trampolines

into this table can I effectively trace all processes’ behavior [17,24,25,28,58,66].

3.2.1 Wormboy 1.0

To capture the behavior of Windows XP SP2 with respect to its system ser-

vices, I implemented Wormboy 1.0, a kernel-mode driver that inserts hooks into

_KeServiceDescriptorTable before and after all but two system services. (By de-

fault, _KeServiceDescriptorTable is read-only, so Wormboy first disables the WP

bit in register CR0 [64,77]. Alternatively, protection of kernel memory itself could be

relaxed, albeit dangerously, by creating registry key HKEY LOCAL MACHINE\

SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\

EnforceWriteProtection with a DWORD value of 0x0 [68].) However, Windows XP

SP2 appears to make certain assumptions about system services NtContinue and

NtRaiseException, whereby it attempts to manipulate the stack frame based on

register EBP [67]. Inasmuch as my hooks insert a frame of their own, I do not hook

those particular services in order to avoid system crashes.

Inspired by Strace for NT [68], as well as by work by Nebbett [54] and Dabak

et al. [17], Wormboy 1.0 not only captures a call’s service ID and input parameters,

1On older CPUs, SharedUserData!SystemCallStub executes a slower INT 2e instruction.

Chapter 3: True Positives 39

but also its output parameters and return value, along with a caller’s name, process

ID, thread ID, and mode. Though Wormboy could ultimately serve as the core of a

real-time defense, this particular version captures all such data to disk, timestamping

and sequencing each entry per trace, thereby allowing me to experiment offline with

different approaches to detection.

3.2.2 Traces of Worms and Non-Worms

To validate my claim of collaborative detection’s efficacy, I look to some of Win-

dows XP SP2’s fastest worms and most common non-worms to date. I ultimately

base my results on traces of 9 variants of worms and 25 non-worms, including 10

commercial applications and 15 binaries native to Windows XP SP2. Table 3.1 lists

each of my subjects; I call the worms by their names according to AVG Free Edition

7.0.322 [23].

For each worm, I traced its live activity for 15 minutes, more than enough for its

recurrent behavior to surface. For each commercial application save one, I traced its

execution under PC Magazine’s WebBench 5.0 [56] or PC World’s WorldBench 5 [57]

benchmarking suites. Separately, I traced Nullsoft Winamp 5.094 as it played an

MP3 of James Horner’s 19-minute “Titanic Suite,” encoded at 160 kbps. For each

native binary, I traced its execution during 24 hours of user-free intervention. I now

base my results on all of these traces.

Chapter 3: True Positives 40

Worms
Non-Worms

Commercial Applications Windows XP SP2 Binaries

I-Worm/Bagle.Q Adobe Photoshop 7.0.1 alg.exe

I-Worm/Bagle.S Microsoft Access XP SP2 csrss.exe

I-Worm/Jobaka.A Microsoft Excel XP SP2 defrag.exe

I-Worm/Mydoom.D Microsoft Outlook XP SP2 dfrgntfs.exe

I-Worm/Mydoom.F Microsoft Powerpoint XP SP2 explorer.exe

I-Worm/Sasser.B Microsoft Word XP SP2 helpsvc.exe

I-Worm/Sasser.D Network Benchmark Client 1.0.3 lsass.exe

Worm/Lovesan.A Nullsoft Winamp 5.094 msmsgs.exe

Worm/Lovesan.H Windows Media Encoder 9.0 services.exe

WinZip 8.1 spoolsv.exe

svchost.exe

wmiprvse.exe

winlogon.exe

wscntfy.exe

wuauclt.exe

Table 3.1: Worms and non-worms whose traces I analyzed with Wormboy 1.0.

3.3 Results

I now answer my own Section 3.1 by way of experimental results. I first assess

worms’ degrees of temporal consistency. I then assess non-worms’ degrees of the same.

Finally, I consider just how similar actual worms might be to actual non-worms.

3.3.1 How likely is a worm to look like itself?

A worm is remarkably likely to look like itself, though it depends on the measure

of similarity. I find that, while Levenshtein distance allows us to notice with near cer-

tainty (at least 95%) the similarity, with respect to themselves, of I-Worm/Sasser.D,

Chapter 3: True Positives 41

5 15 30 60

I-Worm/Bagle.Q 14% 11% 10% 5%

I-Worm/Bagle.S 14% 11% 11% 6%

I-Worm/Jobaka.A 59% 50% 69% 76%

I-Worm/Mydoom.D 92% 81% 73% 87%

I-Worm/Mydoom.F 17% 31% 41% 60%

I-Worm/Sasser.B 60% 54% 72% 87%

I-Worm/Sasser.D 95% 97% 93% 87%

Worm/Lovesan.A 99% 98% 93% 87%

Worm/Lovesan.H 47% 95% 93% 87%

Table 3.2: Probability with which two peers, upon exchanging snapshots of their
internal behavior, can decide using Levenshtein distance alone that they are, more
likely than not, both executing the same worm during some window of time, for
window sizes of 5, 15, 30, and 60 seconds. In other words, percentages of all possible
pairs of samples from some worm for which 1− d

max(|S1|,|S2|) > 0.5, where S1 and S2 are
snapshots, treated as ordered sets, and d is the Levenshtein distance between them.
I call these percentages degrees, τ , of temporal consistency.

Worm/Lovesan.A, and Worm/Lovesan.H, using a window size of 15 seconds, the met-

ric proves less effective on other variants (Table 3.2), even for windows as wide as

30 or 60 seconds. Bagle’s variants, in particular, appear resistant to classification as

temporally consistent using the metric, with no more than 14% of possible pairs of

snapshots resembling each other. The disparity, though significant, is not surpris-

ing, if we consider the traces themselves. For instance, whereas Worm/Lovesan.A

(Figure 3.2) and I-Worm/Sasser.B (Figure 3.3) manifest obvious, nearly constant,

patterns, I-Worm/Bagle.Q (Figure 3.4) boasts a less obvious pattern, clouded by

overlapping frequencies.

With less precise measures, though, I can filter such noise. If I consider only

calls’ intersection but not relative frequencies, more more trends are apparent. I now

Chapter 3: True Positives 42

0

500

1000

1500

2000

2500

3000

0 30 60 90 120
150

180
210

240
270

300
330

360
390

420
450

480
510

540
570

600
630

660
690

720
750

780
810

840

time (seconds)

n
u

m
b

er
 o

f
ca

lls

NtAllocateVirtualMemory NtClose NtCreateFile NtDelayExecution

NtDeviceIoControlFile NtRemoveIoCompletion NtWaitForSingleObject

Figure 3.2: Calls to system services by Worm/Lovesan.A per 30-second window of
time. Point (i, j) indicates j calls to some service between times i and i + 30. Both
Levenshtein distance and intersection capture this worm’s pattern of activity.

notice with near certainty (97%), using a window size of 15 seconds, every one of our

worms save Bagle; but now even Bagle appears temporally consistent with high τ

(Table 3.3).

Still worthy of note, though not unexpected, is Worm/Lovesan.H, which resists

detection, no matter my metric, using a window size of 5 seconds. Such narrow

windows simply fail to capture this worm’s periodicity (Figure 3.5); wider windows

do capture its periodicity (Figure 3.6).

Chapter 3: True Positives 43

0

50

100

150

200

250

300

350

400

450

500

30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

time (seconds)

n
u

m
b

er
 o

f
ca

lls

NtClose NtConnectPort NtCreateFile NtDeviceIoControlFile NtReadFile NtWriteFile

Figure 3.3: Calls to system services by I-Worm/Sasser.B per 30-second window
of time, representative of worms’ tendency toward simplicity and periodicity. Point
(i, j) indicates j invocations of some system call between times i and i+30. Omitted
for visual clarity are similar patterns of invocations of other system calls. As with
Worm/Lovesan.A (Figure 3.2), windows of 30 seconds are sufficient to capture this
worm’s cycles. It is on this worm’s snapshots that Chapter 2’s Figures 2.3 and 2.4
were based.

3.3.2 How likely is a non-worm to look like itself?

A non-worm is not nearly as likely to resemble itself as is a worm to resemble itself.

Of all the non-worms examined, only Nullsoft Winamp and alg.exe boasted traces

for which more than 90% of 15-second snapshots resembled each other, no matter the

metric (Figure 3.7). And only alg.exe boasted a trace for which more than 90% of

30-second snapshots resembled each other, no matter the metric.

But alg.exe, during my 24-hour run, made only 2,295 calls to system services, an

average of no more than one per second. By contrast, even the “slowest” of worms,

I-Worm/Jobaka.A, averaged 64 such calls per second. Insofar as processes averaging

Chapter 3: True Positives 44

0

500

1000

1500

2000

2500

0 30 60 90 120
150

180
210

240
270

300
330

360
390

420
450

480
510

540
570

600
630

660
690

720
750

780
810

840

time (seconds)

n
u

m
b

er
 o

f
ca

lls

NtClose NtDelayExecution NtDeviceIoControlFile NtQueryDirectoryFile

NtQueryInformationFile NtSetInformationFile NtUnmapViewOfSection NtWaitForSingleObject

Figure 3.4: Calls to system services by I-Worm/Bagle.Q per 30-second window of
time. Point (i, j) indicates j calls to some service between times i and i+30. For visual
clarity, less frequently called system services are not pictured. Levenshtein distance
fails to capture this worm’s pattern of activity because of overlapping frequencies;
intersection does capture the pattern.

nearly zero calls per second do not likely belong to fast-moving worms, I can simply

require that snapshots not be so empty for some process to be deemed a worm.

Nullsoft Winamp, by contrast, averaged 896 calls to system services per second, so its

high degree of temporal consistency necessitates more intelligent filtration. I explore

filters for cases like it in the next chapter.

Chapter 3: True Positives 45

5 15 30 60

I-Worm/Bagle.Q 80% 76% 81% 76%

I-Worm/Bagle.S 82% 76% 73% 78%

I-Worm/Jobaka.A 99% 97% 93% 87%

I-Worm/Mydoom.D 99% 97% 93% 87%

I-Worm/Mydoom.F 99% 97% 93% 87%

I-Worm/Sasser.B 99% 97% 93% 87%

I-Worm/Sasser.D 99% 97% 93% 87%

Worm/Lovesan.A 99% 97% 93% 87%

Worm/Lovesan.H 49% 97% 93% 87%

Table 3.3: Probability with which two peers, upon exchanging snapshots of their
internal behavior, can decide using intersection alone that they are, more likely than
not, both executing the same worm during some window of time, for window sizes of
5, 15, 30, and 60 seconds. In other words, percentages of all possible pairs of samples
from some worm for which |S1∩S2|

max(|S1|,|S2|) > 0.5, where S1 and S2 are snapshots, treated

as unordered sets. I call these percentages degrees, τ , of temporal consistency.

3.3.3 How likely is a non-worm to look like a worm?

Through exhaustive comparison of every possible snapshot from each worm against

every possible snapshot from each non-worm, I find that only one non-worm’s behav-

ior resembles, more often than not, that of a worm: Network Benchmark Client is

similar to I-Worm/Jobaka.A, I-Worm/Sasser.B, and I-Worm/Sasser.D, if intersection

is the metric. But the resemblance is neither surprising nor troubling, as Network

Benchmark Client is practically a worm itself, designed to fork 5 threads, each of

which induces stress on a server by initiating TCP sockets in rapid succession.

Chapter 3: True Positives 46

0

100

200

300

400

500

0 895
time (seconds)

n
u

m
b

er
 o

f
ca

lls

NtClose NtCreateFile NtDeviceIoControlFile NtWaitForSingleObject

Figure 3.5: Calls to system services by Worm/Lovesan.H per 5-second window of
time. Point (i, j) indicates j calls to some service between times i and i+5. For visual
clarity, less frequently called system services are not pictured; similarly are most x-
axis labels omitted. 5-second windows are not adequate to capture periodicity in this
worm’s behavior.

3.4 Summary

Host-based detection of worms via collaboration among peers is possible. I base

this claim on simulations that have allowed me to analyze 9 variants of worms and 25

non-worms on Windows XP SP2. These results follow from a definition of anomalous

behavior as correlation among otherwise independent peers’ behavior. For the set of

worms and non-worms tested, I find that two peers, upon exchanging one window’s

worth of snapshots of their internal behavior, defined in terms of frequency distrib-

utions of calls to system services, can detect execution of some worm between 76%

and 97% of the time because of worms’ temporal consistency. More significantly, the

risk of false positives appears low.

In the chapter that follows, I corroborate these results and propose filters for

worm-like non-worms. I transition from simulation to actual implementation and de-

ployment of a prototype of my vision. I focus, in particular, on my system’s likelihood

Chapter 3: True Positives 47

0

200

400

600

800

1000

1200

0 895time (seconds)

n
u

m
b

er
 o

f
ca

lls

NtClose NtCreateFile NtDeviceIoControlFile NtWaitForSingleObject

,

Figure 3.6: Calls to system services by Worm/Lovesan.H per 15-second window of
time. Point (i, j) indicates j calls to some service between times i and i + 15. For
visual clarity, less frequently called system services are not pictured; similarly are
most x-axis labels omitted. 15-second windows are adequate to capture periodicity
in this worm’s behavior.

of false positives in the wild.

I continue to exploit temporal consistency, but I adopt for the next chapter the su-

perior of this chapter’s measures—that based on intersection—as it has herein proved

tolerant not only of offsets in timing but also of differences in hosts’ speeds and con-

figuations. Hereinafter, then, I shall judge the similarity of two snapshots, S1 and S2,

by way of S1 ∩ S2.

Chapter 3: True Positives 48

�

��

��

��

��

��

��

��

	�

�

���

��

��
�
��
��
��
��

��

��
�
��
��
��
��

��

��
�
��
��
��
��
�

��

��
�
��
�
��
�
�!
"

��

��
�
��
�
��
�
�#

��

��
�
��
�$
$�
��
�

��

��
�
��
�$
$�
��
!

��
�
�%
�&
�$
�'
��

��
�
�%
�&
�$
�'
�(

�
��
�"
)*
�+
�$
*�
,"
��
��
�

�
-.
��
$�
/+
"�
..
�$
$"
0
)"
�)
�

�
-.
��
$�
/+
"1
2.
��
"0
)"
�)
�

�
-.
��
$�
/+
"3
4+
��
��
"0
)"
�)
�

�
-.
��
$�
/+
")
�5
��
,�
-'
+"
0)
"�
)�

�
-.
��
$�
/+
"
��
 "
0)
"�
)�

6
�+
5
��
�"
��
'.
*�
��
�"
7�
-�
'+

6
4�
�$
�/
+"

-'
��
,"
��
�

�

-'
 �
5
$"
�
�
-�
"1
'.
�
��
"

��
"

-'
8-
,"
	�
�

��
��
�2
�

.$
�$
$�
�2
�

 �
/�
��
��
2�
"

 /
��
'+
/$
��
2�

�2
,�
��
��
��
2�

*�
�,
$&
.�
�2
�

�$
�$
$�
�2
�

�
$�
$�
$�
�2
�

$�
�&
-.
�$
��
2�

$,
��
�$
&�
�2
�

$&
.*
�$
+�
�2
�

5
�
-,
�&
$�
��
2�

5
-'
��
��
'�
�2
�

5
$.
'+
/�
��
2�

5
4�
4.
�+�
�2
�

�
�
�
�
�
�
��

ττ ττ�
��
��
	
�

�
�
�
�
�
�
�
�
�
��
��
�
�
�
��
�
�

Figure 3.7: Degrees, τ , of temporal consistency of worms versus non-worms, using
15-second windows. Of all the non-worms examined, only Nullsoft Winamp and
alg.exe boasted traces for which more than 90% of 15-second snapshots resembled
each other, no matter my metric for similarity. All but two of the worms examined,
meanwhile, boasted τ > 90%.

Chapter 4

False Positives

In this chapter, I build upon the results of the previous chapter and evaluate my

ideas “in the wild.” I implement and deploy an actual prototype of my vision, Worm-

boy 2.0, to a network of 29 hosts running Windows XP SP2. I use this implementation

to monitor and analyze 10,776 processes, inclusive of 511 unique non-worms (873 if

one considers unique versions to be unique non-worms). I further investigate a host-

based, collaborative architecture’s rates of true positives and false positives, focusing

all the more on the latter.

As a result of this prototype, I identify properties that distinguish worms from non-

worms. Using those properties, my architecture accurately classifies 99% of processes

as non-worms. I also find that this collaborative architecture, using patterns of system

calls and simple heuristics, can detect worms running on multiple peers. And, because

of the unlikely appearance on many peers simultaneously of non-worm processes with

worm-like properties, I find that collaboration among peers significantly reduces the

risk of false positives.

In the section that follows, I offer a new trio of questions. In Section 4.2, I describe

Wormboy’s new role and offer implementation details. In Section 4.3, I validate my

49

Chapter 4: False Positives 50

vision’s efficacy on real systems: I quantify the number of non-worm processes that

might, if not handled carefully, be mistaken for worms by a collaborative architecture;

I establish empirically that a collaborative network can detect processes with similar

behavior running on multiple hosts; and I demonstrate that collaboration among

peers reduces the risk of false positives.

4.1 Questions

To validate the efficacy of host-based, collaborative detection in the wild with real

systems, I now focus on this trio of questions.

(1) Are non-worms, like worms, temporally consistent? If so, I must identify prop-

erties that distinguish the two. Alternatively, I must identify thresholds beyond

which τ actually indicates worms.

(2) Can I detect processes with similar behavior on multiple hosts? If so, I can

detect the outbreak of a worm, the behavior of which across hosts is likely to be

similar. Again, bounded by time as are fast-moving worms by definition, there

are only so many ways for them to achieve some effect on a host quickly. A

worm’s filename and executable, by contrast, can be too easily altered during

propagation (as through metamorphosis) and are, thus, less reliable than more

dynamic techniques. Presumably, the more “worm-like” a process (i.e., the

more temporally consistent), the more likely I am to detect it if running on

multiple hosts.

Chapter 4: False Positives 51

(3) Can I avoid mistaking popular non-worms for worms? I cannot assume that

processes common to many hosts (e.g., explorer.exe) are necessarily worms,

lest I infer incorrectly that an attack is in progress. And I should not confuse

a non-worm running on one host with a worm running on another, even if

behaving similarly, lest I overstate an outbreak’s severity.

To answer these questions, I transition from simulation to actual implementation

of my prototype. I deploy Wormboy 2.0 to dozens of hosts running hundreds of

non-worms in order to evaluate collaborative detection’s efficacy in the wild through

collection and analysis of real-world data. In the section that follows, I offer imple-

mentation details for Wormboy 2.0 to make clear my data’s origins and manner of

collection.

4.2 Methodology

Again modeling hosts’ behavior in terms of snapshots, I implemented Worm-

boy 2.0, a prototype of a host-based, collaborative system with one purpose: to

collect and analyze snapshots from real systems.

Ultimately the foundation for a worm-focused IDS, Wormboy now includes both

client and server sides that, together, implement a network of peers per my vision (Fig-

ure 2.1). With one such network alone, I am able to collect and analyze data from

real-world hosts.

Chapter 4: False Positives 52

4.2.1 Wormboy 2.0: Peers’ Client

On the client side, Wormboy 2.0 is implemented as a cooperation between a

kernel-mode driver (WORMBOY.SYS) and a user-mode application (WORMBOY.EXE), both

written in C. Inspired by work by Sabin [68], Nebbett [54], Harris [26], and Dabak

et al. [17], Wormboy’s client currently supports Windows XP with Service Pack 2.

With minor modifications, Wormboy’s client could also support Windows NT (with

and without Service Packs 3 through 6), Windows 2000 (with and without Service

Packs 1 through 4), Windows XP (with and without Service Packs 1 and 2), and

Windows 2003 Server (with and without Service Pack 1).

Upon load, WORMBOY.SYS hooks all but three system services by inserting trampo-

lines into _KeServiceDescriptorTable. (For this version of Wormboy, I no longer

hook NtQueryInformationProcess, as my other hooks invoke undocumented fea-

tures of this service themselves.) These hooks effectively log (to unpaged memory)

each invocation of a system service during some window of time, capturing not only

the call’s service ID but also the caller’s PID and path. At the end of each window,

WORMBOY.EXE polls WORMBOY.SYS for that window’s snapshots, the structure of which

appears in Figure 4.1. The application then transmits those snapshots to Worm-

boy’s snapshot server via XML-RPC [27,93]. I propose more efficient alternatives to

XML-RPC for snapshots’ transport in Section 5.3.

For reasons of privacy, Wormboy 2.0 does not capture hooked calls’ parameters.

The implication, a result of Windows XP SP2’s design, is that it cannot detect net-

work activity with certainty using service IDs alone. For my answers to Section 4.1’s

questions, I therefore infer network activity from frequent calls to NtCreateFile (the

Chapter 4: False Positives 53

typedef struct {

ULONG counts[NUM_SERVICES];

ULONG pid;

CHAR path[MAX_PATH];

} snapshot;

Figure 4.1: Wormboy 2.0’s definition of a snapshot. On the client-side, Wormboy’s
kernel-mode driver maintains in non-paged memory one of these structures for each
live process. On some schedule, Wormboy’s user-mode application polls the driver
for those structures (after which the driver zeroes counts) and marshals them over
XML-RPC to Wormboy’s snapshot server for analysis.

service involved in sockets’ creation), NtDeviceIoControlFile (the service involved

in packets’ transmission), and NtCloseFile (the service involved in sockets’ termi-

nation) [33]. Though I might overestimate some processes’ network activity as a

result, that risk actually motivates my exploration of additional heuristics for worms’

detection (Section 4.3.1).

4.2.2 Wormboy 2.0: The Snapshot Server

On the server side, Wormboy 2.0’s snapshot server is implemented quite simply

in Java as a XML-RPC listener (WormboyD). Upon receipt of a window’s worth of

snapshots from Wormboy clients, WormboyD analyzes the structures for similarities, as

per my measure based on intersection. The server then logs the results of its analyses

to disk for later review. For scalability’s sake, I explore efficient implementations (in

C++) of snapshots’ comparison in Section 5.4.

Chapter 4: False Positives 54

4.3 Results

I present in this section my results for Section 4.1’s inquiries. To answer those

questions using real-world data, I deployed Wormboy 2.0 for 24 hours to a network

of 29 actively used, independent hosts (spread across domains throughout North

America) running Windows XP SP2. With this deployment, I was ultimately able to

monitor and analyze 10,776 processes, inclusive of 511 unique non-worms (873 if we

consider unique versions to be unique non-worms).

Though these hosts, as real systems on the Internet, were by nature exposed to

worms, I did not inject worms into this network myself. Nor did I set out to detect

actual worms; this chapter’s focus remains on non-worms and the avoidance of false

positives.

I present this experiment’s results in turn. I first quantify the number of non-

worm processes that a collaborative network might tend to mistake for worms, were

it not for certain properties unique to the latter (Section 4.3.1). I then demonstrate

empirically, using non-worms with worm-like properties as proxies for worms, that

a collaborative network can, in fact, detect worms executing on multiple hosts (Sec-

tion 4.3.2). Finally, I show how collaboration among peers reduces the likelihood of

false positives (Section 4.3.3).

4.3.1 Identifying τ , r, and r′

In Chapter 3, I investigated the degree to which 25 non-worms were temporally

consistent. Through simulation, I found that only 2 of those 25 (8%) boasted traces

for which τ > 90% using windows of 15 seconds; only one of the 25 boasted a trace for

Chapter 4: False Positives 55

which τ > 90% using windows of 30 seconds. With simple heuristics, I then distin-

guished those non-worms from worms, despite their apparent similarity. For instance,

I considered for each process not only its τ but also its rate of calls, r, into kernel

space. In particular, one potential false positive averaged no more than r = 1 call

into kernel space per second, whereas even the “slowest” of worms, I-Worm/Jobaka.A,

averaged r = 64 calls per second. Insofar as processes averaging nearly zero calls per

second do not likely belong to fast-moving worms, I required that large τ , to be

worrisome, be accompanied by non-negligible rates of calls (e.g., r ≥ 64).

By way of analysis with Wormboy 2.0 of not 25 but thousands of processes, I have

since found it advantageous to identify an additional property besides τ and r that

distinguishes worms from non-worms. For each of the processes for which WormboyD

received snapshots over the course of 24 hours, I reviewed up to an hour’s worth

of data, exhaustively measuring the similarity of each snapshot received during that

frame against every other snapshot received during the same. No matter my windows’

size, I find that at least 315 of the 10,776 non-worm processes boast τ ≥ 76% and

r ≥ 64. Those 315 processes belong to 85 (17%) of our 511 unique non-worms.

But if I further require that some process actually utilize the network at a rate, r′,

no slower than that of our slowest of worms, I fare even better. I now find, using a

window of 15 seconds, that only 145/10, 776 ≈ 1% of processes appear to be worms

and, equivalently, that 99% of processes appear not to be worms. And those 145

processes belong to just 15 (2.9%) of our 511 unique non-worms (Table 4.1). I sum-

marize these results in Table 4.2. Figure 4.2, meanwhile, testifies that worms do tend

to stand out among non-worms based on their values of τ , r, and r′, plotting in three

Chapter 4: False Positives 56

15 30

1.EXE

aexplore.exe aexplore.exe

aolsoftware.exe aolsoftware.exe

ApntEx.exe ApntEx.exe

BESClient.exe BESClient.exe

ccApp.exe

CCPROXY.EXE CCPROXY.EXE

cvpnd.exe cvpnd.exe

explorer.exe explorer.exe

iexplore.exe iexplore.exe

ntbackup.exe ntbackup.exe

OUTLOOK.EXE OUTLOOK.EXE

QCWIZARD.EXE QCWIZARD.EXE

SNDSrvc.exe

sshd.exe sshd.exe

ViewMgr.exe ViewMgr.exe

war3.exe war3.exe

wmplayer.exe

WRSSSDK.exe

Table 4.1: Nineteen non-worms that exhibit worm-like behavior, for windows of
15 and 30 seconds. Of the 511 unique non-worms in my study, I might mistakenly
classify as worms just 15 (2.9%) using windows of 15 seconds and 18 (3.5%) using
windows of 30 seconds. Processes common to both windows are aligned for visual
clarity.

dimensions each of those values for worms and non-worms alike. Worthy of note is

that the worms cluster together. The figure also makes clear how a worm might try

to “hide” among non-worms: by lowering its rate of network activity. That particu-

lar recourse, though, would only slow a worm down, which, again, would constitute

success for my IDS’s collaborative approach.

Though I earlier found through simulation 8% (2 of 25) non-worms to resemble

worms, I now lower that bound to 1%, using real-world data filtered not only by τ

and r but also by r′. Other filters may very well be possible. But that only 15 of

Chapter 4: False Positives 57

15 s 30 s

Non-Worm Processes 10,776 (511) 10,776 (511)

. . . w/ τ ≥ 76%, r ≥ 64 351 (77) 315 (85)

. . . w/ τ ≥ 76%, r ≥ 64, r′ > δ 145 (15) 112 (18)

Table 4.2: Results of exhaustive, worst-case examination of 10,776 non-worm
processes for worm-like behavior, where τ denotes a process’s degree of temporal con-
sistency, r denotes a process’s rate of calls to system services, r′ denotes a process’s
rate of network activity, and δ denotes a threshold (the slowest rate of network activ-
ity witnessed among my 9 worms). Listed parenthetically are the numbers of unique
non-worms (irrespective of version) to which processes belong. With intelligent fil-
tration, as few as 15 (2.9%) of 511 unique non-worms resemble worms.

511 remain after these filters alone reinforces the potential of collaborative detection,

insofar as so few out of hundreds of non-worms might potentially evince worm-like

behavior on many hosts at once.

4.3.2 Detecting Processes across Peers

Chapter 3 suggests that worms can be detected across peers because of worms’

degrees of temporal consistency (e.g., τ > 90%), while the current chapter maintains

that certain “worm-like” non-worms, if not properly filtered, might be detected as

well. I now confirm these hypotheses in this section. In particular, I look for positive

correlation between some process’s τ and the probability with which our collaborative

network recognizes that process’s execution on multiple peers. Rather than inject

worms into my network of 29 hosts, I look to the network’s most worm-like of non-

worms (Section 4.3.1) as proxies for worms. For the purposes of this inquiry, I treat

those non-worms with particularly high τ as representative of worms. I expect that

large τ should imply high rates of recognition, whereas the smallest of τ should imply

Chapter 4: False Positives 58

Figure 4.2: τ versus r versus r′ for worms and non-worms, averaged over an hour’s
worth (or less) of execution for each process, presented in three dimensions to highlight
worms’ clustering. Axes are scaled for visual separation of worms from non-worms.

few, if any, matches in snapshots from peers.

If I examine each of my 29 peers’ non-worms over 24 hours, I find that only

for large τ are multiple peers likely to recognize a common process. Figure 4.3 de-

picts this result, plotting non-worms’ rates of recognition against non-worms’ degrees

of temporal consistency. I define rate of recognition as follows: if some non-worm

is executing during some window on n ≥ 2 peers, and we determine that m such

instances are similar, then that non-worm’s rate of recognition for that window is

said to be m/n. By similar, I mean that, for each pair of processes among the m,

Chapter 4: False Positives 59

Figure 4.3: Rates of recognition of non-worms as a function of those non-worms’
degrees, τ , of temporal consistency, averaged over an hour’s worth (or less, for short-
lived processes) of activity during 24 hours of analysis using windows of 30 seconds.
If some non-worm is executing during some window on n peers, and m such instances
are judged similar, then that non-worm’s rate of recognition is said to be m/n. All
non-worms depicted boasted rates of calls into kernel space, r, greater than 64 per
second (the rate of my slowest of worms). As I expected for actual worms, only
processes with large τ are detected at non-negligible rates. Dots representing large τ
but low rates of detection belong to processes that, because of their brevity or relative
unpopularity, tended not to appear among my 29 hosts simultaneously. Shaded is
this figure’s upper-right quadrant, which includes six non-worms with τ ≥ 76% that
were detected at least 10% of the time. I expect actual worms to fall within this
quadrant as well, per Chapter 3.

|S1∩S2|
max(|S1|,|S2|) > 0.5, where S1 and S2 are snapshots, for at least 76% (Chapter 3’s least

worrisome τ) of the snapshots submitted for the processes (over the course of an

hour). Informally, I judge two processes similar if at least 76% of their snapshots look

“mostly the same.” This judgement is thus independent of those processes’ filenames

and any other distinguishing marks (e.g., hashes) that might be all too easily altered

by worms’ authors.

In terms of cliques, a rate of recognition of m/n for some process during some

Chapter 4: False Positives 60

window implies recognition of an m-clique of similarity among snapshots from all of

our peers, n of which are actually executing that process. (It is not necessarily the

case that an n-clique also exists during that window, as processes with τ < 100%

might not “look the same” across all peers during some window.) Because no cliques

in my study exceeded m = 6, I compiled the results for Figures 4.3 and 4.4 using

brute-force analysis. Cooperative networks boasting larger n (and, in turn, larger m)

demand more efficient approaches, per Chapter 5.

To be clear, n is not necessarily the network’s size but, rather, the number of

hosts on the network executing some non-worm. As such, m/n is simply a rate of

recognition, not a rate of infection.

Though peers’ average rates of recognition are not strictly correlated with rising

τ , in no 30-second window during my 24 hours of data do multiple peers detect

processes common to them at non-negligible rates if those processes’ τ are below 65%.

For τ ≥ 65%, I do detect common processes at non-negligible (i.e., double-digit)

rates, except for processes (whose points fall on Figure 4.3’s x-axis) that, because

of their brevity or relative unpopularity, tended not to appear among my 29 hosts

simultaneously. My intent, though, is to detect fast-moving worms, whose activity,

by nature, is more likely to be ongoing than brief. That processes with τ ≥ 65%

are, in fact, recognized across peers reinforces host-based, collaborative detection’s

potential, inasmuch as τ for every one of my worms was at least 76% (Chapter 3).

Because of worms’ relatively high degrees of temporal consistency, I expect they will

fall within Figure 4.3’s shaded, upper-right quadrant, as do 6 of my study’s most

worm-like non-worms.

Chapter 4: False Positives 61

0

25

50

75

100

*
Ap
nt
Ex
.e
xe

gc
as
Se
rv
.e
xe

ib
mm
es
sa
ge
s.
ex
e

Ap
oi
nt
.e
xe

wi
na
mp
.e
xe

av
gw
.e
xe

tr
il
li
an
.e
xe

*
ex
pl
or
er
.e
xe

vs
mo
n.
ex
e

fi
re
fo
x.
ex
e

go
og
le
ta
lk
.e
xe

po
in
t3
2.
ex
e

ss
my
pi
cs
.s
cr

Rt
vs
ca
n.
ex
e

vi
ew
mg
r.
ex
e

ns
cs
rv
ce
.e
xe

zl
cl
ie
nt
.e
xe

it
un
es
.e
xe

sk
yp
e.
ex
e

se
rv
ic
es
.e
xe

*
OU
TL
OO
K.
EX
E

sv
ch
os
t.
ex
e

non-worm

ra
te

s
o

f
re

co
g

n
it

io
n

 (
%

)

ave max

Figure 4.4: Average and maximal rates of recognition for non-worms whose average
rates of recognition exceed 1%. Figure 4.3 plots these same average rates against
non-worms’ degrees of temporal consistency. Only three of these non-worms (*) are
worrisome in that they also appear in Table 4.1, boasting worm-like τ , r, and r′.

4.3.3 Avoiding False Positives

Because my intent is to detect worms rapidly (ideally within, say, a single, 30-

second window), it is necessary to examine not only non-worms’ average rates of

recognition but also their worst-case, maximal rate of recognition (i.e., the maximum

of m/n seen over time). After all, even if some non-worm goes undetected most of

the time, a single window’s worth of similar behavior across many peers might induce

a false positive, whereby some non-worm is judged a worm. Figure 4.4 contrasts

average and maximal rates of recognition for those non-worms whose average rates

of recognition exceed 1%.

Particularly worrisome are those non-worms whose maximal rates of recognition

are 50% < m/n ≤ 100%, the result of which is that, on occasion, those non-worms

were detected on most, if not all, of the hosts on which they were running. But in none

of those cases were the non-worms running on most of the peers in my network. In

fact, in none of these cases was m (or n) greater than 4, whereas my network consisted

Chapter 4: False Positives 62

of 29 peers, an apparent “infection” rate, ι, of 4/29 ≈ 14%. Accordingly, provided I

set my threshold for detection at 14% (i.e., require, for a worm to be assumed present,

that some process appear similar on ι > 14% of peers), my cooperative of 29 peers

avoids a false positive. In other words, a high rate of recognition (m/n) does not

imply a high rate of infection or, rather, in the case of non-worms, a likelihood of

false positives.

Based on these results, I propose, for now, ι = 14% as a threshold for host-based,

collaborative detection: if a worm-like process (i.e., with worrisome r and r′) appears

on more than 14% of peers in a network, a worm shall be assumed present. With

additional data could this threshold be fine-tuned.

My collaborative network’s potential for false positives is indeed less than Fig-

ure 4.4 suggests. If I cross-reference those non-worms in Figure 4.4 with those in

Table 4.1, I find that only three are “worm-like,” insofar as they appear in both:

ApntEx.exe, explorer.exe, and OUTLOOK.EXE. Filtration by τ , r, and r′ therefore

limits our risk of false positives to the actions of just three of 511 non-worms. At

least two of these non-worms (iexplore.exe and OUTLOOK.EXE) do involve frequent

network activity, but not so frequent as my fastest of worms (Chapter 3). More-

over, it may, in fact, prove feasible to whitelist these most popular of non-worms (as

with read-only hashes of their executables). My focus in this thesis remains on more

generalized techniques.

Of course, not only might false positives induce an IDS to infer incorrectly that an

attack is in progress, they might also induce an IDS to overstate an actual outbreak’s

severity. By confusing non-worms with actual worms, an IDS might conclude that

Chapter 4: False Positives 63

more hosts are infected than actually are, the result of which might be a premature

or unnecessarily severe reaction, depending on the IDS’s mechanism for response.

To determine the likelihood with which non-worms might resemble actual worms,

I performed an exhaustive comparison of snapshots from my 19 most worm-like

non-worms (15 of which appeared worm-like using windows of 15 seconds and 18

of which appeared worm-like using windows of 30 seconds) among my 511 unique

non-worms (Table 4.1) with snapshots from Chapter 3’s 9 worms. The results are

striking: 14 of the 19 non-worms appear similar to actual worms. More formally, the

percentage of all possible pairs of snapshots for which |S1∩S2|
max(|S1|,|S2|) > 0.5 itself exceeds

50% for these 14 non-worms and is even as high as 100% for one (Table 4.3).

Closer examination of these non-worms’ and worms’ snapshots offers some insight.

If I consider, for instance, the most striking of these matches, sshd.exe vis-à-vis

I-Worm/Mydoom.F, I see that, while the two manifest remarkable overlap in services

utilized, their frequency distributions are markedly different (Figure 4.5), the impli-

cation of which is that consideration of either in filtration might, in fact, prove useful

in such cases. But it is far simpler to filter based on non-worms’ rates, r′, of network

activity.

4.4 Summary

Inherent in automated, behavior-based IDSes for worms is a risk of false positives.

I combat this risk with collaboration among peers. In this chapter, I vetted this idea

using my implementation of Wormboy 2.0, a prototype for host-based, collaborative

detection. I deployed my prototype to a network of 29 hosts running Windows,

Chapter 4: False Positives 64

where I monitored and analyzed 10,776 processes. Using the data gathered from this

network, I exposed the utility of temporal consistency (similarity over time in worms’

and non-worms’ invocations of system calls) in collaborative detection.

I identified properties that distinguish non-worms from worms 99% of the time. I

found that a collaborative network, using patterns of system calls and simple heuris-

tics, can detect worms running on multiple hosts. And I found that collaboration

among peers reduces the risk of false positives because of the unlikely, simultaneous

appearance across peers of non-worm processes with worm-like properties.

Chapter 4: False Positives 65

Non-Worm Worm(s) Similarity

1.EXE I-Worm/Mydoom.F 58%

aolsoftware.exe I-Worm/Sasser.D 74%

apntex.exe Worm/Lovesan.A 56%

besclient.exe I-Worm/Mydoom.F 97%

ccproxy.exe I-Worm/Mydoom.F 77%

cvpnd.exe

I-Worm/Sasser.D 73%

I-Worm/Jobaka.A 66%

I-Worm/Sasser.B 64%

explorer.exe

I-Worm/Mydoom.F 85%

I-Worm/Bagle.S 61%

I-Worm/Bagle.Q 60%

Worm/Lovesan.H 58%

iexplore.exe

I-Worm/Mydoom.F 85%

Worm/Lovesan.A 71%

I-Worm/Mydoom.D 54%

OUTLOOK.EXE I-Worm/Mydoom.F 64%

SNDSrvc.exe
Worm/Lovesan.H 97%

I-Worm/Sasser.D 72%

sshd.exe I-Worm/Mydoom.F 100%

ViewMgr.exe
I-Worm/Sasser.D 74%

I-Worm/Mydoom.F 67%

wmplayer.exe I-Worm/Mydoom.F 51%

WRSSSDK.exe I-Worm/Mydoom.F 89%

Table 4.3: Similarity over time of 14 worm-like non-worms (per Table 4.1) with
actual worms, determined using windows of 30 seconds. The striking similarities
suggest that further reduction of a collaborative system’s probability of false positives
requires further refinements in filtration (e.g., some consideration of calls’ order or
relative frequencies).

Chapter 4: False Positives 66

(a) sshd.exe

(b) I-Worm/Mydoom.F

Figure 4.5: Snapshots from (a) sshd.exe and (b) I-Worm/Mydoom.F, using win-
dows of 30 seconds. For each window, the frequency of each service’s invocation
is depicted as a percentage of the total number of calls into kernel space during
that window. For visual clarity, snapshots are unlabeled; distinct shades imply dis-
tinct system services. Although sshd.exe and I-Worm/Mydoom.F appear similar to
Wormboy (because the two invoke a large, common subset of system calls), the two
differ in their relative frequencies of invocations.

Chapter 5

Scalability

Thus far, I have focused on my proposed IDS’s potential for true positives and

risk of false positives. The question remains, though, of whether this architecture

actually scales. I now show in this chapter that collaborative detection indeed scales

beyond 29 peers, much like the botnets it intends to detect. And I consider some of

the threats thereto.

In the section that follows, I provide a framework with which to assess the scalabil-

ity of my proposed architectures. In Section 5.2, I assess the cost of peers’ monitoring

of their own behavior. In Section 5.3, I model the cost of peers’ submission of snap-

shots. In Section 5.4, I model the most expensive of tasks, actual analysis of snapshots

and discovery of cliques.

5.1 Framework for Assessment

As per my architecture (Chapter 2), detection of worms reduces to:

(1) self-monitoring by peers of their own behavior;

(2) submission of snapshots by peers to a snapshot server; and

67

Chapter 5: Scalability 68

(3) analysis of snapshots for similarities by snapshot server, which itself reduces to:

(a) pairwise comparison of snapshots; and

(b) searching for cliques across peers, whereby snapshots are vertices and sim-

ilarities are edges.

The scalability of my architecture therefore reduces to the costs of these processes

vis-à-vis real-world limits thereupon. In the sections that follow, I model these costs

and propose designs for minimization thereof. My proposed units of measure are

limited resources: time (i.e., CPU cycles) and space (i.e., bandwidth and memory).

To be not only scalable but viable as well, I recognize that my architecture must

respect real-world limits on resources. Lest the cure for worms, so to speak, be worse

than the disease, my architecture must not prevent peers from getting actual work

done. I therefore restrict my own architecture’s design.

I assume that it may use megabytes but not gigabytes of peers’ memory (both

primary and secondary). I assume that peers can download megabits per second

(e.g., 1.5 Mbps) but only upload kilobits per second (e.g., 364 kbps). I assume that

snapshot servers have access to less limited resources. And I require that submission

of snapshots and analysis thereof be rapid, less than or equal to one window’s worth

of time, lest my architecture “fall behind” in its analyses.

5.2 Self-Monitoring By Peers

However peers’ behavior happens to be defined, my architecture assumes some

form of constant monitoring thereof. The cost of such monitoring, then, is of par-

Chapter 5: Scalability 69

Benchmark Calls
Runtime

Overhead
w/o w/

Adobe Photoshop 7.0.1 258,549 1574 s 1589 s 0.95%

Adobe Premiere 6.5 13,379,755 1830 s 1864 s 1.9%

Ahead Software Nero Express 6.0.0.3 46,869,089 2536 s 2610 s 2.9%

Microsoft Office XP SP2 2,317,059 1054 s 1065 s 1.0%

Microsoft Windows Media Encoder 9.0 1,672,449 2141 s 2164 s 1.1%

Mozilla 1.4 51,956,045 2883 s 3002 s 4.1%

MusicMatch Jukebox 7.10 308,793 2680 s 2699 s 0.71%

Roxio VideoWave Movie Creator 1.5 2,287,867 1553 s 1569 s 1.0%

WinZip Computing WinZip 8.1 4,775,630 1704 s 1717 s 0.76%

Table 5.1: Results of executing PC World’s WorldBench 5 [57] benchmarking suite
without (w/o) and with (w/) Wormboy 2.0’s client running on a 550MHz Pentium
III with 384MB RAM atop Windows XP SP2, averaged over 10 runs of the suite,
the standard deviations for which varied from 4 to 23 seconds. Wormboy’s average
impact on runtime did not exceed 4.1%.

ticular concern, lest my architecture impede peers’ actual work. I evaluate my own

proxy for behavior to provide a sense of these costs.

With calls into kernel space as this thesis’s proxy, the performance of Worm-

boy 2.0’s client is of particular concern, lest hooking as many as thousands of calls

per second interfere with peers’ actual work. Not only, then, does Wormboy log calls

to unpaged memory, it also executes few instructions to perform its logging.

To determine Wormboy’s impact on peers, I executed PC World’s WorldBench 5 [57]

benchmarking suite without and with Wormboy’s client running on a 550MHz Pen-

tium III with 384MB RAM atop Windows XP SP2. Though further optimization is

certainly possible, Wormboy’s impact on peers’ runtime already appears reasonable.

Per Table 5.1, Wormboy increased the running time of the suite’s applications by no

more than 4.1%.

Chapter 5: Scalability 70

5.3 Submission of Snapshots

The next cost to consider is that of submission of snapshots. As per my archi-

tecture, this process involves transmission of some number of bits by some number

of peers to some centralized server within some window of time. My architecture

assumes neither synchronization of peers’ behavior nor synchronization of snapshots’

submission (Section 2.3). Though peers do submit sets of snapshots every n seconds,

they might very well submit at different moments within n-second windows of time.

For scalability’s sake, then we can distribute snapshots’ submission over this window

of time. Each n seconds, the snapshot server will simply analyze what snapshots it

has; the next snapshots received will be analyzed during the next window of time.

The bandwidth (in bits per second) required of this centralized server is thus

bandwidth =
number of bits per peer× number of peers

size of window in seconds
. (5.1)

Equivalently, the number of peers allowed by a window of some size is

number of peers =
bandwidth× size of window in seconds

number of bits per peer
.

Per Chapters 3 and 4, windows’ size is best dictated by peers’ own behavior. With

system calls my proxy for behavior and intersection my basis for snapshots’ com-

parison, 30 seconds, for instance, worked well. With bandwidth ultimately limited

by dollars or line speeds, at least one parameter remains within in our control: the

number of bits per peer also dictates our number of peers.

Chapter 5: Scalability 71

Although Wormboy’s client currently has peers submit snapshots via XML-RPC

(for simplicity), more efficient submissions are possible. “Terseness in XML markup

is of minimal importance” [98], after all, and XML-RPC is by no means compact. If

my architecture is to scale, not only must peers be able to submit snapshots quickly,

the receiving snapshot server must be able to handle the load. The fewer bits that

peers need to submit, then, the more peers the snapshot server might handle. I look

to my data from Wormboy 2.0 (Chapter 4) to motivate more efficient design.

Over the course of my 24-hour deployment of Wormboy, my 29 peers submitted

a total of 1,029,665 snapshots. In each 30-second window of time, peers submit-

ted between 1 and 185 snapshots each. On average, though, each peer submitted

only 22 snapshots, with a standard deviation of 9. However, many of those snap-

shots prove irrelevant with regard to detection of worms, which, by nature, should

involve network activity. On average per window, peers submitted only 3 snapshots

involving network activity (i.e., invocation of NtOpenFile, NtDeviceIoControlFile,

and NtCloseFile), the implication of which is that peers need not submit the other

22− 3 = 19. Table 5.2 summarizes these findings.

The challenge at hand, then, is to submit an average of 3 snapshots per peer in a

format conducive to both transmission and analysis. Of course, snapshots themselves

can vary in size. As unordered sets of system services’ IDs, they necessarily range from

1 to 284 in cardinality. Over Wormboy 2.0’s 24-hour deployment, though, I found

that, in practice, snapshots contained between 1 and 122 IDs, with small snapshots

more common than large (Figure 5.1). The size of a snapshot, on average, was 11

(Table 5.3); the overall median was just 7. If we assume fixed-width encoding of

Chapter 5: Scalability 72

median mean std. dev. min. max.

snapshots
20 22 9 1 185

per window per peer

snapshots w/ network activity
3 3 2 0 172

per window per peer

Table 5.2: Numbers of snapshots received per 30-second window from each of my 29
peers over the course of 24 hours, during which my snapshot server received 1,029,665
snapshots in total. On average, each peer submitted 22 snapshots to the snapshot
server per window of time. However, on average, only 3 of those snapshots in-
volved network activity (i.e., invocation of NtOpenFile, NtDeviceIoControlFile,
and NtCloseFile). The most snapshots ever submitted by a peer for some window
was 185 (172 if we only consider those with network activity). As the low standard de-
viations suggest, that peer proved to be an outlier; it was a research machine running
dozens of instances of sshd.exe.

IDs (to avoid computational costs of compression), we need 2 bytes per ID and,

thus, 16×11 = 176 bits per snapshot on average. In the extreme, though, a snapshot

might contain 122 IDs (or, worse, 284), thereby proving 122/11 ≈ 11 (or 284/11 ≈ 26)

times larger than usual, the implication of which is 1,100% (or 2,600%) as much work

(i.e., comparisons) for the snapshot server receiving that load. For scalability’s sake,

I desire more predictable loads. Better, then, to represent snapshots with 36-byte

arrays of bits, b0b1 · · · b2830000, whereby bi = 1 if and only if ID i belongs in the

snapshot.

For peers, uploading an average of 3 snapshots per, say, 30-second window, each of

which totals just 36×8 = 288 bits, is certainly reasonable. Of greater interest, though,

is just how many such snapshots a snapshot server could handle. Assuming overhead

of 20 bytes for TCP [60], 20 bytes for IP [59], and 18 bytes for Ethernet [34], each

peer’s submission of 3 36-byte snapshots involves upload of 3×36+20+20+18 = 166

bytes (1,328 bits). Accordingly, the bandwidth required by the snapshot server varies

Chapter 5: Scalability 73

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

1 122

sizes of snapshots

fr
eq

u
en

cy

Figure 5.1: Sizes of snapshots received (i.e., number of unique system services
invoked) per 30-second window from each of my 29 peers over the course of 24 hours,
during which my snapshot server received 1,029,665 snapshots in total. Snapshots’
sizes ranged from 1 to 122. On average, peers’ processes each invoked 11 unique
system services per window, per Table 5.3. Most snapshots were relatively small in
size. Over 140,000 of the 1,029,665 snapshots, for instance, contained the ID of just
one system service.

linearly with the number of peers, per Equation 5.1.

Of the snapshot server, then, 100 peers would demand

number of bits per peer× number of peers

size of window in seconds
=

1, 328× 100

30
≈ 4, 427

bits per second, while as many as 10,000 peers would still only demand approximately

442,667 bits per second, per Table 5.4. Such loads as these are well within reasonable

limits (e.g., T-1 speeds). Even if 10,000 peers happen to submit at once, today’s

Chapter 5: Scalability 74

median mean std. dev. min. max.

sizes of snapshots 7 11 12 1 122

Table 5.3: Sizes of snapshots received (i.e., number of unique system services in-
voked) per 30-second window from each of my 29 peers over the course of 24 hours,
during which my snapshot server received 1,029,665 snapshots in total. Snapshots’
sizes ranged from 1 to 122. On average, peers’ processes each invoked 11 unique
system services per window. As the difference between median and mean suggests,
most snapshots were relatively small in size, per Figure 5.1.

peers bandwidth

100 4,427 bps

500 22,133 bps

1,000 144,267 bps

5,000 221,333 bps

10,000 442,667 bps

Table 5.4: Estimates of bandwidth required for transmission of 3 36-byte snapshots
from each peer, for various numbers of peers, assuming windows of 30 seconds and
overhead of 20 bytes for TCP [60], 20 bytes for IP [59], and 18 bytes for Ethernet [34].
These estimates suggest that my architecture could scale, based on bandwidth alone,
to thousands of hosts.

networks (e.g., T-3 speeds) could handle the flow.

Of course, resources besides bandwidth are also limited. Servers suffer concurrency

limits as well, whereby only so many connections can be handled at once (whether

by separate threads or separate processes). But, these days, even 10,000 connections

per second are possible [41, 42].

Of course, we cannot spend all of our time simply receiving these snapshots. We

must allow time to analyze those snapshots. How many and how fast we might

analyze is the next question at hand.

Chapter 5: Scalability 75

5.4 Analysis of Snapshots

Upon receipt of, say, 3 snapshots from each of n peers, analysis thereof must

begin. And it must complete before the next window’s worth arrives. The challenge

at hand reduces conceptually to searching for cliques in a graph, whereby snapshots

are vertices, and edges exist between any two deemed to be similar. I explore in this

section the costs of these searches.

5.4.1 Pairwise Comparison of Snapshots

Finding similarities among 3n snapshots involves pairwise comparisons, the run-

ning time of which is in O(n2). In this assessment of scalability, though, constant

factors are important. Fortunately, comparison of snapshots is symmetric. After all,

two snapshots, S1 and S2, are judged similar if

λ(S1, S2) =
|S1 ∩ S2|

max(|S1|, |S2|) > 0.5.

As such, λ(S1, S2) = λ(S2, S1), the implication of which is that we need only compare

half as many tuples as pairwise comparisons might otherwise suggest. Moreover,

we need not look for similarities among a peer’s own 3 snapshots, as we only seek

correlations across peers. The net result, then, is that our snapshot server faces a

total of

3(n− 1) + 3(n− 2) + · · ·+ 3

Chapter 5: Scalability 76

comparisons, the summation of which is

3 ·
n−1∑
i=1

i = 3 · (n− 1)((n− 1) + 1)

2
=

3n2 − 3n

2
.

To determine the largest value of n that 30-second windows might permit, I return to

my data for system services’ actual distribution across snapshots in order to generate

3 snapshots each for various numbers of peers. For each of Windows XP SP2’s 284

system services, I have counted its frequency among my 1,029,665 snapshots. Their

distribution appears in Figure 5.2. While some system services do not appear at all,

several appear quite frequently. Over half of these 1,029,665 snapshots, for instance,

contain the ID of NtClose (i.e., 25) and/or NtWaitForSingleObject (i.e., 271). In

Figure 5.1, meanwhile, I already have a distribution for snapshots’ sizes.

With this distribution, I can now generate pseudorandomly any number of repre-

sentative 36-byte snapshots in order to measure their cost of comparison.1 Informally,

since snapshots are represented as bitsets, Figure 5.1 tells me how many bits to turn

on in each snapshot, while Figure 5.2 tells me which bits to turn on. With time my

constraint and scalability my goal, minimization of instructions is now ultimately of

interest. With snapshots represented as bitsets, calculation of

λ(S1, S2) =
|S1 ∩ S2|

max(|S1|, |S2|)

effectively reduces to intersection of bits (i.e., bitwise AND) and counting of 1s.

1In generating snapshots pseudorandomly according to this distribution, I am ignoring any de-
pendencies that might exist among services. For instance, invocation of NtOpenFile typically implies
eventual invocation of NtClose.

Chapter 5: Scalability 77

0

257,416

514,833

772,249

1,029,665

0 283

system service (ID)

fr
eq

u
en

cy

25

271

Figure 5.2: Distribution of system services across snapshots received from my 29
peers over the course of 24 hours, during which my snapshot server received 1,029,665
snapshots. Over half of the snapshots received, for instance, contained the ID of
NtClose (25) and/or NtWaitForSingleObject (271).

I can thus determine efficiently (in, say, C++) the similarity of two snapshots as

per Figure 5.3. Counting of 1s (i.e., pop_array), meanwhile, can be implemented

efficiently (in, again, C++) according to Warren [95], as per Figure 5.4.

With these implementations have I simulated comparison of 3n2−3n
2

snapshots, for

n ∈ {100, 200, . . . , 6000}, on a 2.4GHz AMD Athlon 64 X2 4800+ with 2GB RAM,

per Figure 5.5. Beyond n = 5500, the time required for comparison would exceed

windows of 30 seconds, especially if transmission of snapshots requires some of those

30 as well. Of course, we cannot spend all 30 seconds on comparison alone. We must

still find our cliques.

Chapter 5: Scalability 78

BOOL similar(uint32 a[], uint32 b[])
{

uint32 c[9];
for (int i = 0; i < 9; i++)

c[i] = a[i] & b[i];
if (pop_array(c) / (double) max(pop_array(a), pop_array(b)) > 0.5)

return TRUE;
else

return FALSE;
}

Figure 5.3: Implementation (in C++) of snapshots’ comparison. With snapshots

effectively represented with bitsets, implementation of λ(S1, S2) = |S1∩S2|
max(|S1|,|S2|) reduces

to intersection of bits (i.e., bitwise AND) and counting of 1s, the latter of which is
implemented with pop_array (Figure 5.4).

5.4.2 Searching for Cliques

If some number of peers among n are executing some worm, and we detect pairwise

similarities among at least ι · n peers behavior as a result, we effectively have graph

with ι ·n · (ι ·n + 1)/2 edges interconnecting those peers. We therefore are faced with

a clique, but the challenge is to notice as much quickly, before the current window of

analysis expires.

A clique is a subgraph of some graph in which each pair of nodes is connected with

an edge; a k-clique has k such nodes. A maximum clique, meanwhile, is the largest

clique present in some graph. Unfortunately, scouring vertices and edges for cliques

of particular sizes (e.g., ι · n) is not easy. It is, in fact, NP-hard. Even the simplest

algorithm (i.e., checking all possible subgraphs) runs in O(n!).

Pairwise comparison of snapshots proved expensive (Section 5.4.1), and it was

only in O(n2). Even searching 29 nodes for k-cliques, for k ≤ 29, proved slow (Sec-

tion 4.3.2). We must, therefore, look to efficient, if approximate, algorithms for

Chapter 5: Scalability 79

int pop_array(uint32 A[])
{

int i, j, lim;
uint32 s, s8 , x;

s = 0;
for (i = 0; i < 9; i = i + 31)
{

lim = min(9, i + 1);
s8 = 0;
for (j = i; j < lim; j++)
{

x = A[j];
x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
s8 = s8 + x;

}
x = (s8 & 0x00FF00FF) + ((s8 >> 8) & 0x00FF00FF);
x = (x & 0x0000ffff) + (x >> 16);
s = s + x;

}
return s;

}

Figure 5.4: Implementation (in C++) of 1-bit counting. With snapshots effectively

represented with bitsets, implementation of λ(S1, S2) = |S1∩S2|
max(|S1|,|S2|) reduces to inter-

section of bits (i.e., bitwise AND) and counting of 1s, the latter of which pop_array

implements efficiently [95].

worms’ detection if detection is to remain rapid. Of course, it is NP-hard even to

approximate maximum cliques within a ratio of nε, for ε > 0 [4, 9]. But it is not

maximum cliques that we necessarily seek. Rather, we seek cliques of some minimum

size (e.g., ι · n).

In fact, dense subgraphs (i.e., cliques with some edges missing) might be more

reasonable still; larger deployments of my proposed IDS would tell. Recall Chap-

ter 3’s emphasis of worms’ τ . If we confine detection to single windows of time, then

τ < 100% implies that, out of ι ·n · (ι ·n+1)/2 possible edges, some will quite likely

Chapter 5: Scalability 80

0

5

10

15

20

25

30

0 1,120 2,240 3,360 4,480 5,600

peers

ti
m

e
(s

ec
o

n
d

s)

Figure 5.5: Time required for centralized analysis of snapshots for similarity by one
snapshot server, based on simulations using a 2.4GHz AMD Athlon 64 X2 4800+
with 2GB RAM. Simulations assume 3 snapshots per window per peer, as per Ta-
ble 5.2, with system services distributed as per Figure 5.2. Analysis is centralized in
that snapshot server compares all snapshots pairwise. As expected, the time required
for these comparisons increases quadratically with the number of peers. These sim-
ulations suggest that a wholly centralized architecture scales to thousands of peers.
Eventually, though, the time required to analyze a window’s worth (i.e., 30 seconds)
of snapshots exceeds the size of the window itself, in which case detection of worms
would not longer be rapid.

be missing, especially for large values of n. Of course, we could mitigate this risk at

some cost in rapidity by “waiting” for edges to appear over multiple windows of time.

Suppose, for instance, that some worm with τ = 97% is indeed executing on two

peers. The implication is that with probability 3% we will fail to detect an edge be-

tween them. If, though, we wait for a second window’s worth of data, the probability

that we fail to detect an edge during both windows falls to 3%×3% ≈ 0%. Of course,

Chapter 5: Scalability 81

the probability that we detect an edge between two peers executing some worm-like

non-worm might also rise. Thus does acceptance of dense subgraphs present an at-

tractive alternative to reliance upon multiple windows. Larger deployments of my

proposed IDS would provide additional data with which to vet both approaches. For

this discussion of scalability, though, I seek lower bounds on how many peers my pro-

posed architecture might actually support. For this reason do I return to my focus

on the concept of cliques, as I daresay they represent worst-case computational costs.

For the detection of cliques, though, we can again leverage worms’ temporal con-

sistency. In my simulations with worms’ traces, I found that two infected peers are

quite likely to detect using intersection that they are executing the same process (Sec-

tion 3.3.1). In other words, I found that |S1∩S2|
max(|S1|,|S2|) > 0.5 for most pairs of snapshots

from worms. For 15-second windows, as many as τ = 97% proved similar (Table 3.3).

The implication, then, is that among peers (i.e., vertices) executing some worm, dis-

covery of edges (Section 5.4.1) is quite likely. If all n peers are executing some worm,

we, ideally, would discover n(n + 1)/2 = N edges among them. If the probability of

an edge between two peers is not 100%, though, but instead p, the number of edges

we are likely to find in reality (X) follows a binomial distribution, whereby

Pr(X = x) =

(
N

x

)
px(1− p)N−x,

where p = τ . For τ = 97%, then,

Pr(X = x) =

(
N

x

)
0.97x(0.03)N−x

Chapter 5: Scalability 82

describes the number of edges we should expect to discover. Per Figure 5.6, such high

p implies high expected numbers of edges (e.g., E[X] = N · p ≈ 4, 899 for N = 5, 050

and p = 0.97). The implication is density of edges among those peers infected. To

find cliques exceeding some size among large numbers of peers, we could seek maximal

cliques, which are simply cliques not contained within other cliques. (A maximum

clique, then, is simply the largest among all maximal cliques.) To be sure, maximal

cliques might not be as large as a graph’s maximum. But we can find them more

efficiently [1, 3, 44]. Among the simpler approaches is to sort vertices by their degree

(i.e., numbers of edges), add the vertex with highest degree to an otherwise empty

set, and proceed iteratively to check every other vertex against those in the set; if an

edge exists between them, it too is added to the set [76]. Figure 5.7 simulates this

approach for n ∈ {0, 100, . . . , 6000} peers. Although its running time is quadratic,

we, again, need not a maximum clique; the algorithm can short-circuit once a clique of

some size is discovered. This algorithm, too, is not without many alternatives. With

maximal cliques in graphs of particular relevance to data mining, bioinformatics, and

graph theory in general, efficient algorithms have been shown to exist for graphs even

larger than 10,000 nodes [18, 94,99].

5.5 Summary

I argued in this chapter that my architecture indeed scales, just like the adversaries

it seeks to impede. I first reduced my architecture’s scalability to measurement of a

trio of costs: (1) self-monitoring by peers of their own behavior; (2) submission of

snapshots by peers to snapshot server; and (3) analysis of snapshots for similarities

Chapter 5: Scalability 83

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 1,000 2,000 3,000 4,000 5,000

edges (x)

P
r(

X
 =

 x
)

Figure 5.6: Probabilities of edges among peers are given by a binomial distribution.
Pictured here is Pr(X = x) =

(
N
x

)
px(1 − p)N−x, where N = 5, 050 and p = 97%,

the latter of which is my largest measure of worms’ temporal consistency, τ , using
15-second windows (Section 3.3.1). According to this distribution, I expect to find
N · p ≈ 4, 899 out of the 100(100 + 1)/2 = 5, 050 edges possible edges among 100
peers. The implication is density in edges, which facilitates discovery of cliques.

by snapshot server. I modeled two of those costs with sets of equations that allowed

me to generalize my architecture’s costs in time and space.

I found that self-monitoring slows peers’ runtime by no more than 4.1%. I showed

that submission of snapshots requires just kilobits of bandwidth, with the cost to

each peer measured in only hundreds of bits per second. And I showed that analysis

of snapshots is possible for far more than 29 peers. Assuming windows of 30 seconds,

I found that the architecture can scale to thousands of peers.

Chapter 5: Scalability 84

0

0.1

0.2

0.3

0.4

0.5

0 1,000 2,000 3,000 4,000 5,000 6,000

peers

ti
m

e
(s

ec
o

n
d

s)

Figure 5.7: Time required for discovery of maximal cliques by a snapshot server,
based on simulations using a 2.4GHz AMD Athlon 64 X2 4800+ with 2GB RAM.
Simulations treat snapshots as vertices in a graph, with edges between those pairs
of snapshots judged to be similar (whether by the snapshot server itself during cen-
tralized analysis or by peers themselves during distributed analysis). Although this
plot does not appear smooth (because of insufficient granularity in time’s measure-
ment), the time required to find maximal cliques increases only quadratically with
the number of peers.

Chapter 6

Conclusions and Future Work

Botnets exist because we are not very good at keeping our systems secure. But

we can at least detect when our systems are no longer under just our control. I do

not set out to prevent botnets’ attacks in this work. Indeed, I allow and expect them

to be waged. But exceed a particular threshold (e.g., ι = 14%), and detection kicks

in. This thesis has put forth that collaborative detection of these botnets can work.

And with detection comes actual opportunity to respond.

The overarching question herein has been whether or not we can build IDSes

for botnets of worms that are not only automated and rapid but also high in true

positives and low in false positives. This thesis answers that we can. Indeed, we can

even tolerate bugs, complexity, monocultures, and interconnectivity alike. Inherent in

automated, behavior-based IDSes for worms is a risk of false positives. But I combat

it with collaboration among peers.

I presented in this thesis an architecture for detection of worms that leverages

collaborative networks of peers to achieve high rates of true positives and low rates of

false positives. That architecture embodies my own definition of anomalous behavior,

whereby a system’s behavior is anomalous if it correlates all too well with other

85

Chapter 6: Conclusions and Future Work 86

networked, but otherwise independent, systems’ behavior. It is not only automated

but rapid as well, relying on narrow windows of time to detect like behavior across

peers.

I validated my ideas in both simulation and the wild alike. Through simulations

with traces of 9 variants of worms and 25 non-worms, I found that two peers, upon

exchanging summaries of system calls recently executed, can decide that they are,

more likely than not, both executing the same worm between 76% and 97% of the

time.

I deployed an actual prototype of my architecture to a network of 29 systems with

which I monitored and analyzed 10,776 processes, inclusive of 511 unique non-worms

(873 if unique versions constitute unique non-worms). Using that data, I exposed

the utility of temporal consistency (similarity over time in worms’ and non-worms’

invocations of system calls) in collaborative detection.

I identified properties with which to distinguish non-worms from worms 99% of

the time. I found that a collaborative network, using patterns of system calls and

simple heuristics, can detect worms running on multiple hosts. And I found that

collaboration among peers reduces the risk of false positives because of the unlikely,

simultaneous appearance across peers of non-worm processes with worm-like proper-

ties.

I demonstrated with that my architecture indeed scales like the adversaries it seeks

to detect. A natural next step would be to deploy this architecture to more peers

than 29, with an eye on detection of new botnets and worms altogether. A natural

next step would be to refine some of the modules herein (e.g., those for behavior

Chapter 6: Conclusions and Future Work 87

and similarity thereof) and improve even further this thesis’s rates of false and true

positives.

In the meantime, I have taken at least one step toward more level ground with

our adversaries. They might still have it easier overall. But if they wish to stay under

our radar, they’ll need to work harder.

Bibliography

[1] F.N. Abu-Khzam, N.E. Baldwin, M.A. Langston, and N.F. Samatova. On the
Relative Efficiency of Maximal Clique Enumeration Algorithms, with Applica-
tions to High-Throughput Computational Biology. In Proceedings of the In-
ternational Conference on Research Trends in Science and Technology, Beirut,
Lebanon, 2005.

[2] Advanced Micro Devices, Inc. AMD’s Virtualization Solutions. http:

//enterprise.amd.com/us-en/Solutions/Consolidation/virtualization.

aspx.

[3] E. A. Akkoyunlu. The Enumeration of Maximal Cliques of Large Graphs. SIAM
Journal on Computing, 2(1):1–6, 1973.

[4] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized Graph
Products. Comput. Complex., 5(1):60–75, 1995.

[5] E. Anderson and J. Li. Aggregating Detectors for New Worm Identification. In
USENIX 2004 Work-in-Progress Reports. USENIX, June 2004.

[6] R. Anderson. Why Information Security is Hard-An Economic Perspective. In
ACSAC ’01: Proceedings of the 17th Annual Computer Security Applications
Conference, page 358, Washington, DC, USA, 2001. IEEE Computer Society.

[7] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. Stolfo. Detecting Malicious
Software by Monitoring Anomalous Windows Registry Accesses. In Proc. of the
5th Int’l Symposium on Recent Advances in Intrusion Detection, 2002.

[8] Apple Computer, Inc. QuickTime. http://www.apple.com/quicktime/.

[9] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and the Hardness of Approximation Problems. J. ACM, 45(3):501–555, 1998.

[10] P. Barford and V. Yegneswaran. An Inside Look at Botnets. Advances in Infor-
mation Security, 27:171–191, March 2007.

88

Bibliography 89

[11] R. M. Brady, R. J. Anderson, and R. C. Ball. Murphy’s Law, the Fitness
of Evolving Species, and the Limits of Software Reliability. Technical Report
UCAM-CL-TR-471, University of Cambridge, Computer Laboratory, September
1999.

[12] Bugtraq. Microsoft Windows Csrss HardError Messages Multiple Vulnerabilities.
http://www.securityfocus.com/bid/16074, January 2007.

[13] Bugtraq. Microsoft Windows ReadDirectoryChangesW Information Disclosure
Vulnerability. http://www.securityfocus.com/bid/22664, Februrary 2007.

[14] Bugtraq. Microsoft Windows Vista Voice Recognition Command Execution Vul-
nerability. http://www.securityfocus.com/bid/22359, March 2007.

[15] Bugtraq. Microsoft Windows Vista Windows Mail Local File Execution Vulner-
ability. http://www.securityfocus.com/bid/23103, March 2007.

[16] B. Calder, A. Chien, J. Wang, and D. Yang. The Entropia Virtual Machine
for Desktop Grids. In Proc. of the 1st Int’l Conference on Virtual Execution
Environments, pages 186–196, Chicago, IL, June 2005.

[17] P. Dabak, S. Phadke, and M. Borate. Undocumented Windows NT. M&T Books,
1999.

[18] N. Du, B. Wu, L. Xu, B. Wang, and X. Pei. A Parallel Algorithm for Enumerating
All Maximal Cliques in Complex Network. Sixth IEEE International Conference
on Data Mining - Workshops, pages 320–324, 2006.

[19] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D. Tenaglia. A Behavioral
Approach to Worm Wetection. In Proc. of the 2004 ACM Workshop on Rapid
Malcode, pages 43–53, New York, NY, USA, 2004. ACM Press.

[20] E. Eskin. Anomaly Detection over Noisy Data Using Learned Probability Dis-
tributions. In Proc. of the 17th International Conference on Machine Learning,
2000.

[21] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A Sense of Self for
Unix Processes. In Proc. of the 1996 IEEE Symposium on Research in Security
and Privacy, pages 120–128. IEEE Computer Society Press, 1996.

[22] G. Goth. Fast-Moving Zombies: Botnets Stay a Step Ahead of the Fixes. IEEE
Internet Computing, 11(2):7–9, 2007.

[23] Grisoft Inc. http://www.grisoft.com/.

Bibliography 90

[24] J. Gulbrandsen. How Do Windows NT System Calls REALLY Work?
http://www.codeguru.com/Cpp/W-P/system/devicedriverdevelopment/

article.php/c8035/, August 2004.

[25] J. Gulbrandsen. System Call Optimization with the SYSENTER Instruction.
http://www.codeguru.com/Cpp/W-P/system/devicedriverdevelopment/

article.php/c8223/, October 2004.

[26] J. Harris. YAC: Yet Another Caller ID Program. http://sunflowerhead.com/
software/yac/.

[27] B. Henderson. XML-RPC for C and C++. http://xmlrpc-c.sourceforge.

net.

[28] N. P. Herath. Adding Services To The NT Kernel.
microsoft.public.win32.programmer.kernel, October 1998.

[29] S. A. Hofmeyr. An Immunological Model of Distributed Detection and Its Appli-
cation to Computer Security. PhD thesis, 1999.

[30] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion Detection Using Sequences
of System Calls. Journal of Computer Security, 6(3):151–180, 1998.

[31] G. Hoglund and G. McGraw. Exploiting Software: How to Break Code. Pearson
Higher Education, 2004.

[32] Honeynet Project.

[33] R. Hu and A. K. Mok. Detecting Unknown Massive Mailing Viruses Using
Proactive Methods. In Proc. of the 7th Int’l Symposium on Recent Advances in
Intrusion Detection, 2004.

[34] IEEE Computer Society. IEEE Std 802.3-2005, December 2005.

[35] Intel Corp. Intel Virtualization Technology. http://www.intel.com/

technology/computing/vptech/.

[36] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast Portscan Detec-
tion Using Sequential Hypothesis Testing. In Proc. of the IEEE Symposium on
Security and Privacy, May 2004.

[37] H. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Sig-
nature Detection. In USENIX Security Symposium, pages 271–286, 2004.

[38] O. Kolesnikov and W. Lee. Advanced Polymorphic Worms: Evading IDS by
Blending in with Normal Traffic. Technical Report GIT-CC-05-09, Georgia In-
stitute of Technology, 2005.

Bibliography 91

[39] P. M. Kolla. Spybot - Search & Destroy. http://www.safer-networking.org/.

[40] W. Lee, S. J. Stolfo, and P. K. Chan. Learning Patterns from Unix Process
Execution Traces for Intrusion Detection, pages 50–56. AAAI Press, 1997.

[41] LiteSpeed Technologies, Inc. Web Server Performance Comparison: LiteSpeed
2.1 VS. http://litespeedtech.com/library/benchmarks/benchmark r3/,
April 2007.

[42] C. MacCárthaigh. Scaling Apache 2.x beyond 20,000 concurrent downloads.
Technical report, July 2005.

[43] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker.
Controlling High Bandwidth Aggregates in the Network. SIGCOMM Comput.
Commun. Rev., 32(3):62–73, 2002.

[44] K. Makino and T. Uno. New Algorithms for Enumerating All Maximal Cliques.
Lecture Notes in Computer Science, 3111:260–272, 2004.

[45] McAfee, Inc. http://www.mcafee.com/.

[46] McAfee, Inc. Virus Profile: W32/Bagle@MM. http://us.mcafee.com/

virusInfo/default.asp?id=description&virus k=100965.

[47] McAfee, Inc. Virus Profile: W32/Lovsan.worm.a. http://us.mcafee.com/

virusInfo/default.asp?id=description&virus k=100547.

[48] McAfee, Inc. Virus Profile: W32/Mydoom@MM. http://us.mcafee.com/

virusInfo/default.asp?id=description&virus k=100983.

[49] McAfee, Inc. Virus Profile: W32/Sasser.worm.a. http://us.mcafee.com/

virusInfo/default.asp?id=description&virus k=125007.

[50] Microsoft Corporation. 100 Reasons You’ll Be Speechless. http://www.

microsoft.com/windows/products/windowsvista/100reasons.mspx, 2007.

[51] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside
the Slammer Worm. IEEE Security and Privacy, 1(4):33–39, 2003.

[52] D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Internet Quarantine:
Requirements for Containing Self-Propagating Code. In INFOCOM, 2003.

[53] National Security Agency. Defense in Depth. http://www.nsa.gov/snac/

support/defenseindepth.pdf, June 2001.

[54] G. Nebbett. Windows NT/2000 Native API Reference. MTP, 2000.

Bibliography 92

[55] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Sig-
natures For Polymorphic Worms. In USENIX Security Symposium, 2005.

[56] PC Magazine. WebBench 5.0. http://www.pcmag.com/benchmarks/.

[57] PC World Communications, Inc. WorldBench 5. http://www.worldbench.com/.

[58] M. Pietrek. Poking Around Under the Hood: A Programmer’s View of Windows
NT 4.0. Microsoft Systems Journal, August 1996. http://www.microsoft.com/
msj/archive/s413.aspx.

[59] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by
RFC 1349.

[60] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.
Updated by RFC 3168.

[61] N. Provos. Improving Host Security with System Call Policies. In USENIX
Security Symposium, pages 257–272, 2003.

[62] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Multifaceted Approach
to Understanding the Botnet Phenomenon. In IMC ’06: Proceedings of the 6th
ACM SIGCOMM on Internet Measurement, pages 41–52, New York, NY, USA,
2006. ACM Press.

[63] A. Ramachandran and N. Feamster. Understanding the Network-Level Behavior
of Spammers. In SIGCOMM ’06: Proceedings of the 2006 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications,
pages 291–302, New York, NY, USA, 2006. ACM Press.

[64] T. J. Robbins. Windows NT System Service Table Hooking. http://www.

wiretapped.net/∼fyre/sst.html.

[65] P. Roberts. Mydoom Sets Speed Records. http://www.pcworld.com/news/

article/0,aid,114461,00.asp.

[66] M. Russinovich. Inside the Native API. http://www.sysinternals.com/

Information/NativeApi.html, 1998.

[67] T. Sabin. Personal correspondence.

[68] T. Sabin. Strace for NT. http://www.bindview.com/Services/RAZOR/

Utilities/Windows/strace readme.cfm.

[69] Sana Security, Inc. http://www.sanasecurity.com/.

Bibliography 93

[70] G. P. Schaffer. Worms and Viruses and Botnets, Oh My!: Rational Responses
to Emerging Internet Threats. IEEE Security and Privacy, 4(3):52–58, 2006.

[71] S. Schechter, J. Jung, and A. W. Berger. Fast Detection of Scanning Worm
Infections. In 7th Int’l Symposium on Recent Advances in Intrusion Detection,
French Riviera, France, September 2004.

[72] S. E. Schechter and M. D. Smith. Access for Sale: A New Class of Worm. In
WORM ’03: Proceedings of the 2003 ACM Workshop on Rapid Malcode, pages
19–23, New York, NY, USA, 2003. ACM Press.

[73] Bruce Schneier. Beyond Fear: Thinking Sensibly about Security in an Uncertain
World. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[74] V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe, and H. Zhang.
LADS: Large-scale Automated DDoS Detection System. In USENIX Annual
Technical Conference, General Track, pages 171–184, 2006.

[75] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprint-
ing. In OSDI, pages 45–60, 2004.

[76] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, New York, 1997.

[77] V. Smirnov. Re: Hooking system call from driver. NTDEV – Windows System
Software Developers List, April 2002.

[78] A. Somayaji and S. Forrest. Automated Response Using System-Call Delays. In
Proc. of the 9th USENIX Security Symposium, August 2000.

[79] A. B. Somayaji. Operating System Stability and Security through Process Home-
ostasis. PhD thesis, 2002.

[80] E. H. Spafford. Scientific American, chapter Recreations: Of Worms, Viruses
and Core War, page 110. March 1989.

[81] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top Speed of Flash
Worms. In Proc. of the 2004 ACM Workshop on Rapid Malcode, pages 33–42,
New York, NY, USA, 2004. ACM Press.

[82] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare
Time. In Proc. of the 11th USENIX Security Symposium, August 2002.

[83] S. J. Stolfo, F. Apap, E. Eskin, K. Heller, S. Hershkop, A. Honig, and K. Svore.
A Comparative Evaluation of Two Algorithms for Windows Registry Anomaly
Detection, volume 13 of Journal of Computer Security, pages 659–693. 2005.

[84] Symantec Corporation. http://www.symantec.com/.

Bibliography 94

[85] Symantec Corporation. W32.Beagle.B@mm. http://www.symantec.com/

security response/writeup.jsp?docid=2004-021713-3625-99.

[86] Symantec Corporation. W32.Blaster.Worm. http://www.symantec.com/

security response/writeup.jsp?docid=2003-081113-0229-99.

[87] Symantec Corporation. W32.Mydoom.M@mm. http://www.symantec.com/

security response/writeup.jsp?docid=2004-072615-3527-99.

[88] Symantec Corporation. W32.Sasser.Worm. http://www.symantec.com/

security response/writeup.jsp?docid=2004-050116-1831-99.

[89] Symantec Corporation. How to Protect Against Spyware, June 2005.

[90] P. Ször and P. Ferrie. Hunting for Metamorphic. In Proc. of the Virus Bulletin
Conference, pages 123–144, September 2001.

[91] B. Tucker. SoBig.F breaks virus speed records. http://www.cnn.com/2003/

TECH/internet/08/21/sobig.virus/.

[92] J. Twycross and M. M. Williamson. Implementing and Testing a Virus Throttle.
In USENIX Security Symposium, pages 285–294, 2003.

[93] UserLand Software, Inc. XML-RPC Home Page. http://www.xmlrpc.com/.

[94] J. Wang, Z. Zeng, and L. Zhou. CLAN: An Algorithm for Mining Closed Cliques
from Large Dense Graph Databases. In Proceedings of the 22nd International
Conference on Data Engineering, April 2006.

[95] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[96] N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment of Scanning
Worms. In USENIX Security Symposium, pages 29–44, 2004.

[97] M. M. Williamson. Throttling Viruses: Restricting propagation to defeat ma-
licious mobile code. Technical Report HPL-2002-172R1, HP Labs, December
2002.

[98] World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Fourth
Edition). September 2006.

[99] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, M. A. Langston, and
N. F. Samatova. Genome-Scale Computational Approaches to Memory-Intensive
Applications in Systems Biology. page 12, 2005.

